JP5279062B2 - Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus - Google Patents

Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus Download PDF

Info

Publication number
JP5279062B2
JP5279062B2 JP2007041012A JP2007041012A JP5279062B2 JP 5279062 B2 JP5279062 B2 JP 5279062B2 JP 2007041012 A JP2007041012 A JP 2007041012A JP 2007041012 A JP2007041012 A JP 2007041012A JP 5279062 B2 JP5279062 B2 JP 5279062B2
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion exhaust
gas treatment
heat recovery
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007041012A
Other languages
Japanese (ja)
Other versions
JP2008200631A (en
Inventor
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2007041012A priority Critical patent/JP5279062B2/en
Publication of JP2008200631A publication Critical patent/JP2008200631A/en
Application granted granted Critical
Publication of JP5279062B2 publication Critical patent/JP5279062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating combustion exhaust gas causing little problems like sticking of molten ash when removing dust or corrosion due to acidic gas, increasing power generation amount by increase of heat recovery amount or a boiler, and reducing consumption amount of water. <P>SOLUTION: The apparatus includes the boiler 18 recovering heat from combustion exhaust gas, a neutralizing means 45 adding an Na-based chemical in the range of 300-350&deg;C after heat recovery, a dust collector 17 removing dust from the exhaust gas after adding the chemical, an ammonia supply part 57 supplying ammonia to the exhaust gas after removing dust, a catalytic denitrification column 58 decomposing NOx by a catalyst, a heat recovering unit 59 recovering heat from the exhaust gas after denitrification, and dioxin removal means 21, 22 removing dioxins from the exhaust gas after heat recovery. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、燃焼炉や廃棄物焼却炉等より排出される燃焼排ガスを処理する燃焼排ガス処理方法、及び燃焼排ガス処理装置に関する。   The present invention relates to a combustion exhaust gas treatment method and a combustion exhaust gas treatment apparatus for treating combustion exhaust gas discharged from a combustion furnace, a waste incinerator or the like.

従来、燃焼排ガスの処理装置としては、特許文献1に、燃焼排ガスが空気予熱器で熱回収された後、スプレー塔で消石灰の吹込みによる酸性ガス中和処理を行い、セラミックフィルターでダスト除去を行った後、アンモニアの吹き込みにより触媒脱硝塔でNOx分解を行い、白煙防止装置を通って煙突より排気する燃焼排ガス処理装置が提案されている。   Conventionally, as an apparatus for treating flue gas, Patent Document 1 discloses that after flue gas is heat recovered by an air preheater, acid gas neutralization is performed by blowing slaked lime in a spray tower, and dust is removed by a ceramic filter. After that, a flue gas treatment apparatus has been proposed in which NOx is decomposed in a catalytic denitration tower by blowing ammonia and exhausted from a chimney through a white smoke prevention device.

しかし、この装置では、空気予熱器の後の480℃の雰囲気にスプレー塔にて中和剤を噴霧しているため(半乾式)、水の気化に伴う熱量が排ガスから奪われ、エネルギー効率が低下するという問題がある。また、この装置では、酸性ガスの中和反応に消石灰を使用しているため、スプレー塔設置位置を高温域にする必要がある。   However, in this device, the neutralizing agent is sprayed in the spray tower in the atmosphere of 480 ° C. after the air preheater (semi-dry type), so the heat quantity accompanying the vaporization of water is taken away from the exhaust gas, and the energy efficiency is increased. There is a problem of lowering. Moreover, in this apparatus, since slaked lime is used for the neutralization reaction of acid gas, it is necessary to make the spray tower installation position into a high temperature range.

また、特許文献2には、燃焼排ガスを高温フィルターで除塵した後、蒸気過熱器とボイラで熱回収した後、触媒脱硝塔でNOx分解を行い、エコノマイザーで熱回収した後、排ガス処理装置を通って煙突より排気する燃焼排ガス処理装置が提案されている。   Further, in Patent Document 2, after removing combustion exhaust gas with a high-temperature filter, heat recovery is performed with a steam superheater and a boiler, NOx decomposition is performed with a catalytic denitration tower, heat recovery is performed with an economizer, and an exhaust gas treatment device is installed. Combustion exhaust gas treatment devices that pass through the chimney and have been proposed have been proposed.

しかし、この装置では、高温フィルターを燃焼室の直後(750〜800℃の領域)に設けるため、酸性ガスによるケージング等の腐食が懸念され、また高温のため実ガス量が増加するため、ろ過面積を大きくする必要があり、溶融状態の灰による付着等の問題もあった。   However, in this apparatus, since a high-temperature filter is provided immediately after the combustion chamber (in the region of 750 to 800 ° C.), there is a concern about corrosion such as caging by acid gas, and the actual gas amount increases due to high temperature. There was also a problem such as adhesion due to molten ash.

特許文献3には、燃焼排ガスからボイラで熱回収した後、ダイオキシン再合成防止のために水を噴霧する減温塔で減温し、中和処理の後、触媒脱硝反応に適する温度まで加熱してから、処理触媒脱硝処理等を行う排ガス処理装置が開示されている。   In Patent Document 3, after recovering heat from combustion exhaust gas with a boiler, the temperature is reduced in a temperature reducing tower sprayed with water to prevent dioxin resynthesis, and after neutralization, heated to a temperature suitable for catalytic denitration reaction. Then, an exhaust gas treatment apparatus that performs treatment catalyst denitration treatment and the like has been disclosed.

しかし、この装置では、水の噴霧による気化熱のロスや水使用量の面で不利であり、また、処理触媒脱硝処理の前に加熱を行う必要があり、エネルギー効率が低下するという問題がある。   However, this apparatus is disadvantageous in terms of loss of heat of vaporization due to water spray and the amount of water used, and there is a problem that it is necessary to perform heating before the treatment catalyst denitration treatment, resulting in reduced energy efficiency. .

