JP4775858B2 - Method for regenerating copper-based absorbent and method for removing mercury from source gas - Google Patents

Method for regenerating copper-based absorbent and method for removing mercury from source gas Download PDF

Info

Publication number
JP4775858B2
JP4775858B2 JP2007187488A JP2007187488A JP4775858B2 JP 4775858 B2 JP4775858 B2 JP 4775858B2 JP 2007187488 A JP2007187488 A JP 2007187488A JP 2007187488 A JP2007187488 A JP 2007187488A JP 4775858 B2 JP4775858 B2 JP 4775858B2
Authority
JP
Japan
Prior art keywords
copper
mercury
based absorbent
raw material
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007187488A
Other languages
Japanese (ja)
Other versions
JP2009022859A (en
Inventor
信 布川
広幸 秋保
誠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007187488A priority Critical patent/JP4775858B2/en
Publication of JP2009022859A publication Critical patent/JP2009022859A/en
Application granted granted Critical
Publication of JP4775858B2 publication Critical patent/JP4775858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Description

本発明は、石炭等をガス化させることにより生成した石炭等のガス化ガス等の水銀を含む原料ガスを接触させて原料ガス中の水銀を吸収した使用済み銅系吸収剤の再生方法及び原料ガス中の水銀除去方法に関する。   The present invention relates to a method and a raw material for recycling a used copper-based absorbent in which mercury contained in a raw material gas is absorbed by contacting a raw material gas containing mercury such as a gasified gas such as coal produced by gasifying coal. The present invention relates to a method for removing mercury in gas.

石炭は世界の広い地域に存在し、可採埋蔵量が多く、価格が安定しているため、エネルギーの確保、エネルギー価格の安定に重要な役割を果たしている。このように供給安定性が高く、発熱量あたりの価格が低廉である石炭をガス化し、得られる石炭ガス化ガスをガスタービン、燃料電池、ガスエンジンなどの発電機器の燃料とする高効率な発電技術が種々提案されている(例えば、特許文献1参照)。しかし、石炭ガス化ガスには発電機器および環境に悪影響を及ぼす不純物が含まれており、これらを事前に除去することが上記の高効率発電技術の実現に不可欠である。   Coal exists in a large area of the world, has a large amount of recoverable reserves, and has a stable price, so it plays an important role in securing energy and stabilizing energy prices. High-efficiency power generation using gas with high stability of supply and low price per calorific value, and using the resulting coal gasification gas as fuel for power generation equipment such as gas turbines, fuel cells, and gas engines Various techniques have been proposed (see, for example, Patent Document 1). However, the coal gasification gas contains impurities that adversely affect the power generation equipment and the environment, and it is indispensable to realize these high-efficiency power generation technologies in advance.

石炭には微量の水銀が含まれる場合があり、そのような石炭をガス化すると水銀も気化して石炭ガス化ガスに不純物として混入する可能性がある。水銀は蒸気圧が高いためにフィルタ等によるろ過では除去できないので、水銀を吸収あるいは吸着する除去剤を使用することとなる。常温から数十度程度の温度の燃焼排ガス等に含まれる水銀の除去方法として、活性炭を除去剤として用いる方法が知られている。また、高温のガス化ガスに含まれる水銀を吸収する技術として、銅を含む溶液から沈殿法により生成された沈殿物を濾過・洗浄・乾燥し、さらに150℃〜400℃にいったん加熱することによって得られたガス状水銀吸収物質を含むガス状水銀除去剤など、銅を主体とした銅系吸収剤を用いる方法(例えば、特許文献2参照)が提案されている。この銅系吸収剤は、石炭ガス化ガスやバイオマスガス化ガス等を接触させることで当該ガス化ガス等に含まれる水銀を吸収してこれらのガス化ガス等から水銀を除去するものである。銅系吸収剤には水銀を吸収可能な量、すなわち吸収容量があるため、水銀除去への使用にともない水銀吸収性能は次第に失われる。このため、水銀吸収性能が失われた銅系吸収剤は新品の銅系吸収剤に交換することとなる。しかしながら、銅系吸収剤を再生する方法が確立されていないため、使用済みの銅系吸収剤は廃棄されることになり、水銀を含有する大量の廃棄物が発生してしまうという問題や、大量の新品の銅系吸収剤を消費するという問題が生じ、銅系吸収剤の製造および処理コストの増大や資源の有効利用の点で課題となっている。なお、このような問題は、石炭ガス化ガスに限らず、その他の水銀を含む原料ガスにおいても同様に存在する。   Coal may contain a small amount of mercury, and when such coal is gasified, mercury may also be vaporized and mixed into the coal gasification gas as impurities. Since mercury has a high vapor pressure and cannot be removed by filtration with a filter or the like, a remover that absorbs or adsorbs mercury is used. As a method for removing mercury contained in combustion exhaust gas having a temperature from room temperature to several tens of degrees, a method using activated carbon as a remover is known. Moreover, as a technique for absorbing mercury contained in a high-temperature gasification gas, a precipitate produced by a precipitation method from a solution containing copper is filtered, washed and dried, and further heated once at 150 ° C. to 400 ° C. A method using a copper-based absorbent mainly composed of copper, such as a gaseous mercury removing agent containing the obtained gaseous mercury-absorbing substance (see, for example, Patent Document 2) has been proposed. This copper-based absorbent absorbs mercury contained in the gasification gas by contacting coal gasification gas, biomass gasification gas, or the like, and removes mercury from the gasification gas or the like. Since the copper-based absorbent has an amount capable of absorbing mercury, that is, an absorption capacity, the mercury absorption performance is gradually lost with the use of mercury removal. For this reason, the copper-based absorbent whose mercury absorption performance has been lost is replaced with a new copper-based absorbent. However, since a method for regenerating the copper-based absorbent has not been established, the used copper-based absorbent is discarded, and there is a problem that a large amount of waste containing mercury is generated. The problem of consuming new copper-based absorbents arises, which is a problem in terms of increasing the production and processing costs of copper-based absorbents and effectively using resources. Such a problem exists not only in the coal gasification gas but also in other source gases containing mercury.

特開2000−48844号公報JP 2000-48844 A 特開2005−161255号公報JP 2005-161255 A

本発明はこのような事情に鑑み、使用により水銀吸収性能が失われた使用済み銅系吸収剤を再生することができる銅系吸収剤の再生方法を提供することを課題とする。   In view of such circumstances, an object of the present invention is to provide a method for regenerating a copper-based absorbent that can regenerate a used copper-based absorbent whose mercury absorption performance has been lost by use.

本発明者等は、上記課題を解決するため検討した結果、原料ガス中の水銀を吸収した使用済みの銅系吸収剤は、水蒸気を含む雰囲気中で処理する水蒸気処理の後、酸素を含む雰囲気中で処理する酸化処理をすることにより、再び水銀を吸収できるように再生できることを見出し、本発明を完成させた。   As a result of studies conducted by the present inventors to solve the above-mentioned problems, the used copper-based absorbent that has absorbed mercury in the raw material gas has an atmosphere containing oxygen after the steam treatment in which the treatment is performed in an atmosphere containing steam. It was found that by performing an oxidation treatment in which the mercury can be absorbed again, the present invention was completed.

本発明の第1の態様は、水銀を含む原料ガスを銅系吸収剤に接触させて該原料ガス中の水銀を吸収した使用済み銅系吸収剤を、前記使用済み銅系吸収剤の温度が240〜300℃の条件で水蒸気を含む雰囲気中で処理して前記使用済み銅系吸収剤から水銀を放出する水蒸気処理の後、前記使用済み銅系吸収剤の温度が240〜300℃の条件で酸素を含む雰囲気中で処理して前記使用済み銅系吸収剤を酸化する酸化処理をすることを特徴とする銅系吸収剤の再生方法にある。   In the first aspect of the present invention, the used copper-based absorbent that has absorbed mercury contained in the raw material gas by contacting the raw material gas containing mercury with the copper-based absorbent has a temperature of the used copper-based absorbent. After the steam treatment in which the mercury is released from the used copper-based absorbent by treatment in an atmosphere containing steam at a temperature of 240-300 ° C., the temperature of the used copper-based absorbent is 240-300 ° C. The present invention provides a method for reclaiming a copper-based absorbent, characterized in that the treatment is performed in an atmosphere containing oxygen to oxidize the used copper-based absorbent.

かかる第1の態様では、水蒸気を含む雰囲気中で使用済み銅系吸収剤の温度が240〜300℃の条件で処理して水銀を放出させた後に、酸素を含む雰囲気中で使用済み銅系吸収剤の温度が240〜300℃の条件で処理して酸化することにより、使用済み銅系吸収剤が再び水銀を吸収できるように再生することができる。これにより、再生した銅系吸収剤を再度原料ガス中の水銀の除去に使用することができるため、使用済みの銅系吸収剤の廃棄物量及び新品の銅系吸収剤の使用量を低減することができる。   In such a first aspect, after the treatment of the spent copper absorbent in an atmosphere containing water vapor at a temperature of 240 to 300 ° C. to release mercury, the spent copper absorbent in an atmosphere containing oxygen is used. By treating and oxidizing the agent at a temperature of 240 to 300 ° C., the used copper-based absorbent can be regenerated so that it can absorb mercury again. As a result, the regenerated copper-based absorbent can be used again for removing mercury in the raw material gas, so the amount of used copper-based absorbent waste and the amount of new copper-based absorbent used must be reduced. Can do.

