JPH0894002A - Heat recovery system in gerbage disposal plant - Google Patents

Heat recovery system in gerbage disposal plant

Info

Publication number
JPH0894002A
JPH0894002A JP25163194A JP25163194A JPH0894002A JP H0894002 A JPH0894002 A JP H0894002A JP 25163194 A JP25163194 A JP 25163194A JP 25163194 A JP25163194 A JP 25163194A JP H0894002 A JPH0894002 A JP H0894002A
Authority
JP
Japan
Prior art keywords
exhaust gas
superheater
transfer chamber
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25163194A
Other languages
Japanese (ja)
Other versions
JP3514838B2 (en
Inventor
Makoto Shizuma
誠 静間
Makoto Sasaki
信 佐々木
Yoshiji Satou
誉司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP25163194A priority Critical patent/JP3514838B2/en
Publication of JPH0894002A publication Critical patent/JPH0894002A/en
Application granted granted Critical
Publication of JP3514838B2 publication Critical patent/JP3514838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE: To provide a heat recovery system in a garbage disposal plant which enables the upgrading of power generation efficiency with higher temperature and pressure of superheated steam. CONSTITUTION: This system is constituted of a radiation heat transfer chamber 2 to obtain saturated steam by radiation heat from an exhaust gas discharged from a garbage incinerator 1, a contact heat transfer chamber 3 to obtain the saturated steam by heat exchange with the exhaust gas contacting a water pipe, a dust collector 4 to separate dust 10 contained in the exhaust gas, a superheater 5 to obtain superheated stream by heat exchange between the saturated steam obtained and the exhaust gas and an economizer 6 to obtain hot water by heat exchange between the exhaust gas passing through the superheater 5 and water. Dust 10 is removed with a dust collector 4 from the exhaust gas fed to the superheater 5. This keeps the dust from adhering to a wall surface of the superheater 5, thereby eliminating high temperature corrosion of the superheater 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、都市ごみ等を焼却す
るごみ焼却炉から排出される排ガスから排熱を回収する
ごみ処理プラントにおける熱回収システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat recovery system in a waste treatment plant for recovering waste heat from exhaust gas discharged from a waste incinerator for incinerating municipal waste and the like.

【0002】[0002]

【従来の技術】近年、都市ごみ等の廃棄物処理は、焼却
処理が主流となっている。焼却によって排出される排ガ
スの中には、煤塵を始め、塩化水素(HC1)、硫黄酸
化物(SOX )、窒素酸化物(NOX )などの有害物質
が多量に含まれている。そこで、ごみの焼却に伴う二次
公害の発生を防止するために、これらの物質を効率的に
且つ効果的に除去することのできる排ガス処理装置の開
発が求められる一方で、大気汚染防止対策としてこれら
の物質の排出濃度が厳しく規制されている。
2. Description of the Related Art In recent years, incineration has become the mainstream for the treatment of waste such as municipal waste. Exhaust gas discharged by incineration contains a large amount of harmful substances such as soot dust, hydrogen chloride (HC1), sulfur oxides (SO x ), nitrogen oxides (NO x ). Therefore, in order to prevent the occurrence of secondary pollution due to the incineration of waste, it is required to develop an exhaust gas treatment device that can remove these substances efficiently and effectively, while preventing air pollution. The emission concentrations of these substances are strictly regulated.

【0003】従来のごみ処理プラントにおいて、焼却炉
でごみを燃焼させる時に、焼却灰が発生すると共に高温
の排ガスが発生する。そこで、焼却炉で発生した高温の
排ガスから熱エネルギーを回収するごみ処理プラントに
おける熱回収システムが開発されている。ごみ処理プラ
ントにおける熱回収システムとして、水管ボイラーや温
水発生器が用いられている。水管ボイラーを用いて蒸気
を発生させて熱回収し、該蒸気によって熱エネルギー、
動力エネルギー或いは電気エネルギーを発生させて回収
熱を利用することは有効なことである。そこで、水管ボ
イラーで得られた蒸気の利用熱量を多くするため、水管
ボイラーで得た飽和蒸気を過熱器で過熱蒸気にして高温
化、高圧化を図っている。
In a conventional waste treatment plant, when burning waste in an incinerator, incinerator ash is generated and high-temperature exhaust gas is generated. Therefore, a heat recovery system has been developed in a waste treatment plant for recovering heat energy from high-temperature exhaust gas generated in an incinerator. Water tube boilers and hot water generators are used as heat recovery systems in waste treatment plants. Steam is generated using a water tube boiler to recover heat, and thermal energy is generated by the steam.
It is effective to generate kinetic energy or electric energy and utilize the recovered heat. Therefore, in order to increase the amount of heat utilization of the steam obtained in the water tube boiler, the saturated steam obtained in the water tube boiler is converted into superheated steam in a superheater to raise the temperature and pressure.