特開平7−96134号公報JP-A-7-96134 特開平9−313886号公報JP-A-9-313886 特開2002−257328号公報JP 2002-257328 A

そこで、本発明の目的は、ダスト除去の際に溶融状態の灰による付着や酸性ガスによる腐食等の問題が生じにくく、熱回収量の増加やボイラによる発電量の増加が可能となり、水使用量を低下させることができる燃焼排ガス処理方法、及び燃焼排ガス処理装置を提供することにある。   Therefore, the object of the present invention is that problems such as adhesion due to molten ash and corrosion due to acidic gas are less likely to occur during dust removal, and it is possible to increase the amount of heat recovery and increase the amount of power generated by the boiler. It is an object to provide a combustion exhaust gas treatment method and a combustion exhaust gas treatment apparatus that can reduce the combustion temperature.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の燃焼排ガス処理方法は、燃焼排ガスからボイラで熱回収する工程と、熱回収後の300〜350℃の温度領域でNa系薬剤を添加して酸性ガスを中和処理する工程と、薬剤添加後の排ガスからダスト除去を行う工程と、ダスト除去後の排ガスにアンモニアを供給し触媒脱硝塔でNOxを分解する工程と、脱硝後の排ガスから熱回収器で熱回収する工程と、熱回収後の排ガスからダイオキシン類及び重金属を除去する工程とを含むことを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the combustion exhaust gas treatment method of the present invention includes a step of recovering heat from combustion exhaust gas with a boiler, a step of neutralizing acidic gas by adding a Na-based chemical in a temperature range of 300 to 350 ° C. after heat recovery, and A step of removing dust from the exhaust gas after addition of the chemical, a step of supplying ammonia to the exhaust gas after dust removal and decomposing NOx in the catalytic denitration tower, a step of recovering heat from the exhaust gas after denitration, And a step of removing dioxins and heavy metals from the exhaust gas after heat recovery.

本発明の燃焼排ガス処理方法によると、300〜350℃の温度領域でNa系薬剤を添加して酸性ガスを中和処理し、ダストを除去するため、排ガスは温度も300℃程度であり、ダストがなく酸性ガスも濃度も腐食を考慮しなくても良い程度まで下る。また、後の脱硝処理に先立って加熱を行う必要がなく、排ガスが低温になるまで熱吸収できるため、ボイラによる蒸発量を増加させることができる。また、熱回収後にダイオキシン類を除去するため、減温塔などを設ける必要がなく、水使用量を低下させることができる。更に、350℃以下でダスト除去を行うため、溶融状態の灰による付着や酸性ガスによる腐食等の問題も生じにくい。その結果、ダスト除去の際に溶融状態の灰による付着や酸性ガスによる腐食等の問題が生じにくく、ボイラ及び後続の熱回収器による熱回収量の増加が可能となり、脱硝装置前の排ガスを加熱するための蒸気を必要とすることがなく、その分を蒸気タービンに使用でき、水使用量を低下させることができる燃焼排ガス処理方法を提供できる。   According to the combustion exhaust gas treatment method of the present invention, an Na-based chemical is added in a temperature range of 300 to 350 ° C. to neutralize the acidic gas and remove dust. Therefore, the exhaust gas has a temperature of about 300 ° C. However, the acid gas and concentration are reduced to a level that does not require consideration of corrosion. In addition, it is not necessary to perform heating prior to the subsequent denitration treatment, and heat can be absorbed until the exhaust gas becomes a low temperature, so that the amount of evaporation by the boiler can be increased. Moreover, since dioxins are removed after heat recovery, it is not necessary to provide a temperature reducing tower or the like, and the amount of water used can be reduced. Furthermore, since dust removal is performed at 350 ° C. or lower, problems such as adhesion due to molten ash and corrosion due to acidic gas hardly occur. As a result, problems such as adhesion due to molten ash and corrosion due to acidic gas are unlikely to occur during dust removal, and the amount of heat recovered by the boiler and the subsequent heat recovery device can be increased, heating the exhaust gas before the denitration device. Therefore, it is possible to provide a combustion exhaust gas treatment method capable of reducing the amount of water used without using any steam for the purpose of use.

上記において、前記ダイオキシン類及び重金属の除去を、排ガスに活性炭を吹き込んでバグフィルタでろ過して行うことが好ましい。この構成によると、ダイオキシン類を活性炭で吸着して、これをバグフィルタで捕捉することにより、ダイオキシン類の除去を効率良く行うことができる。   In the above, it is preferable to remove the dioxins and heavy metals by blowing activated carbon into exhaust gas and filtering it with a bag filter. According to this configuration, dioxins can be efficiently removed by adsorbing dioxins with activated carbon and capturing them with a bag filter.

また、前記ダスト除去をセラミック製ろ布のバグフィルタで行うことが好ましい。この構成によると、バグフィルタの構成材料としてセラミック製ろ布を用いるため、耐熱性が十分得られる。
一方、本発明の燃焼排ガス処理装置は、燃焼排ガスから熱回収するボイラと、熱回収後の300〜350℃の温度領域でNa系薬剤を添加する中和処理手段と、薬剤添加後の排ガスからダスト除去を行う集塵器と、ダスト除去後の排ガスにアンモニアを供給するアンモニア供給部と、NOxを触媒にて分解する触媒脱硝塔と、脱硝後の排ガスから熱回収する熱回収器と、熱回収後の排ガスからダイオキシン類を除去するダイオキシン類除去手段とを含むことを特徴とする。
The dust removal is preferably performed with a bag filter made of ceramic filter cloth. According to this configuration, since the ceramic filter cloth is used as the constituent material of the bag filter, sufficient heat resistance can be obtained.
On the other hand, the combustion exhaust gas treatment apparatus of the present invention comprises a boiler that recovers heat from combustion exhaust gas, a neutralization treatment means that adds Na-based chemicals in a temperature range of 300 to 350 ° C. after the heat recovery, and exhaust gas after the chemicals are added. A dust collector for removing dust, an ammonia supply unit for supplying ammonia to the exhaust gas after dust removal, a catalyst denitration tower for decomposing NOx with a catalyst, a heat recovery unit for recovering heat from the exhaust gas after denitration, And dioxins removing means for removing dioxins from the exhaust gas after recovery.