本発明の第2の態様は、前記原料ガスが、石炭をガス化させることにより生成した石炭ガス化ガスであることを特徴とする第1の態様に記載の銅系吸収剤の再生方法にある。   A second aspect of the present invention is the copper-based absorbent regeneration method according to the first aspect, wherein the raw material gas is a coal gasification gas generated by gasifying coal. .

かかる第2の態様では、石炭ガス化ガスから水銀を吸収する石炭ガス化ガス用の銅系吸収剤を再生することができる。   In the second aspect, the copper-based absorbent for coal gasification gas that absorbs mercury from the coal gasification gas can be regenerated.

本発明の第3の態様は、前記使用済み銅系吸収剤は、実質的に硫黄化合物及びハロゲン化物を含まない原料ガスを接触させて該原料ガス中の水銀を吸収したものであることを特徴とする第1又は2の態様に記載の銅系吸収剤の再生方法にある。   The third aspect of the present invention is characterized in that the used copper-based absorbent absorbs mercury in the raw material gas by contacting the raw material gas substantially free of sulfur compounds and halides. The method for regenerating a copper-based absorbent according to the first or second aspect.

かかる第3の態様では、原料ガスが硫黄化合物及びハロゲン化物を実質的に含まないので、この原料ガス中の水銀の除去に使用した銅系吸収剤は金属銅となっているが、水蒸気雰囲気中で使用済み銅系吸収剤から水銀を除去した後に使用済み銅系吸収剤を酸化物にすることにより、水銀吸収性能を回復できる。   In the third aspect, since the raw material gas does not substantially contain a sulfur compound and a halide, the copper-based absorbent used for removing mercury in the raw material gas is metallic copper. The mercury absorption performance can be recovered by converting the used copper-based absorbent into an oxide after removing the mercury from the used copper-based absorbent.

本発明の第4の態様は、前記使用済み銅系吸収剤は、160〜220℃で、原料ガスを接触させて該原料ガス中の水銀を吸収したものであることを特徴とする第1〜3の何れかの態様に記載の銅系吸収剤の再生方法にある。   According to a fourth aspect of the present invention, the used copper-based absorbent is a catalyst that absorbs mercury in the raw material gas by contacting the raw material gas at 160 to 220 ° C. 3. The method for regenerating a copper-based absorbent according to any one of the aspects 3.

かかる第4の態様では、160〜220℃という従来の活性炭を除去剤に用いる場合よりも高温の条件で原料ガスから水銀を除去する系で使用する銅系吸収剤を再生することができる。   In the fourth aspect, it is possible to regenerate the copper-based absorbent used in the system for removing mercury from the raw material gas at a higher temperature than when using a conventional activated carbon of 160 to 220 ° C. as the remover.

本発明の第5の態様は、前記銅系吸収剤が、銅化合物のみ、あるいは銅化合物と担体成分、又は、成形助剤を含む吸収剤であり、未使用の銅系吸収剤に含まれる前記銅化合物は酸化銅あるいは金属銅であることを特徴とする第1〜4の何れかの態様に記載の銅系吸収剤の再生方法にある。   According to a fifth aspect of the present invention, the copper-based absorbent is an absorbent containing only a copper compound, or a copper compound and a carrier component, or a molding aid, and is contained in an unused copper-based absorbent. The copper compound is copper oxide or metal copper, and is in the method for regenerating a copper-based absorbent according to any one of the first to fourth aspects.

かかる第5の態様では、銅化合物のみ、あるいは銅化合物と担体成分、又は、成形助剤を含む吸収剤で、未使用の銅系吸収剤に含まれる銅化合物は酸化銅あるいは金属銅である銅系吸収剤を再生することができる。   In the fifth aspect, the copper compound alone, or an absorbent containing a copper compound and a carrier component or a molding aid, and the copper compound contained in the unused copper-based absorbent is copper oxide or metallic copper. The system absorbent can be regenerated.

本発明の第6の態様は、原料ガスを銅系吸収剤に接触させて該原料ガス中の水銀を前記銅系吸収剤に吸収させた後、この水銀を吸収した使用済み銅系吸収剤を第1〜5の何れかの態様に記載の銅系吸収剤の再生方法により再生し、再生した使用済み銅系吸収剤に再び原料ガスを接触させて水銀を吸収させることを特徴とする原料ガス中の水銀除去方法にある。   In the sixth aspect of the present invention, after the raw material gas is brought into contact with the copper-based absorbent and mercury in the raw material gas is absorbed by the copper-based absorbent, the used copper-based absorbent that has absorbed the mercury is used. A raw material gas which is regenerated by the method for regenerating a copper-based absorbent according to any one of the first to fifth aspects and contacts the regenerated spent copper-based absorbent with the raw material gas again to absorb mercury. It is in the mercury removal method.

かかる第6の態様では、原料ガス中の水銀を吸収した使用済み銅系吸収剤を再生して再度原料ガス中の水銀の除去に使用することにより、銅系吸収剤の廃棄物及び使用量を低減することができる。   In the sixth aspect, the waste and usage amount of the copper-based absorbent is reduced by regenerating the used copper-based absorbent that has absorbed the mercury in the raw material gas and using it again for removing the mercury in the raw material gas. Can be reduced.

以下、本発明をさらに詳細に説明する。
本発明の再生方法で再生する銅系吸収剤は、水銀が例えば0.1μg/m3Nより高い濃度で含まれる原料ガスを、例えば、160〜220℃で接触させて原料ガス中の水銀を吸収した銅系吸収剤である。なお、本明細書において、原料ガスを接触させて水銀を吸収することにより、水銀吸収性能が失われた銅系吸収剤を、使用済み銅系吸収剤という。また、銅系吸収剤とは、銅を主体とする吸収剤であればよく、例えば、銅化合物のみ、あるいは銅化合物と担体成分、又は、成形助剤を含む吸収剤であり、未使用の銅系吸収剤に含まれる銅化合物としては酸化銅あるいは金属銅が挙げられる。担体成分としては、アルミナ、シリカ、チタニア、ジルコニア、ゼオライト、グラスファイバー等が挙げられる。また、成形助剤としては、エチレングリコール、粘土鉱物等が挙げられる。銅系吸収剤の製造方法は特に限定されないが、例えば、酸化銅と担体成分(シリカ)からなる銅系吸収剤の製造方法の具体例としては、塩化銅、硫酸銅、又は硝酸銅の水溶液にシリカゾルを加えた混合水溶液に水酸化ナトリウム水溶液を添加し生成した沈殿物を濾過、洗浄、乾燥、焼成して得る方法が挙げられる。
Hereinafter, the present invention will be described in more detail.
The copper-based absorbent to be regenerated by the regeneration method of the present invention is made by contacting a source gas containing mercury at a concentration higher than 0.1 μg / m 3 N at, for example, 160 to 220 ° C. Absorbed copper-based absorbent. In the present specification, a copper-based absorbent whose mercury absorption performance is lost by contacting the raw material gas to absorb mercury is referred to as a used copper-based absorbent. The copper-based absorbent may be an absorbent mainly composed of copper, for example, an absorbent containing only a copper compound, or a copper compound and a carrier component, or a molding aid, and unused copper. Examples of the copper compound contained in the system absorbent include copper oxide and metallic copper. Examples of the carrier component include alumina, silica, titania, zirconia, zeolite, and glass fiber. Further, examples of the molding aid include ethylene glycol and clay mineral. Although the manufacturing method of a copper-type absorber is not specifically limited, For example, as a specific example of the manufacturing method of the copper-type absorber which consists of a copper oxide and a support component (silica), the aqueous solution of copper chloride, copper sulfate, or copper nitrate is used. Examples thereof include a method in which a sodium hydroxide aqueous solution is added to a mixed aqueous solution to which silica sol is added, and the resulting precipitate is filtered, washed, dried and fired.

