JP2007009045A - Treatment system for gasifying waste and treatment method therefor - Google Patents

Treatment system for gasifying waste and treatment method therefor Download PDF

Info

Publication number
JP2007009045A
JP2007009045A JP2005191040A JP2005191040A JP2007009045A JP 2007009045 A JP2007009045 A JP 2007009045A JP 2005191040 A JP2005191040 A JP 2005191040A JP 2005191040 A JP2005191040 A JP 2005191040A JP 2007009045 A JP2007009045 A JP 2007009045A
Authority
JP
Japan
Prior art keywords
gasification
waste
furnace
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005191040A
Other languages
Japanese (ja)
Other versions
JP4614442B2 (en
Inventor
Munechika Ito
宗親 井藤
Kosaku Omori
耕作 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2005191040A priority Critical patent/JP4614442B2/en
Publication of JP2007009045A publication Critical patent/JP2007009045A/en
Application granted granted Critical
Publication of JP4614442B2 publication Critical patent/JP4614442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment system for gasifying a waste, with which in gasifying especially an agglomerative waste without producing clinker, the waste is properly treated, energy is recovered in high efficiency and gasification cost is reduced and a treatment method. <P>SOLUTION: The treatment system for gasifying a waste comprises a gasification furnace 1 for heating and gasifying a waste containing ash having ≤900°C melting point at 550-700°C, high-temperature dust collecting equipment 2 for removing dust from gasified gas generated from the gasification furnace 1 at least at ≥350°C, and equipment for using heat of the gasified gas from which the dust is removed by the high-temperature dust collecting equipment 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は廃棄物ガス化処理システムとその処理方法に関し、詳しくは、ガス化炉を用いて、特にガス化処理が困難な凝集成分を含む廃棄物処理に効果的な廃棄物ガス化処理システムとその処理方法に関する。   The present invention relates to a waste gasification processing system and a processing method thereof, and more particularly, a waste gasification processing system effective for waste processing including an agglomerated component that is difficult to gasify using a gasification furnace. It relates to the processing method.

一般廃棄物や各種産業廃棄物を燃焼させる処理工程は、例えば図3に示すように、各種廃棄物を焼却炉21に投入し、ここで充分な燃焼による焼却処理がされた後、排ガス処理設備22で排ガス中の有害成分が処理されて、煙突などから排出される。   For example, as shown in FIG. 3, the treatment process for burning general waste and various industrial wastes is performed by putting various wastes into an incinerator 21, where the incineration process by sufficient combustion is performed, and then an exhaust gas treatment facility. At 22, the harmful components in the exhaust gas are processed and discharged from the chimney or the like.

この場合、適正に焼却処理するため、ダイオキシン類を排出させないように、発生焼却温度を900℃以上、滞留時間2秒以上で行うと共に、効果的な燃焼ガスの混合撹拌がなされる完全燃焼が求められている。   In this case, in order to properly incinerate, the generated incineration temperature is 900 ° C. or more and the residence time is 2 seconds or more so that dioxins are not discharged, and complete combustion with effective mixing and stirring of combustion gas is required. It has been.

廃棄物には、含まれる成分により、燃焼後の灰の融点の高いものと、融点の低いものとがある。廃棄物を燃焼させると、可燃性物質は排ガスとなり、不燃性物質は焼却残渣(灰分)として残留する。残留する不燃性残渣の内、融点が900℃以下のものは、加熱時にダクトや炉壁などへ凝集して固着し易いため、これらを凝集成分と称し、この凝集成分を多く含む廃棄物を凝集性廃棄物と称することができる。   There are two types of wastes, one with a high melting point of ash after combustion and one with a low melting point, depending on the components contained. When the waste is combusted, the combustible substance becomes exhaust gas, and the incombustible substance remains as an incineration residue (ash). Among the remaining non-combustible residues, those having a melting point of 900 ° C. or less are likely to agglomerate and adhere to ducts or furnace walls during heating, so they are referred to as agglomerated components and agglomerated waste containing a large amount of these agglomerated components. It can be called sexual waste.

凝集成分の主要なものは、Na,K,Pであり、その他としてはS,Clなどがあり、灰分として回収される場合、これらは、NaCl,KCl,K2 SO4 等の無機物質となる。 The main aggregating components are Na, K, and P, and others include S and Cl. When recovered as ash, these become inorganic substances such as NaCl, KCl, and K 2 SO 4. .

このような凝集性廃棄物を流動層炉23にて900℃以上で加熱処理すると、凝集性廃棄物の不燃分として残留していた凝集成分が溶融し、図4(イ)に示すように、炉壁などへ固着してクリンカー24を生じたり、図4(ロ)に示すように、流動媒体25どうしを固着させて、流動化を停止させてしまい、送給される流動化空気の通路26ができるため、流動層炉23を停止せざるを得ない事態を生じさせたりするなど、種々の悪影響をもたらす。   When such a cohesive waste is heat-treated at 900 ° C. or higher in the fluidized bed furnace 23, the coagulating component remaining as an incombustible component of the cohesive waste is melted, as shown in FIG. Adhering to a furnace wall or the like to produce a clinker 24, or as shown in FIG. 4 (b), the fluidizing media 25 are adhered to each other to stop fluidization, and the fluidized air passage 26 to be fed is supplied. Therefore, various adverse effects such as causing a situation where the fluidized bed furnace 23 has to be stopped are brought about.

かかる凝集成分を多く含む凝集性廃棄物の処理方法として、廃棄物を加熱炉にてガス化し、発生したガス化ガスを塩類(上記無機物質)の融点以下に一旦冷却し、除塵装置で除去すると共に、その後ガス化ガスを燃焼炉に送給して処理する方法が提案されている(特許文献1)
特開2005−55030号公報
As a method for treating such cohesive waste containing a large amount of cohesive components, the waste is gasified in a heating furnace, and the generated gasified gas is once cooled below the melting point of the salts (the above inorganic substances) and removed by a dust removing device. At the same time, a method has been proposed in which gasified gas is supplied to a combustion furnace for processing (Patent Document 1).
JP-A-2005-55030

しかしながら、上記従来技術は、ガス化して発生させたガス化ガスを一旦冷却してから再度高温に加熱して燃焼しており、ガス化ガスの有する高い熱量を有効に利用できず、エネルギー的に無駄があり、決してエネルギー効率の良いものではない。   However, in the above prior art, the gasified gas generated by gasification is once cooled and then heated again to a high temperature and burned, and the high amount of heat of the gasification gas cannot be effectively used, and it is energy-efficient. There is waste and it is never energy efficient.

そこで、上記従来技術の有する問題点に鑑みて、本発明の目的は、特に凝集性廃棄物をガス化処理する際に、クリンカーを発生させることなく、適正に処理できると共に、高効率にエネルギーを回収可能にして、ガス化処理コストを低減可能な廃棄物ガス化処理システムと処理方法を提供することにある。   Therefore, in view of the above-mentioned problems of the prior art, the object of the present invention is to appropriately process without generating clinker, particularly when gasifying cohesive waste, and to efficiently save energy. It is an object of the present invention to provide a waste gasification processing system and a processing method that can be recovered and can reduce gasification processing costs.

上記課題は、各請求項記載の発明により達成される。すなわち、本発明に係る廃棄物ガス化処理システムの特徴構成は、含有する灰分の融点が900℃以下の廃棄物を550〜700℃で加熱してガス化するガス化炉と、このガス化炉から発生するガス化ガスを少なくとも350℃以上で除塵する高温集塵設備と、この高温集塵設備で除塵されたガス化ガスを熱利用する設備と、を有することにある。   The above-mentioned subject is achieved by the invention described in each claim. That is, the characteristic configuration of the waste gasification processing system according to the present invention includes a gasification furnace that heats and gasifies waste having an ash content of 900 ° C. or less at 550 to 700 ° C., and the gasification furnace. A high-temperature dust collection facility that dusts the gasification gas generated from at least 350 ° C. or higher, and a facility that uses heat from the gasification gas removed by the high-temperature dust collection facility.

この構成によれば、廃棄物に凝集成分が含まれていたとしても、その凝集温度以下で加熱処理するため、凝集物が炉壁面へ付着してクリンカーを生じさせたり、流動層炉における流動化停止トラブルが生じたりすることがなく、タールも気化しているため高温集塵設備でのトラブルを抑制でき、しかも、ガス化ガスの熱量を無駄にすることなく、除塵処理することができ、高効率にエネルギーを回収できることになる。   According to this configuration, even if the waste contains an agglomerated component, heat treatment is performed at or below the agglomeration temperature, so that the agglomerate adheres to the furnace wall surface and generates clinker, or fluidization in a fluidized bed furnace. Stopping trouble does not occur, tar is also vaporized, so troubles in high-temperature dust collection equipment can be suppressed, and dust removal can be performed without wasting the heat of gasification gas. Energy can be recovered efficiently.

その結果、特に凝集性廃棄物をガス化処理する際に、クリンカーを発生させることなく、適正に処理できると共に、高効率にエネルギーを回収可能にして、ガス化処理コストを低減可能な廃棄物ガス化処理システムを提供することができた。   As a result, especially when coagulating waste is gasified, waste gas that can be properly treated without generating clinker and that can recover energy efficiently and reduce gasification costs. We were able to provide an integrated processing system.

前記ガス化炉が、流動層炉または循環流動層炉であり、ボイラ構造を有することが好ましい。   The gasification furnace is a fluidized bed furnace or a circulating fluidized bed furnace, and preferably has a boiler structure.

この構成によれば、流動層炉または循環流動層炉は混合撹拌性に優れるため、ガス化処理の効率が高く、しかもボイラ構造を有することから、ボイラから発生する蒸気を利用することができる。   According to this configuration, since the fluidized bed furnace or the circulating fluidized bed furnace is excellent in mixing and stirring, the efficiency of gasification treatment is high and the boiler structure is used, so that steam generated from the boiler can be used.

前記ガス化炉が、水または蒸気を導入する設備を有することが好ましい。   It is preferable that the gasification furnace has a facility for introducing water or steam.

この構成によれば、バラツキが大きく変動し易い燃料性状の廃棄物に対しても、炉内温度を所定範囲にコントロールでき、安定かつ確実な操業を行うことができる。   According to this configuration, the furnace temperature can be controlled within a predetermined range even with respect to the waste having fuel properties that are likely to vary greatly, and stable and reliable operation can be performed.

前記高温集塵設備で除塵されたガス化ガス中のタールを除去するタール分解設備を有することが好ましい。   It is preferable to have a tar decomposition facility for removing tar in the gasified gas removed by the high-temperature dust collection facility.

この構成によれば、高温集塵設備で除塵されたガス化ガス中に、たとえタールが含まれていたとしても、効果的にタールを除去でき、下流側の設備に対するトラブルを確実に防止できる。   According to this configuration, even if tar is contained in the gasified gas removed by the high-temperature dust collection equipment, the tar can be effectively removed, and troubles on the downstream equipment can be reliably prevented.

また、本発明に係る廃棄物ガス化処理方法の特徴構成は、含有する灰分の融点が900℃以下の廃棄物をガス化炉にて550〜700℃で加熱してガス化し、発生したガス化ガスを高温集塵設備にて少なくとも350℃以上で除塵し、この除塵されたガス化ガスを熱利用することにある。   In addition, the characteristic configuration of the waste gasification method according to the present invention is that the waste having a melting point of ash content of 900 ° C. or less is heated and gasified in a gasification furnace at 550 to 700 ° C., and the generated gasification is generated. The purpose is to remove the gas at a temperature of 350 ° C. or more with a high-temperature dust collecting facility and to use the dusted gasified gas as heat.

この構成によれば、特に凝集性廃棄物をガス化処理する際に、クリンカーを発生させることなく、適正に処理できると共に、高効率にエネルギーを回収可能にして、ガス化処理コストを低減可能な廃棄物ガス化処理方法を提供することができる。   According to this configuration, particularly when coagulating waste is gasified, it can be properly processed without generating a clinker, energy can be recovered with high efficiency, and gasification cost can be reduced. A waste gasification method can be provided.

前記ガス化炉では、空気比0.2〜0.5で廃棄物をガス化処理することが好ましい。   In the gasification furnace, waste is preferably gasified at an air ratio of 0.2 to 0.5.

この構成によれば、
前記ガス化炉でのガス化処理において、700℃以上に昇温するおそれがある場合、水または蒸気を導入して冷却することが好ましい。
According to this configuration,
In the gasification treatment in the gasification furnace, when there is a risk of raising the temperature to 700 ° C. or higher, it is preferable to cool by introducing water or steam.

この構成によれば、安定かつ確実な操業を行うことができる。   According to this configuration, stable and reliable operation can be performed.

タール分解設備にて、前記高温集塵設備で除塵されたガス化ガス中のタールを除去することが好ましい。   It is preferable to remove the tar in the gasification gas removed by the high-temperature dust collection facility in the tar decomposition facility.

この構成によれば、ガス化ガス中のタールを効果的に除去でき、下流側の設備に対するトラブルを確実に防止できる。   According to this structure, the tar in gasification gas can be removed effectively and the trouble with respect to the downstream installation can be prevented reliably.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本発明に係る第1実施形態に係る廃棄物ガス化処理システムの概略フローを示し、図2は、第2実施形態に係る廃棄物ガス化処理システムの概略フローを示す。
<第1実施形態>
第1実施形態に係る廃棄物ガス化システムは、ガス化炉の1種であり、混合撹拌性のよい流動層ガス化炉1を用いている。流動層ガス化炉1では、空気比を0.2〜0.5で運転・操業するようにして、ガス化温度を廃棄物の着火温度以上かつ凝集温度以下の所定温度に維持すべくコントロールする。具体的には、550〜700℃程度とする。空気比が0.2未満では、燃焼度合いが低くて温度が上昇し難く、空気比が0.5を越えると燃焼が顕著に進行し、局所的に900℃以上の高温場を形成するおそれがあり、未燃炭素が生じ難くなる。もっとも、廃棄物の燃料性状(含有水分量や構成元素、熱量)はバラツキが大きく変動し易いため、ガス化空気の供給量による温度制御のみによっては、所定温度に維持し難く、必要以上に上昇する場合もあるため、流動層ガス化炉内に水(もしくは蒸気)を供給できる設備(例えば、水あるいは蒸気噴射装置)を設けて、上昇し過ぎた場合に冷却することが好ましい。特に、流動層ガス化炉としてボイラ構造にした場合には、ボイラで発生する蒸気を使用することができるので、特別な設備を要しない。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic flow of the waste gasification processing system according to the first embodiment of the present invention, and FIG. 2 shows a schematic flow of the waste gasification processing system according to the second embodiment.
<First Embodiment>
The waste gasification system according to the first embodiment is a kind of gasification furnace, and uses a fluidized bed gasification furnace 1 with good mixing and stirring. In the fluidized bed gasification furnace 1, the gasification temperature is controlled to maintain a predetermined temperature that is higher than the ignition temperature of the waste and lower than the agglomeration temperature by operating and operating at an air ratio of 0.2 to 0.5. . Specifically, the temperature is about 550 to 700 ° C. If the air ratio is less than 0.2, the degree of combustion is low and the temperature does not easily rise, and if the air ratio exceeds 0.5, the combustion proceeds remarkably, and a high temperature field of 900 ° C. or higher may be locally formed. Yes, unburned carbon is less likely to occur. However, the fuel properties (content of water, constituent elements, and amount of heat) of the waste vary greatly and are likely to fluctuate. Therefore, it is difficult to maintain the predetermined temperature only by temperature control based on the supply amount of gasified air, and it rises more than necessary. For this reason, it is preferable to provide a facility (for example, water or steam injection device) capable of supplying water (or steam) in the fluidized bed gasification furnace and cool it when it rises too much. In particular, when a boiler structure is used as a fluidized bed gasification furnace, steam generated in the boiler can be used, so that no special equipment is required.

本実施形態のように、比較的低温でガス化処理する場合、凝集成分を含む廃棄物を、その凝集温度以下で加熱処理するため、凝集物が炉壁面へ付着したり、流動層炉における流動化停止トラブルが生じたりすることがない。もっとも、不完全燃焼であるため、この段階ではダイオキシン類やCO等が発生するが、ダイオキシン類は、下流側での燃焼あるいはガス利用設備での高温処理により分解される。   When the gasification treatment is performed at a relatively low temperature as in this embodiment, the waste containing the agglomerated components is heat-treated at a temperature lower than the agglomeration temperature, so that the agglomerates adhere to the furnace wall surface or flow in the fluidized bed furnace. There will be no trouble of stoppage. However, since it is incomplete combustion, dioxins, CO, and the like are generated at this stage, but the dioxins are decomposed by combustion on the downstream side or high-temperature treatment in a gas utilization facility.

凝集成分を含む廃棄物は、その燃料性状(Na,Kのような凝集成分含有量)が変動し、季節や時期などによっては凝集温度が変動し、低下する場合も考えられるが、ガス化炉1によるガス化処理によって未燃炭素が多く発生するため、仮に凝集温度以上の運転となったとしても、未燃炭素が凝集成分を吸着して取り込み、結果的に凝集成分を核とする塊が生成し、炉壁面への付着を防止できることになる。   The waste containing agglomerated components has a fluctuating fuel property (agglomerated component content such as Na and K), and the agglomeration temperature may vary depending on the season and time, etc. Since a large amount of unburned carbon is generated by the gasification treatment by No. 1, even if the operation is performed at a temperature higher than the agglomeration temperature, the unburned carbon adsorbs and takes in the agglomerated component, and as a result, a lump with the agglomerated component as a nucleus is formed. It can produce | generate and can prevent adhesion to a furnace wall surface.

そして、本実施形態のように、ガス化炉での操業を、理論空気比の0.2〜0.5で運転するようにしているため、ガス化炉への空気供給量が少なくてよいため、同じ量の廃棄物を処理する焼却炉に比べて、押込送風機の容量が小さく、設備コスト、駆動時の電力消費量共に少なくて済む。のみならず、押込送風機の容量が小さいことにより、発生するガス量は、燃焼方式に比べて少なく(約1/2程度)、ガス化ガスを扱う設備容量、設置面積は、それだけ小さくて済み、占有面積の低減がはかれる。しかも、低温でのガス化炉の運転では、高温炉に比べて、設備の損耗も少なく、保守コストを低減できる。   And, since the operation in the gasification furnace is operated at a theoretical air ratio of 0.2 to 0.5 as in this embodiment, the amount of air supplied to the gasification furnace may be small. Compared with an incinerator that treats the same amount of waste, the capacity of the forced air blower is small, and both the equipment cost and the power consumption during driving can be reduced. Not only that, but the capacity of the forced blower is small, so the amount of gas generated is smaller than the combustion method (about 1/2), and the capacity and installation area for handling gasified gas can be reduced accordingly. The occupied area can be reduced. In addition, the operation of the gasification furnace at a low temperature causes less equipment wear and maintenance costs compared to the high temperature furnace.

流動層ガス化炉1にて発生した高温のガス化ガスは、その熱量を保持したまま高温集塵設備2に送給され、除塵される。高温集塵設備2には、多数のセラミックフィルタが稠密に配列されており、ガス化ガス中の灰や未燃炭素などが効率よく除塵される。この内、未燃炭素は、吸着剤としての作用をするため、ガス状の各種溶融物質を吸着し、セラミックフィルタの目詰まりを防止する機能を発揮すると共に、剥離性に優れるため、セラミックフィルタに付着した場合でも、洗浄(逆洗装置により適宜洗浄する)により容易に脱落する。この場合、ダイオキシン類はガス状になっているため、除塵された灰中には、ダイオキシン類は含まれていない。   The high-temperature gasification gas generated in the fluidized bed gasification furnace 1 is supplied to the high-temperature dust collection facility 2 while maintaining its heat quantity, and is removed. A large number of ceramic filters are densely arranged in the high-temperature dust collection facility 2, and ash and unburned carbon in the gasification gas are efficiently removed. Among these, unburned carbon acts as an adsorbent, so it adsorbs various gaseous molten substances and functions to prevent clogging of the ceramic filter. Even if it adheres, it easily falls off by washing (washing appropriately with a backwash device). In this case, since dioxins are in a gaseous state, dioxins are not contained in the ash from which dust has been removed.