本発明の燃焼排ガス処理装置によると、中和処理手段により300〜350℃の温度領域でNa系薬剤を添加して酸性ガスを中和処理するため、後の脱硝処理に先立って加熱を行う必要がなく、ボイラで発生する蒸気の排ガス加熱用に使用する量を無くし、その分蒸気タービンに送り発電量を増加させることができる。また、ダイオキシン類除去手段で熱回収およびダスト除去後にダイオキシン類を除去するため、ダイオキシン再合成防止のための減温塔などを設ける必要がなく、水使用量を低下させ、熱回収量を増加させることができる。更に、集塵器にて350℃以下でダスト除去を行うため、溶融状態の灰による付着や酸性ガスによる腐食等の問題も生じにくい。その結果、ダスト除去の際に溶融状態の灰による付着や酸性ガスによる腐食等の問題が生じにくく、ボイラ及び熱回収器による熱回収量の増加が可能となり、水使用量を低下させることができる燃焼排ガス処理装置を提供できる。   According to the combustion exhaust gas treatment apparatus of the present invention, since the neutral gas is neutralized by adding a Na-based chemical in the temperature range of 300 to 350 ° C. by the neutralization treatment means, it is necessary to perform heating prior to the subsequent denitration treatment. Therefore, the amount used for heating the exhaust gas of the steam generated in the boiler can be eliminated, and the amount of power generation can be increased by feeding to the steam turbine. In addition, since dioxins are removed after heat recovery and dust removal by means of dioxins removal, there is no need to provide a temperature reducing tower to prevent dioxin resynthesis, reducing the amount of water used and increasing the amount of heat recovered be able to. Furthermore, since dust removal is performed at 350 ° C. or less with a dust collector, problems such as adhesion due to molten ash and corrosion due to acidic gas are unlikely to occur. As a result, problems such as adhesion due to molten ash and corrosion due to acidic gas are less likely to occur during dust removal, increasing the amount of heat recovered by the boiler and heat recovery device, and reducing the amount of water used. A combustion exhaust gas treatment apparatus can be provided.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本発明の燃焼排ガス処理方法の一例を示す工程流れ図であり、図2は、本発明の燃焼排ガス処理装置の一例を示す概略構成図である。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a process flow chart showing an example of the flue gas treatment method of the present invention, and FIG. 2 is a schematic configuration diagram showing an example of the flue gas treatment apparatus of the present invention.

本実施形態では、図2に示すように、家庭ゴミ等の一般廃棄物やカーシュレッダーダスト・電化製品等の産業廃棄物の処理プラントである熱分解ガス化溶融プラントに、本発明の燃焼排ガス処理装置を適用する場合の例を示す。処理プラントとしては、ストーカ式焼却炉でも良い。この熱分解ガス化溶融プラントは、前処理設備1、熱分解設備2、熱分解残渣選別設備3、高温燃焼溶融設備4、ボイラ発電設備5、排ガス処理設備6から成る。   In the present embodiment, as shown in FIG. 2, the combustion exhaust gas treatment of the present invention is applied to a pyrolysis gasification melting plant which is a treatment plant for general waste such as household waste and industrial waste such as car shredder dust and electrical appliances. An example in the case of applying the device will be shown. The processing plant may be a stoker-type incinerator. This pyrolysis gasification and melting plant comprises a pretreatment facility 1, a pyrolysis facility 2, a pyrolysis residue sorting facility 3, a high temperature combustion melting facility 4, a boiler power generation facility 5, and an exhaust gas treatment facility 6.

まず、本発明の排ガス処理の対象となる燃焼排ガスを生成するまでの工程及び装置について説明する。   First, a process and an apparatus for generating combustion exhaust gas that is an object of exhaust gas treatment of the present invention will be described.

前処理設備1では、廃棄物ピット7に貯留された廃棄物を破砕機で破砕し、破砕廃棄物を搬送装置等で熱分解設備2に送る。熱分解設備2では、廃棄物ピット7からの廃棄物を熱分解ドラム12に搬送供給し、熱風炉102から熱分解ドラム12に加熱ガスを供給する。   In the pretreatment facility 1, the waste stored in the waste pit 7 is crushed by a crusher, and the crushed waste is sent to the thermal decomposition facility 2 by a transport device or the like. In the pyrolysis facility 2, the waste from the waste pit 7 is conveyed and supplied to the pyrolysis drum 12, and heated gas is supplied from the hot stove 102 to the pyrolysis drum 12.

この加熱ガスで廃棄物を間接的に加熱しながら、廃棄物を無酸素あるいは低酸素雰囲気で約450°Cの熱分解ガスと熱分解残渣とに熱分解し、熱分解ガスを後述の高温燃焼溶融炉13に送り、熱分解残渣を熱分解残渣選別設備3に送る。   While the waste is indirectly heated with this heated gas, the waste is pyrolyzed into a pyrolysis gas and a pyrolysis residue of about 450 ° C in an oxygen-free or low-oxygen atmosphere, and the pyrolysis gas is burned at a high temperature described later. It sends to the melting furnace 13 and sends the pyrolysis residue to the pyrolysis residue sorting equipment 3.