原料ガスとしては、水銀が含まれるガスであれば特に限定はないが、例えば石炭をガス化させることにより生成した石炭ガス化ガスや、重質油、汚泥、バイオマス、廃棄物などをガス化させることにより生成した各種ガス化ガス等が挙げられる。特に、実質的に硫黄化合物及びハロゲン化物を含まない原料ガス中の水銀を吸収した銅系吸収剤に、本発明の銅系吸収剤の再生方法を好適に適用することができる。なお、実質的に硫黄化合物及びハロゲン化物を含まない原料ガスとは、原料ガス中の硫黄化合物及びハロゲン化物の濃度が、原料ガスから水銀を吸収する際に銅系吸収剤が硫化銅やハロゲン化銅にならない程度であることを意味し、例えば、硫黄化合物の濃度1ppm以下、ハロゲン化物の濃度1ppm以下である。勿論、硫黄化合物及びハロゲン化物を全く含まない原料ガスでもよい。   The raw material gas is not particularly limited as long as it contains mercury. For example, coal gasification gas generated by gasifying coal, heavy oil, sludge, biomass, waste, etc. are gasified. Various gasification gases produced by the above method can be mentioned. In particular, the method for regenerating a copper-based absorbent of the present invention can be suitably applied to a copper-based absorbent that has absorbed mercury in a raw material gas that is substantially free of sulfur compounds and halides. Note that the source gas substantially free of sulfur compounds and halides means that when the concentration of sulfur compounds and halides in the source gas absorbs mercury from the source gas, the copper-based absorbent is copper sulfide or halogenated. It means that it is not to become copper. For example, the concentration of the sulfur compound is 1 ppm or less and the concentration of the halide is 1 ppm or less. Of course, a raw material gas containing no sulfur compound and halide may be used.

本発明の銅系吸収剤の再生方法では、まず、使用済み銅系吸収剤を、使用済み銅系吸収剤の温度が240〜300℃の条件で水蒸気を含む雰囲気中で処理して、使用済み銅系吸収剤から水銀を放出させて使用済み銅系吸収剤から水銀を除去する。このように、水蒸気を含む雰囲気中に使用済み銅系吸収剤を置くと共に、使用済み銅系吸収剤の温度が240〜300℃になるようにすることにより、使用済み銅系吸収剤から水銀を放出させることを水蒸気処理という。なお、この水蒸気処理により、使用済み銅系吸収剤から水銀を完全に放出させてもよいが、吸収した水銀が完全に放出されていなくてもよく、ある程度、例えば吸収した水銀の90重量%以上が放出されていればよい。   In the method for regenerating a copper-based absorbent according to the present invention, first, a used copper-based absorbent is used after being treated in an atmosphere containing water vapor at a temperature of the used copper-based absorbent of 240 to 300 ° C. Mercury is released from the copper-based absorbent to remove mercury from the used copper-based absorbent. In this way, mercury is removed from the used copper-based absorbent by placing the used copper-based absorbent in an atmosphere containing water vapor and setting the temperature of the used copper-based absorbent to 240 to 300 ° C. The release is called steam treatment. In addition, mercury may be completely released from the used copper-based absorbent by this steam treatment, but the absorbed mercury may not be completely released, for example, 90% by weight or more of the absorbed mercury. Should just be released.

水蒸気処理は水蒸気を含む雰囲気中で行えばよいが、例えば水蒸気を1〜20%(体積)程度含む窒素ガス雰囲気で行うことが好ましい。なお、酸素は含まない雰囲気下で行う必要がある。   The water vapor treatment may be performed in an atmosphere containing water vapor, but for example, it is preferably performed in a nitrogen gas atmosphere containing about 1 to 20% (volume) of water vapor. In addition, it is necessary to perform in the atmosphere which does not contain oxygen.

水蒸気処理温度は、使用済み銅系吸収剤の温度が240〜300℃となるようにする必要がある。240℃未満では使用済み銅系吸収剤から水銀を十分に放出できず、水銀吸収性能が回復できないからである。また、300℃より高い温度にすると、銅系吸収剤が焼結して変質し水銀吸収性能が劣化してしまう虞がある。使用済み銅系吸収剤の温度は、水蒸気や窒素等の処理ガスの温度や、反応容器の温度設定等で調整することができる。
水蒸気処理時間は特に限定されず、銅系吸収剤から水銀を放出できればよい。
The steam treatment temperature needs to be such that the temperature of the used copper-based absorbent is 240 to 300 ° C. This is because if it is less than 240 ° C., mercury cannot be sufficiently released from the used copper-based absorbent, and the mercury absorption performance cannot be recovered. On the other hand, when the temperature is higher than 300 ° C., the copper-based absorbent may be sintered and deteriorated, and the mercury absorption performance may be deteriorated. The temperature of the used copper-based absorbent can be adjusted by the temperature of the processing gas such as water vapor or nitrogen, the temperature setting of the reaction vessel, or the like.
The steam treatment time is not particularly limited as long as mercury can be released from the copper-based absorbent.

その後、酸素を含む雰囲気中で使用済み銅系吸収剤の温度が240〜300℃になるように処理して、使用済み銅系吸収剤を酸化して酸化銅(CuO、Cu2O等)となるようにする。このように、酸素を含む雰囲気中に使用済み銅系吸収剤を置くと共に、使用済み銅系吸収剤の温度が240〜300℃になるようにすることにより、使用済み銅系吸収剤を酸化することを酸化処理という。水蒸気処理により使用済み銅系吸収剤の水銀を放出した後に使用済み銅系吸収剤を酸化物にすることによって、原料ガス中の水銀を吸収して原料ガスから水銀を除去する水銀吸収性能を回復することができる。詳述すると、まず、銅系吸収剤に水銀を含む原料ガスを接触させると、銅系吸収剤は原料ガス中の水銀を吸収して除去するが、銅系吸収剤には水銀を吸収可能な量、すなわち吸収容量があるため、水銀除去への使用にともない水銀吸収性能は次第に失われる。また同時に、酸化銅として存在している銅の一部が原料ガスによって還元されて金属銅(Cu)となり、その水銀吸収能力が酸化銅に比べて低いため、銅系吸収剤の水銀吸収性能が低下する。この使用済み銅系吸収剤を、温度が240〜300℃の条件で水蒸気を含む雰囲気中で処理すると原料ガスから吸収した水銀が放出される(水蒸気処理)。水蒸気処理によって水銀を放出させた後、酸素を含む雰囲気中で使用済み銅系吸収剤の温度が240〜300℃になるようにすると、水蒸気処理後に残留していた水銀が放出されると共に、金属銅となっていた使用済み銅系吸収剤中の銅化合物が酸化されて酸化銅となる。その結果、水銀吸収性能を回復することができる。 Thereafter, the used copper-based absorbent is treated in an atmosphere containing oxygen so that the temperature of the used copper-based absorbent becomes 240 to 300 ° C., and the used copper-based absorbent is oxidized to form copper oxide (CuO, Cu 2 O, etc.). To be. In this manner, the used copper-based absorbent is oxidized by placing the used copper-based absorbent in an atmosphere containing oxygen and setting the temperature of the used copper-based absorbent to 240 to 300 ° C. This is called oxidation treatment. The mercury absorption performance that absorbs mercury in the raw material gas and removes mercury from the raw material gas is restored by converting the used copper-based absorbent into an oxide after releasing the mercury of the used copper-based absorbent by steam treatment. can do. In detail, first, when a raw material gas containing mercury is brought into contact with a copper-based absorbent, the copper-based absorbent absorbs and removes mercury in the raw material gas, but the copper-based absorbent can absorb mercury. Due to the quantity, i.e. absorption capacity, the mercury absorption performance is gradually lost with the use for mercury removal. At the same time, part of the copper present as copper oxide is reduced by the source gas to become metallic copper (Cu), and its mercury absorption capacity is lower than that of copper oxide. descend. When this used copper-based absorbent is treated in an atmosphere containing water vapor at a temperature of 240 to 300 ° C., mercury absorbed from the raw material gas is released (water vapor treatment). After releasing mercury by steam treatment, if the temperature of the used copper-based absorbent is set to 240 to 300 ° C. in an atmosphere containing oxygen, mercury remaining after the steam treatment is released, and metal The copper compound in the used copper-based absorbent that has become copper is oxidized to become copper oxide. As a result, mercury absorption performance can be recovered.

なお、本発明の銅系吸収剤の再生方法のように水蒸気処理後に酸化処理を施すという二段階の処理ではなく、水蒸気及び酸素を含む雰囲気下で処理するという一段階の処理では、使用済み銅系吸収剤の水銀吸収性能を良好に回復することはできない。これは使用済み銅系吸収剤に含まれる金属銅の酸化が急激に進み、その際に吸収剤中の水銀が放出されずに取り込まれてしまうためと推測される。また、水蒸気処理のみの再生では、原料ガスの水銀除去と再生を繰り返すと、銅系吸収剤の水銀吸収性能が徐々に低下してしまう。これは水蒸気処理のみの再生では、銅系吸収剤に含まれる銅化合物が金属銅のままであり、その水銀吸収性能が酸化銅に比べて低いためと推測される。   It should be noted that the used copper is not a two-step treatment in which an oxidation treatment is performed after the steam treatment as in the copper absorbent regenerating method of the present invention, but in a one-step treatment in an atmosphere containing water vapor and oxygen. It is not possible to recover the mercury absorption performance of the system absorbent well. This is presumably because the oxidation of metallic copper contained in the used copper-based absorbent proceeds rapidly, and mercury in the absorbent is taken in without being released. Further, in the regeneration using only the steam treatment, if mercury removal and regeneration of the source gas are repeated, the mercury-absorbing performance of the copper-based absorbent gradually decreases. This is presumably because in the regeneration using only the steam treatment, the copper compound contained in the copper-based absorbent remains metallic copper, and its mercury absorption performance is lower than that of copper oxide.

