JP4377292B2 - Waste treatment apparatus and exhaust gas treatment method - Google Patents

Waste treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
JP4377292B2
JP4377292B2 JP2004192736A JP2004192736A JP4377292B2 JP 4377292 B2 JP4377292 B2 JP 4377292B2 JP 2004192736 A JP2004192736 A JP 2004192736A JP 2004192736 A JP2004192736 A JP 2004192736A JP 4377292 B2 JP4377292 B2 JP 4377292B2
Authority
JP
Japan
Prior art keywords
exhaust gas
waste
dust
incinerator
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004192736A
Other languages
Japanese (ja)
Other versions
JP2006015179A (en
Inventor
輝彰 塚本
誉司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004192736A priority Critical patent/JP4377292B2/en
Publication of JP2006015179A publication Critical patent/JP2006015179A/en
Application granted granted Critical
Publication of JP4377292B2 publication Critical patent/JP4377292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Description

本発明は、焼却炉又はガス化炉又は熱分解炉から排出される排ガスである燃焼ガス、ガス化ガス、熱分解ガスから熱を回収し、排ガス中のダストを集塵除去し、有害ガス成分を除去する廃棄物処理装置、及び排ガス処理方法に関するものである。 The present invention recovers heat from combustion gas, gasification gas, or pyrolysis gas that is exhaust gas discharged from an incinerator, gasification furnace, or pyrolysis furnace, and collects dust from the exhaust gas to remove harmful gas components. The present invention relates to a waste treatment apparatus and an exhaust gas treatment method.

都市ごみや産業廃棄物等の廃棄物の燃焼処理、ガス化処理、熱分解処理を行うプラントは、焼却炉、ガス化炉、熱分解炉、ボイラ等の排熱回収装置、及び排ガス処理装置等で構成されている。通常焼却炉から排出された排ガスは排熱ボイラにて熱回収され、冷却された後、集塵装置や排ガス洗浄装置等を経て、ダスト除去、無害化され、煙突により大気中に排出される。従来、このような焼却処理プラントでは、焼却炉とボイラは一体構造となっているが、集塵装置等の排ガス処理装置は独立した装置として構成されている。また、集塵装置にて除去された飛灰は単独で溶融、脱塩素化、固形化等の処理工程を経て、特別廃棄物として系外に搬出される。   Plants that perform combustion treatment, gasification treatment, and pyrolysis treatment of waste such as municipal waste and industrial waste include incinerators, gasification furnaces, pyrolysis furnaces, exhaust heat recovery equipment such as boilers, and exhaust gas treatment equipment It consists of Normally, exhaust gas discharged from an incinerator is recovered by heat in a heat exhaust boiler, cooled, then dust removed and detoxified through a dust collector, exhaust gas cleaning device, etc., and discharged into the atmosphere by a chimney. Conventionally, in such an incineration processing plant, an incinerator and a boiler have an integral structure, but an exhaust gas processing device such as a dust collector is configured as an independent device. Further, the fly ash removed by the dust collector is carried out of the system as special waste through processing steps such as melting, dechlorination and solidification alone.

図1は、従来のこの種の焼却処理プラントのフローを示す図である。図示するように、焼却炉101から排出された排ガスはボイラ102、過熱器103を経て熱回収され冷却される。その後、脱塩剤104を添加し、バグフィルタ105を通って排ガス中のダストが集塵除去され、更に触媒反応塔(SCR)106を経て有害ガスが除去され、煙突107から大気中に排出する。
特開2001−116233号公報
FIG. 1 is a diagram showing a flow of this type of conventional incineration processing plant. As shown in the figure, the exhaust gas discharged from the incinerator 101 is heat recovered and cooled through a boiler 102 and a superheater 103. Thereafter, a desalting agent 104 is added, dust in the exhaust gas is collected and removed through the bag filter 105, further harmful gas is removed through the catalytic reaction tower (SCR) 106, and discharged from the chimney 107 to the atmosphere. .
JP 2001-116233 A

(1)廃棄物を燃焼、ガス化、熱分解処理する処理プラントでは、炉内にて発生して排出される排ガス中にダイオキシン類、塩化水素、硫黄酸化物等の酸性ガスが含まれている。通常、高温燃焼化で燃焼炉内で発生するダイオキシン類は酸化分解され極力少ない状況で排出されるが、その後段に設置しているボイラ等の排熱回収装置内でダイオキシン類の再合成温度領域である300℃〜600℃付近を排ガスが通過する際に、ダイオキシン類の再合成で増加する現象が見られる。再合成の要因としては、その温度領域、ダスト中の重金属、塩化水素の存在等が挙げられる。本発明は、600℃〜1200℃の範囲でダストを除去し、再合成温度領域でのダストをなくすことでダイオキシン類の再合成を抑制することができる廃棄物処理装置、及び排ガス処理方法を提供することを目的とする。 (1) In a treatment plant that burns, gasifies, and thermally decomposes waste, the exhaust gas generated and discharged in the furnace contains acid gases such as dioxins, hydrogen chloride, and sulfur oxides. . Normally, dioxins generated in a combustion furnace due to high-temperature combustion are oxidatively decomposed and discharged in as little as possible conditions, but the recombination temperature range of dioxins in the exhaust heat recovery device such as a boiler installed in the subsequent stage When exhaust gas passes through the vicinity of 300 ° C. to 600 ° C., a phenomenon that increases due to resynthesis of dioxins is observed. Factors for resynthesis include the temperature range, heavy metals in dust, the presence of hydrogen chloride, and the like. The present invention, 600 ° C. to 1200 to remove the dust in the range of ° C., re-synthesis temperature region to eliminate dust in the dioxins waste processing apparatus that can be suppressed recombining, and exhaust gas treatment method The purpose is to provide.

(2)通常の処理工程では、飛灰中にダイオキシン類が多く含まれている。飛灰は特別管理廃棄物として、溶融、脱塩素、固形化等の処理を施すとともに、濃度規制が3ng/g−TEQ以下と定められている。本発明の他の目的は、ボイラ等の熱回収装置内部の高温領域で除塵することで、特別な処理が必要な飛灰を少なくし、ダイオキシン類総量の低減化と飛灰処理装置の削減により装置のコンパクト化を図ることができる廃棄物処理装置、及び排ガス処理方法を提供することにある。 (2) In normal processing steps, a large amount of dioxins is contained in the fly ash. Fly ash is treated as a special management waste such as melting, dechlorination, solidification, and the concentration regulation is set to 3 ng / g-TEQ or less. Another object of the present invention is to reduce the amount of fly ash that requires special treatment by removing dust in a high-temperature region inside a heat recovery device such as a boiler, thereby reducing the total amount of dioxins and reducing the amount of fly ash treatment equipment. waste processing apparatus that can be made compact device, and to provide an exhaust gas treatment method.

(3)本発明の他の目的は、飛灰中のダイオキシン類の除去及び飛灰発生量の低減を行なうことができ、施設からのダイオキシン類の発生量を低減できる廃棄物処理装置、及び排ガス処理方法を提供することにある。 (3) Another object of the present invention can be performed to reduce the removal and fly ash generation of dioxins in fly ash, reduction can Ru waste processing apparatus occurrence of dioxins from property, And providing an exhaust gas treatment method.

(4)ボイラ等の排熱回収装置は高効率化を観点に高温高圧化が進んでいる。しかし、排ガス温度、排ガスの性状、排ガス中のダストの状況から材質の腐蝕等の問題がある。本発明の他の目的は、高温側で除塵を行なうことで、後段の熱回収部(過熱器等)のスートブロワを無くすることによる管の減肉抑制、排ガス中のダスト低減することによる等の腐食抑制である。減肉抑制及び腐蝕抑制により過熱器部の材質の選定には優位となるとともに、ボイラ等の熱回収装置を高温高圧化させうるため更に熱の有効利用が可能な廃棄物処理装置及び排ガス処理方法を提供することにある。 (4) Exhaust heat recovery devices such as boilers are being increased in temperature and pressure from the viewpoint of higher efficiency. However, there are problems such as corrosion of the material due to the exhaust gas temperature, the properties of the exhaust gas, and the state of dust in the exhaust gas. Another object of the present invention is to reduce the thickness of the pipe by eliminating the soot blower in the subsequent heat recovery section (superheater, etc.) by removing the dust on the high temperature side, reducing the dust in the exhaust gas, etc. Corrosion suppression. With the advantage in selecting the material of the superheater unit by thinning inhibition and corrosion inhibition, waste that can be effectively used further heat for may heat recovery apparatus such as a boiler is high temperature and high pressure of wastes processing apparatus and exhaust gas treatment It is to provide a method.

(5)本発明の他の目的は、ボイラ等の熱回収装置に集塵機能を持たせ、従来の集塵装置の本体放熱量の低減及び省スペース化を図ることができる廃棄物処理装置、及び排ガス処理方法を提供することにある。 (5) Another object of the present invention, imparted dust collector ability to heat recovery apparatus such as a boiler, a conventional dust-catcher of the body heat radiation amount of reduction and waste processing apparatus that can be space saving And providing an exhaust gas treatment method.

上記課題を解決するため本発明は、廃棄物を処理する焼却炉又はガス化炉又は熱分解炉と、該焼却炉又はガス化炉又は熱分解炉から排出される排ガスを処理する排ガス処理装置と、を備えた廃棄物処理装置において、排ガス処理装置は、ケーシングが輻射伝熱面で形成された廃熱回収装置と、該廃熱回収装置の内部に配置された集塵部と、を備え、焼却炉又はガス化炉又は熱分解炉から排出される排ガスを廃熱回収装置へ導き、集塵部で排ガス中のダストを集塵除去し、ケーシングの輻射伝熱面から該排ガスの熱を回収することを特徴とする。 In order to solve the above problems, the present invention provides an incinerator, a gasification furnace, or a pyrolysis furnace for treating waste, and an exhaust gas treatment apparatus for treating exhaust gas discharged from the incinerator, the gasification furnace, or the pyrolysis furnace, The waste gas treatment device comprises a waste heat recovery device in which a casing is formed with a radiant heat transfer surface, and a dust collecting part disposed inside the waste heat recovery device, The exhaust gas discharged from the incinerator, gasification furnace, or pyrolysis furnace is guided to the waste heat recovery device, and dust in the exhaust gas is collected and removed at the dust collector, and the heat of the exhaust gas is recovered from the radiation heat transfer surface of the casing. characterized in that it.

また、本発明は、上記廃棄物処理装置において、焼却炉又はガス化炉又は熱分解炉と廃熱回収装置の間に、排ガス中の塩化水素、硫黄酸化物と反応させて反応生成物を生成させる脱塩剤を注入する脱塩剤注入装置を更に備えたことを特徴とする。 Further, the present invention provides the above waste treatment apparatus, wherein a reaction product is produced by reacting with hydrogen chloride or sulfur oxide in the exhaust gas between the incinerator, the gasification furnace or the thermal decomposition furnace and the waste heat recovery apparatus. And a desalting agent injection device for injecting a desalting agent to be injected .

また、本発明は、上記廃棄物処理装置において、集塵部は、廃熱回収装置内の600℃〜1200℃の高温領域に配置された耐熱性を有するセラミックフィルタで構成されたことを特徴とする。 Further, in the above waste treatment apparatus, dust collection section, and characterized in that it is constituted by a ceramic filter having arranged heat resistance high temperature region of 600 ° C. to 1200 ° C. in the waste heat recovery device To do.

また、本発明は、上記廃棄物処理装置において、セラミックフィルタには、ダイオキシン類の酸化分解機能を有する触媒成分を担持させたことを特徴とする。 Further, in the above waste treatment apparatus, the Se la Mick filter, characterized in that by supporting a catalyst component having the oxidative decomposition function of dioxins.

また、本発明は、上記廃棄物処理装置において、排ガス処理装置の集塵部における除塵により得られたダストを、焼却炉又はガス化炉又は熱分解炉に供給する供給手段を備えたこと特徴とする。 Further, in the above waste treatment apparatus, characterized in that the dust obtained by dust in the dust collecting portion of the exhaust gas treatment apparatus, comprising a supply means for supplying to the incinerator or gasifier or thermal decomposition furnace And

また、本発明は、廃棄物を処理する焼却炉又はガス化炉又は熱分解炉から排出される排ガスを処理する排ガス処理方法において、焼却炉又はガス化炉又は熱分解炉から排出された排ガスをケーシングが輻射伝熱面で形成され、且つ内部に集塵部を設けた廃熱回収装置に導き、該集塵部で排ガス中に含まれるダストを集塵除去すると共に、ケーシングの輻射伝熱面から該排ガスの熱を回収することを特徴とする。 The present invention also relates to an exhaust gas treatment method for treating exhaust gas discharged from an incinerator, gasification furnace or pyrolysis furnace for treating waste, and exhaust gas discharged from the incinerator, gasification furnace or pyrolysis furnace. casing is formed by radiation heat transfer surface and guided to the waste heat recovery device provided with a dust collection unit therein, while the dust collecting removed dust contained in the exhaust gas in the dust collecting unit, the casing of the radiation heat transfer The heat of the exhaust gas is recovered from the surface .

また、本発明は、上記排ガス処理方法において、集塵部は、廃熱回収装置の600℃〜1200℃の高温領域に配置された耐熱性を有するセラミックフィルタであり、該セラミックフィルタによりダストを集塵除去することを特徴とする。 Further, the present invention is the above exhaust gas treatment method, wherein the dust collecting part is a ceramic filter having heat resistance disposed in a high temperature region of 600 to 1200 ° C. of the waste heat recovery device , and dust is collected by the ceramic filter. It is characterized by removing dust.

また、本発明は、上記排ガス処理方法において、セラミックフィルタに担持させた触媒成分により、ダイオキシン類の酸化分解を行うことを特徴とする。 Further, in the above exhaust gas treatment method, the catalyst component is supported on cell La Mick filter, and performs oxidative decomposition of dioxins.

また、本発明は、上記排ガス処理方法において、焼却炉又はガス化炉又は熱分解炉から排出される排ガス中に脱塩剤を混入させて該排ガス中の塩化水素、硫黄酸化物と反応させて反応生成物を得て、該反応生成物を廃熱回装置内の集塵部でダストと共に除去することを特徴とする。 Further, in the above exhaust gas processing method, in the exhaust gas discharged from the incinerator or gasifier or thermal decomposition furnace is mixed desalting agent hydrogen chloride in the exhaust gas is reacted with sulfur oxides to obtain a reaction product Te, and removing with dust in the dust collecting unit in the waste heat winding device the reaction product.

本発明によれば、廃熱回収装置内に排ガス中のダストを集塵除去する集塵部を設け、該集塵部のケーシングを廃熱回収部としたので、従来排熱回収装置の外に別途必要であった集塵機を設けることがなく、装置のコンパク化が可能となる。また、廃熱回収装置内のダイオキシン類の再合成温度より高温領域に集塵部を設け、ガス中の飛灰を除去することにより、ダイオキシン類の低減及びその後のガス冷却プロセスでのダイオキシン類の再合成を抑制できる。 According to the present invention , the dust collection unit for collecting and removing dust in the exhaust gas is provided in the waste heat recovery device, and the casing of the dust collection unit is the waste heat recovery unit. without providing the dust collector was required separately, it is possible to compact of the apparatus. In addition, a dust collection part is provided in a region higher than the resynthesis temperature of dioxins in the waste heat recovery system, and by removing fly ash in the gas, dioxins are reduced in the gas cooling process after that. Resynthesizing can be suppressed.

また、本発明によれば、廃熱回収装置内に有害ガス除去部を設け、該集塵部と有害ガス除去部を一体化させるので、装置の更なるコンパク化が可能となる。また、ダストや生成物の処理が容易となる。また、集塵部で除去したダストや生成物を燃焼炉又はガス化炉又は熱分解炉内に戻すので、ダスト中の飛灰の未燃分、ダイオキシン類は完全燃焼し、燃焼灰として排出するから、装置の飛灰発生を無くし、飛灰の単独処理装置を必要としない。 Further, according to the present invention, provided the harmful gas removal unit in the waste heat recovery apparatus, since the integrated harmful gas removing unit and the dust collecting section, it is possible to further compact of the apparatus. Also, dust and products can be easily processed. In addition, the dust and products removed in the dust collection unit are returned to the combustion furnace, gasification furnace, or pyrolysis furnace, so the unburned fly ash and dioxins in the dust are completely burned and discharged as combustion ash. Therefore, the generation of fly ash in the device is eliminated, and a single fly ash treatment device is not required.

また、本発明によれば、集塵部は、廃熱回収装置内の600℃〜1200℃の高温領域に配置された耐熱性を有するセラミックフィルタで構成されたので、ダイオキシン類の再合成温度領域である300℃〜600℃より高温である600℃〜1200℃の温度領域にセラミックフィルタを配設して飛灰等のダストを集塵除去することにより、ダイオキシン類の低減及びその後のガス冷却プロセスでのダイオキシン類の再合成を抑制できる。 Further , according to the present invention , the dust collecting part is composed of a heat-resistant ceramic filter disposed in a high temperature region of 600 ° C. to 1200 ° C. in the waste heat recovery device, so that the recombination temperature region of dioxins Dioxins are reduced and the subsequent gas cooling process is performed by disposing a ceramic filter in a temperature range of 600 ° C. to 1200 ° C., which is higher than 300 ° C. to 600 ° C., and collecting dust such as fly ash. Recombination of dioxins at the plant can be suppressed.

また、本発明によれば、セラミックフィルタには、ダイオキシン類の酸化分解機能を有する触媒成分を担持させたので、セラミックフィルタでダイオキシン類の有害成分も酸化分解させて無害化することができる。また、セラミックフィルタで脱塩することで、塩化水素(HCl)、硫黄酸化物(SOx)が減少するため、後段に触媒反応塔を設置した場合の被毒や目詰まりの問題も解決できる。 Further , according to the present invention , since the ceramic filter carries the catalyst component having the function of oxidative decomposition of dioxins, the harmful components of the dioxins can be oxidatively decomposed and rendered harmless by the ceramic filter. Further, by desalting with a ceramic filter, hydrogen chloride (HCl) and sulfur oxide (SOx) are reduced, so that the problem of poisoning and clogging when a catalytic reaction tower is installed in the subsequent stage can be solved.

また、本発明によれば、廃熱回収装置の集塵部は、排ガス中のダストを集塵除去した後に熱回収を行なう機能を備えたので、ダイオキシン類の再合成を抑制しながら更に後段の熱回収部(過熱器)のストープロワを無くすることによる管の減肉抑制、腐食抑制を行なうことができるから、耐摩耗性、耐食性に優れた材質にする必要がなく過熱器の材質選定が容易となる。 In addition, according to the present invention , the dust collection unit of the waste heat recovery device has a function of collecting heat after collecting and removing dust in the exhaust gas, and thus further reducing the resynthesis of dioxins. Since it is possible to suppress pipe thinning and corrosion by eliminating the stop heater in the heat recovery section (superheater), it is not necessary to select a material with excellent wear resistance and corrosion resistance, and it is easy to select the superheater material. It becomes.

また、本発明によれば、排ガス処理装置は、内部に排ガス中のダストを集塵除去する集塵部と、該排ガスより熱を回収する集塵部のケーシングを有する廃熱回収装置を備えたので、上記効果を有する廃棄物処理装置を提供できる。 Moreover, according to the present invention , the exhaust gas treatment device includes a waste heat recovery device having a dust collection unit that collects and removes dust in the exhaust gas and a casing of the dust collection unit that recovers heat from the exhaust gas. Therefore, it is possible to provide a waste treatment apparatus having the above effects.

また、本発明によれば、焼却炉又はガス化炉又は熱分解炉から排出される排気ガス中に脱塩剤を混入させる脱塩剤注入装置を備えたので、炉から排出される排ガス中に脱塩剤を混入させ、塩化水素、硫黄酸化物と反応させ、反応生成物を集塵部で集塵除去する廃棄物処理装置を提供できる。 In addition, according to the present invention , since the desalting agent injection device for mixing the desalting agent into the exhaust gas discharged from the incinerator, gasification furnace or pyrolysis furnace is provided, the exhaust gas discharged from the furnace It is possible to provide a waste treatment apparatus in which a desalting agent is mixed, reacted with hydrogen chloride and sulfur oxide, and the reaction product is collected and removed by the dust collection unit.

また、本発明によれば、排ガス処理装置の集塵部における除塵により得られたダストを、焼却炉又はガス化炉又は熱分解炉に供給する供給手段を備えたので、ダスト中に含まれる飛灰やダイオキシン類は、燃焼、熱分解され、焼却灰として系外に搬出することが可能となる。 In addition, according to the present invention , since the dust obtained by the dust removal in the dust collecting unit of the exhaust gas treatment apparatus is provided with the supply means for supplying the dust to the incinerator, the gasification furnace, or the pyrolysis furnace, Ashes and dioxins are combusted and pyrolyzed, and can be carried out of the system as incinerated ash.

また、本発明によれば、廃熱回収装置内で排ガスより熱を回収すると共に、排ガス中に含まれるダストを集塵除去し、更に排ガス中の有害ガス成分を除去するので、排熱回収装置内のダイオキシン類の再合成温度より高温にある領域の排ガス中の飛灰を除去することにより、ダイオキシン類が再合成しない条件で飛灰を除去できるから、ダイオキシン類の発生量の低減及びその後のガス冷却プロセスでのダイオキシン類の再合成を抑制できる。 In addition, according to the present invention , heat is recovered from the exhaust gas in the waste heat recovery device, dust contained in the exhaust gas is collected and harmful gas components in the exhaust gas are further removed, so that the exhaust heat recovery device By removing fly ash in the exhaust gas in the region higher than the re-synthesis temperature of dioxins, the fly ash can be removed without dioxins being re-synthesized. The resynthesis of dioxins in the gas cooling process can be suppressed.

また、本発明によれば、廃熱回収装置内に設けられ、且つ600℃〜1200℃の高温領域に配置された耐熱性を有するセラミックフィルタによりダストを集塵除去するので、ダイオキシン類が再合成しない条件でのダスト除去によりダスト由来のダイオキシン類発生量の低減及びその後のガス冷却プロセスでのダイオキシン類の再合成を抑制できる。 In addition, according to the present invention , dust is collected and removed by the heat-resistant ceramic filter provided in the waste heat recovery apparatus and disposed in a high temperature region of 600 ° C. to 1200 ° C., so that dioxins are re-synthesized. By removing the dust under the conditions that do not, the reduction in the amount of dioxins derived from dust and the resynthesis of dioxins in the subsequent gas cooling process can be suppressed.

また、本発明によれば、セラミックフィルタに担持させた触媒成分により、ダイオキシン類の酸化分解を行うので、セラミックフィルタでダイオキシン類の有害成分も酸化分解させて無害化することができる。また、セラミックフィルタで脱塩することで、塩化水素(HCl)、硫黄酸化物(SOx)が減少するため、後段に触媒反応塔を設置した場合の被毒や目詰まりの問題も解決できる。 Further , according to the present invention , since the dioxins are oxidatively decomposed by the catalyst component carried on the ceramic filter, the harmful components of the dioxins can be oxidatively decomposed and rendered harmless by the ceramic filter. Further, by desalting with a ceramic filter, hydrogen chloride (HCl) and sulfur oxide (SOx) are reduced, so that the problem of poisoning and clogging when a catalytic reaction tower is installed in the subsequent stage can be solved.

また、本発明によれば、焼却炉又はガス化炉又は熱分解炉から排出される排ガス中に脱塩剤を混入させてガス中の酸性成分と該脱塩剤との反応生成物を得て、該反応生成物を廃熱回収装置内でダストと共に除去するので、比較的容易に塩化水素、硫黄酸化物の除去が可能となる。 In addition, according to the present invention , a desalting agent is mixed in exhaust gas discharged from an incinerator, a gasification furnace, or a pyrolysis furnace to obtain a reaction product of an acidic component in the gas and the desalting agent. since the reaction product is removed together with the waste heat recovery device Deda strike relatively easily hydrogen chloride, it is possible to remove sulfur oxides.

図2は本発明に係るガス処理装置及び排ガス処理方法を適用するストーカ式ごみ焼却炉の概略構成例を示す図である。図2において、1はストーカ式の焼却炉、2は廃熱ボイラ、3はごみピット、4はホッパ、5はごみクレーン、6はホッパ4の下部からごみを焼却炉1に供給する給塵装置である。ここで、ごみピット3に集められたごみはごみピット3よりホッパ4にごみクレーン5により移送される。燃焼炉1は図2の左側から、ごみを乾燥させる乾燥帯1a、ごみを燃焼させる燃焼帯1b、燃焼帯1c、後燃焼帯1dの分割構造を有し、それぞれに設けられたストーカ7a、7b、7c、7dによって焼却炉1内でごみを移送すると共に、それぞれの下部に接続された空気導入路9a、9b、9c、9dに設けられた空気調整ダンパ8a、8b、8c、8dを介して空気が供給される。   FIG. 2 is a diagram showing a schematic configuration example of a stoker-type waste incinerator to which the gas treatment apparatus and the exhaust gas treatment method according to the present invention are applied. In FIG. 2, 1 is a stoker-type incinerator, 2 is a waste heat boiler, 3 is a waste pit, 4 is a hopper, 5 is a waste crane, and 6 is a dust supply device that supplies waste from the lower part of the hopper 4 to the incinerator 1. It is. Here, the garbage collected in the garbage pit 3 is transferred from the garbage pit 3 to the hopper 4 by the garbage crane 5. The combustion furnace 1 has a divided structure of a drying zone 1a for drying waste, a combustion zone 1b for burning waste, a combustion zone 1c, and a post-combustion zone 1d from the left side of FIG. 2, and stokers 7a and 7b provided respectively. , 7c, 7d to transfer waste in the incinerator 1, and through air adjustment dampers 8a, 8b, 8c, 8d provided in the air introduction passages 9a, 9b, 9c, 9d connected to the respective lower portions Air is supplied.

また、焼却炉1の出口1eには排ガス中の可燃分を完全燃焼させるため更に二次空気押込送風機20から空気導入路19を通して二次空気の供給を行っている。ごみの焼却後に残る灰10a〜10fは図示しない灰押出装置に集められ、系外に排出され、次の処理工程へ供給される。図示しないが、ごみ焼却プラント設備は焼却によって生じる排ガス中の煤塵を除去する集塵機や有害ガスを分解する触媒反応塔等も備えている。(不図示)また、焼却炉1の上部に廃熱ボイラ2が設置されており、ごみ焼却処理した熱を利用して蒸気100を発生している。図示しないが、この蒸気100は蒸気式タービンでの発電利用や場内熱利用に利用される。   In addition, secondary air is supplied from the secondary air blower 20 through the air introduction path 19 to the outlet 1e of the incinerator 1 to completely burn combustible components in the exhaust gas. Ashes 10a to 10f remaining after incineration of garbage are collected in an ash extrusion device (not shown), discharged outside the system, and supplied to the next processing step. Although not shown, the waste incineration plant equipment also includes a dust collector that removes soot in the exhaust gas generated by incineration, a catalytic reaction tower that decomposes harmful gases, and the like. (Not shown) Moreover, the waste heat boiler 2 is installed in the upper part of the incinerator 1, and the vapor | steam 100 is generated using the heat | fever which carried out the waste incineration process. Although not shown, this steam 100 is used for power generation use in the steam turbine and in-site heat use.

上記ごみ焼却プラント設備は、更に焼却炉1の出口1eに排ガス温度を測定する温度センサ11、ボイラ出口の蒸気量を測定する蒸気量センサ12、炉出口1eにおける排ガス中の酸素濃度を測定する酸素濃度センサ13、焼却炉1内のごみの燃焼状況を監視して燃焼完結点を監視する工業用テレビカメラ14と画像処理装置を備えている。また、図示は省略するが、必要な位置に温度センサ、圧力センサ、流量センサ等を設けている。   The waste incineration plant equipment further includes a temperature sensor 11 for measuring the exhaust gas temperature at the outlet 1e of the incinerator 1, a steam amount sensor 12 for measuring the steam amount at the boiler outlet, and an oxygen for measuring the oxygen concentration in the exhaust gas at the furnace outlet 1e. A concentration sensor 13, an industrial television camera 14 that monitors the combustion state of the dust in the incinerator 1 and monitors a combustion completion point, and an image processing device are provided. Although not shown, a temperature sensor, a pressure sensor, a flow sensor, and the like are provided at necessary positions.

そしてこれらのセンサからの信号に基いて、給塵装置6から焼却炉1内へのごみ供給量、焼却炉1内の乾燥帯1a、燃焼帯1b、燃焼帯1c、後燃焼帯1dへの空気供給量、ストーカ7a、7b、7c、7dによるごみの移動速度等がPID若しくは演算制御される。更に、クレーン5には一掴みのごみの重量を測定する重量センサ15が設けられ、一掴みのごみの重量とホッパ4内へ投入した際のレベル変化をセンサ(図示せず)で測定し、体積増加量から投入ごみ密度ρを演算し、その密度に応じてごみ供給量を給塵装置6にて調整する。なお、図1において、16はバーナ、17は空気導入路9を通して空気を押し込む押込送風機である。また、21はプラットホームであり、該プラットホーム21からごみ収集車22で収集されたごみがごみピット3内に投入される。   Based on the signals from these sensors, the amount of dust supplied from the dust supply device 6 into the incinerator 1, the air to the drying zone 1 a, the combustion zone 1 b, the combustion zone 1 c, and the post-combustion zone 1 d in the incinerator 1. The supply amount, the movement speed of the garbage by the stokers 7a, 7b, 7c, 7d, etc. are PID or arithmetically controlled. Further, the crane 5 is provided with a weight sensor 15 for measuring the weight of a handful of garbage. The weight of the handful of garbage and a level change when it is put into the hopper 4 are measured by a sensor (not shown), The input dust density ρ is calculated from the volume increase amount, and the dust supply amount is adjusted by the dust supply device 6 according to the density. In FIG. 1, 16 is a burner, and 17 is a forced air blower that pushes air through the air introduction path 9. Further, reference numeral 21 denotes a platform, and the garbage collected from the platform 21 by the garbage truck 22 is put into the garbage pit 3.

図3は本発明に係るガス処理装置を上記ストーカ式の焼却炉に使用した廃棄物焼却処理装置の構成を示す図である。図示するように、廃棄物焼却処理装置はストーカ式の焼却炉1の出口1eに本発明に係るガス処理装置30を接続している。ガス処理装置30は第1ボイラ31、第2ボイラ32、及び過熱器(対流伝熱部)33を具備し、焼却炉1の出口1eから排出された排ガスGは、第1ボイラ31、第2ボイラ32、及び過熱器を通って、ボイラ出口34から排出され、触媒反応塔(SCR)40、エコノマイザ41、誘引送風機42を煙突43から大気中に放出させる。また給水105はエコノマイザ41で加熱され、(熱回収され)ボイラに供給される。   FIG. 3 is a view showing a configuration of a waste incineration processing apparatus in which the gas processing apparatus according to the present invention is used in the above stoker type incinerator. As shown in the figure, the waste incineration processing apparatus has a gas processing apparatus 30 according to the present invention connected to an outlet 1e of a stoker type incinerator 1. The gas treatment device 30 includes a first boiler 31, a second boiler 32, and a superheater (convection heat transfer unit) 33, and the exhaust gas G discharged from the outlet 1 e of the incinerator 1 is the first boiler 31, the second boiler 32, and the like. It passes through the boiler 32 and the superheater and is discharged from the boiler outlet 34, and the catalytic reaction tower (SCR) 40, the economizer 41, and the induction blower 42 are discharged from the chimney 43 to the atmosphere. The water supply 105 is heated by the economizer 41 (heat recovered) and supplied to the boiler.

ストーカ式の焼却炉1のストーカ7a、7b、7c、7d上で完全燃焼し、燃焼後の焼却灰10fは炉下に排出される。本ガス処理装置30は、第2ボイラ32内にはセラミックフィルタ35が組み込まれている。第1ボイラ31及び第2ボイラ32は輻射伝熱面で形成されており、排ガスGはこの中を通過することで熱吸収される。セラミックフィルタ35は第2ボイラ32内に組み込まれているが、ボイラ構造体の規模によっては、ボイラの外部の架台に吊り下げた状態で設置されている。温度領域は第1ボイラ31で約1200℃〜750℃程度に降下し、第2ボイラ32では750℃〜600℃程度に降下するように設計する。また、セラミックフィルタ35による集塵部のケーシングはボイラ伝熱管にて構成され、排熱はここでも吸収される。   Complete combustion is performed on the stokers 7a, 7b, 7c, and 7d of the stoker-type incinerator 1, and the incinerated ash 10f after combustion is discharged to the bottom of the furnace. In the gas processing apparatus 30, a ceramic filter 35 is incorporated in the second boiler 32. The first boiler 31 and the second boiler 32 are formed by radiation heat transfer surfaces, and the exhaust gas G is absorbed by passing through it. The ceramic filter 35 is incorporated in the second boiler 32, but depending on the scale of the boiler structure, the ceramic filter 35 is installed in a state of being suspended from a frame outside the boiler. The temperature range is designed to drop to about 1200 ° C. to 750 ° C. at the first boiler 31 and to about 750 ° C. to 600 ° C. for the second boiler 32. Moreover, the casing of the dust collection part by the ceramic filter 35 is comprised with a boiler heat exchanger tube, and waste heat is absorbed also here.

