JPS6319706Y2 - - Google Patents

Info

Publication number
JPS6319706Y2
JPS6319706Y2 JP11803579U JP11803579U JPS6319706Y2 JP S6319706 Y2 JPS6319706 Y2 JP S6319706Y2 JP 11803579 U JP11803579 U JP 11803579U JP 11803579 U JP11803579 U JP 11803579U JP S6319706 Y2 JPS6319706 Y2 JP S6319706Y2
Authority
JP
Japan
Prior art keywords
fluidized bed
temperature
nox
cavity
substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11803579U
Other languages
Japanese (ja)
Other versions
JPS5636933U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11803579U priority Critical patent/JPS6319706Y2/ja
Publication of JPS5636933U publication Critical patent/JPS5636933U/ja
Application granted granted Critical
Publication of JPS6319706Y2 publication Critical patent/JPS6319706Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Air Supply (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は流動床焼却炉に係り、特に重原油灰を
減容焼却処理するのに好適な流動床焼却炉に関す
る。 重原油灰は通常未燃カーボン、硫安
((NH42SO4)、灰分からなり、灰分中には五酸
化バナジウム(V2O5)、芒硝(Na2SO4)、酸化鉄
(Fe2O3)などが含有されている。このため流動
床焼却炉において重原油灰を燃焼する場合、硫安
が分解してアンモニア(NH3)が発生し、さら
にNH3が窒素酸化物(NOx)に転換して流動層
出口におけるガス中のNOxおよびNH4の量が著
しく大きくなる。また五酸化バナジウムと芒硝が
ある一定の割合で化合すると低溶融物を形成し、
これらの焼却残査を含んだ状態で高温のまま煙道
に送気すると、前記低溶融物がダクトに付着する
問題がある。 また燃焼ガス中に含まれる未燃カーボンが排ガ
スダクトや集塵装置内で赤熱の状態、いわゆるお
き燃焼をし、焼損事故を生ずる問題がある。 このような問題を解消するため、従来は流動床
焼却炉の炉頂付近に空気ノズルを設け、この空気
ノズルから炉内に空気を噴入して炉内上部の温度
を350℃〜450℃まで冷却していた。しかしこの手
段によると、排ガス量が増加するため、排ガスの
後流側に設置される集塵器、誘引通風機などの容
量が大きくなる問題が生ずる。また空気ノズルよ
り炉内に噴入された冷却空気の一部は、炉内壁に
沿つて下降し、流動床焼却炉内の下部にまで達し
て燃焼ガスと混合する、いわゆるバツクミキシン
グ現象を呈するようになる。この結果、流動床焼
却炉の下部の燃焼ガスの温度が下がるので、焼却
炉内の温度を適正な条件に維持するためには空筒
バーナの助燃油量が増加する問題がある。さらに
流動層出口が高温度に保持されると、流動層出口
付近に存在するNOxはNH3と気相で反応して還
元される。しかしバツクミキシング現象の結果、
炉高さ方向の温度分布が不均一となるため、
NOxの還元が十分に達成されない問題がある。 しかも、空筒部におけるNOx還元に寄与しな
かつた未反応の残留NH3が炉頂付近に達すると、
冷却空気中のO2と反応して新らたにNOxが生成
されてしまうという問題がある。 本考案の目的は、窒素化合物および低溶融物を
含む物質の焼却処理において、焼却残査中の低溶
融物による煙道ダクトの付着トラブルを防止しつ
つ、NOxの排出量を低減することができる。流
動床焼却炉を提供することにある。 本考案は、上記目的を達成するため、アンモニ
ア成分含有物および低溶融物が含まれた物質を焼
却する流動床焼却炉において、この流動床焼却炉
は前記物質を燃焼維持するに支障のない範囲の低
い温度で流動燃焼させる流動層部と、この流動層
部の上部に配置させた空筒部とから構成され、前
記空筒部の燃焼ガス上流部に当該空筒部の温度を
NH3によるNOxの気相還元反応温度に維持する
空塔バーナと2次空気供給手段が設けられ、また
前記空筒部の上部に位置する炉頂付近に水噴霧方
向をほぼ水平とする水噴霧ノズルが設けられたも
のとしたことにある。すなわち、流動層部におい
ては低い温度で燃焼させることにより、燃焼で発
生するNH3がNOxに転換するのをできる限り抑
制し、続く空筒部では還元温度に保持して流動層
部で発生したNH3とNOxとの環元反応により
NOxを低減させ、さらに燃焼ガスを水平噴霧に
より水噴霧冷却し、これによつてバツクミキシン
グを防止して空筒部の炉高さ方向の温度分布を前
記還元温度に均一に保持してNOxの還元雰囲気
の範囲を十分に確保し、あわせて空気冷却した場
合に生ずる残存NH3とO2によるNOxの発生を防
止することにより、NOxの排出を低減し、あわ
せて低溶融物による煙道ダクトの付着トラブルを
防止するものである。 以下、本考案を添付図面に示す実施例にもとづ
いて説明する。 第1図は本考案の一例を示す概略的構成図であ
り、この装置は焼却炉本体1の下部に設けられた
分散板2の下方に風箱3が形成され、分散板2上
に形成される流動層4に重原油灰供給ノズル8と
層中バーナ9が取り付けられている。流動層4上
方の空筒部6には空塔バーナ14が取り付けら
れ、この空塔バーナ14の取付位置の上方に炉壁
を囲むようにして数基の2次空気ヘツダ11が設
けられている。空筒部6の上部に位置する炉頂付
近に周方向にわたつて数基の水噴霧ノズル12が
炉高方向に1段設けられている。 このような装置において、流動化空気7は風箱
3および分散板2を通つて硅砂からなる流動媒体
を流動化させ、流動層4を形成させる。流動層4
には層中バーナ9より助燃油が供給され、流動化
空気により、流動層4内の温度は常時一定に保持
されている。この流動層中に、未燃カーボン、硫
安、灰分からなる重原油が重原油灰供給ノズル8
より供給される。流動層4において、重原油灰中
の硫安は分解してアンモニアを発生し、さらにア
ンモニアがNOxに変換し、流動層4出口のNOx
の量は著しく多くなる。このため流動層4内の温
度(図中T1で示す)は重原油灰の燃焼維持に支
障のない範囲内で十分に低い温度に保持され、
NOxの生成を抑制するように調整される。すな
わち、アンモニアNH3がNOxに転換するのをで
きるだけ抑制することができる温度に調整され
る。 次にライン10を経て2次空気ヘツダ11より
導入された空気と、空筒バーナ14より供給され
た助燃油とによつて、流動層4の出口付近5およ
び空筒部6の温度(図中、T2,T3で示す)は高
温度に維持される。この結果、流動層4より排出
するガス中に含まれるNOxはNH3と気相で反応
し還元される。また空筒部6において、極めて微
細な粒子状の未燃カーボンは気相中で燃焼する。 前記空筒部6内を上昇する焼却残査中には五酸
化バナジウム(V2O5)と芒硝(NaSO4)とによ
つて生成した低溶融物が存在する。しかしこの低
溶融物は、水噴射ノズル12より噴射された水に
よつて水の潜熱分に相当する熱を奪われて冷却さ
れ粘着性を失う。これによつて煙道13より排出
される焼却残査が、煙道13の内壁面に付着する
ことを防止できる。 本考案による水噴霧手段によると、焼却炉の高
さ方向の温度分布が均一である。第2図は従来の
空気噴霧手段と本考案による水噴霧手段の場合に
おける焼却炉の高さ方向の温度分布を定性的に示
すグラフである。第2図中、1は水噴射時の温度
分布、2は空気噴射時の温度分布を示している。
空気噴射の場合、温度分布が不均一であり、いわ
ゆるバツクミキシングの影響が考られる。水噴射
の場合、流動層4の上方の炉高全域に亘つて温度
変化がなく従つて温度分布も均一である。このこ
とはNOxの気相還元が効果的に行なわれ、NOx
の低減に有効であることを示すものである。 しかも未反応の残留NH3が水噴霧による冷却
域境界の高温雰囲気の領域に達しても、O2リツ
チでないことから新らたなNOxが生成されるこ
とはない。ここで水を上方に噴霧すると出口ダタ
ト壁に飛沫が飛散し壁面を濡らし、付着物の生
成、壁面材の腐食等の悪影響があり、又ガスの吹
抜け等による低融点物質の冷却が不均一となる。
一方水を下方に噴霧すると空塔部の温度を低下さ
せ、脱硝効果、助燃油の低減効果を損う。従つて
水の噴霧は水平で行うのが良いことがわかつた。 次に本考案の効果を明らかにするため、本考案
と従来の空気噴射による流動床焼却炉とを重原油
灰300Kg/hの処理能力をもつプラント中で操業
した場合の性能を対比した。重原油灰の処理量、
流動層の温度、空筒温度を一定として、排ガス
量、排ガス中のNOx量、助燃油(オイル)の消
費量を調べた。この結果を第1表に示す。
The present invention relates to a fluidized bed incinerator, and particularly to a fluidized bed incinerator suitable for volume reduction incineration of heavy crude oil ash. Heavy crude oil ash usually consists of unburned carbon, ammonium sulfate ((NH 4 ) 2 SO 4 ), and ash . 2 O 3 ), etc. For this reason, when heavy crude oil ash is burned in a fluidized bed incinerator, ammonium sulfate decomposes and ammonia (NH 3 ) is generated, and NH 3 is further converted to nitrogen oxides (NOx), which are added to the gas at the fluidized bed outlet. The amount of NOx and NH 4 increases significantly. Also, when vanadium pentoxide and Glauber's salt are combined at a certain ratio, a low melting product is formed.