酸化処理は、酸素を含む雰囲気で行えばよく、例えば水蒸気や窒素を含んでいてもよいが、例えば酸素を0.5〜20%(体積)程度含むガス雰囲気で行うことが好ましい。   The oxidation treatment may be performed in an atmosphere containing oxygen. For example, it may contain water vapor or nitrogen, but is preferably performed in a gas atmosphere containing, for example, about 0.5 to 20% (volume) of oxygen.

酸化処理温度は、使用済み銅系吸収剤の温度が240〜300℃となるようにする必要がある。240℃未満では使用済み銅系吸収剤を十分に酸化できず、水銀吸収性能が回復できないからである。また、300℃より高い温度にすると、銅系吸収剤が焼結して変質し水銀吸収性能が劣化してしまう虞がある。使用済み銅系吸収剤の温度は、酸素や水蒸気等の処理ガスの温度や、反応容器の温度設定、また、酸化処理するガスの酸素濃度等で調整することができる。   The oxidation treatment temperature needs to be such that the temperature of the used copper-based absorbent is 240 to 300 ° C. This is because if the temperature is less than 240 ° C., the used copper-based absorbent cannot be sufficiently oxidized and the mercury absorption performance cannot be recovered. On the other hand, when the temperature is higher than 300 ° C., the copper-based absorbent may be sintered and deteriorated, and the mercury absorption performance may be deteriorated. The temperature of the used copper-based absorbent can be adjusted by the temperature of the processing gas such as oxygen or water vapor, the temperature setting of the reaction vessel, the oxygen concentration of the gas to be oxidized, or the like.

酸化処理時間も特に限定されず、水蒸気処理を施した使用済み銅系吸収剤を酸化することができればよい。   The oxidation treatment time is not particularly limited as long as it can oxidize the used copper-based absorbent that has been subjected to the steam treatment.

このような本発明の銅系吸収剤の再生方法により再生した銅系吸収剤は、後述する実施例に示すように、石炭ガス化ガス等の水銀を含む原料ガスに対して、未使用の銅系吸収剤と同程度の水銀吸収性能を発揮することができる。すなわち、本発明の再生方法により再生した銅系吸収剤は、十分な水銀吸収性能を有するため、再度、原料ガス中の水銀を除去する銅系吸収剤として使用することができる。詳述すると、原料ガス中の水銀除去および使用済み銅系吸収剤の再生を順次実施することによって銅系吸収剤を繰り返し使用する方法を示す図である図1に示すように、水銀を含む原料ガスを、例えば160〜220℃で銅系吸収剤に接触させ該原料ガス中の水銀を銅系吸収剤に吸収させて精製ガス(例えば水銀濃度Hg:0.1μg/m3 N以下)を得る水銀除去の後、この水銀除去により水銀を吸収した使用済み銅系吸収剤を上記本発明の銅系吸収剤の再生方法により再生する。具体的には、使用済み銅系吸収剤を水蒸気処理した後、酸化処理する。そして、この水蒸気処理及び酸化処理により再生した使用済み銅系吸収剤に再び原料ガスを接触させて水銀を吸収させることによって、原料ガスから水銀を除去して精製ガスを得る水銀除去を行う。このように、銅系吸収剤を再生して原料ガス中の水銀の除去に繰り返し使用することにより、原料ガス中の水銀を除去する際に使用する銅系吸収剤の廃棄物量及び使用量を低減することができる。 The copper-based absorbent regenerated by the method for regenerating a copper-based absorbent of the present invention, as shown in the examples described later, is used with respect to raw material gas containing mercury such as coal gasification gas. Mercury absorption performance comparable to that of a system absorbent. That is, the copper-based absorbent regenerated by the regeneration method of the present invention has sufficient mercury absorption performance, so that it can be used again as a copper-based absorbent for removing mercury in the raw material gas. Specifically, as shown in FIG. 1, a raw material containing mercury as shown in FIG. 1, which shows a method of repeatedly using a copper-based absorbent by sequentially removing mercury in a raw material gas and regenerating a used copper-based absorbent. A purified gas (for example, mercury concentration Hg: 0.1 μg / m 3 N or less) is obtained by bringing the gas into contact with a copper-based absorbent at, for example, 160 to 220 ° C., and absorbing mercury in the raw material gas into the copper-based absorbent. After the mercury removal, the used copper-based absorbent that has absorbed the mercury by removing the mercury is regenerated by the method for regenerating a copper-based absorbent of the present invention. Specifically, the used copper-based absorbent is steam-treated and then oxidized. Then, mercury is removed from the raw material gas by removing the mercury from the raw material gas by bringing the raw material gas into contact with the spent copper-based absorbent regenerated by the steam treatment and the oxidation treatment to absorb mercury. In this way, the amount of waste and the amount of copper-based absorbent used to remove mercury in the raw material gas is reduced by regenerating the copper-based absorbent and repeatedly using it to remove mercury in the raw material gas. can do.

本発明の銅系吸収剤の再生方法は、石炭、重質油、汚泥、バイオマス、廃棄物などのガス化ガスといった原料ガスを、ガスタービン、燃料電池、ガスエンジンなどの発電機器の燃料ガスとする発電設備用の水銀除去装置などに適用することができる。本発明の銅系吸収剤の再生方法で再生される銅系吸収剤を用いて原料ガスから水銀を除去する水銀除去装置を用いた発電設備について、以下に説明する。なお、石炭ガス化炉で製造した石炭ガス化ガスを原料ガスとし、原料ガスを燃焼させガスタービンを駆動すると共に発生する熱により蒸気タービンを駆動する石炭ガス化複合発電(IGCC)を例に説明する。   The copper-based absorbent regeneration method of the present invention uses a raw material gas such as coal, heavy oil, sludge, biomass, waste, and other gasification gas as a fuel gas for power generation equipment such as a gas turbine, a fuel cell, and a gas engine. It can be applied to mercury removal equipment for power generation facilities. A power generation facility using a mercury removing apparatus that removes mercury from a raw material gas using a copper absorbent regenerated by the copper absorbent regenerating method of the present invention will be described below. An example of coal gasification combined power generation (IGCC), which uses coal gasification gas produced in a coal gasification furnace as raw material gas, burns the raw material gas to drive the gas turbine, and drives the steam turbine by the generated heat. To do.

図2には乾式ガス精製システムを備えた石炭ガス化複合発電(IGCC)システムの概略系統を示してある。なお、図2は、実質的に硫黄化合物及びハロゲン化物を含まない石炭ガスからの水銀除去装置を備えたものである。図2に示すように、石炭ガス化炉1で石炭を燃焼しガス化して得られる水銀、ダスト、硫黄化合物及びハロゲン化物を含有する原料ガス(石炭ガス化ガス)は、ガス冷却器で冷却された後、フィルタ2でダストが除去される(運転温度400℃〜600℃)。そして、フィルタ2でダストが除去された原料ガスは、ナトリウム系吸収剤が充填されたハロゲン化物除去装置3でHClやHF等のハロゲン化物が吸収されて除去される(運転温度400℃〜500℃)。ハロゲン化物が除去された原料ガスは脱硫剤が充填された脱硫装置4に送られ、H2SやCOS等の硫黄化合物が吸収されて除去される(運転温度400℃〜500℃)。なお、ハロゲン化物除去装置3及び脱硫装置4を経た原料ガスは、ハロゲン化物及び硫黄化合物を実質的に含有しない。 FIG. 2 shows a schematic system of an integrated coal gasification combined cycle (IGCC) system equipped with a dry gas purification system. In addition, FIG. 2 is equipped with the mercury removal apparatus from coal gas which does not contain a sulfur compound and a halide substantially. As shown in FIG. 2, a raw material gas (coal gasification gas) containing mercury, dust, sulfur compounds and halides obtained by burning and gasifying coal in a coal gasification furnace 1 is cooled by a gas cooler. After that, dust is removed by the filter 2 (operation temperature 400 ° C. to 600 ° C.). The source gas from which the dust has been removed by the filter 2 is removed by absorbing halides such as HCl and HF by the halide removing device 3 filled with a sodium-based absorbent (operation temperature 400 ° C. to 500 ° C. ). The raw material gas from which the halide has been removed is sent to a desulfurization apparatus 4 filled with a desulfurizing agent, and sulfur compounds such as H 2 S and COS are absorbed and removed (operation temperature 400 ° C. to 500 ° C.). In addition, the raw material gas which passed through the halide removal apparatus 3 and the desulfurization apparatus 4 does not contain a halide and a sulfur compound substantially.

次いで、ダスト、ハロゲン化物及び硫黄化合物が除去された原料ガスは、熱交換器5で温度を下げた後、銅系吸収剤が充填された水銀除去装置6に送られ、水銀蒸気が除去される(運転温度160℃〜220℃)。   Next, the raw material gas from which dust, halides and sulfur compounds have been removed is lowered in temperature by the heat exchanger 5 and then sent to a mercury removing device 6 filled with a copper-based absorbent to remove mercury vapor. (Operating temperature 160 ° C to 220 ° C).

そして、この水銀除去装置6で水銀が除去された原料ガスは熱交換器5で昇温された後、燃料ガスとしてガスタービン21に送られる。燃料ガスは圧縮空気と共にガスタービン21で燃焼して燃焼タービンを駆動するとともに、触媒燃焼器22で未燃成分を燃焼させた燃焼ガスを膨張タービン23に導入して膨張タービンを駆動することにより、発電機24が作動して発電が行なわれる。   The raw material gas from which mercury has been removed by the mercury removing device 6 is heated by the heat exchanger 5 and then sent to the gas turbine 21 as fuel gas. The fuel gas is burned together with the compressed air in the gas turbine 21 to drive the combustion turbine, and the combustion gas obtained by burning the unburned components in the catalytic combustor 22 is introduced into the expansion turbine 23 to drive the expansion turbine. The generator 24 is activated to generate power.

膨張タービン23からの高温の排気ガスは、排熱回収ボイラ(HRSG)25に送られ、熱を回収して蒸気を発生させる。そして排熱回収ボイラ25で発生した蒸気は蒸気タービン26に送られ、蒸気タービン26の駆動により発電機27が作動して発電が行なわれる。また、排熱回収ボイラ25で熱回収された排気ガスは煙突28から排出される。   High-temperature exhaust gas from the expansion turbine 23 is sent to an exhaust heat recovery boiler (HRSG) 25 to recover heat and generate steam. Then, the steam generated in the exhaust heat recovery boiler 25 is sent to the steam turbine 26, and the generator 27 is operated by the driving of the steam turbine 26 to generate power. Further, the exhaust gas heat recovered by the exhaust heat recovery boiler 25 is discharged from the chimney 28.

図2に示した乾式ガス精製システムでは、ダストがフィルタ2で濾過されて除去され、ハロゲン化物がハロゲン化物除去装置3で除去され、硫黄化合物が脱硫装置4で除去され、水銀蒸気が水銀除去装置6で除去される。これにより、石炭をガス化した原料ガスを、ガスタービン21の燃料ガスに適用でき、かつ燃焼後のガスをそのまま煙突から排出することが可能なレベルまで精製することができる。   In the dry gas purification system shown in FIG. 2, dust is filtered and removed by the filter 2, halide is removed by the halide removal device 3, sulfur compounds are removed by the desulfurization device 4, and mercury vapor is removed by the mercury removal device. 6 is removed. Thereby, the raw material gas which gasified coal can be applied to the fuel gas of the gas turbine 21, and it can refine | purify to the level which can discharge | emit the gas after combustion from a chimney as it is.

図2においては、銅系吸収剤12に原料ガスを接触させることによって水銀を原料ガスから除去する際に、原料ガスから水銀を吸収して水銀吸収性能が失われた使用済みの銅系吸収剤12を、水銀除去装置6から抜き出し、上述した本発明の銅系吸収剤の再生方法により再生し水銀吸収性能を回復させて、再び水銀除去装置6に充填して使用する。このように銅系吸収剤を再生して再利用するため、原料ガスから水銀を除去する際に使用する銅系吸収剤12の廃棄物量及び使用量を低減することができる。なお、本発明の銅系吸収剤の再生方法に必要な水蒸気や酸素は、排熱回収ボイラ25で発生した水蒸気や、ガス化炉用空気分離器で製造される酸素など、石炭ガス化複合発電システムに既存のユーティリティが利用でき、新たな装置を設けることなく本発明を実施することができる。   In FIG. 2, when removing the mercury from the raw material gas by bringing the raw material gas into contact with the copper-based absorbent 12, the used copper-based absorbent that absorbs the mercury from the raw material gas and loses the mercury absorption performance. 12 is extracted from the mercury removing device 6 and regenerated by the above-described method for regenerating a copper-based absorbent of the present invention to recover the mercury absorption performance. The mercury removing device 6 is filled again and used. Since the copper-based absorbent is regenerated and reused in this way, the amount of waste and the amount of copper-based absorbent 12 used when removing mercury from the source gas can be reduced. Note that the steam and oxygen necessary for the method for regenerating a copper-based absorbent according to the present invention include coal gasification combined power generation such as steam generated in the exhaust heat recovery boiler 25 and oxygen produced by a gasifier air separator. An existing utility can be used in the system, and the present invention can be implemented without providing a new device.

上記の例では、使用済みの銅系吸収剤12を水銀除去装置6からいったん取り除き、水銀除去装置6以外の場所で再生する方法を示したが、複数の水銀除去装置を併設し原料ガスの流路切り替えによって交互に使用する等の方法で、水銀除去装置6に銅系吸収剤を充填したまま再生するようにしてもよい。後述する実施例に示すように、本発明の銅系吸収剤の再生方法では、原料ガスの水銀除去に使用可能な時間よりも短時間、例えば80分程度で水銀吸収性能を完全に回復できるため、再生した銅系吸収剤が充填されている水銀除去装置を待機させ、原料ガスの水銀除去に使用している水銀除去装置の性能が低下し始めたところで原料ガスの流路を切り替えることによって、連続的に原料ガスから水銀を除去することができる。   In the above example, a method of once removing the used copper-based absorbent 12 from the mercury removing device 6 and regenerating at a place other than the mercury removing device 6 is shown. The mercury removal device 6 may be regenerated while being filled with the copper-based absorbent by a method such as alternate use by path switching. As shown in the examples to be described later, in the copper-based absorbent regeneration method of the present invention, the mercury absorption performance can be completely recovered in a shorter time, for example, about 80 minutes, than the time that can be used for removing mercury from the source gas. By switching the flow path of the raw material gas when the mercury removing device filled with the regenerated copper-based absorbent is put on standby and the performance of the mercury removing device used for removing the raw material gas begins to deteriorate, Mercury can be continuously removed from the source gas.

また、図2の乾式ガス精製システムでは、上流側から順に、フィルタ2、ハロゲン化物除去装置3、脱硫装置4、水銀除去装置6が設けられているものを示したが、これらの装置はこの順序に限定されず、硫黄化合物およびハロゲン化物を含む石炭ガスから水銀除去してもよく、例えば、図3に示すように、上流側から、フィルタ2、水銀除去装置6、ハロゲン化物除去装置3、脱硫装置4となるようにしてもよい。   Further, in the dry gas purification system of FIG. 2, the filter 2, the halide removing device 3, the desulfurizing device 4, and the mercury removing device 6 are shown in this order from the upstream side. However, mercury may be removed from coal gas containing sulfur compounds and halides. For example, as shown in FIG. 3, from the upstream side, filter 2, mercury removing device 6, halide removing device 3, desulfurization is performed. The device 4 may be used.

以下、本発明について実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.

(実施例1)
<銅系吸収剤の調製>
硝酸銅3水和物の水溶液(2mol/L)にシリカゾルを得られる吸収剤のシリカ含有量が約30重量%となる量を加えた。その混合水溶液を約60℃に加温したところに、水酸化ナトリウム水溶液(4mol/L)を撹拌しつつ水溶液のpHが弱アルカリ性になるまで少量ずつ添加した。生成した沈殿物を濾過、洗浄、乾燥、焼成して、酸化銅およびシリカ成分からなる銅系吸収剤を調製した。
Example 1
<Preparation of copper absorbent>
To the aqueous solution of copper nitrate trihydrate (2 mol / L), an amount that makes the silica content of the absorbent capable of obtaining a silica sol about 30% by weight was added. When the mixed aqueous solution was heated to about 60 ° C., an aqueous sodium hydroxide solution (4 mol / L) was added little by little until the pH of the aqueous solution became weakly alkaline while stirring. The produced precipitate was filtered, washed, dried and fired to prepare a copper-based absorbent composed of copper oxide and silica components.

