JP2000074335A - Method and apparatus for treating waste - Google Patents

Method and apparatus for treating waste

Info

Publication number
JP2000074335A
JP2000074335A JP24282598A JP24282598A JP2000074335A JP 2000074335 A JP2000074335 A JP 2000074335A JP 24282598 A JP24282598 A JP 24282598A JP 24282598 A JP24282598 A JP 24282598A JP 2000074335 A JP2000074335 A JP 2000074335A
Authority
JP
Japan
Prior art keywords
char
furnace
gas
melting furnace
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24282598A
Other languages
Japanese (ja)
Inventor
Hideo Nishimura
秀生 西村
Takafumi Kawamura
隆文 河村
Hachiro Harajiri
八郎 原尻
Morihiro Osada
守弘 長田
So Ono
創 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24282598A priority Critical patent/JP2000074335A/en
Publication of JP2000074335A publication Critical patent/JP2000074335A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To scarcely elute a heavy metal by melting an incombustible material and ash content to reduce in volume and renewing resources, in the case of treating waste containing combustible material and incombustible material, heat recovering, enhancing a generating efficiency, and volume reducing leaping flame containing the heavy metal. SOLUTION: Waste is treated in a shaft kiln type direct melting furnace 1 to generate thermally decomposed char and thermally decomposed gas, an incombustible material is melted, the char is partly or completely burned by oxygen, oxygen-enriched air or air and gasified in a char melting furnace 3 provided at a rear stage of the direct melting furnace, and ash content in the char is melted. A baking furnace 4 is provided together with the char melting furnace, completely burned with combustible gas from the melting furnace, sensible heat of the combustion exhaust gas is recovered by a boiler, and sent to a generating means. Leaping flames from the char melting furnace and the baking furnace are returned to the furnace 3 as needed, and melted to slag. Waste plastic is diffused to at least one of the direct melting furnace, the char melting furnace and the baking furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ゴミや産業廃
棄物など可燃物及び不燃物から成る廃棄物の処理方法及
び処理設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a facility for treating refuse such as municipal waste and industrial waste, which are composed of combustible and non-combustible substances.

【0002】[0002]

【従来の技術】我が国の廃棄物処理方法は、従来、スト
ーカ式処理炉や流動床処理炉により800℃〜900℃
で処理した後、処理灰を埋立て処分する方法が用いられ
てきたが、近年、全国的な埋立地の窮迫を背景として、
処理灰の減容化及び資源化が求められている。そこで、
既存の処理炉の後段にプラズマアーク炉やバーナー燃焼
炉等を設け、発生した処理灰を溶融し、スラグ化する処
理灰処理方法が開発されているが、これらの方法は、い
ずれも電力、石油等の外部エネルギーを多量に必要とす
る欠点がある。
2. Description of the Related Art Conventionally, waste treatment methods in Japan have been carried out at 800 ° C. to 900 ° C. using a stoker type treatment furnace or a fluidized bed treatment furnace.
After the treatment, the method of landfilling treated ash has been used.
There is a demand for reducing the volume and recycling of treated ash. Therefore,
Plasma arc furnaces and burner combustion furnaces have been installed at the subsequent stage of the existing processing furnaces, and the processing ash processing methods that melt the generated processing ash and turn it into slag have been developed. There is a disadvantage that a large amount of external energy is required.

【0003】この欠点を解決した廃棄物処理方法とし
て、例えば「環境施設」No.65、8ぺ一ジ6行目に
記載されているように、廃棄物を熱分解炉にて400℃
〜600℃程度の低温で熱分解して廃棄物中の有機物を
熱分解チャーと熱分解ガスにし、空缶等の不燃物を分離
装置で分離した後、熱分解チャーおよび熱分解ガスを溶
融炉にて空気を用いて1300℃〜1400℃程度の高
温で完全燃焼して熱分解チャーに含まれる灰分を溶融
し、溶融した灰分は排ガスと分離後、冷却、固化して水
砕状のスラグとするガス化溶融方式が提案されている。
ガス化溶融方式は、熱分解チャーや熱分解ガス中に含ま
れる炭素分を燃料として自己熱で灰分を溶融するため、
外部エネルギー投入を大幅に削減できる。熱分解方法と
して、流動層式やキルン式が提案されている。さらに、
廃棄物をエネルギー資源として有効利用するため、廃棄
物発電が導入されつつあるが、通常、高温の燃焼排ガス
をボイラで蒸気回収し、回収した蒸気を蒸気タービンに
供給して電力を発生する蒸気タービン発電方式が採用さ
れている。
[0003] As a waste disposal method that solves this drawback, for example, “Environmental Facility” No. The waste is placed in a pyrolysis furnace at 400 ° C.
Pyrolyze at a low temperature of about 600 ° C to convert organic matter in waste into pyrolysis char and pyrolysis gas. Separate incombustibles such as empty cans with a separation device. Completely combusts at a high temperature of about 1300 ° C to 1400 ° C using air to melt the ash contained in the pyrolysis char. The molten ash is separated from the exhaust gas, cooled and solidified to form granulated slag. Gasification and melting systems have been proposed.
The gasification melting method uses ash contained in pyrolysis char or pyrolysis gas as fuel to melt ash by self-heating.
External energy input can be significantly reduced. Fluid bed and kiln systems have been proposed as thermal decomposition methods. further,
In order to effectively use waste as an energy resource, waste power generation is being introduced.However, a steam turbine that normally collects high-temperature combustion exhaust gas with a boiler and supplies the collected steam to a steam turbine to generate electric power A power generation method is adopted.

【0004】また、ガス化溶融方式の改良型として、例
えば、「月刊地球環境」1997年5月号、43べ一
ジ、30行目に記載されているように、熱分解炉にてゴ
ミ中の塩素分をチヤー中に固定して熱分解ガス中のHC
l濃度を低下させ、熱分解炉の後段に、熱分解チャーを
空気にて完全燃焼して灰分を溶融する溶融炉と、熱分解
ガスを空気にて完全燃焼する燃焼炉をそれぞれ設け、発
熱量の安定したチャーのみを溶融炉に導入して溶融炉の
安定操業を図ると共に、過熱蒸気を主にHClの少ない
燃焼炉排ガスから得ることによりボイラ腐食の緩和を狙
った溶融炉−燃焼炉分離型のガス化溶融方式も提案され
ている。
Further, as an improved type of the gasification melting method, for example, as described in “Monthly Global Environment”, May 1997, page 43, line 30, trash in a pyrolysis furnace. Of chlorine in pyrolysis gas by fixing chlorine
In the latter stage of the pyrolysis furnace, a melting furnace that completely burns the pyrolysis char with air to melt the ash and a combustion furnace that completely burns the pyrolysis gas with air are provided. Furnace-separated type with the aim of mitigating boiler corrosion by introducing only stable char into the melting furnace to ensure stable operation of the melting furnace and to obtain superheated steam mainly from the combustion furnace exhaust gas containing less HCl. Has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来の技術については、次のような問題がある。 再利用困難な不燃物の処理問題 廃棄物を流動層やキルンを用いて400℃〜600℃程
度の低温で熱分解するガス化溶融方式は、熱分解炉から
排出される不燃物にガレキ等の再利用困難なものが含ま
れる。この再利用困難な不燃物については埋立処分しな
ければならず、埋立地の窮迫問題を根本的に解決するの
は困難である。 飛灰の処理問題 溶融炉又は燃焼炉から発生する燃焼排ガス中には飛灰
(ダスト)が含まれており、燃焼排ガスを排煙装置に導
入する前に集塵装置にて飛灰を除去する必要があるが、
集塵装置で捕集した飛灰を減容のため溶融炉に戻して溶
融処理した場合、飛灰中の重金属が溶融スラグ中に移行
し、スラグの再利用が困難となることが懸念される。こ
のため、飛灰は埋立処分する必要があるが、埋立は重金
属溶出の問題から、管理型の埋立処分場で処分しなけれ
ばならず、取扱いが厄介のみならず、管理型の埋立処分
場は新規用地の確保が難しいという問題がある。 廃熱回収ボイラ腐食の問題 ゴミ中塩素分から生成するHClガス腐食、及び飛灰中
アルカリ金属塩等による溶融塩腐食を避けるため、ボイ
ラでの回収蒸気温度を上げられず(400℃以下)、発
電効率も低くならざるを得ない(せいぜい20%程
度)。溶融炉−燃焼炉分離型のガス化溶融方式でも燃焼
排ガス中にアルカリ金属塩等の腐食性ダストが存在する
ことから、ボイラ腐食を防止することは困難である。回
収蒸気温度を上げるためには、耐食性に優れた高価な材
質の材料が必要となる。 ダイオキシン再合成問題 ゴミ中塩素分と金属分からダイオキシン再合成触媒であ
る金属塩化物(CuCl2 等)が生成され、ボイラでの
廃熱回収時など排ガス温度が低下する際にダイオキシン
が再合成されるおそれがある。
However, the above-mentioned prior art has the following problems. The problem of treatment of incombustible materials that are difficult to reuse The gasification and melting system that thermally decomposes waste at a low temperature of about 400 ° C to 600 ° C using a fluidized bed or kiln, Includes items that are difficult to reuse. This incombustible material that is difficult to reuse must be landfilled, and it is difficult to fundamentally solve the problem of landfill disposal. Fly ash treatment problem Fly ash (dust) is contained in the flue gas generated from the melting furnace or combustion furnace, and the fly ash is removed by the dust collector before the flue gas is introduced into the smoke exhaust system. Need to be
When fly ash collected by the dust collector is returned to the melting furnace for volume reduction and melted, heavy metals in the fly ash migrate into the molten slag, making it difficult to reuse the slag. . For this reason, fly ash must be landfilled, but landfills must be disposed of at a managed landfill site because of the elution of heavy metals. There is a problem that it is difficult to secure new land. The problem of waste heat recovery boiler corrosion In order to avoid HCl gas corrosion generated from chlorine in garbage and molten salt corrosion due to alkali metal salts in fly ash, the temperature of the recovered steam in the boiler cannot be raised (400 ° C or less), and power generation The efficiency has to be low (at most about 20%). Even in the gasification and melting system of the melting furnace-combustion furnace separation type, it is difficult to prevent boiler corrosion because corrosive dusts such as alkali metal salts are present in the combustion exhaust gas. In order to raise the temperature of the recovered steam, an expensive material having excellent corrosion resistance is required. Dioxin resynthesis problem Metal chlorides (such as CuCl 2 ), which are dioxin resynthesis catalysts, are generated from chlorine and metals in garbage, and dioxin is resynthesized when exhaust gas temperature decreases, such as during waste heat recovery in a boiler. There is a risk.

【0006】本発明は、このような問題を解決するため
になされたもので、幅広いゴミ質の廃棄物について安定
に不燃物及び灰分を溶融して減容及び再資源化でき、ま
た、ボイラの腐食を効果的に防止でき、かつ、回収エネ
ルギーにより高効率発電が可能であると共に、飛灰の安
全な処理が可能で、しかもダイオキシンの再合成をも回
避できる廃棄物処理方法及び処理設備を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is possible to stably melt incombustibles and ash in a wide range of garbage wastes to reduce the volume and recycle them. Provided are a waste treatment method and a treatment facility capable of effectively preventing corrosion, enabling high-efficiency power generation with recovered energy, enabling safe processing of fly ash, and avoiding resynthesis of dioxin. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明請求項1に係る廃
棄物の処理方法は、可燃物及び不燃物から成る廃棄物を
シャフト炉型直接溶融炉にて処理して、熱分解チャーと
熱分解ガスを生成すると共に不燃物及び灰分を溶融した
後、熱分解チャーをチャー溶融炉にて酸素または酸素富
化空気で可燃ガス化するか或いは空気で完全燃焼すると
共にチャー中灰分を溶融させ、熱分解ガスを燃焼炉にて
空気で完全燃焼させ、燃焼排ガスの顕熱をボイラで熱回
収することを特徴とする。
According to a first aspect of the present invention, there is provided a method for treating waste, comprising the steps of: treating waste consisting of combustibles and non-combustibles in a shaft furnace type direct melting furnace; After generating cracked gas and melting the incombustibles and ash, the pyrolysis char is combustible gas with oxygen or oxygen-enriched air in a char melting furnace or completely burned with air and the ash in the char is melted. It is characterized in that the pyrolysis gas is completely burned with air in a combustion furnace, and the sensible heat of the combustion exhaust gas is recovered by a boiler.

【0008】シャフト炉型直接溶融炉は、廃棄物中の全
ての不燃物を溶融するため、低温で熱分解するガス化溶
融方式では再利用が困難なガレキ等の不燃物について
も、埋立処分せずに、リサイクル可能なスラグ及びメタ
ルとすることができる。シャフト炉型直接溶融炉は、廃
棄物が高温下で熱分解されるため可燃分のガス化割合が
高い。また、灰溶融機能を有しているため、廃棄物中の
灰分の大半は溶融スラグとなる。そのため、チャーの発
生量は少量(従来の流動層式又はキルン式熱分解炉等の
廃棄物熱分解方式の数分の一程度)で、後段のチャー溶
融炉をコンパクト化でき、炉温の維持も容易となる。さ
らに、燃焼排ガスの顕熱は回収してこれを発電に役立て
ることができる。
[0008] Since the shaft furnace type direct melting furnace melts all incombustibles in the waste, even non-combustible substances such as rubble, which are difficult to reuse in a gasification and melting system in which pyrolysis is performed at a low temperature, are disposed of in landfill. Instead, it can be recyclable slag and metal. The shaft furnace type direct melting furnace has a high gasification rate of combustibles because waste is thermally decomposed at high temperatures. In addition, since it has an ash melting function, most of the ash in the waste becomes molten slag. As a result, the amount of char generated is small (a fraction of that of conventional fluidized-bed or kiln-type pyrolysis furnaces and other waste pyrolysis systems), and the subsequent char melting furnace can be made more compact, maintaining the furnace temperature. Also becomes easier. Further, the sensible heat of the flue gas can be recovered and used for power generation.

【0009】また、本発明請求項2では、上記方法にお
いて、チャー溶融炉にて酸素または酸素富化空気でガス
化して得た可燃ガス、或いは空気で完全燃焼して得た燃
焼排ガスを湿式洗浄することを特徴とする。シャフト炉
型直接溶融炉では、溶融スラグの流動性を良好にするた
めに石灰石を添加するが、この石灰石がシャフト炉型直
接溶融炉発生ガス中に含まれるHCl等の腐食成分と反
応して腐食成分をガスから分離し、チャー中に固定化す
る。チャー溶融炉から発生した可燃ガス或いは燃焼排ガ
スを湿式洗浄することにより、HClや飛灰が除去さ
れ、その結果ダイオキシン発生が抑制されかつボイラ腐
食が防止される。
According to a second aspect of the present invention, in the above method, a combustible gas obtained by gasification with oxygen or oxygen-enriched air in a char melting furnace or a combustion exhaust gas obtained by completely burning with air is subjected to wet cleaning. It is characterized by doing. In the shaft furnace type direct melting furnace, limestone is added in order to improve the fluidity of the molten slag, but this limestone reacts with corrosive components such as HCl contained in the gas generated by the shaft furnace type direct melting furnace to cause corrosion. The components are separated from the gas and immobilized in the char. HCl and fly ash are removed by wet-cleaning the combustible gas or combustion exhaust gas generated from the char melting furnace, so that dioxin generation is suppressed and boiler corrosion is prevented.

【0010】また、本発明請求項3では、上記請求項2
の方法において、燃焼炉からの燃焼排ガスを除塵処理に
より捕集した飛灰、及びチャー溶融炉から発生した可燃
ガスまたは完全燃焼排ガスの湿式洗浄により捕集した飛
灰を、チャー溶融炉に導入して溶融処理することを特徴
とする。これにより重金属を含む取扱いの厄介な飛灰の
みを、別置の小型チャー溶融炉で溶融スラグ化し、1/
2〜1/3に減容して埋立てることが可能となる。ま
た、スラグ化することで、飛灰に比べ重金属が溶出しに
くくなる。
According to a third aspect of the present invention, the second aspect is provided.
In the above method, fly ash collected by a dust removal process of flue gas from a combustion furnace and fly ash collected by wet cleaning of combustible gas or complete flue gas generated from a char melting furnace are introduced into a char melting furnace. And melt processing. As a result, only troublesome fly ash containing heavy metals is converted into molten slag in a separate small char melting furnace,
It is possible to reduce the volume to 2/3 and landfill. In addition, heavy metal is less likely to be eluted by slagging than fly ash.

【0011】また、本発明請求項4では、上記請求項2
の方法において、湿式洗浄後の可燃ガスを燃焼炉に導入
することを特徴とする。湿式洗浄後の可燃ガスは、清浄
なため後段の燃焼炉における燃料として最適なものとな
る。
According to a fourth aspect of the present invention, the second aspect is provided.
In the method, the combustible gas after the wet cleaning is introduced into a combustion furnace. Since the combustible gas after the wet cleaning is clean, it becomes optimal as a fuel in a combustion furnace at a later stage.

【0012】次に、本発明請求項5では、上記請求項1
〜4のいずれかにおいて、シャフト炉型直接溶融炉、チ
ャー溶融炉及び燃焼炉の少なくとも一つの炉に、廃プラ
スチックを吹込むことを特徴とする。発熱量の低い廃棄
物を安定して処理する場合には、廃プラスチックを補助
燃料として活用することが可能である。廃プラスチック
を装入する炉は、シャフト炉型直接溶融炉、チャー溶融
炉或いは燃焼炉のいずれか、もしくは2つ以上とするこ
とが望ましい。また、廃棄物中灰分が多く熱分解チャー
の発熱量が低い場合は、主にチャー溶融炉へ装入するこ
とで、炉温をチャー及び飛灰溶融温度に安定維持し易く
なる。さらに、廃プラスチックをシャフト炉型直接溶融
炉の羽口から吹込むことにより、コークス使用量を低減
する効果が期待できる。
Next, in claim 5 of the present invention, claim 1
In any one of the above items 4, the waste plastic is blown into at least one of a shaft furnace type direct melting furnace, a char melting furnace and a combustion furnace. When stably treating waste having a low calorific value, waste plastic can be used as an auxiliary fuel. The furnace into which the waste plastic is charged is preferably a shaft furnace type direct melting furnace, a char melting furnace, or a combustion furnace, or two or more furnaces. Further, when the ash content in the waste is large and the calorific value of the pyrolysis char is low, it is easy to maintain the furnace temperature stably at the char and fly ash melting temperature by charging the char into the char melting furnace. Further, by blowing the waste plastic from the tuyere of the shaft furnace type direct melting furnace, an effect of reducing the amount of coke used can be expected.

【0013】さらに、上記した廃棄物処理方法を実施す
るに適した設備としての本発明請求項6は、可燃物及び
不燃物から成る廃棄物を処理して熱分解チャーと熱分解
ガスを生成するシャフト炉型直接溶融炉と、該シャフト
炉型直接溶融炉の後段に配置した、熱分解チャーを導入
するチャー溶融炉及び熱分解ガスを導入するガス燃焼炉
と、前記チャー溶融炉に続き設置した可燃ガス或いは燃
焼排ガスを湿式洗浄する湿式洗浄装置と、該湿式洗浄装
置、前記チャー溶融炉及びガス燃焼炉に連絡する如く配
置した集塵装置と、前記ガス燃焼炉に連設した廃熱回収
ボイラ及び発電装置とから構成したことを特徴とする。
[0013] Further, the present invention as a facility suitable for carrying out the above-mentioned waste disposal method, according to the present invention, treats waste consisting of combustibles and incombustibles to produce pyrolysis char and pyrolysis gas. A shaft furnace type direct melting furnace, a char melting furnace for introducing a pyrolysis char and a gas combustion furnace for introducing a pyrolysis gas, which are arranged at the subsequent stage of the shaft furnace type direct melting furnace, and were installed following the char melting furnace. A wet cleaning device for wet cleaning combustible gas or combustion exhaust gas, a dust collection device arranged to communicate with the wet cleaning device, the char melting furnace and the gas combustion furnace, and a waste heat recovery boiler connected to the gas combustion furnace And a power generator.

【0014】[0014]

【発明の実施の形態】図1は、本発明の廃棄物処理方法
を実施するための設備例を示すブロック図である。図1
に示すように、廃棄物処理設備は、高温で廃棄物を溶融
処理するシャフト炉型直接溶融炉1と、該直接溶融炉1
にて生成された熱分解チャーと熱分解ガスを分離するた
めのサイクロン等の固気分離装置2と、該固気分離装置
2に続き配置したチャー溶融炉3及び燃焼炉4と、該燃
焼炉4の後部に設けたガス冷却装置5と、該ガス冷却装
置5に続き設けられ冷却ガス中の飛灰を捕集する集塵装
置6と、該集塵装置6の後部に配置した排煙装置7と、
前記燃焼炉4に付設した廃熱回収ボイラ8と、該廃熱回
収ボイラ8からの回収蒸気により発電する蒸気タービン
発電装置9とから構成される。なお、前記チャー溶融炉
3及び燃焼炉4の間に、ガスの湿式洗浄を行うための湿
式洗浄装置21を配設することが好ましい。
FIG. 1 is a block diagram showing an example of equipment for carrying out the waste disposal method of the present invention. FIG.
As shown in the figure, the waste treatment equipment comprises a shaft furnace type direct melting furnace 1 for melting and processing waste at a high temperature;
A gas-solid separation device 2 such as a cyclone for separating the pyrolysis char and pyrolysis gas generated in the above, a char melting furnace 3 and a combustion furnace 4 arranged following the solid-gas separation device 2, 4, a gas cooler 5 provided at the rear of the gas cooler 5, a dust collector 6 provided after the gas cooler 5 to collect fly ash in the cooling gas, and a smoke exhauster arranged at the rear of the dust collector 6. 7 and
It comprises a waste heat recovery boiler 8 attached to the combustion furnace 4 and a steam turbine power generation device 9 for generating electricity by using the recovered steam from the waste heat recovery boiler 8. Preferably, a wet cleaning device 21 for performing wet cleaning of gas is provided between the char melting furnace 3 and the combustion furnace 4.

【0015】シャフト炉型直接溶融炉1は、炉中に破砕
機で粉砕もしくは破砕せずにそのままの廃棄物13とコ
ークスを投入し、下部羽口より酸素または酸素富化空気
10と空気11を吹き込んで燃焼させ、下部より不燃物
の溶融の結果生じるスラグ及びメタル12を排出し、上
部より順次廃棄物・コークスを充填する形式のもので、
大体1500℃以上の高温に炉内を維持し、副生物とし
て熱分解ガスと熱分解チャーを生成する。なお、シャフ
ト炉型直接溶融炉1には、溶融スラグの流動性を良好に
するために石灰石を装入するが、石灰石による脱塩反応
(CaCl2 化)により廃棄物中の塩素をチャー中に固
定化できる。
The shaft furnace type direct melting furnace 1 puts the waste 13 and coke without being crushed or crushed by a crusher into the furnace, and feeds oxygen or oxygen-enriched air 10 and air 11 from the lower tuyere. Blowing and burning, discharging slag and metal 12 resulting from the melting of incombustibles from the bottom, and filling waste and coke sequentially from the top,
The furnace is maintained at a high temperature of about 1500 ° C. or more and generates pyrolysis gas and pyrolysis char as by-products. In addition, limestone is charged into the shaft furnace type direct melting furnace 1 in order to improve the fluidity of the molten slag, but chlorine in waste is converted into char by a desalination reaction (caCl 2 conversion) by limestone. Can be fixed.

【0016】チャー溶融炉3は、気流層炉の形式で側方
にバーナー18を1本或いは複数本設け、固気分離装置
2から供給される熱分解チャー20を酸素又は酸素富化
空気(もしくは空気)14と共に吹込み、チャー中可燃
分を部分燃焼或いは完全燃焼させてガス化すると共に、
チャー中に含まれる灰分を溶融してスラグ化する。この
熱分解チャー20は、直接溶融炉1から熱分解ガスとと
もに排出され、固気分離装置2で捕集し、ホッパーを経
由して窒素または空気で気流搬送して、酸化剤と共にチ
ャー溶融炉3のバーナー18に供給される。なお、チャ
ー溶融炉3は、シャフト炉型直接溶融炉1からのチャー
発生量が少量であるため、小型のコンパクトな溶融炉と
することができる。
The char melting furnace 3 is provided with one or more burners 18 on the side in the form of a gas-bed furnace, and converts the pyrolysis char 20 supplied from the solid-gas separation device 2 into oxygen or oxygen-enriched air (or (Combustion) in the char is partially or completely burned and gasified,
The ash contained in the char is melted and turned into slag. The pyrolysis char 20 is directly discharged together with the pyrolysis gas from the melting furnace 1, collected by the solid-gas separation device 2, and transported by a stream of nitrogen or air via a hopper, and then the char melting furnace 3 with an oxidizing agent is discharged. Is supplied to the burner 18. The char melting furnace 3 generates a small amount of char from the shaft furnace type direct melting furnace 1, and thus can be a small and compact melting furnace.

【0017】燃焼炉4は、下部側方に固気分離装置2か
ら供給される熱分解ガス19と空気15を吹き込むノズ
ル17を1本或いは複数本設け、上部にはガス出口を有
する。該燃焼炉4では、チャー溶融炉3から湿式洗浄さ
れて供給される可燃ガスとノズル17から吹き込まれた
熱分解ガス19とを、大体900℃〜1000℃の温度
で完全燃焼させる。燃焼炉4から出る燃焼排ガスは廃熱
回収ボイラ8で熱回収され、得られた過熱蒸気により次
の蒸気タービン発電装置9を駆動させ電力を得る。
The combustion furnace 4 has one or a plurality of nozzles 17 for blowing a pyrolysis gas 19 and air 15 supplied from the solid-gas separation device 2 on the lower side, and has a gas outlet on the upper side. In the combustion furnace 4, the combustible gas supplied by being wet-cleaned from the char melting furnace 3 and the pyrolysis gas 19 blown from the nozzle 17 are completely burned at a temperature of about 900 ° C. to 1000 ° C. The flue gas discharged from the combustion furnace 4 is recovered in a waste heat recovery boiler 8, and the resulting superheated steam drives the next steam turbine generator 9 to obtain electric power.

【0018】ガス冷却装置5は、燃焼炉4から排出され
たガスを集塵可能な温度まで冷却するもので、例えば、
水噴霧式冷却でガスを冷却する。冷却されたガスは次の
バグフィルタ等の集塵装置6に送られ、そこでダストを
捕集される。集塵装置6を経た清浄なガスは排煙装置7
から排出される。
The gas cooling device 5 cools the gas discharged from the combustion furnace 4 to a temperature at which dust can be collected.
The gas is cooled by water spray cooling. The cooled gas is sent to the next dust collector 6 such as a bag filter, where the dust is collected. The clean gas that has passed through the dust collection device 6
Is discharged from

【0019】以下、図1に示す廃棄物処理設備のプロセ
スフローを説明する。シャフト炉型直接溶融炉1で高温
で処理された廃棄物中の不燃物は、スラグ、メタル12
として排出され、かつ、二次的に生成された熱分解ガス
と熱分解チャーは、固気分離装置2で熱分解ガス19と
熱分解チャー20に分離され、熱分解ガスは燃焼炉4に
装入される。排出されたスラグ、メタルは、土木建設用
資材や重量骨材等に利用される。一方、熱分解チャーは
チャー溶融炉3で、酸素または酸素富化ガス14ととも
にバーナー18から吹き込まれ、1300℃以上の高温
で、熱分解チャー中の有機物をCO,CO2 を主体とす
る高温の可燃性ガスにガス化するとともに、熱分解チャ
ー中灰分を溶融する。熱分解チャーのみを酸素または酸
素富化空気で部分燃焼することにより、低カロリーチャ
ーでも自己熱で溶融炉温度を高温に維持可能となり、チ
ャーからの可燃性ガス生成が可能となる。なお、場合に
よってはチャー溶融炉3のバーナー18から空気14を
吹込み、熱分解チャーを完全燃焼させることもできる。
Hereinafter, the process flow of the waste treatment equipment shown in FIG. 1 will be described. The incombustibles in the waste treated at high temperature in the shaft furnace type direct melting furnace 1 are slag, metal 12
The pyrolysis gas and the pyrolysis char, which are discharged as a secondary gas, are separated into the pyrolysis gas 19 and the pyrolysis char 20 by the solid-gas separation device 2, and the pyrolysis gas is mounted on the combustion furnace 4. Is entered. The discharged slag and metal are used for civil engineering construction materials and heavy aggregates. On the other hand, the pyrolysis char is blown from the burner 18 together with oxygen or the oxygen-enriched gas 14 in the char melting furnace 3, and at a high temperature of 1300 ° C. or more, the organic matter in the pyrolysis char is converted to a high temperature mainly composed of CO and CO 2 . It gasifies into flammable gas and melts ash in pyrolysis char. By partially burning only the pyrolysis char with oxygen or oxygen-enriched air, the melting furnace temperature can be maintained at a high temperature by self-heating even with a low-calorie char, and combustible gas can be generated from the char. In some cases, air 14 can be blown from the burner 18 of the char melting furnace 3 to completely burn the pyrolysis char.

【0020】チャー溶融炉3で発生した高温のガス(可
燃ガスもしくは燃焼排ガス)22は、未処理のまま燃焼
炉4へ導入(可燃ガスの場合)するか、もしくは未処理
のまま燃焼炉或いはガス冷却装置に導入(完全燃焼排ガ
スの場合)することも可能であるが、ダイオキシンの再
合成抑制やボイラ腐食防止のためには、湿式洗浄装置2
1によりHClやアルカリダスト等の腐食成分を除去す
ることが望ましい。湿式洗浄装置21により洗浄された
可燃ガス23は燃焼炉4へ導入され、また、清浄された
完全燃焼排ガス24はそのまま集塵装置6へと送給され
る。燃焼炉4では導入された可燃ガス23とノズル17
から吹き込まれた熱分解ガス19及び空気15とによっ
て完全燃焼される。
The high-temperature gas (combustible gas or combustion exhaust gas) 22 generated in the char melting furnace 3 is introduced into the combustion furnace 4 without treatment (in the case of combustible gas), or the combustion furnace or gas is left untreated. Although it is possible to introduce it into a cooling device (in the case of complete combustion exhaust gas), in order to suppress dioxin resynthesis and prevent boiler corrosion, a wet cleaning device 2
It is desirable that 1 removes corrosive components such as HCl and alkaline dust. The combustible gas 23 cleaned by the wet cleaning device 21 is introduced into the combustion furnace 4, and the purified complete combustion exhaust gas 24 is directly sent to the dust collection device 6. In the combustion furnace 4, the combustible gas 23 and the nozzle 17
Is completely combusted by the pyrolysis gas 19 and the air 15 blown from the air.

【0021】燃焼炉4から出た燃焼排ガスは、上述の如
く予め腐食成分が除去されているので、廃熱回収ボイラ
8で熱回収する際の蒸気条件を高温高圧化することがで
きる。廃熱回収ボイラ8で回収した過熱蒸気により蒸気
タービン発電装置9で発電を行い、電力を得る。ボイラ
で熱回収された排ガスは冷却後適宜ガス処理される。
Since the flue gas discharged from the combustion furnace 4 has the corrosive components removed in advance as described above, the steam conditions when heat is recovered by the waste heat recovery boiler 8 can be increased in temperature and pressure. The superheated steam collected by the waste heat recovery boiler 8 generates electric power in the steam turbine power generation device 9 to obtain electric power. The exhaust gas heat recovered by the boiler is appropriately gas-treated after cooling.

【0022】一方、チャー溶融炉3からの発生ガスを洗
浄して得た飛灰や燃焼炉4の燃焼排ガスを除塵して捕集
した飛灰26及び27は、チャー溶融炉3に戻し、そこ
で溶融し、スラグ16化して処理する。
On the other hand, fly ash obtained by washing the gas generated from the char melting furnace 3 and fly ash 26 and 27 collected by removing dust from the combustion exhaust gas from the combustion furnace 4 are returned to the char melting furnace 3, where they are collected. It is melted and converted into slag 16 for processing.

【0023】なお、本発明の廃棄物処理方法において
は、前記チャー溶融炉3のバーナー18、燃焼炉4のノ
ズル17及びシャフト炉型直接溶融炉1の羽口の位置
で、それぞれ廃プラスチック25a、25b、25cを
吹込むことも可能である。全ての箇所に吹込んでもよい
し、適宜2箇所もしくは1箇所に吹込んでもよい。廃棄
物の水分が多く熱分解ガスカロリーが低い場合は、主に
シャフト炉型直接溶融炉1または燃焼炉4に廃プラスチ
ックを吹込む。また、シャフト炉型直接溶融炉1の羽口
から廃プラスチックを吹込むことにより、コークス使用
量を低減でき、かつ、廃棄物中の灰分が多く熱分解チャ
ーの発熱量が低いときには、チャー溶融炉3へ廃プラス
チックを吹き込むことで、炉温をチャー及び飛灰溶融温
度に安定維持しやすくなる。
In the waste treatment method of the present invention, the waste plastic 25a, the waste plastic 25a, and the nozzle 17 of the combustion furnace 4 and the tuyere of the shaft furnace type direct melting furnace 1, respectively, are used. It is also possible to blow 25b and 25c. It may be blown into all places, or may be blown into two places or one place as appropriate. When the waste has a high moisture content and a low pyrolysis gas calorie, the waste plastic is mainly blown into the shaft furnace type direct melting furnace 1 or the combustion furnace 4. Also, by injecting waste plastic from the tuyere of the shaft furnace type direct melting furnace 1, the amount of coke used can be reduced, and when the amount of ash in the waste is large and the calorific value of the pyrolysis char is low, the char melting furnace is used. By blowing the waste plastic into 3, it becomes easy to stably maintain the furnace temperature at the char and fly ash melting temperature.

【0024】[0024]

【実施例】(実施例1)図1に示す設備を用いて下記の
条件で廃棄物を処理した。 [実施条件] ・廃棄物 低発熱量約2000kcal/kgで、可燃分約45%、水分
約45%、空缶、空瓶、ガレキ等の不燃物約5%、塩素
約0.5%である都市ゴミを、破砕せずにシャフト炉型
直接溶融炉に装入し、処理量100t/Dで処理した。 ・シャフト炉型直接溶融炉 酸素ガス240Nm3 /hr、空気2700Nm3 /hrを吹込
み、発熱量7500kcal/kgのコークスを0.1T/hr、
石灰石0.3T/hrを装入して溶融温度約1700℃〜1
800℃で廃棄物を溶融処理した。この溶融処理によ
り、溶融物490kg/hr、熱分解ガス7000Nm3 /h
r、熱分解チャー170kg/hrの生成物が得られた。後
段のサイクロンにより熱分解チャーと熱分解ガスを分離
し、熱分解チャーはチャー溶融炉に、熱分解ガスは処理
炉へそれぞれ導入した。 ・チャー溶融炉 酸素ガス50Nm3 /hrを吹込み、チャーを1400℃で
ガス化して、発生ガスを湿式洗浄装置によりスクラバー
洗浄及びアルカリ湿式脱塩してから燃焼炉へ導入した。 ・燃焼炉 空気12000Nm3 /hrを吹き込んで、サイクロンから
の熱分解ガス及び洗浄後のチャー溶融炉ガスを900〜
1000℃で完全燃焼した。燃焼炉から出た燃焼排ガス
は、ボイラでその顕熱を回収し、回収した過熱蒸気によ
り蒸気タービン発電を行った。廃熱ボイラ後のガスは、
調温塔で冷却し、バグフィルタで飛灰を除去後、排煙装
置から排出した。上記の燃焼排ガスは、HClやアルカ
リダストなどの腐食成分が予め除去されているので、廃
熱ボイラで熱回収する際の蒸気条件を500℃、100
気圧に高温高圧化することができた。
EXAMPLES (Example 1) Wastes were treated using the equipment shown in FIG. 1 under the following conditions. [Implementation conditions] ・ Waste Low calorific value of about 2000 kcal / kg, flammable content of about 45%, moisture of about 45%, non-combustible materials such as empty cans, empty bottles, rubble, etc., about 5%, and chlorine about 0.5%. Municipal garbage was charged into a shaft furnace type direct melting furnace without crushing, and treated at a processing rate of 100 t / D.・ Shaft furnace type direct melting furnace Oxygen gas 240Nm 3 / hr, air 2700Nm 3 / hr is blown, coke of calorific value 7500kcal / kg is 0.1T / hr,
Limestone is charged at 0.3 T / hr and melting temperature is about 1700 ℃ ~ 1
The waste was melted at 800 ° C. By this melting treatment, 490 kg / hr of the melt and 7000 Nm 3 / h of pyrolysis gas
r, a product of pyrolysis char 170 kg / hr was obtained. The pyrolysis char and pyrolysis gas were separated by the subsequent cyclone, and the pyrolysis char was introduced into the char melting furnace and the pyrolysis gas was introduced into the processing furnace. Char Charging Furnace Oxygen gas of 50 Nm 3 / hr was blown, the char was gasified at 1400 ° C., and the generated gas was scrubber-cleaned and alkali-wet-desalted by a wet cleaning device before being introduced into the combustion furnace. Combustion furnace air 12000 nm 3 / hr is blown, 900 pyrolysis gas and char melting furnace gas after washing from the cyclone
It burned completely at 1000 ° C. The flue gas discharged from the combustion furnace was recovered in a boiler to recover its sensible heat, and the recovered superheated steam was used to generate steam turbine power. The gas after the waste heat boiler is
After cooling with a temperature control tower and removing fly ash with a bag filter, the mixture was discharged from a smoke exhaust system. Since the above-mentioned combustion exhaust gas is preliminarily removed of corrosive components such as HCl and alkali dust, the steam conditions at the time of heat recovery by the waste heat boiler are set to 500 ° C.
High pressure and high pressure could be achieved.

【0025】[結果]シャフト炉型直接溶融炉における
溶融物には飛灰の溶融物を含まないため、重金属の濃縮
がなく、再資源化が容易である。即ち、溶融物は磁選に
よりスラグとメタルに分離し、スラグは土木・建設用材
料として、メタルは重機のカウンターウェイト等に再利
用した。また、蒸気タービン発電により2900KWの電
力が得られ、発電効率は約30%となり、既存のゴミ処
理炉の発電効率10〜20%に比べて高いエネルギー回
収効率が得られる。さらに、チャー溶融炉発生ガスの洗
浄により捕集した飛灰、及び燃焼炉排ガスをバグフィル
タで捕集した飛灰は、チャー溶融炉に戻し、熱分解チャ
ーと共に溶融処理すると、約1/2に減容できた。しか
も、この段階で飛灰を溶融スラグ化することにより、減
容化と共に飛灰中の重金属をスラグ中に封じ込めること
が可能となった。
[Results] Since the melt in the shaft furnace type direct melting furnace does not include the melt of fly ash, there is no concentration of heavy metals and recycling is easy. That is, the molten material was separated into slag and metal by magnetic separation, and the slag was reused as a material for civil engineering and construction, and the metal was reused as a counterweight of heavy equipment. In addition, power of 2900 kW can be obtained by the steam turbine power generation, and the power generation efficiency is about 30%, which is higher than the power generation efficiency of the existing refuse treatment furnace of 10 to 20%. In addition, fly ash collected by washing the gas generated from the char melting furnace and fly ash collected from the combustion furnace exhaust gas by a bag filter are returned to the char melting furnace and melted together with the pyrolysis char to reduce to about 1/2. The volume could be reduced. Moreover, by making the fly ash into molten slag at this stage, it became possible to reduce the volume and to confine the heavy metal in the fly ash in the slag.

【0026】(実施例2)廃棄物、シャフト炉型直接溶
融炉及びチャー溶融炉の条件は、実施例1と同じである
が、廃棄物と共に下記の廃プラスチックを使用した。 ・廃プラスチック ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩
化ビニルを主成分とする発熱量10000kcal/kgの廃
プラスチックを粒状にして、チャー溶融炉に200kg/
hrで吹込んだ。チャー溶融炉では、熱分解チャー130
kg/hrと廃プラスチック200kg/hrを酸素220Nm3
/hrで部分燃焼/ガス化させた。熱分解チャー単独ガス
化に比較して熱効率が40%向上した(冷ガス効率50
%→70%)。 ・燃焼炉 空気16000Nm3 /hrを吹き込んで、サイクロンから
の熱分解ガス及び洗浄後のチャー溶融炉ガスを900〜
1000℃で完全燃焼した。燃焼炉から出た燃焼排ガス
は、廃熱ボイラで500℃、100気圧の過熱蒸気を回
収し、蒸気タービン発電を行った。廃熱ボイラ後のガス
は、調温塔で冷却し、バグフィルタで飛灰を除去後、排
煙装置から排出した。
Example 2 The conditions of the waste, the shaft furnace type direct melting furnace and the char melting furnace were the same as in Example 1, but the following waste plastic was used together with the waste. -Waste plastic Granulate waste plastic with a calorific value of 10,000 kcal / kg composed mainly of polyethylene, polypropylene, polystyrene and polyvinyl chloride, and put it in a char melting furnace at 200 kg / kg.
Infused with hr. In the char melting furnace, the pyrolysis char 130
kg / hr and waste plastic 200kg / hr with oxygen 220Nm 3
/ Hr partial combustion / gasification. Thermal efficiency was improved by 40% compared to gasification of pyrolysis char alone (cold gas efficiency 50
% → 70%).・ Combustion furnace Air is blown at 16,000 Nm 3 / hr to supply pyrolysis gas from the cyclone and char melting furnace gas after cleaning from 900 to
It burned completely at 1000 ° C. From the combustion exhaust gas discharged from the combustion furnace, superheated steam at 500 ° C. and 100 atm was collected by a waste heat boiler, and steam turbine power generation was performed. The gas after the waste heat boiler was cooled by a temperature control tower, fly ash was removed by a bag filter, and then discharged from a smoke exhaust device.

【0027】[結果]溶融物の再資源化、重金属の濃縮
がないこと、熱エネルギー回収、減容化等の実施結果に
ついても、実施例1とほとんど同等の結果が得られた
が、蒸気タービン発電による電力は3700KWが得られ
た。
[Results] Although almost the same results as in Example 1 were obtained for the results of recycling of the melt, no concentration of heavy metals, recovery of heat energy, volume reduction, etc., the steam turbine The power generated by the power generation was 3700 kW.

【0028】[0028]

【発明の効果】本発明は、幅広いゴミ質の廃棄物につい
て安定に不燃物や灰分を溶融し減容及び再資源化するこ
とが可能となる。また、廃棄物から生成する熱分解チャ
ーや熱分解ガスを、完全燃焼させて腐食成分を含まない
燃焼排ガスとすることができ、その顕熱回収で効率のよ
い発電を行うことができる。加えて、本発明により溶融
炉や燃焼炉から発生していた取扱いの厄介な飛灰を、小
型の溶融炉で溶融スラグ化することができ、その処理問
題を解決した。さらにまた、シャフト炉型直接溶融炉の
採用で、熱分解チャーの発生量が従来の方式に比較して
激減することから、チャー溶融炉のコンパクト化が実現
でき、設備面でのメリットも大きい。加えて、廃プラス
チックを適宜溶融炉や燃焼炉へ吹込むことによって、廃
プラスチックの有効利用と共に補助燃料として他の燃料
の低減にも役立つ。
According to the present invention, it is possible to stably melt incombustibles and ash in a wide range of garbage wastes, thereby reducing the volume and recycling. Further, the pyrolysis char and pyrolysis gas generated from the waste can be completely burned to produce a combustion exhaust gas containing no corrosive component, and efficient power generation can be performed by recovering the sensible heat. In addition, the troublesome fly ash generated from a melting furnace or a combustion furnace according to the present invention can be converted into molten slag in a small-sized melting furnace, thereby solving the processing problem. Furthermore, the adoption of a shaft furnace type direct melting furnace greatly reduces the amount of pyrolysis chars generated compared to the conventional method, so that the char melting furnace can be made more compact, and there are great advantages in terms of equipment. In addition, by blowing the waste plastic into a melting furnace or a combustion furnace as appropriate, it is possible to effectively use the waste plastic and to reduce other fuels as an auxiliary fuel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃棄物処理方法のプロセスフロー説明
図である。
FIG. 1 is an explanatory diagram of a process flow of a waste disposal method of the present invention.

【符号の説明】[Explanation of symbols]

1:シャフト炉型直接溶融炉 2:固気分離装置 3:チャー溶融炉 4:燃焼炉 5:ガス冷却装置 6:集塵装置 7:排煙装置 8:廃熱回収ボイラ 9:蒸気タービン発電装置 10:酸素または酸
素富化空気 11:空気 12:スラグ、メタ
ル 13:廃棄物 14:酸素または酸素富化空気もしくは空気 15:空気 16:スラグ 17:ノズル 18:バーナー 19:熱分解ガス 20:熱分解チャー 21:湿式洗浄装置 22:チャー溶融炉
発生ガス 23:洗浄後可燃ガス 24:洗浄後完全燃
焼排ガス 25a,25b,25c:廃プラスチック 26,27:飛灰
1: Shaft furnace type direct melting furnace 2: Solid-gas separation device 3: Char melting furnace 4: Combustion furnace 5: Gas cooling device 6: Dust collection device 7: Smoke exhaust device 8: Waste heat recovery boiler 9: Steam turbine power generation device 10: oxygen or oxygen-enriched air 11: air 12: slag, metal 13: waste 14: oxygen or oxygen-enriched air or air 15: air 16: slag 17: nozzle 18: burner 19: pyrolysis gas 20: heat Decomposition char 21: Wet cleaning device 22: Char melting furnace generated gas 23: Combustible gas after cleaning 24: Complete combustion exhaust gas after cleaning 25a, 25b, 25c: Waste plastic 26, 27: Fly ash

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/14 ZAB F23G 5/16 ZABE 5/16 ZAB 5/24 ZABB 5/24 ZAB ZABC 5/48 5/48 7/12 ZABZ 7/12 ZAB F23J 1/00 B F23J 1/00 B09B 3/00 302G 15/02 303K F23J 15/00 C (72)発明者 原尻 八郎 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社エンジニアリング事業本 部内 (72)発明者 長田 守弘 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社エンジニアリング事業本 部内 (72)発明者 小野 創 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社エンジニアリング事業本 部内 Fターム(参考) 3K061 AA16 AA24 AB02 AB03 AC01 AC13 AC20 BA05 BA10 CA07 DA03 DA18 FA10 FA21 NB08 3K065 AA16 AB02 AB03 AC01 AC13 AC19 AC20 BA05 BA10 3K070 DA01 DA05 DA06 DA08 DA35 DA49 DA56 DA87 3K078 AA05 AA10 BA03 BA21 BA22 CA02 CA06 CA21 CA24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F23G 5/14 ZAB F23G 5/16 ZABE 5/16 ZAB 5/24 ZABB 5/24 ZAB ZABC 5/48 5 / 48 7/12 ZABZ 7/12 ZAB F23J 1/00 B F23J 1/00 B09B 3/00 302G 15/02 303K F23J 15/00 C (72) Inventor Hachiro Harajiri Ohara Nakahara 46- 59 Nippon Steel Corporation Engineering Business Unit (72) Inventor Morihiro Osada 46-59 Nakahara Ogata, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Engineering Business Unit (72) Inventor Sou Ono Kitakyushu, Fukuoka Prefecture 46-59 Nakahara, Tobata-ku New Nippon Steel Corporation Engineering Business Unit F-term (reference) 3K061 A A16 AA24 AB02 AB03 AC01 AC13 AC20 BA05 BA10 CA07 DA03 DA18 FA10 FA21 NB08 3K065 AA16 AB02 AB03 AC01 AC13 AC19 AC20 BA05 BA10 3K070 DA01 DA05 DA06 DA08 DA35 DA49 DA56 DA87 3K078 AA05 AA05 AA05 BA03 BA21 BA24 CA21 CA24 CA21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可燃物及び不燃物から成る廃棄物をシャ
フト炉型直接溶融炉にて処理して熱分解チャーと熱分解
ガスを生成した後、熱分解チャーをチャー溶融炉にて酸
素または酸素富化空気で可燃ガス化するか或いは空気で
完全燃焼すると共にチャー中灰分を溶融させ、熱分解ガ
スを燃焼炉にて空気で完全燃焼させ、燃焼排ガスの顕熱
をボイラで熱回収することを特徴とする廃棄物の処理方
法。
1. A waste consisting of combustibles and incombustibles is treated in a shaft furnace type direct melting furnace to generate pyrolysis char and pyrolysis gas, and then the pyrolysis char is subjected to oxygen or oxygen in a char melting furnace. Combustible gas with enriched air or completely combust with air, melt ash in char, completely combust pyrolysis gas with air in combustion furnace, and recover sensible heat of flue gas with boiler. Characteristic waste treatment method.
【請求項2】 チャー溶融炉にて酸素または酸素富化空
気でガス化して得た可燃ガス、或いは空気で完全燃焼し
て得た燃焼排ガスを湿式洗浄することを特徴とする請求
項1記載の廃棄物の処理方法。
2. The method according to claim 1, wherein a combustible gas obtained by gasification with oxygen or oxygen-enriched air in a char melting furnace or a combustion exhaust gas obtained by completely burning with air is wet-washed. Waste treatment method.
【請求項3】 燃焼炉からの燃焼排ガスを除塵処理によ
り捕集した飛灰、及びチャー溶融炉から発生した可燃ガ
スまたは完全燃焼排ガスの湿式洗浄により捕集した飛灰
を、チャー溶融炉に導入して溶融処理することを特徴と
する請求項2記載の廃棄物の処理方法。
3. Fly ash collected by a dust removal process of flue gas from a combustion furnace and fly ash collected by wet cleaning of combustible gas or complete flue gas generated from a char melting furnace are introduced into a char melting furnace. 3. The method for treating waste according to claim 2, wherein the waste is melted.
【請求項4】 チャー溶融炉から発生した可燃ガスを湿
式洗浄後に燃焼炉に導入することを特徴とする請求項2
記載の廃棄物の処理方法。
4. The combustion furnace according to claim 2, wherein the combustible gas generated from the char melting furnace is introduced into the combustion furnace after wet cleaning.
Waste treatment method as described.
【請求項5】 シャフト炉型直接溶融炉、チャー溶融炉
及び燃焼炉の少なくとも一つの炉に、廃プラスチックを
吹込むことを特徴とする請求項1〜4のいずれか1項記
載の廃棄物の処理方法。
5. The waste plastic according to claim 1, wherein the waste plastic is blown into at least one of a shaft furnace type direct melting furnace, a char melting furnace and a combustion furnace. Processing method.
【請求項6】 可燃物及び不燃物から成る廃棄物を処理
して熱分解チャーと熱分解ガスを生成するシャフト炉型
直接溶融炉と、該シャフト炉型直接溶融炉の後段に配置
した、熱分解チャーを導入するチャー溶融炉及び熱分解
ガスを導入するガス燃焼炉と、前記チャー溶融炉に続き
設置した可燃ガス或いは燃焼排ガスを湿式洗浄する湿式
洗浄装置と、該湿式洗浄装置、前記チャー溶融炉及びガ
ス燃焼炉に連絡する如く配置した集塵装置と、前記ガス
燃焼炉に連設した廃熱回収ボイラ及び発電装置とから構
成したことを特徴とする廃棄物の処理設備。
6. A shaft furnace type direct melting furnace for processing waste comprising combustibles and incombustibles to generate a pyrolysis char and a pyrolysis gas, and a heat furnace disposed downstream of the shaft furnace type direct melting furnace. A char melting furnace for introducing a cracking char, a gas combustion furnace for introducing a pyrolysis gas, a wet cleaning device for wet cleaning combustible gas or combustion exhaust gas installed following the char melting furnace, the wet cleaning device, the char melting A waste treatment facility comprising: a dust collection device arranged to communicate with a furnace and a gas combustion furnace; and a waste heat recovery boiler and a power generation device connected to the gas combustion furnace.
JP24282598A 1998-08-28 1998-08-28 Method and apparatus for treating waste Withdrawn JP2000074335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24282598A JP2000074335A (en) 1998-08-28 1998-08-28 Method and apparatus for treating waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24282598A JP2000074335A (en) 1998-08-28 1998-08-28 Method and apparatus for treating waste

Publications (1)

Publication Number Publication Date
JP2000074335A true JP2000074335A (en) 2000-03-14

Family

ID=17094862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24282598A Withdrawn JP2000074335A (en) 1998-08-28 1998-08-28 Method and apparatus for treating waste

Country Status (1)

Country Link
JP (1) JP2000074335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310402A (en) * 2001-02-06 2002-10-23 Nkk Corp Utilizing facility for gas produced by gasifying melting furnace
CN109203212A (en) * 2018-10-15 2019-01-15 江苏景泽环保科技有限公司 A kind of flying dust solid waste volume reduction production line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310402A (en) * 2001-02-06 2002-10-23 Nkk Corp Utilizing facility for gas produced by gasifying melting furnace
CN109203212A (en) * 2018-10-15 2019-01-15 江苏景泽环保科技有限公司 A kind of flying dust solid waste volume reduction production line

Similar Documents

Publication Publication Date Title
JPH06507232A (en) Method of melting incineration residue into slag
JP3964043B2 (en) Waste disposal method
JP3048968B2 (en) Waste treatment method using waste plastic gasification and ash melting
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
JP2000074335A (en) Method and apparatus for treating waste
JPH11159719A (en) Incinerating method of waste
JP4734776B2 (en) Organic or hydrocarbon waste recycling method and blast furnace equipment suitable for recycling
JP2977784B2 (en) Power generation method using waste plastic gasification and ash melting
JP4028934B2 (en) Waste treatment method and treatment apparatus
JP2006170609A (en) Gasification and gasification combustion method of solid waste
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JPH10281437A (en) Method and apparatus for treating chlorine-containing plastic
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
JP3317843B2 (en) Dry distillation pyrolysis melting combustion equipment for waste
JP2002115822A (en) Equipment and method for waste disposal
JP2000074336A (en) Method for treating waste and waste treating facility
JPH11173518A (en) Device and method for treating waste
JPH07316339A (en) Thermal decomposition of waste containing chlorine-containing plastic
JP3952578B2 (en) Disposal method for waste containing flammable substances
JP2005351525A (en) Waste treatment system
JPH09112863A (en) Power generating apparatus combined with incinerator
JPH08261425A (en) Gasification of combustible waste, and melting method of ash
JPH1130411A (en) Waste incinerator
JP2003294205A (en) Coal burning boiler, organic waste gasification furnace, and coal ash treatment plant
JPH06129618A (en) Method of melting and processing waste material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101