熱分解残渣選別設備3では、前記熱分解ドラム12からの熱分解残渣を冷却振動コンベア14等を介してスクリーン55側に送り、磁選機やアルミ選別機53を介して選別した鉄・アルミ・ガラス等を回収する。鉄やアルミ等が選別された後の熱分解残渣を粉砕機56で粉砕する(粉砕したものを、以下「カーボン残渣」と呼ぶ)。カーボン残渣はカーボン残渣サイロ61に送り、カーボン残渣サイロ61内のカーボン残渣を高温燃焼溶融炉13にその炉頂側から吹き込む。   In the pyrolysis residue sorting equipment 3, the pyrolysis residue from the pyrolysis drum 12 is sent to the screen 55 side through the cooling vibration conveyor 14 and the like, and iron, aluminum, glass sorted through the magnetic separator or the aluminum sorter 53 is used. Collect etc. The pyrolysis residue after the selection of iron, aluminum, etc. is pulverized by a pulverizer 56 (the pulverized product is hereinafter referred to as “carbon residue”). The carbon residue is sent to the carbon residue silo 61, and the carbon residue in the carbon residue silo 61 is blown into the high temperature combustion melting furnace 13 from the furnace top side.

高温燃焼溶融設備4では、熱分解ガス・カーボン残渣・集塵ダストを高温燃焼溶融炉13に炉頂側から吹き込み、これらを旋回燃焼する。焼却灰・集塵ダストは溶融し、炉底から連続排出する。排出したスラグはスラグ容器50に収容され、道路舗装材として再利用される。燃焼によって生じた燃焼排ガスは、本発明の排ガス処理に供される。   In the high-temperature combustion melting equipment 4, pyrolysis gas, carbon residue, and dust collection dust are blown into the high-temperature combustion melting furnace 13 from the top of the furnace, and these are swirled. Incineration ash and dust collection dust are melted and discharged continuously from the bottom of the furnace. The discharged slag is accommodated in the slag container 50 and reused as a road pavement material. The combustion exhaust gas generated by the combustion is used for the exhaust gas treatment of the present invention.

本発明の燃焼排ガス処理方法は、図1に示すように、燃焼排ガスからボイラ18で熱回収する工程を含むものである。この工程は、図2に示すようなボイラ発電設備5を用いて行うことができる。つまり、本発明の燃焼排ガス処理装置は、燃焼排ガスから熱回収するボイラ18を備えている。   The combustion exhaust gas treatment method of the present invention includes a step of recovering heat from combustion exhaust gas with a boiler 18 as shown in FIG. This step can be performed using a boiler power generation facility 5 as shown in FIG. That is, the combustion exhaust gas treatment apparatus of the present invention includes a boiler 18 that recovers heat from the combustion exhaust gas.

ボイラ発電設備5では、排ガスをボイラ輻射ゾーンで冷却し、蒸発管群で均一な温度にした後、過熱蒸気管群に送る。ボイラ18で蒸気を熱回収し、タービン・発電機で電気として回収する。   In the boiler power generation facility 5, the exhaust gas is cooled in the boiler radiation zone and is made uniform in the evaporator tube group, and then sent to the superheated steam tube group. Steam is recovered by the boiler 18 and recovered as electricity by the turbine / generator.

この熱回収では、ボイラ18からの排ガスの温度が300〜350℃になるように設定する。   In this heat recovery, the temperature of the exhaust gas from the boiler 18 is set to 300 to 350 ° C.

本発明の燃焼排ガス処理方法は、図1に示すように、熱回収後の300〜350℃の温度領域でNa系薬剤を添加して酸性ガスを中和処理する工程を含むものである。この工程は、図2に示すような排ガス処理設備6を用いて行うことができる。つまり、本発明の燃焼排ガス処理装置は、熱回収後の300〜350℃の温度領域でNa系薬剤を添加する中和処理手段45を備えている。   As shown in FIG. 1, the combustion exhaust gas treatment method of the present invention includes a step of neutralizing acidic gas by adding a Na-based chemical in a temperature range of 300 to 350 ° C. after heat recovery. This step can be performed using an exhaust gas treatment facility 6 as shown in FIG. That is, the flue gas treatment apparatus of the present invention includes neutralization treatment means 45 for adding Na-based chemicals in a temperature range of 300 to 350 ° C. after heat recovery.

この構成によれば、中和薬剤としてのナトリウム系薬剤が、従来技術で使用していた消石灰と異なり、300℃以上でも中和効率が高いため、ボイラ18から排出される排ガス(例えば、300〜350℃程度となっている)を、中和処理して、排ガス中のHCl,SOxなどの酸性ガスを効率よく除去することができる。このため、後の工程の脱硝設備の脱硝触媒に対する被毒の影響を低減できて、脱硝設備に送給される排ガスを再加熱する必要がない。   According to this structure, unlike the slaked lime used by the prior art, the sodium-type chemical | medical agent as a neutralization chemical | medical agent has high neutralization efficiency even if it is 300 degreeC or more, Therefore, Exhaust gas (for example, 300- It is possible to efficiently remove acidic gases such as HCl and SOx in the exhaust gas. For this reason, the influence of poisoning on the denitration catalyst of the denitration facility in the subsequent process can be reduced, and it is not necessary to reheat the exhaust gas fed to the denitration facility.

使用するナトリウム系薬剤としては、炭酸水素ナトリウム(重曹)以外に、炭酸ナトリウム、苛性ソーダ等あるいはこれらの複合剤などが挙げられる。   Examples of the sodium-based drug used include sodium carbonate, caustic soda, and a composite agent thereof in addition to sodium hydrogen carbonate (bicarbonate).

本発明では、前記ナトリウム系薬剤の導入の直前に、その平均粒径が10〜50μmになるよう粒度調整を行いつつ粉砕することが好ましい。ナトリウム系薬剤の平均粒径がこの範囲であると、反応性が高く、排ガス中の酸性成分の除去効率を一層高くできて都合がよい。ナトリウム系薬剤の平均粒径が10μm未満であると、反応性を高めることはできるが、後工程の集塵手段にバグフィルター等を使用すると、詰まりを生じる可能性があり、又、ナトリウム系薬剤の平均粒径が50μmを越えると、酸性成分の除去効率が低
下する。ナトリウム系薬剤の平均粒径は、10〜30μmがより好ましく、10〜20μmが更に好ましい。
In this invention, it is preferable to grind | pulverize, adjusting a particle size so that the average particle diameter may be set to 10-50 micrometers just before introduction | transduction of the said sodium type chemical | medical agent. When the average particle diameter of the sodium-based drug is within this range, the reactivity is high, and it is advantageous that the removal efficiency of acidic components in the exhaust gas can be further increased. If the average particle size of the sodium-based drug is less than 10 μm, the reactivity can be improved, but if a bag filter or the like is used as the dust collecting means in the subsequent process, clogging may occur. When the average particle size of the aqueous solution exceeds 50 μm, the removal efficiency of the acidic component decreases. The average particle size of the sodium-based drug is more preferably 10 to 30 μm, further preferably 10 to 20 μm.

中和薬剤である炭酸水素ナトリウムは、固体で供給することが好ましく、例えば、薬剤貯槽から所定量だけ供給されるべく、薬剤供給手段の1種の定量供給機を介して、配管途中に設けられた吸引ファンあるいはブロワ(図示略)により、空気と共に集塵器17の上流側の排ガス経路であるダクトに吹き込むのが好ましい。このような定量供給機の次に、炭酸水素ナトリウムを微粉砕する粉砕手段が配置されていることがより好ましい。更に、粉砕手段には、供給する薬剤の粒度を調整する調整手段が設けられていてもよい。   Sodium bicarbonate as a neutralizing agent is preferably supplied as a solid. For example, in order to supply a predetermined amount from a medicine storage tank, it is provided in the middle of a pipe via a single quantitative feeder of a medicine supply means. Preferably, the air is blown into a duct, which is an exhaust gas path upstream of the dust collector 17, together with air by a suction fan or a blower (not shown). It is more preferable that a pulverizing means for finely pulverizing sodium hydrogen carbonate is arranged next to such a quantitative feeder. Further, the pulverizing means may be provided with an adjusting means for adjusting the particle size of the medicine to be supplied.

本発明の燃焼排ガス処理方法は、図1に示すように、薬剤添加後の排ガスからダスト除去を行う工程を含むものである。この工程は、図2に示すような排ガス処理設備6及び集塵器17を用いて行うことができる。つまり、本発明の燃焼排ガス処理装置は、薬剤添加後の排ガスからダスト除去を行う集塵器17を備えている。 As shown in FIG. 1, the combustion exhaust gas treatment method of the present invention includes a step of removing dust from the exhaust gas after addition of the chemical. This step can be performed using the exhaust gas treatment facility 6 and the dust collector 17 as shown in FIG. That is, the combustion exhaust gas treatment apparatus of the present invention includes the dust collector 17 that removes dust from the exhaust gas after the addition of the chemical.

本発明では、ダスト除去をセラミック製ろ布のバグフィルタで行うことが好ましく、集塵器17として、セラミック製ろ布のバグフィルタを備えることが好ましい。このようなバグフィルタを用いると、酸性ガスとNa系薬剤の反応を起こさせながら、反応生成物とダストを除去することができる。その結果、バグフィルタの出口ガスは酸性ガスが数ppm、ダスト濃度0.01mg/Nm以下とすることができる。 In the present invention, the dust removal is preferably performed with a ceramic filter cloth bag filter, and the dust collector 17 is preferably provided with a ceramic filter cloth bag filter. When such a bag filter is used, reaction products and dust can be removed while causing a reaction between the acid gas and the Na-based chemical. As a result, the outlet gas of the bag filter can have an acid gas of several ppm and a dust concentration of 0.01 mg / Nm 3 or less.

集塵器17で除去・分離された中和剤を含む固体(粉体・粒体)は、薬剤等を用いて後続するバグフィルタからの反応物と共に重金属溶出防止処理するのが好ましい。   The solid (powder / granule) containing the neutralizing agent removed / separated by the dust collector 17 is preferably subjected to a heavy metal elution prevention treatment together with a reaction product from the subsequent bag filter using a chemical agent or the like.

本発明の燃焼排ガス処理方法は、図1に示すように、ダスト除去後の排ガスにアンモニアを供給し触媒脱硝塔58でNOxを分解する工程を含むものである。このため、本発明の燃焼排ガス処理装置は、図2に示すように、ダスト除去後の排ガスにアンモニアを供給するアンモニア供給部57と、NOxを触媒にて分解する触媒脱硝塔58とを備えている。   As shown in FIG. 1, the combustion exhaust gas treatment method of the present invention includes a step of supplying ammonia to exhaust gas after dust removal and decomposing NOx in a catalyst denitration tower 58. Therefore, as shown in FIG. 2, the combustion exhaust gas treatment apparatus of the present invention includes an ammonia supply unit 57 that supplies ammonia to the exhaust gas after dust removal, and a catalyst denitration tower 58 that decomposes NOx with a catalyst. Yes.

アンモニアの吹き込みによる触媒脱硝塔58でのNOx分解は、高温ほど分解率が優れており、従来の方式である210℃の温度域での効率と較べ、300〜400℃の温度域では1.7倍程度となり、排ガスのNOx濃度をより低くできアンモニア消費量を削減できる。   The NOx decomposition in the catalytic denitration tower 58 by blowing in ammonia has a higher decomposition rate at higher temperatures, and 1.7% in the temperature range of 300 to 400 ° C. compared to the efficiency in the temperature range of 210 ° C., which is the conventional method. The NOx concentration in the exhaust gas can be further reduced, and the ammonia consumption can be reduced.

アンモニア供給は、アンモニアボンベ、アンモニア蒸発器、輸送設備(空気輸送)などを用いて行うことができる。アンモニア供給する部分での排ガスの温度は、300〜350℃の温度域が好ましい。
本発明の燃焼排ガス処理方法は、図1に示すように、脱硝後の排ガスから熱回収器で熱回収する工程を含むものである。このため、本発明の燃焼排ガス処理装置は、図2に示すように、脱硝後の排ガスから熱回収する熱回収器59を備えている。
Ammonia can be supplied using an ammonia cylinder, an ammonia evaporator, a transport facility (pneumatic transport), or the like. The temperature of the exhaust gas in the ammonia supply portion is preferably in the temperature range of 300 to 350 ° C.
As shown in FIG. 1, the combustion exhaust gas treatment method of the present invention includes a step of recovering heat from exhaust gas after denitration with a heat recovery device. For this reason, the combustion exhaust gas treatment apparatus of the present invention includes a heat recovery device 59 for recovering heat from the exhaust gas after denitration, as shown in FIG.

本発明では、熱回収器59として、ボイラ18のエコノマイザー(節炭器)を採用するのが好ましい。   In the present invention, it is preferable to employ an economizer (a economizer) of the boiler 18 as the heat recovery unit 59.

清浄となった排ガス中に設置される熱回収器59は、ダストや酸性ガスが数ppmと微量であるので、フィン付き管の採用や管ピッチを狭くできることにより、コンパクトな熱回収器59となる。また、酸性ガスによる腐食の心配がないため、熱回収器への給水温度を60℃程度にできるので、排ガス温度は160℃程度となる。また、300℃から200℃温度域でのダイオキシン再合成は、再合成の原因因子である塩化水素、ダスト中の触媒成分である銅などの金属成分や未燃炭素がないため起こりにくい。   Since the heat recovery device 59 installed in the cleaned exhaust gas has a minute amount of dust and acid gas of a few ppm, adoption of finned tubes and narrowing of the tube pitch makes the heat recovery device 59 compact. . In addition, since there is no concern about corrosion due to acid gas, the temperature of the water supply to the heat recovery device can be set to about 60 ° C., so that the exhaust gas temperature is about 160 ° C. Also, dioxin resynthesis in the temperature range of 300 ° C. to 200 ° C. is unlikely to occur because there is no metal component such as hydrogen chloride, which is a cause of resynthesis, copper, which is a catalyst component in dust, and unburned carbon.

本発明の燃焼排ガス処理方法は、図1に示すように、熱回収後の排ガスから残存するダイオキシン類及び重金属を除去する工程を含むものである。このため、本発明の燃焼排ガス処理装置は、図2に示すように、熱回収後の排ガスからダイオキシン類及び重金属を除去するダイオキシン類除去手段を備えている。熱回収後の排ガスの温度は、130〜160℃に設定されるのが好ましい。   The combustion exhaust gas treatment method of the present invention includes a step of removing residual dioxins and heavy metals from the exhaust gas after heat recovery, as shown in FIG. For this reason, as shown in FIG. 2, the combustion exhaust gas treatment apparatus of the present invention includes dioxins removing means for removing dioxins and heavy metals from the exhaust gas after heat recovery. The temperature of the exhaust gas after heat recovery is preferably set to 130 to 160 ° C.

本発明では、ダイオキシン類の除去を、排ガスに活性炭を吹き込んでバグフィルタでろ過して行うことが好ましい。本実施形態では、ダイオキシン類除去手段が、活性炭供給手段21と集塵器22とを備える例を示す。熱回収後の排ガス中には、燃焼時に発生したダイオキシン類及び重金属が含まれているため、活性炭吹き込みとバグフィルタでダイオキシン類及び重金属を除去するのが好ましい。   In the present invention, it is preferable to remove dioxins by blowing activated carbon into exhaust gas and filtering it with a bag filter. In the present embodiment, an example in which the dioxins removing unit includes an activated carbon supply unit 21 and a dust collector 22 is shown. Since the exhaust gas after heat recovery contains dioxins and heavy metals generated during combustion, it is preferable to remove the dioxins and heavy metals with activated carbon blowing and a bag filter.

本実施形態の燃焼排ガス処理装置は、図2に示すように、集塵器22の下流側に吸引ファン23を備え、排ガスが煙突25に供給される。更に、白煙防止装置24を設けることで、排ガスの白煙化を防止することができる。冬場に使用される白煙防止装置は、従来技術のように水噴霧急冷塔がないため、燃焼ガスに含まれる水分が20%程度となるので小型化でき、加熱源である蒸気消費量が低減する。   As shown in FIG. 2, the combustion exhaust gas treatment apparatus of the present embodiment includes a suction fan 23 on the downstream side of the dust collector 22, and the exhaust gas is supplied to the chimney 25. Furthermore, by providing the white smoke prevention device 24, it is possible to prevent the exhaust gas from becoming white smoke. The white smoke prevention device used in winter does not have a water spray quenching tower as in the prior art, so the moisture contained in the combustion gas is about 20%, so it can be downsized and the consumption of steam as a heating source is reduced. To do.

白煙防止装置24は、例えば空気ブロア24aと加熱器24bとで構成することが可能である。   The white smoke prevention device 24 can be composed of, for example, an air blower 24a and a heater 24b.

以上のような本発明の燃焼排ガス処理方法及び燃焼排ガス処理装置によると、次の効果が得られる。   According to the combustion exhaust gas treatment method and the combustion exhaust gas treatment apparatus of the present invention as described above, the following effects can be obtained.

1)熱回収量の増加
従来のボイラ・エコノマイザ出口温度を230℃、本発明でボイラ・エコノマイザ出口温度160℃とした場合、7.5%の熱回収率のアップとなる。
1) Increase in heat recovery amount When the conventional boiler / economizer outlet temperature is 230 ° C. and the boiler / economizer outlet temperature is 160 ° C. in the present invention, the heat recovery rate is increased by 7.5%.