<未使用銅系吸収剤による水銀除去>
上記で調製した未使用の銅系吸収剤2gに、220℃、大気圧(0.1MPa)で、石炭ガス化ガスを想定した模擬原料ガス(ガス組成は、H2:8%、CO:20%、CO2:5%、H2O:5%、N2:balance、Hg:62μg/m3N)を、原料ガス流量1.0L/minで接触させて、原料ガス中の水銀を銅系吸収剤に吸収させた。なお、この原料ガス中の水銀を吸収させた使用済み銅系吸収剤に含まれる銅化合物は、一部が金属銅になっていた。銅系吸収剤と原料ガスとを接触させた時間(経過時間)と、銅系吸収剤が吸収した水銀の総量(水銀吸収量)及び銅系吸収剤を通過した後の原料ガス中の水銀濃度(出口水銀濃度)との関係を図4に示す。図4中、太線が水銀吸収量を、細線が出口水銀濃度を示す。
図4に示すように、時間の経過と共に出口水銀濃度は上昇し、590分で約58μg/m3Nとなった。水銀を除去する前の原料ガスの水銀濃度は62μg/m3Nであったことから、経過時間590分の時点での銅系吸収剤は水銀吸収性能がほとんど失われた使用済みの銅系吸収剤となったことが確認された。また、この水銀除去の間に銅系吸収剤が原料ガスから吸収した水銀量は約21μgだった。
<Mercury removal with unused copper-based absorbent>
Simulated raw material gas (gas composition is H 2 : 8%, CO: 20) assuming coal gasification gas at 220 ° C. and atmospheric pressure (0.1 MPa) to 2 g of the unused copper-based absorbent prepared above. %, CO 2 : 5%, H 2 O: 5%, N 2 : balance, Hg: 62 μg / m 3 N) at a source gas flow rate of 1.0 L / min to bring mercury in the source gas into copper Absorbed in a system absorbent. Note that a part of the copper compound contained in the used copper-based absorbent that absorbed mercury in the raw material gas was metallic copper. The time (elapsed time) when the copper-based absorbent and the raw material gas were contacted, the total amount of mercury absorbed by the copper-based absorbent (mercury absorption amount), and the mercury concentration in the raw material gas after passing through the copper-based absorbent The relationship with (exit mercury concentration) is shown in FIG. In FIG. 4, the thick line indicates the mercury absorption amount, and the thin line indicates the outlet mercury concentration.
As shown in FIG. 4, the outlet mercury concentration increased with the passage of time, and reached about 58 μg / m 3 N at 590 minutes. Since the mercury concentration of the raw material gas before removing mercury was 62 μg / m 3 N, the copper-based absorbent at the elapsed time of 590 minutes had almost lost its mercury absorption performance. It was confirmed that it became an agent. Further, the amount of mercury absorbed from the raw material gas by the copper-based absorbent during the mercury removal was about 21 μg.

<使用済み銅系吸収剤の再生>
次に、この原料ガス中の水銀を吸収させた使用済み銅系吸収剤を、水蒸気と窒素からなる水蒸気を含むガス(H2O:10%、及び、N2:balance)中に置き、使用済み銅系吸収剤の温度が260℃となるようにして水銀を放出させた(水蒸気処理)。なお、再生ガス流量1.0L/min、大気圧(0.1MPa)で行った。
その後、水蒸気処理した使用済み銅系吸収剤を、酸素を含むガス(H2O:10%、O2:10%、及び、N2:balance)中に置き、使用済み銅系吸収剤の温度が260℃となるようにして酸化させた(酸化処理)。なお、再生ガス流量1.0L/min、大気圧(0.1MPa)で行い、この酸化処理を行った使用済み銅系吸収剤は、酸化銅(CuO、Cu2O等)になっていた。
銅系吸収剤を水蒸気処理および酸化処理した時間(経過時間)と、銅系吸収剤が放出した水銀の総量(水銀放出量)及び銅系吸収剤を通過したガス中の水銀濃度(出口水銀濃度)との関係を図5に示す。図5中、太線が水銀放出量を、細線が出口水銀濃度を示す。また、(1)は水蒸気処理での結果を、(2)は酸素処理での結果を示す。
図5に示すように、水蒸気処理により使用済み銅系吸収剤が吸収していた水銀が最大800μg/m3Nを超える濃度で放出され、その後の酸化処理によって、若干水銀が放出された。放出された水銀の総量は約20μg程度であり、銅系吸収剤が吸収した水銀の95%以上が放出されることが確認された。
<Regeneration of used copper absorbent>
Next, the used copper-based absorbent that has absorbed mercury in the raw material gas is placed in a gas (H 2 O: 10% and N 2 : balance) containing water vapor and nitrogen, and used. Mercury was released so that the temperature of the used copper-based absorbent was 260 ° C. (water vapor treatment). The regeneration gas flow rate was 1.0 L / min and the atmospheric pressure (0.1 MPa).
Thereafter, the used copper-based absorbent subjected to the steam treatment is placed in a gas containing oxygen (H 2 O: 10%, O 2 : 10%, and N 2 : balance), and the temperature of the used copper-based absorbent is set. Was oxidized at 260 ° C. (oxidation treatment). The used copper-based absorbent that was subjected to this oxidation treatment at a regeneration gas flow rate of 1.0 L / min and atmospheric pressure (0.1 MPa) was copper oxide (CuO, Cu 2 O, etc.).
The time (elapsed time) when the copper-based absorbent was steamed and oxidized, the total amount of mercury released by the copper-based absorbent (mercury released), and the mercury concentration in the gas that passed through the copper-based absorbent (exit mercury concentration) 5) is shown in FIG. In FIG. 5, the thick line indicates the amount of mercury released, and the thin line indicates the outlet mercury concentration. Further, (1) shows the result of the steam treatment, and (2) shows the result of the oxygen treatment.
As shown in FIG. 5, mercury absorbed by the used copper-based absorbent by the water vapor treatment was released at a concentration exceeding a maximum of 800 μg / m 3 N, and a slight amount of mercury was released by the subsequent oxidation treatment. The total amount of mercury released was about 20 μg, and it was confirmed that 95% or more of the mercury absorbed by the copper-based absorbent was released.

(実施例2)
<再生した使用済み銅系吸収剤による水銀除去>
実施例1で得られた水蒸気処理及び酸化処理をした使用済み銅系吸収剤2gに、220℃、大気圧(0.1MPa)で、石炭ガス化ガスを想定した模擬原料ガス(ガス組成は、H2:8%、CO:20%、CO2:5%、H2O:5%、N2:balance、Hg:62μg/m3N)を、原料ガス流量1.0L/minで接触させて、原料ガス中の水銀を使用済み銅系吸収剤に吸収させた。使用済み銅系吸収剤と原料ガスとを接触させた時間(経過時間)と、銅系吸収剤が吸収した水銀の総量(水銀吸収量)及び銅系吸収剤を通過した後の原料ガス中の水銀濃度(出口水銀濃度)との関係を図6に示す。図6中、太線が水銀吸収量を、細線が出口水銀濃度を示す。
図6に示すように、本発明の銅系吸収剤の再生方法により再生した使用済み銅系吸収剤(実施例2)の挙動は、図4に示す未使用の銅系吸収剤の挙動とほぼ同じであり、水銀吸収性能が十分に回復していた。
(Example 2)
<Mercury removal with recycled used copper-based absorbent>
Simulated raw material gas (gas composition is assumed to be coal gasification gas at 220 ° C. and atmospheric pressure (0.1 MPa) at 2 g of the used copper-based absorbent that has been subjected to steam treatment and oxidation treatment obtained in Example 1. H 2 : 8%, CO: 20%, CO 2 : 5%, H 2 O: 5%, N 2 : balance, Hg: 62 μg / m 3 N) are brought into contact at a raw material gas flow rate of 1.0 L / min. The mercury in the raw material gas was absorbed by the used copper-based absorbent. The time (elapsed time) when the spent copper-based absorbent and the raw material gas are contacted, the total amount of mercury absorbed by the copper-based absorbent (mercury absorption amount), and the raw material gas after passing through the copper-based absorbent. FIG. 6 shows the relationship with the mercury concentration (exit mercury concentration). In FIG. 6, the thick line indicates the mercury absorption amount, and the thin line indicates the outlet mercury concentration.
As shown in FIG. 6, the behavior of the used copper-based absorbent (Example 2) regenerated by the copper-based absorbent regeneration method of the present invention is almost the same as that of the unused copper-based absorbent shown in FIG. The mercury absorption performance was fully recovered.

(比較例1)
実施例1で得られた水蒸気処理及び酸化処理を順に行った使用済み銅系吸収剤の代わりに、使用済み銅系吸収剤の再生時に水蒸気処理のみを行い酸化処理を行わなかった以外は実施例1と同様にした使用済み銅系吸収剤を用いて、実施例2の操作を行った。
具体的には、原料ガス中の水銀を吸収させた使用済み銅系吸収剤を、水蒸気と窒素からなる水蒸気を含むガス(H2O:10%、N2:balance)中に置き、使用済み銅系吸収剤の温度が240℃となるようにして、水銀を放出させた(水蒸気処理)。なお、ガス流量1.0L/min、大気圧(0.1MPa)で行った。
銅系吸収剤を水蒸気処理した時間(経過時間)と、銅系吸収剤が放出した水銀の総量(水銀放出量)及び銅系吸収剤を通過したガス中の水銀濃度(出口水銀濃度)との関係を図7に示す。図7中、太線が水銀放出量を、細線が出口水銀濃度を示す。図7に示すように、水蒸気処理により使用済み銅系吸収剤が吸収していた水銀が最大650μg/m3Nを超える濃度で放出された。放出された水銀の総量は約19μgであり、銅系吸収剤が吸収した水銀の90%以上が放出されることが確認された。
この水蒸気処理のみで酸化処理をしなかった使用済み銅系吸収剤2gに、220℃、大気圧(0.1MPa)で、石炭ガス化ガスを想定した模擬原料ガス(ガス組成は、H2:8%、CO:20%、CO2:5%、H2O:5%、N2:balance、Hg:62μg/m3N)を、原料ガス流量1.0L/minで接触させて、原料ガス中の水銀を使用済み銅系吸収剤に吸収させた。使用済み銅系吸収剤と原料ガスとを接触させた時間(経過時間)と、銅系吸収剤が吸収した水銀の総量(水銀吸収量)及び銅系吸収剤を通過した後の原料ガス中の水銀濃度(出口水銀濃度)との関係を図8に示す。図8中、太線が水銀吸収量を、細線が出口水銀濃度を示す。
図8に示すように、再生として水蒸気処理のみで酸化処理を行わなかった比較例1では、水銀を再び吸収するものの、未使用の銅系吸収剤に比べると早い経過時間から水銀濃度が上昇し、370分で約65μg/m3Nとなった。この水銀除去の間に銅系吸収剤が原料ガスから吸収した水銀量は約14μgであり、未使用の銅系吸収剤に比べて水銀吸収容量は約70%に低下した。すなわち、水蒸気処理のみでは使用済みの水銀吸収剤の水銀吸収性能を完全に回復させることはできなかった。
その後、水蒸気処理のみにより2回目の再生を行い、この2回目の再生を行った銅系吸収剤について再度原料ガスの水銀除去を行った。結果を図9に示す。図9に示すように、水銀吸収性能は更に低下し、170分と更に早い経過時間で約60μg/m3Nとなり、この水銀除去の間に銅系吸収剤が原料ガスから吸収した水銀量は約7μgと水銀吸収性能が一層低下した。
(Comparative Example 1)
Instead of the used copper-based absorbent obtained by performing the water vapor treatment and the oxidation treatment obtained in Example 1 in this order, the example except that only the water vapor treatment was performed and the oxidation treatment was not performed during the regeneration of the used copper-based absorbent. The operation of Example 2 was performed using a used copper-based absorbent similar to that in Example 1.
Specifically, a used copper-based absorbent that absorbs mercury in the raw material gas is placed in a gas containing water vapor and water vapor (H 2 O: 10%, N 2 : balance) and used. Mercury was released so that the temperature of the copper absorbent was 240 ° C. (water vapor treatment). The gas flow rate was 1.0 L / min and atmospheric pressure (0.1 MPa).
The time (elapsed time) when the copper-based absorbent was steam-treated, the total amount of mercury released by the copper-based absorbent (mercury release amount), and the mercury concentration in the gas that passed through the copper-based absorbent (exit mercury concentration) The relationship is shown in FIG. In FIG. 7, the thick line indicates the amount of released mercury, and the thin line indicates the outlet mercury concentration. As shown in FIG. 7, mercury absorbed by the used copper-based absorbent by the steam treatment was released at a concentration exceeding 650 μg / m 3 N at maximum. The total amount of mercury released was about 19 μg, and it was confirmed that 90% or more of the mercury absorbed by the copper-based absorbent was released.
Simulated raw material gas (gas composition is H 2 :) assuming a coal gasification gas at 220 ° C. and atmospheric pressure (0.1 MPa) to 2 g of the used copper-based absorbent that was not oxidized only by the steam treatment. 8%, CO: 20%, CO 2 : 5%, H 2 O: 5%, N 2 : balance, Hg: 62 μg / m 3 N) at a source gas flow rate of 1.0 L / min, Mercury in the gas was absorbed into the used copper-based absorbent. The time (elapsed time) when the spent copper-based absorbent and the raw material gas are contacted, the total amount of mercury absorbed by the copper-based absorbent (mercury absorption amount), and the raw material gas after passing through the copper-based absorbent. FIG. 8 shows the relationship with the mercury concentration (exit mercury concentration). In FIG. 8, the thick line indicates the mercury absorption amount, and the thin line indicates the outlet mercury concentration.
As shown in FIG. 8, in Comparative Example 1 in which regeneration was not performed by only steam treatment as regeneration, mercury was absorbed again, but the mercury concentration increased from an earlier elapsed time compared to unused copper-based absorbent. It became about 65 μg / m 3 N in 370 minutes. During the mercury removal, the amount of mercury absorbed by the copper-based absorbent from the raw material gas was about 14 μg, and the mercury absorption capacity was reduced to about 70% compared to the unused copper-based absorbent. That is, the mercury absorption performance of the used mercury absorbent could not be completely recovered by only the steam treatment.
After that, the second regeneration was performed only by the steam treatment, and the source gas was removed again from the copper-based absorbent that had undergone the second regeneration. The results are shown in FIG. As shown in FIG. 9, the mercury absorption performance is further reduced to about 60 μg / m 3 N after 170 minutes, and the amount of mercury absorbed by the copper-based absorbent from the raw material gas during the mercury removal is as follows. The mercury absorption performance was further reduced by about 7 μg.

(比較例2)
実施例1に示した水蒸気処理及び酸化処理を段階的に実施するのではなく、酸化処理と水蒸気処理を同時に行った以外は実施例1と同様の操作を行った。
具体的には、原料ガス中の水銀を吸収させた使用済み銅系吸収剤を、酸素と窒素と水蒸気を含むガス(H2O:5%、O2:4%、N2:balance)中に置き、使用済み銅系吸収剤の温度が240℃となるようにして、水銀を放出させた。なお、ガス流量1.0L/min、大気圧(0.1MPa)で行った。
銅系吸収剤を酸化処理と水蒸気処理を同時に行った時間(経過時間)と、銅系吸収剤が放出した水銀の総量(水銀放出量)及び銅系吸収剤を通過した後の再生ガス中の水銀濃度(出口水銀濃度)との関係を図10に示す。図10中、太線が水銀放出量を、細線が出口水銀濃度を示す。図10に示すように、使用済み銅系吸収剤が吸収していた水銀が最大950μg/m3Nを超える濃度で放出されたが、すぐに濃度は低下した。放出された水銀の総量は約7μgであり、銅系吸収剤が吸収した水銀の33%程度しか放出されず、水銀を十分に放出させることはできなかった。すなわち、水蒸気処理及び酸化処理を同時に行うと、使用済み銅系吸収剤中に水銀が残留することとなり、使用済み銅系吸収剤を再生することができないことが判明した。
(Comparative Example 2)
Rather than performing the water vapor treatment and the oxidation treatment shown in Example 1 stepwise, the same operation as in Example 1 was performed except that the oxidation treatment and the water vapor treatment were performed simultaneously.
Specifically, used copper-based absorbent that has absorbed mercury in the raw material gas is in a gas containing oxygen, nitrogen and water vapor (H 2 O: 5%, O 2 : 4%, N 2 : balance). Then, mercury was released so that the temperature of the used copper-based absorbent became 240 ° C. The gas flow rate was 1.0 L / min and atmospheric pressure (0.1 MPa).
The time (elapsed time) when the copper-based absorbent was oxidized and steamed simultaneously, the total amount of mercury released by the copper-based absorbent (mercury released), and the regeneration gas after passing through the copper-based absorbent FIG. 10 shows the relationship with the mercury concentration (exit mercury concentration). In FIG. 10, the thick line indicates the mercury emission amount, and the thin line indicates the outlet mercury concentration. As shown in FIG. 10, mercury absorbed by the used copper-based absorbent was released at a concentration exceeding a maximum of 950 μg / m 3 N, but the concentration immediately decreased. The total amount of mercury released was about 7 μg, and only about 33% of the mercury absorbed by the copper-based absorbent was released, and the mercury could not be released sufficiently. That is, it has been found that when the steam treatment and the oxidation treatment are performed simultaneously, mercury remains in the used copper-based absorbent, and the used copper-based absorbent cannot be regenerated.

本発明は、石炭ガス化ガス等の水銀を含む原料ガスから水銀を除去する産業分野で利用することができる。   The present invention can be used in an industrial field in which mercury is removed from a raw material gas containing mercury such as coal gasification gas.

原料ガス中の水銀除去方法を示す図である。It is a figure which shows the mercury removal method in source gas. 石炭ガス化複合発電用乾式ガス精製システムの概略系統図である。1 is a schematic system diagram of a dry gas purification system for coal gasification combined power generation. 石炭ガス化複合発電用乾式ガス精製システムの概略系統図である。1 is a schematic system diagram of a dry gas purification system for coal gasification combined power generation. 未使用の銅系吸収剤を用いて原料ガスから水銀を除去する挙動を示す図である。It is a figure which shows the behavior which removes mercury from raw material gas using an unused copper-type absorber. 実施例1の銅系吸収剤の再生処理での水銀放出挙動を示す図である。It is a figure which shows the mercury release behavior in the reproduction | regeneration processing of the copper-type absorber of Example 1. FIG. 実施例2の銅系吸収剤を用いて原料ガスから水銀を除去する挙動を示す図である。It is a figure which shows the behavior which removes mercury from source gas using the copper-type absorber of Example 2. 比較例1の銅系吸収剤の再生処理での水銀放出挙動を示す図である。It is a figure which shows the mercury release behavior in the reproduction | regeneration processing of the copper-type absorber of the comparative example 1. FIG. 比較例1の銅系吸収剤を用いて原料ガスから水銀を除去する挙動を示す図である。It is a figure which shows the behavior which removes mercury from source gas using the copper-type absorber of the comparative example 1. 比較例1の2回再生した銅系吸収剤を用いて原料ガスから水銀を除去する挙動を示す図である。It is a figure which shows the behavior which removes mercury from source gas using the copper-type absorber reproduced | regenerated twice of the comparative example 1. FIG. 比較例2の銅系吸収剤の再生処理での水銀放出挙動を示す図である。It is a figure which shows the mercury release behavior in the reproduction | regeneration process of the copper type absorber of the comparative example 2. FIG.