このように、高温集塵設備2にて集塵するようにしているので、(1) ガス化ガスのもつエネルギー(顕熱)の損失がなく、(2) 一部溶融した、もしくはガス状の溶融物質がフィルタでろ過されるときに未燃炭素分に吸着されるため、凝集成分や揮発性アルカリ金属を含む灰を確実に捕捉できる、(3) 高温のため、タール分は気化しており、セラミックフィルタに目詰まりが生じない、との利点を有する。   In this way, dust is collected by the high-temperature dust collection equipment 2, so (1) there is no loss of energy (sensible heat) of the gasification gas, and (2) it is partially molten or gaseous When molten material is filtered, it is adsorbed by unburned carbon, so it is possible to reliably capture ash containing agglomerated components and volatile alkali metals. (3) Due to high temperature, tar is vaporized. There is an advantage that the ceramic filter is not clogged.

ガス化炉出口でボイラ等によりガス温度を下げ、高温集塵設備2に導入すると、ボイラの伝熱管表面などにタール分やダストが付着して伝熱効率が低下するため好ましくなく、放熱損失などにより、やむを得ず温度が低下する場合でも、タールやダストの付着特性、およびダイオキシン類をガス状としてガス化して移行させるためには、高温集塵設備2に導入するガス温度は350℃以上、より好ましくは500℃以上とする。高温での除塵には、上記したようにセラミックフィルタを用いると除塵効率が高く、下流側でのガス利用する場合の適用範囲が広いが、セラミックフィルタに代えてサイクロンを用いてもよい。   If the gas temperature is lowered with a boiler or the like at the gasification furnace outlet and introduced into the high-temperature dust collection facility 2, tar content or dust adheres to the heat transfer tube surface of the boiler and the heat transfer efficiency is lowered. In order to gasify and transfer tar and dust adhesion characteristics and dioxins in gaseous form even when the temperature is unavoidably reduced, the gas temperature introduced into the high-temperature dust collection facility 2 is 350 ° C. or more, more preferably Set to 500 ° C. or higher. For dust removal at high temperatures, as described above, if a ceramic filter is used, dust removal efficiency is high, and the application range when using gas on the downstream side is wide, but a cyclone may be used instead of the ceramic filter.

高温集塵設備2から排出され除塵されたガス化ガス(CO,CO2 ,H2 など可燃性ガスやタールを含む)は、高温のままボイラ3に導入され、ここで完全燃焼されると共に熱回収される。ガス燃料焚きボイラの場合、燃焼性がよいので、低空気比の運転が可能になる。つまり、ここでの空気比は1.1程度でよい。 The gasified gas (including flammable gas such as CO, CO 2 , and H 2 and tar) discharged from the high-temperature dust collection equipment 2 and introduced into the boiler 3 at a high temperature is completely burned and heated. Collected. In the case of a gas fuel-fired boiler, since the combustibility is good, operation at a low air ratio becomes possible. That is, the air ratio here may be about 1.1.

ボイラで発生した蒸気は、そのまま各種熱利用されたり、蒸気タービンによる発電などに利用されたりする。このようなガス化ガスは、可燃性ガスであるため、以下のような利用方法が考えられる。
(1) 廃棄物の処理のみを行う場合には、可燃性ガスを高温処理し、ガス化ガスを無害化する設備に利用する。
(2) ガス化ガスをボイラで燃焼させ、熱エネルギーとして利用する。得られた蒸気は、熱源として各種の利用に供されると共に、蒸気タービンでの発電に利用される。
(3) ガス化ガスにより、直接ガスエンジンやガスタービンを駆動させ発電に利用する。蒸気タービン発電により、高効率な発電が可能になる。
(4) ガス化ガスを触媒により、液体燃料などより付加価値の高い燃料へと転換する。
The steam generated in the boiler is used as it is for various types of heat or for power generation by a steam turbine. Since such a gasification gas is a combustible gas, the following utilization methods can be considered.
(1) When only waste is treated, combustible gas is treated at high temperature and gasified gas is made harmless.
(2) Gasified gas is burned in a boiler and used as thermal energy. The obtained steam is used for various uses as a heat source and also used for power generation in a steam turbine.
(3) Directly drive a gas engine or gas turbine with gasified gas for power generation. Steam turbine power generation enables highly efficient power generation.
(4) The gasification gas is converted to a fuel with higher added value than liquid fuel by using a catalyst.

他方、ボイラ3で燃焼されたガスは、燃料種によってはNOx ,SOx ,HClなどを含むため、通常採用されている適正な湿式あるいは乾式の排ガス処理設備4で無害化処理され、煙突5などから放出される。   On the other hand, the gas burned in the boiler 3 contains NOx, SOx, HCl, etc. depending on the fuel type, and therefore is detoxified by the appropriate wet or dry exhaust gas treatment equipment 4 that is usually employed, and from the chimney 5 or the like. Released.

以上のように、本実施形態によれば、従来技術では処理が困難であった凝集性廃棄物のガス化処理が、ガス化炉のみならず配管や付帯設備にもクリンカーを生じさせることを極力防止して行え、しかもエネルギー損失が少なく、高効率でエネルギー回収が可能となる。
<第2実施形態>
この実施形態に係る廃棄物ガス化処理システムは、第1実施形態に用いた流動層ガス化炉に代えて、循環流動層ガス化炉11を用いている。循環流動層ガス化炉11は、流動媒体が炉内を循環しているため、流動層ガス化炉よりも一層混合撹拌性がよく、炉内温度を適正に制御し易い。また、循環流動層ガス化炉11においても、第1実施形態の流動層ガス化炉と同様な操業条件で行う。すなわち、空気比を0.2〜0.5で運転・操業し、ガス化温度を廃棄物の着火温度以上かつ凝集温度以下の所定温度の、例えば550〜700℃程度で加熱する。
As described above, according to the present embodiment, the gasification treatment of cohesive waste, which has been difficult to process with the prior art, can produce clinker as much as possible not only in the gasification furnace but also in piping and incidental facilities. It is possible to prevent and reduce energy loss and to recover energy with high efficiency.
Second Embodiment
The waste gasification processing system according to this embodiment uses a circulating fluidized bed gasification furnace 11 instead of the fluidized bed gasification furnace used in the first embodiment. In the circulating fluidized bed gasification furnace 11, since the fluidized medium circulates in the furnace, the mixing and stirring is better than the fluidized bed gasification furnace, and the temperature in the furnace is easily controlled. The circulating fluidized bed gasification furnace 11 is also operated under the same operating conditions as the fluidized bed gasification furnace of the first embodiment. That is, the air ratio is operated / operated at 0.2 to 0.5, and the gasification temperature is heated at a predetermined temperature not lower than the ignition temperature of the waste and not higher than the aggregation temperature, for example, about 550 to 700 ° C.

廃棄物の燃料性状のバラツキは大きく変動し易いため、循環流動層ガス化炉11の場合も、炉内に水(もしくは蒸気)を供給できる設備を設けることが好ましい。   Since the variation in the fuel property of the waste is likely to fluctuate greatly, it is preferable that the circulating fluidized bed gasification furnace 11 is also provided with equipment capable of supplying water (or steam) into the furnace.

循環流動層ガス化炉11により生成されたガス化ガスは、第1実施形態の場合と同様に、セラミックフィルタを備えた高温集塵設備2に送給され、生成したガスの熱量を保持したままガス化ガス中の灰が除塵される。このガス化ガス中にはわずかなタールが含まれているため、高温集塵設備2から除塵されたガス化ガスは、タール分解設備6を経由させる。このタール分解設備6は、タール分を分解する高温触媒(例えば、Ni系触媒)を有して構成されている。ここでは、触媒反応に必要な温度を確保するため、空気をタール分解設備6に送給し、一部のガスを燃焼させて、高温反応場を形成する。このようにすると、ガス化ガス中にダストやタールを含まないようにすることができる。   The gasification gas produced | generated by the circulating fluidized bed gasification furnace 11 is sent to the high temperature dust collection equipment 2 provided with the ceramic filter similarly to the case of 1st Embodiment, and the calorie | heat amount of produced | generated gas is hold | maintained. Ashes in the gasification gas are removed. Since this gasification gas contains a small amount of tar, the gasification gas removed from the high-temperature dust collection facility 2 passes through the tar decomposition facility 6. The tar decomposition facility 6 includes a high-temperature catalyst (for example, a Ni-based catalyst) that decomposes the tar content. Here, in order to ensure the temperature required for the catalytic reaction, air is supplied to the tar decomposition facility 6 and a part of the gas is burned to form a high temperature reaction field. If it does in this way, it can be made not to contain dust and tar in gasification gas.

その後、ガス化ガスは幾分温度低下してボイラ3に導入され、ここで更に熱回収されて温度低下する。ボイラで熱交換され、250℃以下程度に減温されたガス化ガスは、低温ガス洗浄設備7に送給され、ガス化ガス中の有害な酸性成分やアルカリ性成分が除去される。すなわち、
低温ガス洗浄設備7は、バグフィルタ、電気集塵器、サイクロン等でからなり、消石灰、重曹などの薬剤が導入された後、除塵される。
Thereafter, the temperature of the gasified gas is lowered to some extent and introduced into the boiler 3 where the heat is further recovered and the temperature is lowered. The gasified gas that has been heat-exchanged by the boiler and reduced in temperature to about 250 ° C. or less is fed to the low temperature gas cleaning equipment 7 to remove harmful acidic components and alkaline components in the gasified gas. That is,
The low-temperature gas cleaning equipment 7 includes a bag filter, an electric dust collector, a cyclone, and the like, and dust is removed after a chemical such as slaked lime or baking soda is introduced.

低温ガス洗浄設備7によって除塵されたガス化ガスは、各種用途に利用でき、例えば、ガスエンジンに直結した発電設備8のようなガス利用設備に送られて、直接発電その他に有効利用することができ、その際、適量の空気を送給するようにしてもよい。   The gasified gas removed from the dust by the low temperature gas cleaning equipment 7 can be used for various purposes. For example, the gasified gas can be sent to a gas use equipment such as the power generation equipment 8 directly connected to the gas engine and effectively used for direct power generation and the like. In this case, an appropriate amount of air may be supplied.

このようにして、従来技術ではガス化処理が困難であった凝集成分を含む廃棄物であっても、本実施形態によれば適正に処理でき、炉内にクリンカーを発生されることがなく、しかも高効率にエネルギー回収可能になる。もとより、通常の廃棄物に対して、高効率にガス化処理できることはいうまでもない。   In this way, even waste containing agglomerated components that have been difficult to gasify with the prior art can be properly treated according to this embodiment, without generating clinker in the furnace, Moreover, energy can be recovered with high efficiency. Needless to say, it is possible to gasify a normal waste with high efficiency.

〔別実施の形態〕
(1)上記実施形態において、ガス化炉として流動層ガス化炉、循環流動層炉を用いた例を挙げて説明したが、ガス化炉としては、これに限定されるものではなく、固定床式、キルン式、噴流層式など、種々のガス化炉を使用できる。ガス化方式も、外熱による乾留ガス化(蒸し焼き方式)空気や酸素や蒸気などによる部分燃焼ガス化方式などいずれも使用でき、燃料からCO,CO2 ,CmHn,H2 ,H2Oなどの可燃ガスが得られる方式であればよい。
(2)本発明に適用できるガス利用設備としては、ガスエンジンやガスタービンのような発電設備の他、メタノール製造設備などの液体燃料製造設備などを挙げることができる。
(3)本発明に適用できる燃料としては、各種有機系廃棄物の他、各種固形燃料、産業廃棄物などが挙げられる。
[Another embodiment]
(1) In the above embodiment, the example using a fluidized bed gasification furnace and a circulating fluidized bed furnace as the gasification furnace has been described. However, the gasification furnace is not limited to this, but a fixed bed. Various gasification furnaces such as a formula, a kiln type, and a spouted bed type can be used. Any gasification method can be used, such as dry distillation gasification with external heat (steaming method), partial combustion gasification method with air, oxygen, steam, etc., from fuel to CO, CO 2 , CmHn, H 2 , H 2 O, etc. Any method that can obtain combustible gas may be used.
(2) Examples of gas utilization equipment applicable to the present invention include power generation equipment such as a gas engine and a gas turbine, and liquid fuel production equipment such as methanol production equipment.
(3) Examples of the fuel that can be applied to the present invention include various solid fuels and industrial wastes in addition to various organic wastes.

本発明の第1実施形態に係る廃棄物ガス化システムを示す概略フロー図Schematic flowchart showing the waste gasification system according to the first embodiment of the present invention. 本発明の第2実施形態に係る廃棄物ガス化システムを示す概略フロー図Schematic flowchart showing a waste gasification system according to a second embodiment of the present invention 従来技術に係る廃棄物処理システムを示す概略フロー図Schematic flow diagram showing a waste treatment system according to the prior art 従来技術に係る廃棄物処理システムの問題点を説明する図The figure explaining the problem of the waste disposal system concerning a prior art

符号の説明Explanation of symbols

1 ガス化炉
2 高温集塵設備
6 タール分解設備
1 Gasification furnace 2 High-temperature dust collection equipment 6 Tar decomposition equipment

Claims (8)

含有する灰分の融点が900℃以下の廃棄物を550〜700℃で加熱してガス化するガス化炉と、このガス化炉から発生するガス化ガスを少なくとも350℃以上で除塵する高温集塵設備と、この高温集塵設備で除塵されたガス化ガスを熱利用する設備と、を有する廃棄物ガス化処理システム。 A gasification furnace that heats and gasifies waste having an ash melting point of 900 ° C. or less at 550 to 700 ° C., and high-temperature dust collection that removes gasification gas generated from the gasification furnace at least 350 ° C. or more A waste gasification processing system having equipment and equipment for heat-using gasified gas removed by the high-temperature dust collection equipment. 前記ガス化炉が、流動層炉または循環流動層炉であり、ボイラ構造を有する請求項1記載の廃棄物ガス化処理システム。 The waste gasification processing system according to claim 1, wherein the gasification furnace is a fluidized bed furnace or a circulating fluidized bed furnace and has a boiler structure. 前記ガス化炉が、水または蒸気を導入する設備を有する請求項1又は2記載の廃棄物ガス化処理システム。 The waste gasification processing system according to claim 1 or 2, wherein the gasification furnace has equipment for introducing water or steam. 前記高温集塵設備で除塵されたガス化ガス中のタールを除去するタール分解設備を有する請求項1〜3のいずれか1記載の廃棄物ガス化処理システム。 The waste gasification processing system according to any one of claims 1 to 3, further comprising a tar decomposition facility that removes tar in the gasification gas removed by the high-temperature dust collection facility. 含有する灰分の融点が900℃以下の廃棄物をガス化炉にて550〜700℃で加熱してガス化し、発生したガス化ガスを高温集塵設備にて少なくとも350℃以上で除塵し、この除塵されたガス化ガスを熱利用する廃棄物ガス化処理方法。 The waste having a melting point of ash content of 900 ° C. or less is gasified by heating at 550 to 700 ° C. in a gasification furnace, and the generated gasification gas is removed at least 350 ° C. or more with a high-temperature dust collecting facility. A waste gasification method using heat from dusted gasification gas. 前記ガス化炉では、空気比0.2〜0.5で廃棄物をガス化処理する請求項5の廃棄物ガス化処理方法。 The waste gasification method according to claim 5, wherein the gasification furnace gasifies the waste at an air ratio of 0.2 to 0.5. 前記ガス化炉でのガス化処理において、700℃以上に昇温するおそれがある場合、水または蒸気を導入して冷却する請求項6記載の廃棄物ガス化処理方法。 The waste gasification method according to claim 6, wherein, in the gasification treatment in the gasification furnace, when there is a risk of raising the temperature to 700 ° C. or higher, water or steam is introduced to cool the waste gasification treatment method. タール分解設備にて、前記高温集塵設備で除塵されたガス化ガス中のタールを除去する請求項6又は7記載の廃棄物ガス化処理方法。 The waste gasification method according to claim 6 or 7, wherein tar in the gasification gas removed by the high-temperature dust collection facility is removed by a tar decomposition facility.
JP2005191040A 2005-06-30 2005-06-30 Waste gasification treatment system and treatment method Active JP4614442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191040A JP4614442B2 (en) 2005-06-30 2005-06-30 Waste gasification treatment system and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191040A JP4614442B2 (en) 2005-06-30 2005-06-30 Waste gasification treatment system and treatment method

Publications (2)

Publication Number Publication Date
JP2007009045A true JP2007009045A (en) 2007-01-18
JP4614442B2 JP4614442B2 (en) 2011-01-19

Family

ID=37747955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191040A Active JP4614442B2 (en) 2005-06-30 2005-06-30 Waste gasification treatment system and treatment method

Country Status (1)

Country Link
JP (1) JP4614442B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174392A (en) * 2008-01-23 2009-08-06 Takuma Co Ltd Biomass gasified gas power generation system
AT504862B1 (en) * 2007-01-24 2012-04-15 Urbas Maschinenfabrik Gesellschaft M B H WOOD GASIFICATION SYSTEM
CN105524665A (en) * 2016-01-26 2016-04-27 成都易态科技有限公司 High-temperature gas filtration method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735322A (en) * 1993-07-19 1995-02-07 Kawasaki Heavy Ind Ltd Method and apparatus for incinerating chlorine-containing refuse
JPH1121564A (en) * 1997-06-30 1999-01-26 N K K Plant Kensetsu Kk Method of decomposition treatment for tar
JP2002206092A (en) * 2001-01-11 2002-07-26 Kawasaki Heavy Ind Ltd Method and device for recovering energy from gas obtained by refuse gasification
JP2004010673A (en) * 2002-06-04 2004-01-15 Ngk Insulators Ltd Carbonization system
JP2004149556A (en) * 2002-10-28 2004-05-27 Nishinippon Environmental Energy Co Inc Method for gasifying biomass and gasifying apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735322A (en) * 1993-07-19 1995-02-07 Kawasaki Heavy Ind Ltd Method and apparatus for incinerating chlorine-containing refuse
JPH1121564A (en) * 1997-06-30 1999-01-26 N K K Plant Kensetsu Kk Method of decomposition treatment for tar
JP2002206092A (en) * 2001-01-11 2002-07-26 Kawasaki Heavy Ind Ltd Method and device for recovering energy from gas obtained by refuse gasification
JP2004010673A (en) * 2002-06-04 2004-01-15 Ngk Insulators Ltd Carbonization system
JP2004149556A (en) * 2002-10-28 2004-05-27 Nishinippon Environmental Energy Co Inc Method for gasifying biomass and gasifying apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504862B1 (en) * 2007-01-24 2012-04-15 Urbas Maschinenfabrik Gesellschaft M B H WOOD GASIFICATION SYSTEM
JP2009174392A (en) * 2008-01-23 2009-08-06 Takuma Co Ltd Biomass gasified gas power generation system
CN105524665A (en) * 2016-01-26 2016-04-27 成都易态科技有限公司 High-temperature gas filtration method and system
CN105524665B (en) * 2016-01-26 2018-10-26 成都易态科技有限公司 Coal gas of high temperature filter method, system

Also Published As

Publication number Publication date
JP4614442B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US20060137579A1 (en) Gasification system
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
JP4614442B2 (en) Waste gasification treatment system and treatment method
JP2006207947A (en) Combustion method and device for wet waste
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP4156483B2 (en) Gasification and melting method of sludge
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP3048968B2 (en) Waste treatment method using waste plastic gasification and ash melting
JP5512200B2 (en) Method for adjusting high-efficiency carbonization furnace and gasifying agent
JPH08110021A (en) Produced gas processing apparatus for waste melting furnace
JP2001254084A (en) Waste disposal system
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JP4089079B2 (en) Waste treatment method and waste treatment system
JPH0361085B2 (en)
JP2004347274A (en) Waste treatment device
JPH11118124A (en) Fluidized gassifying/melting apparatus, and method thereof
JP2004084965A (en) Combustion exhaust gas processing equipment
JPH1129779A (en) Generation of electricity utilizing gasification of waste plastic and ash melting
JP6962607B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method for waste incinerators
JP2018200150A (en) Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
JP2005247930A (en) Gasification system, power generation system, gasification method and power generation method
JPH11325425A (en) Method and apparatus for treating waste material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4614442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250