If air containing these incineration residues is sent into the flue at a high temperature, there is a problem that the low-melting substances will adhere to the duct. Further, there is a problem in that unburned carbon contained in the combustion gas becomes red-hot in the exhaust gas duct or the dust collector, causing so-called hot combustion, resulting in a burnout accident. In order to solve this problem, conventionally an air nozzle was installed near the top of the fluidized bed incinerator, and air was injected into the furnace from this air nozzle to raise the temperature in the upper part of the furnace to 350℃ to 450℃. It was cooling down. However, according to this method, since the amount of exhaust gas increases, a problem arises in that the capacity of the dust collector, induced draft fan, etc. installed on the downstream side of the exhaust gas increases. In addition, a part of the cooling air injected into the furnace from the air nozzle descends along the inner wall of the furnace, reaches the lower part of the fluidized bed incinerator, and mixes with the combustion gas, causing a so-called back mixing phenomenon. become. As a result, the temperature of the combustion gas in the lower part of the fluidized bed incinerator decreases, so there is a problem that the amount of auxiliary fuel in the cylinder burner increases in order to maintain the temperature inside the incinerator at an appropriate condition. Furthermore, when the fluidized bed outlet is kept at a high temperature, NOx present near the fluidized bed outlet reacts with NH 3 in the gas phase and is reduced. However, as a result of the back mixing phenomenon,
Because the temperature distribution in the furnace height direction becomes uneven,
There is a problem that NOx reduction is not sufficiently achieved. Moreover, when the unreacted residual NH 3 that did not contribute to NOx reduction in the cavity reaches near the top of the furnace,
There is a problem in that NOx is newly generated by reacting with O 2 in the cooling air. The purpose of this invention is to reduce the amount of NOx emissions while preventing problems caused by low melting substances in the incineration residue on the flue duct when incinerating substances containing nitrogen compounds and low melting substances. . The purpose of the present invention is to provide a fluidized bed incinerator. In order to achieve the above object, the present invention provides a fluidized bed incinerator for incinerating materials containing ammonia component-containing materials and low-melting materials. It consists of a fluidized bed section that performs fluidized combustion at a low temperature, and a hollow cylinder section placed above the fluidized bed section.
A sky tower burner and a secondary air supply means are provided to maintain the gas phase reduction reaction temperature of NOx by NH 3 , and a water spray whose water spray direction is approximately horizontal is provided near the furnace top located at the upper part of the cavity. The reason is that a nozzle is provided. In other words, by burning at a low temperature in the fluidized bed section, the conversion of NH3 generated during combustion into NOx is suppressed as much as possible, and in the subsequent cavity section, the NH3 generated in the fluidized bed section is maintained at a reduction temperature. Due to the ring element reaction between NH 3 and NOx
In addition to reducing NOx, the combustion gas is cooled by water spray using horizontal spraying, thereby preventing back mixing and maintaining the temperature distribution in the furnace height direction in the cavity uniformly at the reduction temperature, thereby reducing NOx. By ensuring a sufficient range of reducing atmosphere and at the same time preventing the generation of NOx due to residual NH 3 and O 2 that occur when cooling with air, NOx emissions can be reduced, and the flue duct due to low melting materials can be reduced. This prevents adhesion problems. The present invention will be described below based on embodiments shown in the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an example of the present invention, in which a wind box 3 is formed below a dispersion plate 2 provided at the bottom of an incinerator body 1, and a wind box 3 is formed on the dispersion plate 2. A heavy crude oil ash supply nozzle 8 and an in-bed burner 9 are attached to the fluidized bed 4. An empty tower burner 14 is attached to the cavity 6 above the fluidized bed 4, and several secondary air headers 11 are provided above the installation position of the empty tower burner 14 so as to surround the furnace wall. Several water spray nozzles 12 are provided in one stage in the furnace height direction in the circumferential direction near the furnace top located at the upper part of the hollow cylindrical portion 6. In such a device, the fluidizing air 7 passes through the wind box 3 and the distribution plate 2 and fluidizes the fluidizing medium consisting of silica sand, forming a fluidized bed 4. fluidized bed 4
An auxiliary fuel oil is supplied from an in-bed burner 9 to the fluidized bed 4, and the temperature inside the fluidized bed 4 is kept constant at all times by fluidized air. In this fluidized bed, heavy crude oil consisting of unburned carbon, ammonium sulfate, and ash is fed to the heavy crude oil ash supply nozzle 8.
Supplied by In the fluidized bed 4, ammonium sulfate in the heavy crude oil ash decomposes to generate ammonia, which is further converted to NOx, and the NOx at the outlet of the fluidized bed 4 is
The amount increases significantly. Therefore, the temperature in the fluidized bed 4 (indicated by T 1 in the figure) is maintained at a sufficiently low temperature within a range that does not hinder the combustion of heavy crude oil ash.
Adjusted to suppress NOx production. That is, the temperature is adjusted to a temperature that can suppress the conversion of ammonia NH 3 to NOx as much as possible. Next, the air introduced from the secondary air header 11 via the line 10 and the auxiliary fuel oil supplied from the hollow cylinder burner 14 cause the temperature near the outlet 5 of the fluidized bed 4 and the hollow cylinder part 6 to rise (in the figure). , T 2 , T 3 ) are maintained at high temperatures. As a result, NOx contained in the gas discharged from the fluidized bed 4 reacts with NH 3 in the gas phase and is reduced. Further, in the hollow cylinder portion 6, unburned carbon in the form of extremely fine particles is burned in the gas phase. In the incineration residue rising inside the hollow cylinder 6, there is a low melting material generated by vanadium pentoxide (V 2 O 5 ) and Glauber's salt (NaSO 4 ). However, this low-melting material is cooled by the water jetted from the water jet nozzle 12 and loses its stickiness as it is cooled by the heat corresponding to the latent heat of the water. This can prevent the incineration residue discharged from the flue 13 from adhering to the inner wall surface of the flue 13. According to the water spraying means according to the present invention, the temperature distribution in the height direction of the incinerator is uniform. FIG. 2 is a graph qualitatively showing the temperature distribution in the height direction of the incinerator in the case of the conventional air spraying means and the water spraying means of the present invention. In FIG. 2, 1 indicates the temperature distribution during water injection, and 2 indicates the temperature distribution during air injection.
In the case of air injection, the temperature distribution is non-uniform, and the influence of so-called back mixing is considered. In the case of water injection, there is no temperature change over the entire furnace height above the fluidized bed 4, and therefore the temperature distribution is uniform. This means that the gas phase reduction of NOx is effectively carried out, and NOx
This shows that it is effective in reducing Moreover, even if unreacted residual NH 3 reaches the high-temperature atmosphere at the boundary of the cooling zone caused by water spray, no new NOx will be generated because it is not O 2 rich. If water is sprayed upward here, droplets will scatter on the exit wall and wet the wall surface, causing adverse effects such as the formation of deposits and corrosion of the wall material.Also, the cooling of low-melting point substances may be uneven due to gas blow-through, etc. Become.
On the other hand, if water is sprayed downward, the temperature of the empty column will be lowered, impairing the denitrification effect and the effect of reducing auxiliary fuel oil. Therefore, it was found that it is best to spray water horizontally. Next, in order to clarify the effects of the present invention, the performance of the present invention and a conventional fluidized bed incinerator using air injection were compared when operated in a plant with a processing capacity of 300 kg/h of heavy crude oil ash. Processing amount of heavy crude oil ash,
The amount of exhaust gas, amount of NOx in the exhaust gas, and consumption of auxiliary fuel oil (oil) were investigated while keeping the fluidized bed temperature and cavity temperature constant. The results are shown in Table 1.

【表】 上表によれば、水噴射手段は空気噴射手段に比
べて排ガス量、排ガス中のNOx量、助燃油の消
費量を少なくすることができる。排ガス中の
NOxの低減率は低いが、排ガスの発生量が大巾
に減少しているので、総量規準ではNOx量の低
減効果が大きいことを意味している。 以上の通り、本考案によれば、排ガス量、助燃
油の消費量を増加させることなく、NOxの排出
量を低減するとともに煙道ダクトにおける焼却残
査の付着トラブルを解消することができる。
[Table] According to the above table, the water injection means can reduce the amount of exhaust gas, the amount of NOx in the exhaust gas, and the amount of fuel oil consumed compared to the air injection means. in exhaust gas
Although the NOx reduction rate is low, the amount of exhaust gas generated has been significantly reduced, which means that the NOx amount reduction effect is large based on the total amount standard. As described above, according to the present invention, it is possible to reduce the amount of NOx emissions and eliminate the problem of incineration residue adhesion in the flue duct without increasing the amount of exhaust gas or the amount of auxiliary fuel consumed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一例を示す概略構成図、第2
図は炉高方向の温度分布を定性的に示すグラフで
ある。 2……分散板、3……風箱、4……流動層、6
……空筒部、8……重原油供給ノズル、9……層
中ノズル、11……2次空気ヘツダ、12……水
噴霧ノズル、13……煙道、14……空塔バー
ナ。
Figure 1 is a schematic configuration diagram showing an example of the present invention;
The figure is a graph qualitatively showing the temperature distribution in the direction of the furnace height. 2... Dispersion plate, 3... Wind box, 4... Fluidized bed, 6
... Cylinder section, 8 ... Heavy crude oil supply nozzle, 9 ... In-bed nozzle, 11 ... Secondary air header, 12 ... Water spray nozzle, 13 ... Flue, 14 ... Sky tower burner.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] アンモニア成分含有物および低溶融物が含まれ
た物質を焼却する流動床焼却炉において、この流
動床焼却炉は前記物質を燃焼維持するに支障のな
い範囲の低い温度で流動燃焼させる流動層部と、
この流動層部の上部に配置された空筒部とから構
成され、前記空筒部の燃焼ガス上流部に当該空筒
部の温度をNH3によるNOxの気相還元反応温度
に保持する空塔バーナと2次空気供給手段が設け
られ、また前記空筒部の上部に位置する炉頂付近
に水噴霧方向をほぼ水平とする水噴霧ノズルが設
けられたことを特徴とする流動床焼却炉。
In a fluidized bed incinerator that incinerates substances containing ammonia component-containing substances and low-melting substances, this fluidized bed incinerator includes a fluidized bed part that performs fluidized combustion at a low temperature that does not interfere with maintaining combustion of the substances. ,
and a cavity disposed above the fluidized bed, and a cavity located upstream of the combustion gas in the cavity to maintain the temperature of the cavity at the temperature of the gas-phase reduction reaction of NOx by NH3 . A fluidized bed incinerator characterized in that a burner and a secondary air supply means are provided, and a water spray nozzle that sprays water in a substantially horizontal direction is provided near the top of the furnace located in the upper part of the cavity.
JP11803579U 1979-08-28 1979-08-28 Expired JPS6319706Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11803579U JPS6319706Y2 (en) 1979-08-28 1979-08-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11803579U JPS6319706Y2 (en) 1979-08-28 1979-08-28

Publications (2)

Publication Number Publication Date
JPS5636933U JPS5636933U (en) 1981-04-08
JPS6319706Y2 true JPS6319706Y2 (en) 1988-06-01

Family

ID=29350252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11803579U Expired JPS6319706Y2 (en) 1979-08-28 1979-08-28

Country Status (1)

Country Link
JP (1) JPS6319706Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096823A (en) * 1983-11-01 1985-05-30 Babcock Hitachi Kk Disposal of burning unsuitable refuse

Also Published As

Publication number Publication date
JPS5636933U (en) 1981-04-08

Similar Documents

Publication Publication Date Title
US4177742A (en) Incinerator for burning waste and a method of utilizing same
US4321233A (en) Combustion furnace or reactor with multi-stage fluidized bed system
EP0233680B1 (en) Method of and apparatus for combusting coal-water mixture
JPS62169921A (en) Stable combustion of fluidized bed furnace
US4284401A (en) Method and means for feeding fuel into fluidized-bed combustion apparatus
CA1071931A (en) Apparatus and method for precooling flue gases in incinerators without utilization of heat
EP0112535B1 (en) Fuel jet method and apparatus for pulverized coal burner
JPS6319706Y2 (en)
JPS62169916A (en) Secondary combustion promoting method for fluidized bed furnace
JPS5943682B2 (en) Fluidized bed furnace for incineration of low melting point compounds
JPH026961B2 (en)
JPS6226404A (en) Reducing method for nitrogen oxides concentration in burnt exhaust gas
JPS6255054B2 (en)
JPS5817366B2 (en) Exhaust gas denitrification type fluidized bed combustion equipment
JPS6257888B2 (en)
JPS6150208B2 (en)
JPH0369569B2 (en)
JPS6115321B2 (en)
JPH0238170Y2 (en)
JPH06294503A (en) Combustion
JP4131527B2 (en) Method and apparatus for reducing nitrogen oxides
JPS6314184Y2 (en)
JPS61128011A (en) Method for igniting coal water slurry
JPS62158906A (en) Low nox combustion burner for coal and water slurry
JPH0663628B2 (en) Efficient combustion method of pitch water slurry