符号の説明Explanation of symbols

1 石炭ガス化炉
2 フィルタ
3 ハロゲン化物除去装置
4 脱硫装置
5 熱交換器
6 水銀除去装置
12 銅系吸収剤
21 ガスタービン
22 触媒燃焼器
23 膨張タービン
24、27 発電機
25 排熱回収ボイラ
26 蒸気タービン
28 煙突
DESCRIPTION OF SYMBOLS 1 Coal gasifier 2 Filter 3 Halide removal apparatus 4 Desulfurization apparatus 5 Heat exchanger 6 Mercury removal apparatus 12 Copper type absorbent 21 Gas turbine 22 Catalytic combustor 23 Expansion turbine 24, 27 Generator 25 Waste heat recovery boiler 26 Steam Turbine 28 Chimney

Claims (5)

水銀を含む原料ガスを、酸化銅を主体とし水銀を吸収できる銅系吸収剤に接触させて該原料ガス中の水銀を吸収した使用済み銅系吸収剤を、前記使用済み銅系吸収剤の温度が240〜300℃の条件で水蒸気を含み酸素を含まない雰囲気中で処理して前記使用済み銅系吸収剤から水銀を放出する水蒸気処理の後、前記使用済み銅系吸収剤の温度が240〜300℃の条件で酸素を含む雰囲気中で処理して前記使用済み銅系吸収剤を酸化する酸化処理をすることを特徴とする銅系吸収剤の再生方法。 The used copper-based absorbent that has absorbed mercury in the raw material gas by bringing the raw material gas containing mercury into contact with a copper-based absorbent mainly composed of copper oxide and capable of absorbing mercury is used as the temperature of the used copper-based absorbent. being a ratio of 240 to 300 ° C., after steam treated in an atmosphere containing no unrealized oxygen steaming to release mercury from the used copper sorbent, temperature of the used copper sorbent A method for reclaiming a copper-based absorbent, characterized by performing an oxidation treatment by oxidizing the used copper-based absorbent by treatment in an atmosphere containing oxygen at a temperature of 240 to 300 ° C. 前記原料ガスが、石炭をガス化させることにより生成した石炭ガス化ガスであることを特徴とする請求項1に記載の銅系吸収剤の再生方法。   The method for regenerating a copper-based absorbent according to claim 1, wherein the raw material gas is a coal gasification gas generated by gasifying coal. 前記使用済み銅系吸収剤は、160〜220℃で、原料ガスを接触させて該原料ガス中の水銀を吸収したものであることを特徴とする請求項1もしくは2に記載の銅系吸収剤の再生方法。 3. The copper-based absorbent according to claim 1, wherein the used copper-based absorbent is one that absorbs mercury in the raw material gas by contacting the raw material gas at 160 to 220 ° C. 3. How to play. 前記銅系吸収剤が、銅化合物のみ、あるいは銅化合物と担体成分、又は、成形助剤を含む吸収剤であり、未使用の銅系吸収剤に含まれる前記銅化合物は金属銅を含むことを特徴とする請求項1〜3の何れか一項に記載の銅系吸収剤の再生方法。 The copper-based absorbent is an absorbent containing only a copper compound, or a copper compound and a carrier component, or a molding aid, and the copper compound contained in an unused copper-based absorbent contains metallic copper. The method for regenerating a copper-based absorbent according to any one of claims 1 to 3 . 原料ガスを銅系吸収剤に接触させて該原料ガス中の水銀を前記銅系吸収剤に吸収させた後、この水銀を吸収した使用済み銅系吸収剤を請求項1〜4の何れか一項に記載の銅系吸収剤の再生方法により再生し、再生した使用済み銅系吸収剤に再び原料ガスを接触させて水銀を吸収させることを特徴とする原料ガス中の水銀除去方法。The raw material gas is brought into contact with a copper-based absorbent and mercury in the raw material gas is absorbed by the copper-based absorbent, and then the used copper-based absorbent that has absorbed the mercury is any one of claims 1 to 4. A method for removing mercury in a raw material gas, comprising regenerating the copper-based absorbent as described in the above item, and bringing the raw material gas into contact with the regenerated used copper-based absorbent again to absorb mercury.


JP2007187488A 2007-07-18 2007-07-18 Method for regenerating copper-based absorbent and method for removing mercury from source gas Active JP4775858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187488A JP4775858B2 (en) 2007-07-18 2007-07-18 Method for regenerating copper-based absorbent and method for removing mercury from source gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187488A JP4775858B2 (en) 2007-07-18 2007-07-18 Method for regenerating copper-based absorbent and method for removing mercury from source gas

Publications (2)

Publication Number Publication Date
JP2009022859A JP2009022859A (en) 2009-02-05
JP4775858B2 true JP4775858B2 (en) 2011-09-21

Family

ID=40395198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187488A Active JP4775858B2 (en) 2007-07-18 2007-07-18 Method for regenerating copper-based absorbent and method for removing mercury from source gas

Country Status (1)

Country Link
JP (1) JP4775858B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120888B2 (en) * 2007-07-18 2013-01-16 一般財団法人電力中央研究所 Method for regenerating copper-based absorbent and method for removing mercury from source gas
JP5601659B2 (en) * 2009-03-17 2014-10-08 一般財団法人電力中央研究所 Dry gas refining equipment and coal gasification combined power generation equipment
JP5688748B2 (en) * 2009-09-28 2015-03-25 一般財団法人電力中央研究所 Dry gas refining equipment and coal gasification combined power generation equipment
JP2012219225A (en) * 2011-04-12 2012-11-12 Central Research Institute Of Electric Power Industry Dry gas purification facility and coal gasification-combined power generation facility
JP6095116B2 (en) * 2013-07-04 2017-03-15 一般財団法人電力中央研究所 Gas refining equipment and coal gasification combined power generation equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588551A (en) * 1981-07-09 1983-01-18 Mitsui Mining & Smelting Co Ltd Regeneration of mercury collecting agent
DZ1209A1 (en) * 1987-05-26 2004-09-13 Inst Francais Du Petrole Process for the preparation and regeneration of a solid mass for the capture of mercury containing copper.
US4909926A (en) * 1989-02-01 1990-03-20 Mobil Oil Corporation Method for removing mercury from hydrocarbon oil by high temperature reactive adsorption
JP4424653B2 (en) * 2003-12-04 2010-03-03 財団法人電力中央研究所 Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method

Also Published As

Publication number Publication date
JP2009022859A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP2012506022A (en) Method for producing energy and method for capturing CO2
JP4775858B2 (en) Method for regenerating copper-based absorbent and method for removing mercury from source gas
CN110819393A (en) Method and device for fine desulfurization and purification of blast furnace gas
CN109482049B (en) Dry desulfurization, denitrification and purification integrated process for coke oven flue gas
HU213649B (en) Process for the purification of the contaminated exhaust gases from incineration plants
JP2019055903A (en) Firing apparatus of ecological cement
CN111334339A (en) Fine desulfurization method for blast furnace gas
JP2012091083A (en) Thermal power plant equipped with carbon dioxide canister
KR20150049835A (en) Apparatus for separating and recovering carbon dioxide having an oxygen separating apparatus and method of carbon dioxide separation and recovery from flue gas using the same
CN103962115A (en) Desulphurization activated carbon regeneration process combined with Claus device
CN108970328B (en) Device and process for treating high-sulfur waste gas in chemical industry and recovering sulfur
CN1033427C (en) Process for high temp. refining of reducing gas, and gasifying composite electricity-generating apparatus
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP6095116B2 (en) Gas refining equipment and coal gasification combined power generation equipment
CN109499313A (en) The low-temp desulfurization method of denitration of sintering flue gas
JP5601659B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
RU2460690C2 (en) Method of producing ammonia and apparatus for realising said method
JP2013202434A (en) Method for disposing of fluidized bed-system boiler ash and disposer
JP2007182468A (en) Gas purification system and gas purification method
WO2018092391A1 (en) Method for removing acid components at high temperature in gasification power generation system, and device therefor
WO2021246318A1 (en) Method for producing methane from co2 in cement production exhaust gas, and methanation apparatus
CN115770469A (en) Method for purifying blast furnace gas and collecting hot blast furnace carbon
JP5120888B2 (en) Method for regenerating copper-based absorbent and method for removing mercury from source gas
JPH03238019A (en) Purification of high temperature reductive gas
JP2009262086A (en) Method of recovering carbon dioxide of coal boiler exhaust gas and system for recovering this carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4775858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250