セラミックフィルタ35を通過した排ガスは同じボイラ内の過熱器(対流伝熱部)33にて熱回収され、ボイラ発生蒸気量として蒸気タービン等の熱利用装置へ送られる。ここでは、排ガス中の飛灰を除去した後のため、従来は不可欠であったスートブローは設置しない。また、過熱器33の伝熱管に設置しているプロテクタ等の減肉防止装置も割愛することが可能である。第2ボイラ32に組み込まれたセラミックフィルタ35の表面に付着する飛灰は、第2ボイラ32の入口と出口の差圧で検知し、該差圧が所定以上に上昇した場合、セラミックフィルタ35の内部に空気噴射ノズル36を介して高温空気101をパルス噴射することで、この付着している飛灰102を払い落とし、第2ボイラ32の下部シュート37から焼却炉1に戻す。   The exhaust gas that has passed through the ceramic filter 35 is recovered by a superheater (convection heat transfer unit) 33 in the same boiler and sent to a heat utilization device such as a steam turbine as the amount of steam generated in the boiler. Here, since the fly ash in the exhaust gas is removed, the soot blow that has been indispensable in the past is not installed. Further, it is possible to omit a thickness reduction prevention device such as a protector installed in the heat transfer tube of the superheater 33. Fly ash adhering to the surface of the ceramic filter 35 incorporated in the second boiler 32 is detected by the differential pressure between the inlet and outlet of the second boiler 32, and when the differential pressure rises above a predetermined level, The high-temperature air 101 is pulse-injected into the interior through the air injection nozzle 36, so that the adhering fly ash 102 is removed and returned to the incinerator 1 from the lower chute 37 of the second boiler 32.

セラミックフィルタ35の表面温度は常に550℃以上を維持できるようにパルス用の高温空気101の温度を設定する。焼却炉1内に戻された飛灰102は焼却炉1の後燃焼帯1dに滞留させることで、未燃分の完全燃焼及びダイオキシン類の分解を行ない燃焼灰10fと伴に炉下に排出される。ダスト成分及びダスト粒径によっては、脱塵助剤としてけい藻土等の利用も考慮して炉内噴霧も可能となる。   The temperature of the high temperature air 101 for pulses is set so that the surface temperature of the ceramic filter 35 can always be maintained at 550 ° C. or higher. The fly ash 102 returned to the incinerator 1 is retained in the post-combustion zone 1d of the incinerator 1 so that the unburned portion is completely burned and the dioxins are decomposed and discharged together with the combustion ash 10f. The Depending on the dust component and dust particle size, in-furnace spraying is also possible in consideration of the use of diatomaceous earth as a dusting aid.

また、セラミックフィルタ35には、触媒機能を持った成分を担持させてダイオキシン類の酸化分解機能を持たせて有害ガス除去部としてもよい。また、焼却炉1からの排ガスG中に脱塩剤を混入させ、塩化水素、硫黄酸化物と反応させ、反応生成物をセラミックフィルタで集塵除去するようにしてもよい。除去されたダストは、第2ボイラ32の下部シュート37から、焼却炉1内にもどされるから、ダスト中に含まれる飛灰やダイオキシン類、及び反応生成物は、燃焼、熱分解され、焼却灰として系外に搬出される。   Further, the ceramic filter 35 may be loaded with a component having a catalytic function to have a function of oxidizing and decomposing dioxins to serve as a harmful gas removing unit. Further, a desalting agent may be mixed in the exhaust gas G from the incinerator 1 and reacted with hydrogen chloride and sulfur oxide, and the reaction product may be collected and removed with a ceramic filter. Since the removed dust is returned to the incinerator 1 from the lower chute 37 of the second boiler 32, the fly ash, dioxins, and reaction products contained in the dust are combusted, pyrolyzed, and incinerated ash. To be taken out of the system.

図4は本発明に係るガス処理装置を用いた廃棄物処理装置のフロー例を示す図である。図示するように焼却炉1から排出された排ガスGは第1ボイラ31で熱回収され、第2ボイラ32でセラミックフィルタ(CF)35によりダストの集塵除去更に熱回収され、過熱器33で熱回収され、触媒反応塔(SCR)38でNOx等が除去され、無害化されて煙突39から大気中に放出する。第1ボイラ31の排ガス中に脱塩剤104を混入させ、塩化水素、硫黄酸化物と反応させ、反応生成物をセラミックフィルタで飛灰等のダストと伴に集塵除去するようにする。   FIG. 4 is a diagram showing a flow example of a waste treatment apparatus using the gas treatment apparatus according to the present invention. As shown in the figure, the exhaust gas G discharged from the incinerator 1 is heat-recovered by the first boiler 31, dust is removed by the ceramic filter (CF) 35 by the second boiler 32, and heat is recovered by the superheater 33. The NOx and the like are removed by the catalytic reaction tower (SCR) 38, detoxified, and discharged from the chimney 39 to the atmosphere. The desalting agent 104 is mixed in the exhaust gas of the first boiler 31 and reacted with hydrogen chloride and sulfur oxide, and the reaction product is collected and removed together with dust such as fly ash by a ceramic filter.

なお、上記例では、ストーカ式の焼却炉1に本発明に係るガス処理装置を使用する例を示したが、焼却炉はストーカ式に限定されるものではなく、例えば流動床焼却炉でもよい。流動床焼却炉の場合はストーカ式炉に比べて排ガス中のダスト量が増すため本発明のガス処理装置が好適に用いることができる。また、焼却炉に限定されるものではなく、ガス化炉又は熱分解炉でもよい。ガス化炉又は熱分解炉から排出される排ガス(可燃性ガス)に含まれるダスト処理に本発明は有効である。また、後段の排ガス処理フローは実施例に示したものに限定されるものではなく、排ガス処理方法はその要求によって変化が可能である。   In addition, although the example which uses the gas processing apparatus which concerns on this invention for the stoker type incinerator 1 was shown in the said example, an incinerator is not limited to a stoker type, For example, a fluid bed incinerator may be sufficient. In the case of a fluidized bed incinerator, since the amount of dust in the exhaust gas is increased as compared with a stoker type furnace, the gas treatment apparatus of the present invention can be suitably used. Moreover, it is not limited to an incinerator and may be a gasification furnace or a pyrolysis furnace. The present invention is effective for treating dust contained in exhaust gas (combustible gas) discharged from a gasification furnace or a pyrolysis furnace. Further, the exhaust gas treatment flow at the latter stage is not limited to that shown in the embodiments, and the exhaust gas treatment method can be changed depending on the requirements.

また、本発明に係る高温集塵機能付廃熱回収装置は焼却部、ガス化炉等と別置きの単独装置とすることが可能であり、その際の排ガスは両装置をつなぐダクト内で移行される。このように別置きの単独の装置とするとトラブル等が生じた時に補修等がより容易となる。   In addition, the waste heat recovery device with a high-temperature dust collecting function according to the present invention can be an independent device separate from the incinerator, gasification furnace, etc., and the exhaust gas at that time is transferred in a duct connecting both devices. The In this way, when a separate stand-alone device is used, repair or the like becomes easier when trouble occurs.

従来の焼却処理プラントのフローを示す図である。It is a figure which shows the flow of the conventional incineration processing plant. 本発明に係るストーカ式の焼却ブラントの概略構成例を示すずである。1 is a schematic configuration example of a stoker-type incineration blunt according to the present invention. 本発明に係る廃棄物焼却処理装置の構成例を示す図である。It is a figure which shows the structural example of the waste incineration processing apparatus which concerns on this invention. 本発明に係る廃棄物処理装置のフローを示す図である。It is a figure which shows the flow of the waste disposal apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 焼却炉
2 廃熱ボイラ
3 ごみピット
4 ホッパ
5 ごみクレーン
6 給塵装置
7a〜d ストーカ
8a〜d 空気調整ダンパ
9a〜d 空気導入路
10a〜f 灰
11 温度センサ
12 蒸気量センサ
13 酸素濃度センサ
14 工業用テレビカメラ
15 重量センサ
16 バーナ
17 押込送風機
20 二次空気押込送風機
21 プラットホーム
22 ごみ収集車
30 ガス処理装置
31 第1ボイラ
32 第2ボイラ
33 過熱器
34 ボイラ出口
35 セラミックフィルタ
36 空気噴射ノズル
37 下部シュート
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Waste heat boiler 3 Garbage pit 4 Hopper 5 Garbage crane 6 Dust feeder 7a-d Stoker 8a-d Air adjustment damper 9a-d Air introduction path 10a-f Ash 11 Temperature sensor 12 Steam quantity sensor 13 Oxygen concentration sensor DESCRIPTION OF SYMBOLS 14 Industrial television camera 15 Weight sensor 16 Burner 17 Pushing fan 20 Secondary air pushing fan 21 Platform 22 Garbage truck 30 Gas treatment device 31 1st boiler 32 2nd boiler 33 Superheater 34 Boiler outlet 35 Ceramic filter 36 Air injection nozzle 37 Bottom Shoot

Claims (9)

廃棄物を処理する焼却炉又はガス化炉又は熱分解炉と、該焼却炉又はガス化炉又は熱分解炉から排出される排ガスを処理する排ガス処理装置と、を備えた廃棄物処理装置において、
前記排ガス処理装置は、ケーシングが輻射伝熱面で形成された廃熱回収装置と、該廃熱回収装置の内部に配置された集塵部と、を備え、
前記焼却炉又はガス化炉又は熱分解炉から排出される排ガスを前記廃熱回収装置へ導き、前記集塵部で前記排ガス中のダストを集塵除去し、前記ケーシングの輻射伝熱面から該排ガスの熱を回収することを特徴とする廃棄物処理装置。
In a waste treatment apparatus comprising an incinerator, a gasification furnace, or a pyrolysis furnace for treating waste , and an exhaust gas treatment apparatus for treating exhaust gas discharged from the incinerator, gasification furnace, or pyrolysis furnace,
The exhaust gas treatment apparatus includes a waste heat recovery device in which a casing is formed with a radiant heat transfer surface, and a dust collection unit disposed inside the waste heat recovery device,
The exhaust gas discharged from the incinerator, gasification furnace, or pyrolysis furnace is led to the waste heat recovery device, dust in the exhaust gas is collected and removed by the dust collection unit, and the radiant heat transfer surface of the casing A waste treatment apparatus for recovering heat of exhaust gas .
請求項に記載の廃棄物処理装置において、
記焼却炉又はガス化炉又は熱分解炉と前記廃熱回収装置の間に、前記排ガス中の塩化水素、硫黄酸化物と反応させて反応生成物を生成させる脱塩剤を注入する脱塩剤注入装置を更に備えたことを特徴とする廃棄物処理装置。
The waste treatment apparatus according to claim 1 ,
Between the front Symbol incinerators or gasification furnace or thermal decomposition furnace the waste heat recovery apparatus, the hydrogen chloride in the exhaust gas, desalination of injecting desalting agent to produce a reaction product is reacted with sulfur oxides A waste treatment apparatus, further comprising an agent injection device.
請求項1又は2に記載の廃棄物処理装置において、
前記集塵部は、廃熱回収装置内の600℃〜1200℃の高温領域に配置された耐熱性を有するセラミックフィルタで構成されたことを特徴とする廃棄物処理装置。
The waste disposal apparatus according to claim 1 or 2 ,
2. The waste treatment apparatus according to claim 1, wherein the dust collection unit is composed of a heat-resistant ceramic filter disposed in a high temperature region of 600 ° C. to 1200 ° C. in the waste heat recovery apparatus.
請求項3に記載の廃棄物処理装置において、
前記セラミックフィルタには、ダイオキシン類の酸化分解機能を有する触媒成分を担持させたことを特徴とする廃棄物処理装置。
The waste treatment apparatus according to claim 3, wherein
A waste treatment apparatus , wherein the ceramic filter carries a catalyst component having a function of oxidative decomposition of dioxins .
請求項1乃至4のいずれか1項に記載の廃物処理装置において、
前記排ガス処理装置の集塵部における除塵により得られたダストを、前記焼却炉又はガス化炉又は熱分解炉に供給する供給手段を備えたこと特徴とする廃棄物処理装置。
The waste disposal apparatus according to any one of claims 1 to 4 ,
A waste treatment apparatus comprising supply means for supplying dust obtained by dust removal in a dust collection unit of the exhaust gas treatment apparatus to the incinerator, gasification furnace, or pyrolysis furnace.
廃棄物を処理する焼却炉又はガス化炉又は熱分解炉から排出される排ガスを処理する排ガス処理方法において、
前記焼却炉又はガス化炉又は熱分解炉から排出された排ガスをケーシングが輻射伝熱面で形成され、且つ内部に集塵部を設けた廃熱回収装置に導き、該集塵部で前記排ガス中に含まれるダストを集塵除去すると共に、前記ケーシングの輻射伝熱面から該排ガスの熱を回収することを特徴とする排ガス処理方法。
In the exhaust gas processing method for processing an exhaust gas discharged from an incinerator or gasifier or thermal decomposition furnace for processing waste,
The exhaust gas discharged from the incinerator, gasification furnace, or pyrolysis furnace is led to a waste heat recovery device in which a casing is formed with a radiant heat transfer surface and a dust collection part is provided inside, and the exhaust gas is emitted from the dust collection part. An exhaust gas treatment method characterized by collecting and removing dust contained therein and recovering heat of the exhaust gas from a radiant heat transfer surface of the casing .
請求項に記載の排ガス処理方法において、
前記集塵部は、前記廃熱回収装置の600℃〜1200℃の高温領域に配置された耐熱性を有するセラミックフィルタであり、該セラミックフィルタにより前記ダストを集塵除去することを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to claim 6 ,
The dust collection unit is a heat-resistant ceramic filter disposed in a high temperature region of 600 ° C. to 1200 ° C. of the waste heat recovery apparatus, and the dust is collected and removed by the ceramic filter. Processing method.
請求項に記載の排ガス処理方法において、
前記セラミックフィルタに担持させた触媒成分により、ダイオキシン類の酸化分解を行うことを特徴とする排ガス処理方法。
The exhaust gas treatment method according to claim 7 ,
An exhaust gas treatment method, wherein dioxins are oxidatively decomposed with a catalyst component supported on the ceramic filter.
請求項乃至のいずれか1項に記載の排ガス処理方法において、
前記焼却炉又はガス化炉又は熱分解炉から排出される排ガス中に脱塩剤を混入させて該排ガス中の塩化水素、硫黄酸化物と反応させて反応生成物を得て、該反応生成物を前記廃熱回装置内の集塵部で前記ダストと共に除去することを特徴とする排ガス処理方法。
In the exhaust gas treatment method according to any one of claims 6 to 8 ,
A reaction product is obtained by mixing a desalting agent in the exhaust gas discharged from the incinerator, gasification furnace or pyrolysis furnace and reacting with hydrogen chloride and sulfur oxide in the exhaust gas, and the reaction product Is removed together with the dust by a dust collecting section in the waste heat recovery device.
JP2004192736A 2004-06-30 2004-06-30 Waste treatment apparatus and exhaust gas treatment method Active JP4377292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192736A JP4377292B2 (en) 2004-06-30 2004-06-30 Waste treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192736A JP4377292B2 (en) 2004-06-30 2004-06-30 Waste treatment apparatus and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2006015179A JP2006015179A (en) 2006-01-19
JP4377292B2 true JP4377292B2 (en) 2009-12-02

Family

ID=35789892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192736A Active JP4377292B2 (en) 2004-06-30 2004-06-30 Waste treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4377292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294017A (en) * 2014-09-10 2015-01-21 浙江长兴正达电炉制造有限公司 Continuous mesh belt quenching furnace capable of recovering waste heat
KR101486742B1 (en) * 2013-06-18 2015-01-28 한국기계연구원 Catalyst monitorable Marine SCR System

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817140B2 (en) * 2006-03-13 2011-11-16 日立造船株式会社 System using ceramic filter
DE102007056580B3 (en) * 2007-11-23 2009-04-02 Forschungszentrum Karlsruhe Gmbh Process and apparatus for the air flow sulphation of flue gas components
JP5916470B2 (en) * 2011-08-04 2016-05-11 三菱重工業株式会社 Fluidized bed processing system and N2O removal method of fluidized bed combustion exhaust gas
CN102706174B (en) * 2012-05-25 2014-05-28 广东新明珠陶瓷集团有限公司 Wasteheat utilization control structure of kiln
CN103344137B (en) * 2013-06-28 2016-05-11 金澳科技(湖北)化工有限公司 A kind of pneumatic transmitter purifies wind heating apparatus
JP6445236B2 (en) * 2014-01-30 2018-12-26 株式会社タクマ Waste treatment apparatus and waste treatment method
CN104874253B (en) * 2015-05-29 2017-10-13 洪阳冶化工程科技有限公司 A kind of calcium carbide furnace tail gas dry process dedusting-waste heat recovery-production synthesizes device of air
CN105864792B (en) * 2016-03-31 2018-11-02 陈春光 The processing method of dioxin from incineration flue gas of household garbage class atmosphere pollution
CN105953230A (en) * 2016-05-11 2016-09-21 河南师范大学 Movable waste heat utilization waste incineration system
CN106215560B (en) * 2016-08-31 2018-04-13 苏州贝捷环保设备有限公司 Dust chemical catalysis parallel processors are used in coal-fired flue-gas processing
CN110094751A (en) * 2019-04-15 2019-08-06 中国能源建设集团广东省电力设计研究院有限公司 A method of reducing incinerator danger solid waste
CN114199038A (en) * 2021-12-15 2022-03-18 科林环保技术有限责任公司 Electric furnace flue gas treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486742B1 (en) * 2013-06-18 2015-01-28 한국기계연구원 Catalyst monitorable Marine SCR System
CN104294017A (en) * 2014-09-10 2015-01-21 浙江长兴正达电炉制造有限公司 Continuous mesh belt quenching furnace capable of recovering waste heat

Also Published As

Publication number Publication date
JP2006015179A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
EP3408358B1 (en) SYSTEM AND METHOD FOR REDUCING NOx EMISSIONS FROM GASIFICATION POWER PLANTS
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
EP0767343A2 (en) Heat recovery system and power generation system
RU2595747C2 (en) Process and apparatus for treatment of incinerator ash
JPS6186697A (en) Method and device for treating waste
JP3936824B2 (en) Waste heat recovery boiler and waste treatment facility
JP2004532967A (en) Incineration process using high concentration of oxygen
AU2014287896B2 (en) An integrated waste incinerating and purifying apparatus
JP2013164226A (en) Waste material incinerator and waste material incinerating method
KR100447009B1 (en) Treatment method of waste and apparatus thereof
RU91409U1 (en) INSTALLATION FOR THERMAL PROCESSING OF SOLID DOMESTIC WASTE
CN214198674U (en) Industrial waste classified incineration system
JP5027486B2 (en) Combustion apparatus using organic matter containing chromium as fuel, and method for combusting organic matter fuel containing chromium using the same
JP2898625B1 (en) Method and apparatus for removing and decomposing dioxins with unburned ash
JP5279062B2 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP2007009045A (en) Treatment system for gasifying waste and treatment method therefor
JP2004347274A (en) Waste treatment device
JP2005330370A (en) Indirectly heating-type fluidized bed gasification system
JP5818094B2 (en) Waste incinerator
JP4265975B2 (en) Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus
Dou et al. Distribution of PCDD/F and PCB at Different Positions of Circulating Fluidized Bed Municipal Solid Waste Incinerators
JP2011145034A (en) Waste treatment device
CN109000263A (en) Refuse disposal installation and waste disposal method
JPH09112863A (en) Power generating apparatus combined with incinerator
JPH0933026A (en) Combustion control device for refuse incinerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Ref document number: 4377292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250