【0004】従来のごみ処理プラントにおける熱回収シ
ステムは、図2に示すようなものが知られている。図2
は従来のごみ処理プラントにおける熱回収システムを示
すブロック図である。該ごみ処理プラントにおける熱回
収システムは、水管ボイラー27を一体型に構成したも
のであり、水管ボイラー27は、都市ごみを焼却するご
み焼却炉20、ごみ焼却炉20から排出される排ガスか
らの放射熱で飽和蒸気を得る放射伝熱室21、排ガスか
らの伝導熱で飽和蒸気を得る接触伝熱室22、得られた
飽和蒸気と排ガスとを熱交換して過熱蒸気26を得る過
熱器23、及び過熱器23を通過した排ガスと給水源2
8からの水とを熱交換して放射伝熱室21と接触伝熱室
22に補給する温水を得る節炭器24から構成されてい
る。更に、節炭器24を通過した排ガスは、排ガス処理
装置25へ送り込まれて浄化処理されている。
A known heat recovery system in a conventional waste treatment plant is shown in FIG. Figure 2
FIG. 4 is a block diagram showing a heat recovery system in a conventional waste treatment plant. The heat recovery system in the waste treatment plant is configured by integrally constructing a water pipe boiler 27. The water pipe boiler 27 emits radiation from exhaust gas discharged from the waste incinerator 20 for incinerating municipal waste and the waste incinerator 20. A radiant heat transfer chamber 21 for obtaining saturated steam by heat, a contact heat transfer chamber 22 for obtaining saturated steam by conduction heat from exhaust gas, a superheater 23 for exchanging heat between the obtained saturated steam and exhaust gas to obtain superheated steam 26, Exhaust gas that has passed through the superheater 23 and the water supply source 2
It is composed of a economizer 24 which obtains hot water by exchanging heat with the water from 8 to replenish the radiation heat transfer chamber 21 and the contact heat transfer chamber 22. Further, the exhaust gas that has passed through the economizer 24 is sent to the exhaust gas processing device 25 and is purified.

【0005】例えば、排ガス処理装置25としては、水
管ボイラーを通過して冷却された排ガスを反応塔に導入
し、反応塔内では、消石灰〔Ca(OH)2 〕の粉末を
相当量噴霧し、排ガスの酸性成分である塩化水素(HC
1)、硫黄酸化物(SOX )を中和する。煤塵や中和さ
れた反応生成物(CaCl2 、CaSO4 )をバグフィ
ルタ内に装備した瀘布によって集塵している。また、反
応塔内で反応しなかった未反応の酸性成分や未反応の消
石灰、あるいはダイオキシン類、重金属類もバグフィル
タ内で除去される。このようにして清浄化されたガス
は、誘引送風機で吸引され、次いで煙突から大気中に排
出される。
For example, as the exhaust gas treating apparatus 25, the exhaust gas cooled by passing through the water tube boiler is introduced into the reaction tower, and a considerable amount of slaked lime [Ca (OH) 2 ] powder is sprayed in the reaction tower. Hydrogen chloride (HC
1) Neutralize sulfur oxide (SO x ). Soot and neutralized reaction products (CaCl 2 , CaSO 4 ) are collected by a filter cloth equipped in the bag filter. In addition, unreacted acidic components that have not reacted in the reaction tower, unreacted slaked lime, dioxins, and heavy metals are also removed in the bag filter. The gas purified in this way is sucked by an induction blower and then discharged from the chimney into the atmosphere.

【0006】[0006]

【発明が解決しようとする課題】ところで、近年、ごみ
処理プラントにおける熱回収システムでは、図2に示す
ように、積極発電を行うため、ボイラーの高温高圧化が
必要になり、過熱器で熱交換して過熱蒸気を発生させて
熱エネルギーを利用している。しかしながら、従来のご
み処理プラントにおける熱回収システムでは、放射伝熱
室21、接触伝熱室22、過熱器23及び節炭器24が
一体型に構成された水管ボイラー27で構成されてい
る。このような熱回収システムで飽和蒸気を過熱器23
で過熱蒸気26にして高温高圧化を行うと、排ガスが流
れる過熱器23の壁面及び過熱器23における飽和蒸気
が流れる鋼管の壁面に排ガスが接触し、排ガス中に含ま
れるHClによって生成した塩化物、アルカリ鉄硫酸塩
が排ガスに含まれるダストの共存により分解し、上記壁
面や鋼管の表面が高温腐食が発生し、過熱器23の寿命
を低下させることになる。
By the way, in recent years, in a heat recovery system in a waste treatment plant, as shown in FIG. 2, since positive power generation is performed, it is necessary to increase the temperature and pressure of the boiler, and heat exchange by a superheater. Then, superheated steam is generated to use the thermal energy. However, in the heat recovery system in the conventional waste treatment plant, the radiant heat transfer chamber 21, the contact heat transfer chamber 22, the superheater 23, and the economizer 24 are configured by the water tube boiler 27 integrally configured. The saturated steam is superheated by the heat recovery system 23.
When the superheated steam 26 is heated to high temperature and high pressure by the exhaust gas, the exhaust gas comes into contact with the wall surface of the superheater 23 through which the exhaust gas flows and the wall surface of the steel pipe through which the saturated steam flows in the superheater 23, and chloride generated by HCl contained in the exhaust gas. The alkali iron sulfate is decomposed by the coexistence of dust contained in the exhaust gas, high temperature corrosion occurs on the wall surface and the surface of the steel pipe, and the life of the superheater 23 is shortened.

【0007】即ち、過熱器で発生する過熱蒸気を高温に
すると、過熱器の鋼管にダストが付着し、ダストの付着
部分から腐食が発生することになり、過熱器の耐久性を
低下させ、過熱蒸気の高温高圧化を達成することができ
なくなる。一般に、放射伝熱室及び接触伝熱室では、排
ガスの熱エネルギーを飽和蒸気にして熱回収を効率的に
行うことができれば十分であり、排ガスからダストを除
去することを考慮する必要がない。
That is, when the superheated steam generated in the superheater is heated to a high temperature, dust adheres to the steel pipe of the superheater and corrosion occurs from the dust adhering portion, which deteriorates the durability of the superheater and causes overheating. It becomes impossible to attain high temperature and high pressure of steam. Generally, in the radiant heat transfer chamber and the contact heat transfer chamber, it is sufficient if the heat energy of the exhaust gas can be converted to saturated steam to efficiently recover heat, and it is not necessary to consider removing dust from the exhaust gas.

【0008】そこで、この発明の目的は、上記課題を解
決することであり、水管ボイターにおける放射伝熱室及
び接触伝熱室と、過熱器及び節炭器とに分離し、接触伝
熱室と過熱器との間に集塵器を設置し、集塵器によって
排ガスからダストを除去し、除塵された排ガスを過熱器
に送り込んで、過熱器の壁面に高温腐食が発生するのを
阻止して過熱器の耐久性を向上させると共に、過熱器の
機能を十分に発揮させて過熱蒸気の高温高圧化を達成
し、過熱蒸気による発電効率を向上させるごみ処理プラ
ントにおける熱回収システムを提供することである。
[0008] Therefore, an object of the present invention is to solve the above-mentioned problems, and it is separated into a radiant heat transfer chamber and a contact heat transfer chamber in a water tube boiler, and a superheater and a economizer, and Install a dust collector between the superheater, remove dust from the exhaust gas by the dust collector, and send the dedusted exhaust gas to the superheater to prevent high temperature corrosion on the wall of the superheater. By providing a heat recovery system in a waste treatment plant that not only improves the durability of the superheater but also maximizes the function of the superheater to achieve high temperature and high pressure of the superheated steam and improves the power generation efficiency by the superheated steam. is there.

【0009】[0009]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、以下のように構成されている。即
ち、この発明は、ごみ焼却炉から排出される排ガスから
の放射熱で飽和蒸気を得る放射伝熱室、該放射伝熱室で
熱交換された排ガスを水管に接触させて熱交換を行って
飽和蒸気を得る接触伝熱室、該接触伝熱室で熱交換を行
った排ガス中に含まれるダストを分離する集塵器、前記
放射伝熱室と前記接触伝熱室で得られた飽和蒸気と前記
集塵器で除塵された排ガスとを熱交換して過熱蒸気を得
る過熱器、及び該過熱器を通過した排ガスと水とを熱交
換して前記放射伝熱室と前記接触伝熱室に補給する温水
を得る節炭器、から構成したことを特徴とするごみ処理
プラントにおける熱回収システムに関する。
In order to achieve the above object, the present invention is configured as follows. That is, the present invention is a radiant heat transfer chamber that obtains saturated steam by radiant heat from the exhaust gas discharged from the refuse incinerator, the exhaust gas heat-exchanged in the radiant heat transfer chamber is brought into contact with a water pipe to perform heat exchange. Contact heat transfer chamber for obtaining saturated steam, dust collector for separating dust contained in exhaust gas having undergone heat exchange in the contact heat transfer chamber, saturated steam obtained in the radiation heat transfer chamber and the contact heat transfer chamber And a superheater for exchanging heat with the exhaust gas removed by the dust collector to obtain superheated steam, and heat exchange between the exhaust gas and water passing through the superheater for heat exchange between the radiant heat transfer chamber and the contact heat transfer chamber The present invention relates to a heat recovery system in a waste treatment plant, the heat recovery system being configured by a economizer for obtaining hot water to be replenished to the.

【0010】また、このごみ処理プラントにおける熱回
収システムにおいて、前記集塵器はセラミックス製濾布
又は金属繊維から成るバグフィルタで構成されている。
また、前記過熱器で得られた過熱蒸気は蒸気タービン発
電機で電気エネルギーに変換されるものである。
In the heat recovery system of this waste treatment plant, the dust collector is composed of a ceramic filter cloth or a bag filter made of metal fiber.
The superheated steam obtained by the superheater is converted into electric energy by the steam turbine generator.

【0011】[0011]

【作用】この発明によるごみ処理プラントにおける熱回
収システムは、上記のように構成されているので、次の
ように作用する。即ち、このごみ処理プラントにおける
熱回収システムは、接触伝熱室と過熱器との間に集塵器
が設置され、前記集塵器によって排ガスからダストを除
去された排ガスが前記過熱器に送り込まれるので、HC
lによって生成した塩化物、アルカリ鉄硫酸塩が排ガス
中のダストとの共存による分解が発生せず、前記過熱器
の高温腐食が防止される。
Since the heat recovery system in the refuse treatment plant according to the present invention is constructed as described above, it operates as follows. That is, in the heat recovery system in this waste treatment plant, a dust collector is installed between the contact heat transfer chamber and the superheater, and the exhaust gas from which dust has been removed from the exhaust gas by the dust collector is sent to the superheater. So HC
The chloride and alkali iron sulfate produced by 1 do not decompose due to coexistence with dust in the exhaust gas, and high temperature corrosion of the superheater is prevented.

【0012】[0012]

【実施例】以下、図面を参照して、この発明によるごみ
処理プラントにおける熱回収システムの一実施例につい
て説明する。図1はこの発明によるごみ処理プラントに
おける熱回収システムの一実施例を示すブロック図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat recovery system in a waste treatment plant according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a heat recovery system in a waste treatment plant according to the present invention.

【0013】この発明によるごみ処理プラントにおける
熱回収システムは、図1に示すように、ごみ焼却炉1か
ら排出される排ガスからの放射熱で飽和蒸気を得る放射
伝熱室2、放射伝熱室2で熱交換された排ガスを水管に
接触させて熱交換を行って飽和蒸気を得る接触伝熱室
3、接触伝熱室3で熱交換を行った排ガス中に含まれる
ダスト10を分離する集塵器4、放射伝熱室2と接触伝
熱室3で得られた飽和蒸気と集塵器4で除塵された排ガ
スとを熱交換して過熱蒸気9を得る過熱器5、及び過熱
器5を通過した排ガスと水とを熱交換して温水を得る節
炭器6から構成されている。
As shown in FIG. 1, the heat recovery system in the waste treatment plant according to the present invention has a radiant heat transfer chamber 2 and a radiant heat transfer chamber for obtaining saturated steam by radiant heat from the exhaust gas discharged from the waste incinerator 1. A contact heat transfer chamber 3 for bringing the exhaust gas heat-exchanged in 2 into contact with a water pipe for heat exchange to obtain saturated steam, and a collection for separating dust 10 contained in the exhaust gas heat-exchanged in the contact heat transfer chamber 3. Dust container 4, superheater 5 that obtains overheated steam 9 by exchanging heat between the saturated steam obtained in the radiant heat transfer chamber 2 and the contact heat transfer chamber 3 and the exhaust gas dedusted by the dust collector 4, and the superheater 5 It is composed of a economizer 6 for obtaining hot water by exchanging heat between the exhaust gas and the water which have passed through.

【0014】ごみ焼却炉1は、都市ごみ等のごみを乾燥
させ、焼却するものであり、ストーカ式、流動層式、キ
ルン式等がある。ごみ焼却炉1でごみを焼却すると、焼
却灰が発生すると共に高温の排ガスが発生する。高温の
排ガスは、800〜950℃と高く、HCl、ダスト等
を含んでいる。ごみ焼却炉1で発生した排ガスは、ま
ず、放射伝熱室2に送り込まれる。放射伝熱室2は、高
温の排ガスからの放射熱によってごみ焼却炉1に対して
配置された鋼管等の水管から構成され、該水管を流れる
給水源8から供給された水と熱交換して飽和蒸気を発生
させることができる。放射伝熱室2は、例えば、ごみ焼
却炉1の排ガスの出口、ごみ焼却炉1の天井或いは側面
に上記水管を設置したものであり、該水管は耐火煉瓦や
キャスタブル等の耐熱材で保護されて排ガスに直接晒さ
れないように構成されている。
The refuse incinerator 1 is for drying and incinerating refuse such as municipal refuse, and includes a stoker type, a fluidized bed type, a kiln type and the like. When refuse is incinerated in the refuse incinerator 1, incinerator ash is generated and high-temperature exhaust gas is generated. The high temperature exhaust gas is as high as 800 to 950 ° C. and contains HCl, dust and the like. The exhaust gas generated in the refuse incinerator 1 is first sent to the radiant heat transfer chamber 2. The radiant heat transfer chamber 2 is composed of a water pipe such as a steel pipe arranged for the refuse incinerator 1 by radiant heat from high-temperature exhaust gas, and exchanges heat with water supplied from a water supply source 8 flowing through the water pipe. Saturated steam can be generated. The radiant heat transfer chamber 2 has, for example, the above-mentioned water pipe installed at the exhaust gas outlet of the waste incinerator 1, the ceiling or the side surface of the waste incinerator 1, and the water pipe is protected by heat-resistant materials such as refractory bricks and castables. It is constructed so that it is not directly exposed to exhaust gas.

【0015】放射伝熱室2を通過した排ガスは、接触伝
熱室3に送り込まれる。接触伝熱室3は、給水源8から
供給された水が流されている鋼管等の水管が配置されて
おり、該水管の表面に既に放射伝熱室2で熱交換された
排ガスが接触して流がれるように構成され、排ガスが水
管に接触することによって水管を流れている水と熱交換
されて飽和蒸気が得られる。接触伝熱室3には、多数の
水管がブロック化して設置されている。
The exhaust gas passing through the radiant heat transfer chamber 2 is sent to the contact heat transfer chamber 3. The contact heat transfer chamber 3 is provided with a water pipe such as a steel pipe through which the water supplied from the water supply source 8 flows, and the exhaust gas that has already undergone heat exchange in the radiant heat transfer chamber 2 comes into contact with the surface of the water pipe. The exhaust gas comes into contact with the water pipe to exchange heat with the water flowing in the water pipe to obtain saturated steam. A large number of water pipes are installed in a block in the contact heat transfer chamber 3.

【0016】接触伝熱室3を通過した排ガスは、集塵器
4に送り込まれる。集塵器4に送り込まれた排ガスは、
放射伝熱室2及び接触伝熱室3を通過して水と熱交換さ
れることによって600〜700℃に温度低下してい
る。集塵器4は、その下流に配置されている過熱器5を
保護したり、節炭器6を小型化するために設置されたも
のであり、排ガス中に含まれるダスト10を分離して除
去するものである。集塵器4は、高温に耐えることがで
きる耐熱性材料で作製されることが必要であり、例え
ば、セラミックス製濾布又はSUS等の金属繊維から成
るバグフィルタ等の濾過式集塵器で構成されている。或
いは、集塵器4は、高温に耐え且つ排ガス中のダストを
除去できればよく、例えば、サイクロン等を利用するこ
とも可能である。
The exhaust gas passing through the contact heat transfer chamber 3 is sent to the dust collector 4. The exhaust gas sent to the dust collector 4 is
The temperature is lowered to 600 to 700 ° C. by passing through the radiant heat transfer chamber 2 and the contact heat transfer chamber 3 and exchanging heat with water. The dust collector 4 is installed to protect the superheater 5 arranged downstream of the dust collector 4 and to reduce the size of the economizer 6, and separates and removes the dust 10 contained in the exhaust gas. To do. The dust collector 4 needs to be made of a heat-resistant material that can withstand high temperatures, and is composed of, for example, a filter dust collector such as a ceramic filter cloth or a bag filter made of metal fiber such as SUS. Has been done. Alternatively, the dust collector 4 has only to withstand high temperatures and can remove dust in exhaust gas, and for example, a cyclone or the like can be used.

【0017】集塵器4を通過して除塵された排ガスは、
過熱器5に送り込まれる。過熱器5に送り込まれた排ガ
スは、ダストを含んでいないので、過熱器5の壁面にダ
ストが付着することがなく、排ガス中に含まれているH
Clによって生成した塩化物、アルカリ鉄硫酸塩は排ガ
スと共に通過して過熱器5の壁面に付着することなく、
該壁面を高温腐食させることはない。過熱器5では、排
ガスと放射伝熱室2及び接触伝熱室3で得られた飽和蒸
気とが熱交換し、飽和蒸気が高温高圧の過熱蒸気に変換
される。過熱蒸気は、蒸気タービン発電機に送り込まれ
て安定した高効率の発電に利用される。更に、過熱器5
で得られた過熱蒸気9は、例えば、蒸気タービン発電機
(図示せず)に送り込まれ、蒸気タービン発電機でター
ビンを回転させ、その回転エネルギーは電気エネルギー
に変換され、過熱蒸気9は復水される。
The exhaust gas that has passed through the dust collector 4 and has been dust-removed is
It is sent to the superheater 5. Since the exhaust gas sent to the superheater 5 does not contain dust, dust does not adhere to the wall surface of the superheater 5 and H contained in the exhaust gas
The chloride generated by Cl and the alkali iron sulfate pass through the exhaust gas without adhering to the wall surface of the superheater 5,
It does not corrode the wall at high temperatures. In the superheater 5, the exhaust gas and the saturated steam obtained in the radiant heat transfer chamber 2 and the contact heat transfer chamber 3 exchange heat with each other, and the saturated steam is converted into high-temperature and high-pressure superheated steam. The superheated steam is sent to a steam turbine generator and used for stable and highly efficient power generation. Furthermore, the superheater 5
The superheated steam 9 obtained in 1. is sent to, for example, a steam turbine generator (not shown), the turbine is rotated by the steam turbine generator, the rotational energy is converted into electric energy, and the superheated steam 9 is condensed. To be done.

【0018】過熱器5を通過した排ガスは、節炭器6に
送り込まれる。節炭器6は、過熱器5と同様に単独にシ
ステムに組み込まれており、放射伝熱室2と接触伝熱室
3の水管ボイラーに補給する温水を発生させるものであ
る。節炭器6では、給水源8から供給された水と排ガス
とが熱交換され、水が排ガスで加熱されて温水に変換さ
れる。節炭器6から排気される排ガスは、既に200℃
程度にまで低下されている。節炭器6を通過した排ガス
は排気ガス処理装置7へ送り込まれ、排ガスは浄化処理
され、大気に放出される。
The exhaust gas that has passed through the superheater 5 is sent to the economizer 6. Like the superheater 5, the economizer 6 is independently incorporated into the system, and generates hot water to be supplied to the water tube boilers of the radiant heat transfer chamber 2 and the contact heat transfer chamber 3. In the economizer 6, the water supplied from the water supply source 8 and the exhaust gas are heat-exchanged, and the water is heated by the exhaust gas and converted into hot water. The exhaust gas exhausted from the economizer 6 has already reached 200 ° C.
It has been reduced to a degree. The exhaust gas that has passed through the economizer 6 is sent to the exhaust gas processing device 7, where the exhaust gas is purified and released to the atmosphere.

【0019】この発明によるごみ処理プラントにおける
熱回収システムは、上記のように構成されており、運転
することによって次のような結果を得ることができた。
この発明の集塵器4を設置してダスト10を除去した熱
回収システムでは、過熱蒸気9の温度は400〜500
℃であり、圧力は40〜50kg/cm2 Gであった。
これに対して、図2に示す集塵器を設置していない従来
の熱回収システムでは、過熱蒸気26の温度は300℃
程度であり、圧力は20〜27kg/cm2 Gであっ
た。このことより、集塵器4を設置した熱回収システム
は、明らかに過熱蒸気9が高温高圧化されていることが
確認できた。また、これらの過熱蒸気9,26を蒸気タ
ービン発電機に送り込んで発電させたところ、この発明
によって得た過熱蒸気9は4〜6kg・steam/K
Wであったのに対し、従来の熱回収システムで得た過熱
蒸気26は6〜8kg・steam/KWであった。こ
のことより、集塵器4を設置した熱回収システムは、明
らかに発電効率が向上していることが確認できた。更
に、過熱器5及び過熱器23の耐久試験を行ったとこ
ろ、過熱器の壁面の腐食程度は集塵器4を設置した過熱
器5の方が過熱器23よりも半分程度と少なく、過熱器
5が過熱器23より約2倍程度長寿命であることが分か
った。
The heat recovery system in the refuse treatment plant according to the present invention is constructed as described above, and the following results could be obtained by operating it.
In the heat recovery system in which the dust collector 4 of the present invention is installed to remove the dust 10, the temperature of the superheated steam 9 is 400 to 500.
C. and the pressure was 40-50 kg / cm 2 G.
On the other hand, in the conventional heat recovery system without the dust collector shown in FIG. 2, the temperature of the superheated steam 26 is 300 ° C.
And the pressure was 20 to 27 kg / cm 2 G. From this, it was confirmed that the heat recovery system in which the dust collector 4 is installed clearly has the superheated steam 9 at high temperature and high pressure. Moreover, when these superheated steams 9 and 26 were sent to a steam turbine generator to generate electric power, the superheated steam 9 obtained by the present invention was 4 to 6 kg · steam / K.
While it was W, the superheated steam 26 obtained by the conventional heat recovery system was 6 to 8 kg · steam / KW. From this, it was confirmed that the heat recovery system in which the dust collector 4 was installed had obviously improved power generation efficiency. Further, when a durability test of the superheater 5 and the superheater 23 was performed, the degree of corrosion of the wall surface of the superheater was about half that of the superheater 5 in which the dust collector 4 was installed than that of the superheater 23. It was found that No. 5 has a life approximately twice as long as that of the superheater 23.

【0020】[0020]

【発明の効果】この発明によるごみ処理プラントにおけ
る熱回収システムは、上記のように構成されているの
で、次のような効果を有する。即ち、このごみ処理プラ
ントにおける熱回収システムは、接触伝熱室と過熱器と
の間に集塵器を設置し、前記集塵器によって排ガスから
ダストを除去された排ガスを前記過熱器に送り込んでい
るので、前記集塵器で排ガスに含まれるダストが除去さ
れ、前記過熱器に送り込まれる排ガスにはダストがほと
んど含まれていない。従って、前記過熱器の排ガスに触
れる壁面が排ガス中に含まれる塩化物、アルカリ鉄硫酸
塩がダストとの共存で分解することがなく、前記過熱器
の前記壁面が高温腐食することがない。また、前記集塵
器としては、排ガス中のダストを除去できればよく、セ
ラミックス製濾布又は金属繊維等のバグフィルタで作製
することができる。
Since the heat recovery system in the waste treatment plant according to the present invention is configured as described above, it has the following effects. That is, the heat recovery system in this waste treatment plant has a dust collector installed between the contact heat transfer chamber and the superheater, and sends the exhaust gas from which dust has been removed from the exhaust gas to the superheater. Therefore, the dust contained in the exhaust gas is removed by the dust collector, and the exhaust gas sent to the superheater contains almost no dust. Therefore, the wall surface of the superheater that comes into contact with the exhaust gas does not decompose chloride and alkali iron sulfate contained in the exhaust gas in the presence of dust, and the wall surface of the superheater does not corrode at high temperature. The dust collector is only required to be able to remove dust in the exhaust gas, and can be made of a ceramic filter cloth or a bag filter made of metal fiber or the like.

【0021】また、このごみ処理プラントにおける熱回
収システムでは、前記過熱器で得られた過熱蒸気は、蒸
気タービン発電機で電気エネルギーに変換することがで
き、安定した高効率の発電を行うことができ、排熱の有
効利用が達成できる。即ち、従来の熱回収システムは、
過熱器の壁面が高温腐食され、得られる過熱蒸気の温度
及び圧力の条件が低いため、ごみ自体が保有する熱量が
上昇し、安定しているにもかかわらず、発電効率は低い
ものとなっている。これに対して、この発明の熱回収シ
ステムは、集塵器を設けて過熱器に対する壁面腐食を排
除し、過熱蒸気の温度及び圧力条件をアップできるの
で、高い発電効率を得ることができる。従って、この発
明の熱回収システムは、他の化石燃料に依存することな
く、地域社会に貢献できるばかりでなく、地球的に見た
省エネルギー化に寄与できるものである。
Further, in the heat recovery system in this waste treatment plant, the superheated steam obtained by the superheater can be converted into electric energy by the steam turbine generator, and stable and highly efficient power generation can be performed. It is possible to effectively use the waste heat. That is, the conventional heat recovery system is
Since the wall surface of the superheater is corroded at high temperature and the temperature and pressure conditions of the obtained superheated steam are low, the amount of heat held by the waste itself rises and the power generation efficiency is low even though it is stable. There is. On the other hand, in the heat recovery system of the present invention, since a dust collector is provided to eliminate wall corrosion on the superheater and the temperature and pressure conditions of the superheated steam can be increased, high power generation efficiency can be obtained. Therefore, the heat recovery system of the present invention can contribute not only to the fossil fuel but also to the local community, as well as to the global energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるごみ処理プラントにおける熱回
収システムの一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a heat recovery system in a waste treatment plant according to the present invention.

【図2】従来のごみ処理プラントにおける熱回収システ
ムの一例を示すブロック図である。
FIG. 2 is a block diagram showing an example of a heat recovery system in a conventional waste treatment plant.

【符号の説明】[Explanation of symbols]

1 ごみ焼却炉 2 放射伝熱室 3 接触伝熱室 4 集塵器 5 過熱器 6 節炭器 7 排ガス処理装置 8 給水源 9 過熱蒸気 10 ダスト 1 Waste incinerator 2 Radiant heat transfer chamber 3 Contact heat transfer chamber 4 Dust collector 5 Superheater 6 Economizer 7 Exhaust gas treatment device 8 Water supply source 9 Superheated steam 10 Dust

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ごみ焼却炉から排出される排ガスからの
放射熱で飽和蒸気を得る放射伝熱室、該放射伝熱室で熱
交換された排ガスを水管に接触させて熱交換を行って飽
和蒸気を得る接触伝熱室、該接触伝熱室で熱交換を行っ
た排ガス中に含まれるダストを分離する集塵器、前記放
射伝熱室と前記接触伝熱室で得られた飽和蒸気と前記集
塵器で除塵された排ガスとを熱交換して過熱蒸気を得る
過熱器、及び該過熱器を通過した排ガスと水とを熱交換
して前記放射伝熱室と前記接触伝熱室に補給する温水を
得る節炭器、から構成したことを特徴とするごみ処理プ
ラントにおける熱回収システム。
1. A radiant heat transfer chamber that obtains saturated steam by radiant heat from exhaust gas discharged from a refuse incinerator, and exhaust gas heat-exchanged in the radiant heat transfer chamber is brought into contact with a water pipe to perform heat exchange for saturation. A contact heat transfer chamber for obtaining steam, a dust collector for separating dust contained in exhaust gas that has undergone heat exchange in the contact heat transfer chamber, and a saturated steam obtained in the radiation heat transfer chamber and the contact heat transfer chamber. A superheater for exchanging heat with the exhaust gas dedusted by the dust collector to obtain superheated steam, and an exhaust gas and water passing through the superheater for heat exchange with the radiant heat transfer chamber and the contact heat transfer chamber. A heat recovery system in a waste treatment plant, comprising a economizer for obtaining hot water to be supplied.
【請求項2】 前記集塵器はセラミックス製濾布又は金
属繊維から成るバグフィルタで構成されていることを特
徴とする請求項1に記載のごみ処理プラントにおける熱
回収システム。
2. The heat recovery system in a waste treatment plant according to claim 1, wherein the dust collector is composed of a ceramic filter cloth or a bag filter made of metal fiber.
【請求項3】 前記過熱器で得られた過熱蒸気は蒸気タ
ービン発電機で電気エネルギーに変換されることを特徴
とする請求項1に記載のごみ処理プラントにおける熱回
収システム。
3. The heat recovery system in a waste treatment plant according to claim 1, wherein the superheated steam obtained by the superheater is converted into electric energy by a steam turbine generator.
JP25163194A 1994-09-21 1994-09-21 Heat recovery system in waste treatment plant Expired - Fee Related JP3514838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25163194A JP3514838B2 (en) 1994-09-21 1994-09-21 Heat recovery system in waste treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25163194A JP3514838B2 (en) 1994-09-21 1994-09-21 Heat recovery system in waste treatment plant

Publications (2)

Publication Number Publication Date
JPH0894002A true JPH0894002A (en) 1996-04-12
JP3514838B2 JP3514838B2 (en) 2004-03-31

Family

ID=17225701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25163194A Expired - Fee Related JP3514838B2 (en) 1994-09-21 1994-09-21 Heat recovery system in waste treatment plant

Country Status (1)

Country Link
JP (1) JP3514838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266604A (en) * 2005-03-24 2006-10-05 Takuma Co Ltd Pyrolyzing treatment facility and pyrolyzing treatment method
JP2016090129A (en) * 2014-11-04 2016-05-23 三菱重工環境・化学エンジニアリング株式会社 Incineration plant and waste heat recovery method
JP2017194225A (en) * 2016-04-21 2017-10-26 株式会社神鋼環境ソリューション Waste treatment facility and waste treatment method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498807B (en) * 2020-04-14 2024-04-16 四川建筑职业技术学院 HCl synthesis furnace for producing steam, production system and production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266604A (en) * 2005-03-24 2006-10-05 Takuma Co Ltd Pyrolyzing treatment facility and pyrolyzing treatment method
JP2016090129A (en) * 2014-11-04 2016-05-23 三菱重工環境・化学エンジニアリング株式会社 Incineration plant and waste heat recovery method
JP2017194225A (en) * 2016-04-21 2017-10-26 株式会社神鋼環境ソリューション Waste treatment facility and waste treatment method using the same

Also Published As

Publication number Publication date
JP3514838B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
EP0767343A2 (en) Heat recovery system and power generation system
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JP6579481B2 (en) Incineration ash treatment equipment, waste incineration equipment, incineration ash treatment method and waste incineration method
JP3514838B2 (en) Heat recovery system in waste treatment plant
JPH10227431A (en) Refuse incinerator
JP4295653B2 (en) High temperature exhaust gas treatment method and cooling device used in high temperature exhaust gas treatment process
JP4332768B2 (en) Waste combustion equipment
JP3797781B2 (en) Waste treatment equipment
RU91409U1 (en) INSTALLATION FOR THERMAL PROCESSING OF SOLID DOMESTIC WASTE
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP5279062B2 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JPH0533916A (en) Treatment of waste by means of rotary kiln and rotary kiln therefor
JP3778622B2 (en) Waste incineration equipment
JPH0523539A (en) Removal of trace amount of organochlorine compound
JP3496495B2 (en) Thermal recycling method and apparatus for combustible waste
JPH10103640A (en) Waste thermal decomposition disposal facility
JP2002080865A (en) Waste treatment system
JP3414994B2 (en) Waste heat recovery equipment
JP3306849B2 (en) Waste incineration method
JPH109542A (en) Method for incinerating waste
JP2010091133A (en) Waste treatment facility and method of utilizing recovered heat in waste treatment facility
JP3120746U (en) Waste treatment facility
JP2001116233A (en) Waste-treating device
JPH08141364A (en) Method and device for purifying exhaust combustion gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Effective date: 20040114

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees