JPH0361085B2 - - Google Patents

Info

Publication number
JPH0361085B2
JPH0361085B2 JP58203659A JP20365983A JPH0361085B2 JP H0361085 B2 JPH0361085 B2 JP H0361085B2 JP 58203659 A JP58203659 A JP 58203659A JP 20365983 A JP20365983 A JP 20365983A JP H0361085 B2 JPH0361085 B2 JP H0361085B2
Authority
JP
Japan
Prior art keywords
fluidized bed
waste
combustion
section
secondary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58203659A
Other languages
Japanese (ja)
Other versions
JPS6096823A (en
Inventor
Toshiki Furue
Yoshihide Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP20365983A priority Critical patent/JPS6096823A/en
Publication of JPS6096823A publication Critical patent/JPS6096823A/en
Publication of JPH0361085B2 publication Critical patent/JPH0361085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は燃焼不適ごみの処理方法に係り、特に
公害原因物質の排出抑制に好適な処理方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating waste unsuitable for combustion, and particularly to a method suitable for suppressing the emission of pollution-causing substances.

最近、都市ごみの処理に際しては、ストーカ炉
で燃焼処理が可能なごみと、プラスチツク等の高
発熱量で腐触性の物質を含む燃焼不適ごみが互い
に分別して回収されている。この燃焼不適ごみは
適当な処理方法がないため、現在はほとんど埋立
処分されているが、埋立地の不足等から早急な対
策が望まれている。このような目的に沿う処理方
法として燃焼不適ごみを石灰石とともに1200℃程
度の高温で燃焼し、公害原因物質を生成スラグ中
にとじ込めようとする溶融炉方式や流動床焼却方
式のものが提案されているが、これらの方法はい
ずれも処理温度が800℃〜1200℃と高温であるた
め、NOxの発生や重金属の大気への揮散が避け
られない上、助熱料を要するので処理コストが高
くなる等の欠点があり、実用上必ずしも満足でき
るものではない。しかしながら、これらの方法の
内でも特に後者の流動床焼却方式は、改良始第で
大きな可能性を有している。
Recently, in the treatment of municipal waste, waste that can be burned in a stoker furnace and waste that cannot be burnt and that contains highly calorific and corrosive substances such as plastics are separated and collected. Currently, most of this uncombustible waste is disposed of in landfills because there is no suitable treatment method, but urgent measures are desired due to the lack of landfill space. As treatment methods that meet these objectives, the melting furnace method and fluidized bed incineration method have been proposed, in which uncombustible waste is burned together with limestone at a high temperature of around 1200°C, and pollution-causing substances are trapped in the generated slag. However, all of these methods require high processing temperatures of 800°C to 1200°C, which unavoidably generates NOx and volatilizes heavy metals into the atmosphere.They also require heat additives, making the processing costs high. However, it is not always satisfactory in practical use. However, among these methods, the latter, especially the fluidized bed incineration method, has great potential once it is improved.

従来のこの種の流動床焼却方式の装置を第1図
に示すが、この装置においては、燃焼不適ごみ1
は、先ず供給機2から流動焼却炉3内へ投入され
る。この流動焼却炉3の下部には砂等の流動媒体
が充填されており、空気吹込み管5から供給され
る空気の作用により流動層4を形成している。上
記により投入された燃焼不適ごみ1は、この流動
層4中で空気吹込み管5から導入される空気と接
触して燃焼し、焼却処理される。この場合、流動
層4の温度は一般に800℃以上の高温となるため、
NOxが発生する上ごみ中の重金属が生成ガス中
へ揮散する。このNOxや重金属を含む生成ガス
は、次いで空気予熱機12、廃熱回収ボイラ4、
電気集塵機等の集塵装置16を順次経て熱回収お
よび除塵されたのち、煙突19から大気中へ排出
されるが、この排ガス21中には依然として
NOxや重金属が含まれてくるため、これらが環
境保全上問題となつている。
A conventional fluidized bed incineration system of this type is shown in Figure 1.
is first introduced into the fluidized incinerator 3 from the feeder 2. The lower part of this fluidized incinerator 3 is filled with a fluidized medium such as sand, and a fluidized bed 4 is formed by the action of air supplied from an air blowing pipe 5. The incombustible waste 1 thrown in as described above comes into contact with the air introduced from the air blowing pipe 5 in this fluidized bed 4, and is combusted and incinerated. In this case, the temperature of the fluidized bed 4 is generally higher than 800°C, so
Heavy metals in the waste that generate NOx volatilize into the generated gas. This produced gas containing NOx and heavy metals is then transferred to the air preheater 12, the waste heat recovery boiler 4,
After successively passing through a dust collector 16 such as an electric dust collector to recover heat and remove dust, the exhaust gas 21 is discharged into the atmosphere from the chimney 19.
Since it contains NOx and heavy metals, these have become a problem in terms of environmental conservation.

また、燃焼不適ごみ中には一般にポリ塩化ビニ
ル等の塩素を含む物質も多く含まれているので、
上記燃焼時にCl2やHClが発生し、後続の空気予
熱機12や廃熱回収ボイラ4等で腐触トラブルを
生じ易い。この対策として、空塔部10の上部に
設けられたライン11からCaCO3やCa(OH)2
の脱塩剤を粉体あるいは液状にしたものを雰務、
供給して脱塩する方法がとられているが、従来は
その供給方法に問題があり、脱塩効果は必ずしも
充分ではない。
In addition, uncombustible waste generally contains many substances containing chlorine, such as polyvinyl chloride.
During the above combustion, Cl 2 and HCl are generated, which tends to cause corrosion problems in the subsequent air preheater 12, waste heat recovery boiler 4, etc. As a countermeasure against this, powder or liquid desalting agents such as CaCO 3 and Ca(OH) 2 are pumped into the atmosphere through a line 11 installed at the top of the empty column 10.
A method of supplying and desalting has been used, but conventionally there have been problems with the supply method, and the desalting effect is not necessarily sufficient.

本発明の目的は、上記した従来技術の欠点をな
くし、排ガス中のNOxや重金属を増加させるこ
となく、燃焼不適ごみを処理することができる流
動床焼却方式の処理方法を提供することにある。
An object of the present invention is to provide a fluidized bed incineration method that eliminates the drawbacks of the prior art described above and can treat uncombustible waste without increasing NOx or heavy metals in exhaust gas.

上記目的を達成するため、本発明は、流動層焼
却部とその後流に空塔部を備えた流動焼却炉を用
いてプラスチツク等の高発熱性物質および揮発性
重金属類を含む燃焼不適ごみを焼却処理するに当
り、上記流動層焼却部での焼却処理を400〜600℃
の比較的低温下で部分酸化方式により行い、次い
で該処理で発生する分解ガスを空気の供給下に
700〜750℃で二次燃焼することを特徴とする。
In order to achieve the above object, the present invention uses a fluidized bed incinerator equipped with a fluidized bed incineration section and an empty tower section downstream thereof to incinerate unsuitable waste that contains high heat generating substances such as plastics and volatile heavy metals. During treatment, the incineration process in the fluidized bed incineration section is performed at 400 to 600℃.
The process is carried out using a partial oxidation method at a relatively low temperature of
It is characterized by secondary combustion at 700-750℃.

上記の構成とすることにより、流動層焼却部の
温度は400〜600℃と比較的低温であるためNOx
の発生や重金属の揮散が抑制される。またこのよ
うにして得られるNOxおよび重金属含量の低い
分解ガスが次に比較的低温下で二次燃焼されるの
で、可燃分の燃焼をNOxおよび重金属の増加を
ともなうことなく可燃分を良好に燃焼させること
ができる。
With the above configuration, the temperature of the fluidized bed incineration section is relatively low at 400 to 600℃, so NOx
generation and volatilization of heavy metals are suppressed. In addition, the cracked gas with low NOx and heavy metal content obtained in this way is then subjected to secondary combustion at a relatively low temperature. can be done.

本発明において、流動層焼却部の温度を400〜
600℃に保つには、例えば流動層への吹込み空気
量を理論燃焼空気量よりも少くすればよい。ま
た、二次燃焼部の温度を700〜750℃に保つには、
例えば該二次燃焼部に水冷壁を設け、これにより
除熱を行えばよい。なお、本発明においても、燃
焼時に発生するCl2やHClを除去するため、焼却
炉内へ脱塩剤を供給することが好ましい。この場
合、該脱塩剤の供給位置は、二次燃焼部の上流側
(二次空気供給位置より上流側)とすることが望
ましい。
In the present invention, the temperature of the fluidized bed incineration section is set to 400-
To maintain the temperature at 600°C, for example, the amount of air blown into the fluidized bed may be made smaller than the theoretical amount of combustion air. In addition, to maintain the temperature of the secondary combustion section at 700 to 750℃,
For example, a water-cooled wall may be provided in the secondary combustion section to remove heat. In the present invention, it is also preferable to supply a desalting agent into the incinerator in order to remove Cl 2 and HCl generated during combustion. In this case, it is desirable that the desalting agent be supplied upstream of the secondary combustion section (upstream of the secondary air supply position).

以下、図面に示す実施例により本発明をさらに
詳しく説明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第2図は、本発明の実施例を示す流動床焼却方
式の装置の概念図である。この装置は、第1図の
同一符号とその説明が同様に参照される部分と、
流動化空気ライン13から分岐したのち流動焼却
炉3の上部を形成する空塔部(本実施例では二次
燃焼部でもある)10に連結された二次空気ライ
ン20と、該空塔部10の内周面に沿つて設けら
れた水冷壁23と、上記二次空気ライン20より
下方(上流側)において空塔部に設けられた粉状
脱塩剤の供給ライン11Aとから主に構成され
る。
FIG. 2 is a conceptual diagram of a fluidized bed incineration system showing an embodiment of the present invention. This device includes parts to which the same reference numerals and descriptions in FIG.
A secondary air line 20 that branches off from the fluidized air line 13 and is connected to the empty tower section (which is also the secondary combustion section in this embodiment) 10 forming the upper part of the fluidized incinerator 3, and the empty tower section 10. It mainly consists of a water cooling wall 23 provided along the inner circumferential surface of the secondary air line 20, and a powder desalination agent supply line 11A provided in the empty column below (on the upstream side) the secondary air line 20. Ru.

なお、図中、14は水冷壁23から送られる加
熱水を受け、これからスチーム15を回収するド
ラムであり、また、図中には第1図に示す廃熱回
収ボイラ14は省略されている。
In the figure, numeral 14 is a drum that receives heated water sent from the water cooling wall 23 and recovers steam 15 from it, and the waste heat recovery boiler 14 shown in FIG. 1 is omitted in the figure.

このような構成の装置において、第1図の場合
と同様にして燃焼不適ごみ1が供給機2を経たの
ち流動焼却炉3内へ投入され、次いで流動層4内
で空気吹込み管5から導入される、理論燃焼空気
量より少ない空気と接触し、400〜600℃の温度下
で部分燃焼方式により熱分解される。この熱分解
により、CO、H2およびCH4等の炭化水素からな
る熱分解ガス22と、燃え残りの炭素分からなる
チヤーが生成する。チヤーの1部は流動層4内で
粉砕作用を受け、微粉となつて熱分解ガス22に
同伴されながら空塔部10の方向へ飛び上がる。
微粉化が進まない残部のチヤーは流動層内に滞留
するが、空気吹込み管5から吹込まれる空気によ
つて燃焼される上流動層4の粉砕作用を受けるの
で、最終的には微細化される。
In an apparatus having such a configuration, in the same manner as in the case shown in FIG. It is thermally decomposed by partial combustion at a temperature of 400 to 600 degrees Celsius in contact with air that is less than the theoretical amount of combustion air. This thermal decomposition produces a thermal decomposition gas 22 consisting of hydrocarbons such as CO, H 2 and CH 4 and a char consisting of unburned carbon. A portion of the chia is subjected to a crushing action in the fluidized bed 4, becomes a fine powder, and flies up toward the empty tower section 10 while being entrained in the pyrolysis gas 22.
The remaining particles that have not been pulverized remain in the fluidized bed, but are subjected to the pulverizing action of the upper fluidized bed 4 where they are burned by the air blown in from the air blowing pipe 5, so that they are eventually pulverized. be done.

上記により流動層4から空塔部10の方向へ上
昇した熱分解ガスと微粉チヤーはライン11Aを
経て供給されるCaCO3等の粉状脱塩剤と接触し、
該ガス中のHClは下記(1)式の反応下に脱塩され
る。
The pyrolysis gas and fine powder chires rising from the fluidized bed 4 toward the empty column 10 as described above come into contact with a powder desalting agent such as CaCO 3 supplied through the line 11A.
HCl in the gas is desalted through the reaction of formula (1) below.

2HCl+CaCO3→CaCl2+CO2+H2O …(1) 上記反応にともなう脱塩効率は、500℃におい
て大略80%に達することが別途の実験により確か
められている。
2HCl + CaCO 3 →CaCl 2 +CO 2 +H 2 O (1) It has been confirmed through a separate experiment that the desalination efficiency accompanying the above reaction reaches approximately 80% at 500°C.

上記の脱塩処理を受けた熱分解ガスは、次いで
ライン20を経て供給される2次空気の存在下に
2次燃焼される。その際、これを除熱なしで行う
と、空塔部10の温度は800℃以上の高温となり、
NOxの発生および重金属の揮散が顕著となるの
で、これを抑制するため空塔部の内周に設けられ
た水冷壁23により除熱が行われる。この除熱に
より、2次燃焼に必要な空気を投入して、完全燃
焼を行なわせても、空塔部10をNOxの発生お
よび重金属の揮散を抑制するに必要な700〜750℃
の低温に保つことができる。なお、この2次燃焼
時には、熱分解ガスに同伴される微粉状のチヤー
も燃焼され、最終的には灰分となる。
The pyrolysis gas that has undergone the above desalination treatment is then subjected to secondary combustion in the presence of secondary air supplied via line 20. At this time, if this is done without heat removal, the temperature of the empty column 10 will be as high as 800°C or more,
Since the generation of NOx and the volatilization of heavy metals become significant, heat is removed by a water-cooled wall 23 provided on the inner periphery of the empty column in order to suppress this. By this heat removal, even if the air necessary for secondary combustion is injected and complete combustion is carried out, the empty column 10 is heated to a temperature of 700 to 750°C, which is necessary to suppress the generation of NOx and the volatilization of heavy metals.
Can be kept at low temperatures. It should be noted that during this secondary combustion, the fine powdered chia entrained in the pyrolysis gas is also burned, and finally becomes ash.

本発明の実施例の効果を第3図および第4図に
より説明する。すなわち、第3図は、燃焼不適ご
みを本発明範囲内の500℃で熱分解した場合に得
られる重金属の移動分布を示すものであるが、こ
の図から、各重金属ともに80%以上がチヤー(白
抜き部参照)に含まれ、分解ガス(斜線部参照)
へは、10%〜20%しか揮散しないことがわかる。
また、第4図は、温度を変化させてチヤーを焼却
した場合に得られる重金属の揮散率を示すもので
あるが、この図から、重金属の揮散は焼却温度が
700〜800℃の範囲で急激に増加するが、本発明範
囲内の750℃以下では低く抑えられることがわか
る。なお、前述の(1)式で未脱塩となつたHClや
Cl2は、空塔部10へ達したのち下記(2)〜(5)の反
応により完全に脱塩される。
The effects of the embodiment of the present invention will be explained with reference to FIGS. 3 and 4. In other words, Figure 3 shows the migration distribution of heavy metals obtained when combustible waste is thermally decomposed at 500°C, which is within the range of the present invention. (see the white area) and decomposed gas (see the shaded area)
It can be seen that only 10% to 20% of the gas evaporates.
In addition, Figure 4 shows the volatilization rate of heavy metals obtained when the char is incinerated at varying temperatures.
It can be seen that the temperature increases rapidly in the range of 700 to 800°C, but can be suppressed below 750°C, which is within the range of the present invention. In addition, in the above equation (1), undesalted HCl and
After Cl 2 reaches the empty column 10, it is completely desalted by the reactions (2) to (5) below.

CaCO3→CaO+CO2 …(2) CaO+2HCl→CaCl2+H2O …(3) CaO+Cl2→CaCl2+1/2O …(4) H2+1/2O2→H2O …(5) 上記の二次燃焼で発生した排ガスは、流動焼却
炉3の炉頂から抜出され、以後順次空気予熱機1
2、脱塵装置16を通つたのち煙突21から大気
中へ排出される。なお、上記空気予熱器12で
は、ライン13中を送られる流動化空気との熱交
換が行われ、また、脱塵装置16では、排ガス中
の主としてCaCl2からなる灰分18の除去が行わ
れる。この除去灰分は、一般にセメント固化等の
処置をされたのち埋立廃棄される。一方、流動層
4内に溜つた燃焼灰や脱塩処理で発生した塩類等
の不燃物は、燃焼不適ごみ中に持ち込まれたガラ
ス片、瓦れきおよび金属類等の不燃物とともに流
動焼却炉3の下部に設けられた媒体抜出管6を経
て抜出され、次いでふるい機等の分離機7で媒体
と分離される。該分離後、媒体はライン8を経て
流動層4へ循環返送され、不燃物9は系外へ抜出
される。この際、流動層の温度は一般に500℃と
比較的低温であるため、上記循環系の機器寿命等
に有利となる上、ヒートロスを低く押えることが
できるのでスチーム回収量の向上が可能となる。
CaCO 3 →CaO+CO 2 …(2) CaO+2HCl→CaCl 2 +H 2 O …(3) CaO+Cl 2 →CaCl 2 +1/2O …(4) H 2 +1/2O 2 →H 2 O …(5) The above secondary The exhaust gas generated during combustion is extracted from the top of the fluidized incinerator 3, and then sequentially passed through the air preheater 1.
2. After passing through the dust removal device 16, it is discharged into the atmosphere from the chimney 21. The air preheater 12 exchanges heat with the fluidized air sent through the line 13, and the dust removal device 16 removes ash 18, which is mainly composed of CaCl2 , from the exhaust gas. This removed ash is generally disposed of in a landfill after being treated with cement, etc. On the other hand, incombustibles such as combustion ash accumulated in the fluidized bed 4 and salts generated during desalination treatment are transferred to the fluidized bed incinerator 4 along with incombustibles such as glass pieces, rubble, and metals brought into the uncombustible waste. The liquid is extracted through a medium extraction pipe 6 provided at the bottom of the medium, and then separated from the medium by a separator 7 such as a sieve. After the separation, the medium is circulated back to the fluidized bed 4 via line 8, and the incombustibles 9 are taken out of the system. At this time, the temperature of the fluidized bed is generally a relatively low temperature of 500°C, which is advantageous for the life of the equipment of the circulation system, etc., and it is possible to suppress heat loss to a low level, making it possible to improve the amount of steam recovered.

次に、第5図は、本発明の他の実施例に係る流
動床焼却方式の装置を示すもので、このものは、
空塔内の二次燃焼部に替えてその後流に独立の2
次燃焼炉26を設けることと、流動化空気の吹込
み管に替えて分散板25を設けること以外は第2
図に示す装置と同様な構成である。なお、この場
合も、脱塩剤の供給ライン11は、本発明の主旨
に従い二次燃焼炉の上流側である空塔部10に設
けられる。このような構成の装置としても本発明
を実施することも可能であり、第2図に示す実施
例と同様な効果が達成される。
Next, FIG. 5 shows a fluidized bed incineration system according to another embodiment of the present invention, which includes:
In place of the secondary combustion section in the sky tower, an independent 2
The second combustion furnace 26 is provided, and a dispersion plate 25 is provided in place of the fluidizing air blowing pipe.
The configuration is similar to the device shown in the figure. In this case as well, the desalting agent supply line 11 is provided in the empty tower section 10 on the upstream side of the secondary combustion furnace, in accordance with the gist of the present invention. It is also possible to implement the present invention with an apparatus having such a configuration, and the same effects as the embodiment shown in FIG. 2 can be achieved.

以上、本発明によれば、流動焼却炉を用いて燃
焼不適ごみを焼却処理するに当り、流動層焼却部
での処理を400〜600℃の比較的低温下で部分酸化
方式により行い、次いで該処理で発生する分解ガ
スを空気の供給下に700〜750℃で二次燃焼するこ
とにより、流動層焼却部からはNOxおよび重金
属含量の低い分解ガスが得られ、次いでこの分解
ガスが比較的低温下で二次燃焼されることとなる
ので、これらの相乗効果によりNOxおよび重金
属の増加をともなうことなく燃焼不適ごみを完全
燃焼することができる。また、副次的な効果とし
て、燃焼用空気(流動化空気と二次空気を合計し
たもの)の使用量が従来法より一般に15〜30%少
くてよいので、これに対応して電力等のユーテイ
リテイを削減することができ、これにより処理コ
ストの低減が可能となる。
As described above, according to the present invention, when incinerating uncombustible waste using a fluidized bed incinerator, processing in the fluidized bed incinerator is performed by a partial oxidation method at a relatively low temperature of 400 to 600°C, and then By performing secondary combustion of the cracked gas generated during the process at 700-750°C while supplying air, cracked gas with low NOx and heavy metal content is obtained from the fluidized bed incineration section, and this cracked gas is then heated to a relatively low temperature. Since the secondary combustion occurs below, the synergistic effect of these makes it possible to completely burn the unsuitable waste without increasing NOx and heavy metals. In addition, as a secondary effect, the amount of combustion air (the sum of fluidized air and secondary air) used is generally 15 to 30% less than conventional methods, so there is a corresponding reduction in electricity consumption, etc. Utility can be reduced, thereby making it possible to reduce processing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の流動床焼却式ごみ処理装置の
系統図、第2図は、本発明の実施例に係る流動床
焼却式ごみ処理装置の系統図、第3図および第4
図は、本発明の実施例の効果を説明するために示
す、それぞれ燃焼不適ごみ分解時における重金属
分布率を示す図およびチヤー焼却時における重金
属揮散率を示す図、第5図は、本発明の他の実施
例に係る流動床焼却式ごみ処理装置の系統図であ
る。 1……燃焼不適ごみ、3……流動焼却炉、4…
…流動層、5……空気吹込み管、10……空塔
部、11,11A……脱塩剤供給ライン、12…
…空気予熱器、16……廃熱回収ボイラ、18…
…灰分、20……二次空気ライン、22……熱分
解ガス、23……水冷壁、25……分散板、26
……二次燃焼炉。
FIG. 1 is a system diagram of a conventional fluidized bed incineration type waste treatment device, FIG. 2 is a system diagram of a fluidized bed incineration type garbage treatment device according to an embodiment of the present invention, and FIGS.
The figures are a diagram showing the heavy metal distribution rate during the decomposition of uncombustible waste and a diagram showing the heavy metal volatilization rate during the chire incineration, respectively, which are shown to explain the effects of the embodiment of the present invention. FIG. 3 is a system diagram of a fluidized bed incineration type garbage processing apparatus according to another embodiment. 1... Garbage unsuitable for combustion, 3... Fluidized incinerator, 4...
... Fluidized bed, 5 ... Air blowing pipe, 10 ... Sky column section, 11, 11A ... Desalting agent supply line, 12 ...
...Air preheater, 16...Waste heat recovery boiler, 18...
... Ash content, 20 ... Secondary air line, 22 ... Pyrolysis gas, 23 ... Water cooling wall, 25 ... Dispersion plate, 26
...Secondary combustion furnace.

Claims (1)

【特許請求の範囲】 1 流動層焼却部とその後流に空塔部を備えた流
動焼却炉を用いてプラスチツク等の高発熱性物質
および揮発性重金属類を含む燃焼不適ごみを焼却
処理するに当たり、上記流動層焼却部での焼却処
理を400〜600℃の比較的低温下で部分酸化方式に
より行い、次いで該処理で発生する分解ガスを空
気の供給下に700〜750℃で2次燃焼することを特
徴とする燃焼不適ごみの処理方法。 2 特許請求の範囲第1項において、上記分解ガ
スの2次燃焼部上流側に粉状の脱塩剤を供給する
ことを特徴とする燃焼不適ごみの処理方法。 3 特許請求の範囲第1項において、上記分解ガ
スの2次燃焼部に水冷壁を設け、この除熱作用に
より燃焼部の温度を上記700〜750℃の範囲に抑制
することを特徴とする燃焼不適ごみの処理方法。
[Claims] 1. When incinerating uncombustible waste containing highly calorific substances such as plastics and volatile heavy metals using a fluidized bed incinerator equipped with a fluidized bed incinerator and a void column downstream thereof, The incineration process in the fluidized bed incineration section is performed using a partial oxidation method at a relatively low temperature of 400 to 600°C, and then the cracked gas generated in the process is subjected to secondary combustion at 700 to 750°C while supplying air. A method for processing unsuitable waste for combustion, characterized by: 2. The method for treating uncombustible waste according to claim 1, characterized in that a powdered desalination agent is supplied upstream of the secondary combustion section of the cracked gas. 3. The combustion according to claim 1, characterized in that a water-cooled wall is provided in the secondary combustion section of the cracked gas, and the temperature of the combustion section is suppressed to the above range of 700 to 750°C by the heat removal action. How to dispose of unsuitable garbage.
JP20365983A 1983-11-01 1983-11-01 Disposal of burning unsuitable refuse Granted JPS6096823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20365983A JPS6096823A (en) 1983-11-01 1983-11-01 Disposal of burning unsuitable refuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20365983A JPS6096823A (en) 1983-11-01 1983-11-01 Disposal of burning unsuitable refuse

Publications (2)

Publication Number Publication Date
JPS6096823A JPS6096823A (en) 1985-05-30
JPH0361085B2 true JPH0361085B2 (en) 1991-09-18

Family

ID=16477718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20365983A Granted JPS6096823A (en) 1983-11-01 1983-11-01 Disposal of burning unsuitable refuse

Country Status (1)

Country Link
JP (1) JPS6096823A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332210A (en) * 1986-07-25 1988-02-10 Fuji Denki Sousetsu Kk Waste combustion system
JPS6332208A (en) * 1986-07-25 1988-02-10 Fuji Denki Sousetsu Kk Method for neutralizing hydrogen chloride of exhaust gas in waste combustion system
EP0411133B1 (en) * 1988-10-20 1994-08-24 Ebara Corporation Combustion apparatus and its combustion control method
JP2769964B2 (en) * 1993-07-19 1998-06-25 川崎重工業株式会社 Incineration method and apparatus for chlorine-containing waste
JP2769966B2 (en) * 1993-08-31 1998-06-25 川崎重工業株式会社 2-furnace type fluidized bed incinerator
JP6701577B2 (en) * 2016-12-27 2020-05-27 Jfeエンジニアリング株式会社 Waste incineration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506677A (en) * 1973-05-21 1975-01-23
JPS54137875A (en) * 1978-04-19 1979-10-25 Babcock Hitachi Kk Incineration of sludge
JPS5636933B2 (en) * 1978-04-26 1981-08-27
JPS5716711A (en) * 1980-07-04 1982-01-28 Nippon Zeon Co Ltd Method of eliminating harmful gas in a fluidized bed incineration furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319706Y2 (en) * 1979-08-28 1988-06-01

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506677A (en) * 1973-05-21 1975-01-23
JPS54137875A (en) * 1978-04-19 1979-10-25 Babcock Hitachi Kk Incineration of sludge
JPS5636933B2 (en) * 1978-04-26 1981-08-27
JPS5716711A (en) * 1980-07-04 1982-01-28 Nippon Zeon Co Ltd Method of eliminating harmful gas in a fluidized bed incineration furnace

Also Published As

Publication number Publication date
JPS6096823A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
EP0767343B1 (en) Heat recovery system and power generation system
JP3964043B2 (en) Waste disposal method
JPH0361085B2 (en)
JP2002349834A (en) Melting method and melting disposing system for coal combustion ash
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
JP3048968B2 (en) Waste treatment method using waste plastic gasification and ash melting
JPH11159719A (en) Incinerating method of waste
JP2977784B2 (en) Power generation method using waste plastic gasification and ash melting
JPS5844112B2 (en) Deep fluidized bed pyrolysis equipment
JP3074617B2 (en) Superheated steam generation method and device by refuse incineration
JP2740644B2 (en) Ash melting apparatus and method
JP2005195228A (en) Waste material melting treatment system
JP2007009045A (en) Treatment system for gasifying waste and treatment method therefor
JPH09112863A (en) Power generating apparatus combined with incinerator
JP3054595B2 (en) Pyrolysis melting gasification of waste
JPH10192820A (en) Treatment of ash in waste disposal by gasification fusion
JP2989351B2 (en) Waste incineration method
JP4089080B2 (en) Waste treatment method and waste treatment system
JPH10323647A (en) Apparatus for thermally decomposing and gasifying and melting waste and method for thermally decomposing and gasifying and melting treatment
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP2000074335A (en) Method and apparatus for treating waste
JPH11287413A (en) Treating method for pyrolysis gas in general waste treating and treating method for general waste, which is provided with treating method for pyrolysis gas
JPH11201434A (en) Thermal decomposition melting combustion device of waste