2)発電量の増加
上記熱回収量のアップと従来の触媒脱硝塔用排ガス加熱器の削除により、発電量は14%アップとなる。
2) Increase in power generation The amount of power generation is increased by 14% due to the increase in the heat recovery amount and the elimination of the conventional exhaust gas heater for the catalyst denitration tower.

3)水使用量の低下
従来のボイラ・エコノマイザ出口温度を220℃、急冷塔出口160℃とした場合の150kg/処理ごみトンが不要になる。
3) Decrease in water consumption 150kg / ton of treated waste is not required when the outlet temperature of the conventional boiler / economizer is 220 ° C and the outlet temperature of the quenching tower is 160 ° C.

〔別実施の形態〕
(1)前述の実施形態では、ダイオキシン類の除去を、排ガスに活性炭を吹き込んでバグフィルタでろ過して行う例を示したが、触媒脱硝塔でのダイオキシン類分解が起こるため、排出ガス規制値によっては活性炭吹込み及びバグフィルタを除くことができる。
[Another embodiment]
(1) In the above-described embodiment, the example in which dioxins are removed by blowing activated carbon into exhaust gas and filtering with a bag filter is shown. However, since the decomposition of dioxins in the catalytic denitration tower occurs, the emission regulation value Depending on the type, activated carbon blowing and bag filters can be eliminated.

(2)前述の実施形態では、中和処理後の排ガスの集塵器としてバグフィルタを用いる例を示したが、300℃以上で集塵が可能であれば、何れの集塵方法でもよい。例えば、固定床フィルタなどを使用することも可能である。   (2) In the above-described embodiment, an example is shown in which a bag filter is used as a dust collector for exhaust gas after neutralization. However, any dust collection method may be used as long as dust collection is possible at 300 ° C. or higher. For example, a fixed bed filter or the like can be used.

(3)前述の実施形態では、熱分解ガス化溶融プラントに、本発明の燃焼排ガス処理装置を適用する場合の例を示したが、本発明の燃焼排ガス処理装置は、ストーカ焼却炉からの排ガス処理等にも適用することができる。   (3) In the above-described embodiment, an example in which the combustion exhaust gas treatment apparatus of the present invention is applied to a pyrolysis gasification and melting plant has been shown. However, the combustion exhaust gas treatment apparatus of the present invention is an exhaust gas from a stoker incinerator. It can also be applied to processing.

本発明の燃焼排ガス処理方法の一例を示す工程流れ図Process flow chart showing an example of the combustion exhaust gas treatment method of the present invention 本発明の燃焼排ガス処理装置の一例を示す概略構成図Schematic configuration diagram showing an example of a combustion exhaust gas treatment apparatus of the present invention

符号の説明Explanation of symbols

17 集塵器
18 ボイラ
21 活性炭供給手段(ダイオキシン類除去手段)
22 集塵器(ダイオキシン類除去手段)
45 中和処理手段
57 アンモニア供給部
58 触媒脱硝塔
17 Dust collector 18 Boiler 21 Activated carbon supply means (Dioxin removal means)
22 Dust collector (dioxin removal means)
45 Neutralization treatment means 57 Ammonia supply section 58 Catalyst denitration tower

Claims (8)

燃焼排ガスが300〜350℃の温度になるように燃焼排ガスからボイラで熱回収する工程と、熱回収後の300〜350℃の温度領域でNa系薬剤を添加して酸性ガスを中和処理する工程と、300〜350℃の温度領域で薬剤添加後の排ガスからダスト除去を行う工程と、300〜350℃の温度領域でダスト除去後の排ガスにアンモニアを供給し触媒脱硝塔でNOxを分解する工程と、脱硝後の排ガスから熱回収器で熱回収する工程と、130〜160℃の温度領域で熱回収後の排ガスからダイオキシン類及び重金属を除去する工程とを含む燃焼排ガス処理方法。 Heat recovery from the combustion exhaust gas with a boiler so that the combustion exhaust gas reaches a temperature of 300 to 350 ° C., and neutralization treatment of acid gas by adding a Na-based chemical in the temperature range of 300 to 350 ° C. after the heat recovery A step of removing dust from the exhaust gas after addition of the chemical in a temperature range of 300 to 350 ° C., and supplying ammonia to the exhaust gas after dust removal in a temperature range of 300 to 350 ° C. to decompose NOx in a catalyst denitration tower A combustion exhaust gas treatment method comprising: a step, a step of recovering heat from exhaust gas after denitration, and a step of removing dioxins and heavy metals from the exhaust gas after heat recovery in a temperature range of 130 to 160 ° C. 前記Na系薬剤が、平均粒径10〜50μmの固体のナトリウム系薬剤である請求項1記載の燃焼排ガス処理方法。The combustion exhaust gas treatment method according to claim 1, wherein the Na-based chemical is a solid sodium-based chemical having an average particle diameter of 10 to 50 μm. 前記ダイオキシン類及び重金属の除去を、排ガスに活性炭を吹き込んでバグフィルタでろ過して行う請求項1又は2記載の燃焼排ガス処理方法。 The combustion exhaust gas treatment method according to claim 1 or 2, wherein the dioxins and heavy metals are removed by blowing activated carbon into the exhaust gas and filtering with a bag filter. 前記ダスト除去をセラミック製ろ布のバグフィルタで行う請求項1〜3のいずれかに記載の燃焼排ガス処理方法。 The combustion exhaust gas treatment method according to any one of claims 1 to 3, wherein the dust removal is performed by a bag filter made of ceramic filter cloth. 燃焼排ガスが300〜350℃の温度になるように燃焼排ガスから熱回収するボイラと、熱回収後の300〜350℃の温度領域でNa系薬剤を添加する中和処理手段と、300〜350℃の温度領域で薬剤添加後の排ガスからダスト除去を行う集塵器と、ダスト除去後の排ガスにアンモニアを供給するアンモニア供給部と、300〜350℃の温度領域でNOxを触媒にて分解する触媒脱硝塔と、脱硝後の排ガスから熱回収する熱回収器と、130〜160℃の温度領域で熱回収後の排ガスからダイオキシン類を除去するダイオキシン類除去手段とを含む燃焼排ガス処理装置。 A boiler that recovers heat from the combustion exhaust gas so that the combustion exhaust gas has a temperature of 300 to 350 ° C., a neutralization treatment means that adds a Na-based chemical in a temperature range of 300 to 350 ° C. after the heat recovery, and 300 to 350 ° C. A dust collector that removes dust from the exhaust gas after addition of the chemical in the temperature range, an ammonia supply unit that supplies ammonia to the exhaust gas after dust removal , and a catalyst that decomposes NOx with a catalyst in the temperature range of 300 to 350 ° C. A combustion exhaust gas treatment apparatus including a denitration tower, a heat recovery unit that recovers heat from exhaust gas after denitration, and dioxins removal means that removes dioxins from exhaust gas after heat recovery in a temperature range of 130 to 160 ° C. 前記Na系薬剤が、平均粒径10〜50μmの固体のナトリウム系薬剤である請求項5記載の燃焼排ガス処理装置。The combustion exhaust gas treatment apparatus according to claim 5, wherein the Na-based chemical is a solid sodium-based chemical having an average particle size of 10 to 50 μm. 前記ダイオキシン類及び重金属の除去を、排ガスに活性炭を吹き込んでバグフィルタでろ過して行う請求項5又は6記載の燃焼排ガス処理装置。The combustion exhaust gas treatment apparatus according to claim 5 or 6, wherein the dioxins and heavy metals are removed by blowing activated carbon into the exhaust gas and filtering it with a bag filter. 前記ダスト除去をセラミック製ろ布のバグフィルタで行う請求項5〜7のいずれかに記載の燃焼排ガス処理装置
The combustion exhaust gas treatment apparatus according to any one of claims 5 to 7, wherein the dust removal is performed by a bag filter made of ceramic filter cloth .
JP2007041012A 2007-02-21 2007-02-21 Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus Expired - Fee Related JP5279062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041012A JP5279062B2 (en) 2007-02-21 2007-02-21 Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041012A JP5279062B2 (en) 2007-02-21 2007-02-21 Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus

Publications (2)

Publication Number Publication Date
JP2008200631A JP2008200631A (en) 2008-09-04
JP5279062B2 true JP5279062B2 (en) 2013-09-04

Family

ID=39778655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041012A Expired - Fee Related JP5279062B2 (en) 2007-02-21 2007-02-21 Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP5279062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085242A (en) * 2013-10-29 2015-05-07 Jx日鉱日石金属株式会社 Method of treating combustion furnace exhaust gas containing fluorine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665011B2 (en) * 2016-03-31 2020-03-13 三菱重工業株式会社 Exhaust gas treatment method and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2788997B2 (en) * 1989-06-01 1998-08-20 株式会社タクマ Method for simultaneous reduction of nitrogen oxides, sulfur oxides and hydrogen chloride in flue gas
JPH0635888B2 (en) * 1990-01-09 1994-05-11 荏原インフイルコ株式会社 Garbage incineration plant
JP2000317263A (en) * 1999-05-17 2000-11-21 Nkk Corp Method and device for treating waste gas
JP2001187317A (en) * 1999-12-28 2001-07-10 Arusutomu Power Kk Treating system for trash incinerator waste gas
JP2003161428A (en) * 2001-11-22 2003-06-06 Mitsubishi Heavy Ind Ltd Exhaust gas processing unit of ash melting furnace
JP2005021822A (en) * 2003-07-03 2005-01-27 Takuma Co Ltd Facility and method for treating waste gas
JP2006026525A (en) * 2004-07-15 2006-02-02 Babcock Hitachi Kk Exhaust gas treatment system
JP2006043632A (en) * 2004-08-06 2006-02-16 Takuma Co Ltd Method and equipment for treating combustion gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085242A (en) * 2013-10-29 2015-05-07 Jx日鉱日石金属株式会社 Method of treating combustion furnace exhaust gas containing fluorine

Also Published As

Publication number Publication date
JP2008200631A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4594821B2 (en) Purification method of gasification gas
CN108775585B (en) Waste high-temperature air/steam gasification combustion melting system
JP4764095B2 (en) Purification method of gasification gas
CN113701170A (en) Hazardous waste incineration system and operation process thereof
CN100470131C (en) City life refuse burning pretreatment method and apparatus for
CN109297023B (en) Waste incineration system
JP5279062B2 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP3797053B2 (en) Waste gas incinerator exhaust gas treatment method and equipment
JP2017087099A (en) Exhaust gas treatment equipment and exhaust gas treatment method in waste incineration
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JP2005195228A (en) Waste material melting treatment system
JP2004263952A (en) Heat recovering method and device from exhaust gas
JPH10103640A (en) Waste thermal decomposition disposal facility
JP2002205044A (en) Waste treatment plant
JP3757032B2 (en) Waste pyrolysis melting combustion equipment
CN218672183U (en) Organic waste gasification melting treatment system
CN209944341U (en) Waste high-temperature air/steam gasification combustion melting system
JP2004099702A (en) System of treating material to be treated
JPH0849828A (en) Device and method for treating waste
JPH0894002A (en) Heat recovery system in gerbage disposal plant
JP3932262B2 (en) Combustion equipment and exhaust gas treatment method
JP3120746U (en) Waste treatment facility
JP4702869B2 (en) Waste treatment method and treatment equipment
JPH11257623A (en) Method and system for treating waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees