JPS6332210A - Waste combustion system - Google Patents
Waste combustion systemInfo
- Publication number
- JPS6332210A JPS6332210A JP17507086A JP17507086A JPS6332210A JP S6332210 A JPS6332210 A JP S6332210A JP 17507086 A JP17507086 A JP 17507086A JP 17507086 A JP17507086 A JP 17507086A JP S6332210 A JPS6332210 A JP S6332210A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- combustion
- waste
- furnace
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 79
- 239000002699 waste material Substances 0.000 title claims abstract description 48
- 239000007789 gas Substances 0.000 claims abstract description 66
- 238000011084 recovery Methods 0.000 claims abstract description 17
- 239000000428 dust Substances 0.000 claims abstract description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000000197 pyrolysis Methods 0.000 claims 1
- 239000002912 waste gas Substances 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 abstract description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000001473 noxious effect Effects 0.000 abstract 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 abstract 1
- 229910001628 calcium chloride Inorganic materials 0.000 abstract 1
- 239000001110 calcium chloride Substances 0.000 abstract 1
- 238000002309 gasification Methods 0.000 abstract 1
- 229910010272 inorganic material Inorganic materials 0.000 abstract 1
- 239000011147 inorganic material Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000012717 electrostatic precipitator Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000010808 liquid waste Substances 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Gasification And Melting Of Waste (AREA)
Abstract
Description
この発明は、化学工場等から産業廃棄物として発生する
難燃性廃棄物を燃焼させてそのIBガスから熱回収を行
う廃棄物燃焼システムに関する。The present invention relates to a waste combustion system that burns flame-retardant waste generated as industrial waste from chemical factories and the like and recovers heat from the IB gas.
化学工場等から製造工程の残留物、廃棄処分品等として
発生する例えば塩化ビニール、農薬、PCB等を含む液
状、固形状の有機系産業廃棄物は通常は焼却処分され、
このための廃棄物燃焼システムとして廃棄物の燃焼炉、
熱回収を行う蒸気発生ボイラ、サイクロン、電気集塵機
等を組合せてシステムを構成し、廃棄物を燃焼させた後
にその排ガスから積極的に熱回収し、さらに燃焼に伴っ
て生じた排ガス中のダストを除去して大気中に放出する
ようにした廃熱回収システムを兼ねた廃棄物燃焼システ
ムが公知である。
ところで従来におけるこの種の廃棄物燃焼システムに組
み込まれた廃棄物の燃焼炉には通常ロータリキルン等の
燃焼炉が使用されており、この燃焼で廃棄物を燃焼させ
た後にその排ガスを後段の蒸気発生ボイラへ導いて熱回
収を行うようにしている。しかしてかかる燃焼炉で前記
の難燃性廃棄物を燃焼させた場合には、炉設備の制約、
廃棄物の発熱量が少ないこともあって炉内の燃焼温度は
高々1000℃を僅か超える程度であり、かつそれ以上
に高い燃焼温度で炉内温度分布を均一に維持させること
は極めて困難である。例えば前記したロータリキルンで
は炉内の上部空間を外部から導入した低温の空気がシッ
ートパスしてそのまま炉外に排出されこと、および炉内
における排ガスの滞留時間は炉内の流通経路によってば
らつきがあること等が原因で炉内全域での均一な燃焼状
態を維持することが回能であり、炉内で燃焼した前記の
有機系廃棄物の排ガスは、排ガス中に含まれる燃焼生成
物が成分によっては未分解のまま炉外に放出されるよう
になる。しかもハロゲン系有機物では、燃焼ガスを12
00℃程度まで高温に晒さないと容易に熱分解せず、か
つ燃焼温度が低温であると有害物質であるダイオキシン
が生成されるために、このダイオキシンをそのまま大気
中に放出することは大気を汚染して環境公害問題に進展
する恐れがある。Liquid and solid organic industrial waste, including vinyl chloride, pesticides, PCBs, etc., generated from chemical factories as residues from manufacturing processes and waste products is usually incinerated.
Waste combustion furnace as a waste combustion system for this purpose,
A system is constructed by combining a steam generation boiler that performs heat recovery, a cyclone, an electrostatic precipitator, etc. After burning waste, heat is actively recovered from the exhaust gas, and the dust in the exhaust gas generated due to combustion is also removed. Waste combustion systems that double as waste heat recovery systems are known in which waste heat is removed and released into the atmosphere. Incidentally, conventional combustion furnaces such as rotary kilns are used as waste combustion furnaces incorporated in this type of waste combustion systems, and after the waste is combusted, the exhaust gas is sent to the subsequent stage of steam. The heat is then guided to the generating boiler for heat recovery. However, when burning the above-mentioned flame-retardant waste in such a combustion furnace, there are restrictions on the furnace equipment,
Due to the low calorific value of waste, the combustion temperature inside the furnace is at most slightly over 1000°C, and it is extremely difficult to maintain a uniform temperature distribution inside the furnace at higher combustion temperatures. . For example, in the above-mentioned rotary kiln, low-temperature air introduced from the outside into the upper space of the furnace passes through the furnace and is discharged as it is outside the furnace, and the residence time of exhaust gas inside the furnace varies depending on the flow path inside the furnace. It is important to maintain a uniform combustion state throughout the furnace due to the It will be released outside the furnace undecomposed. Moreover, with halogen-based organic substances, combustion gas is reduced to 12
It does not thermally decompose easily unless it is exposed to high temperatures of around 00℃, and if the combustion temperature is low, the harmful substance dioxin is produced, so releasing this dioxin directly into the atmosphere will pollute the atmosphere. This may lead to environmental pollution problems.
この発明は上記の点にかんがみなされたものであり、前
記した従来の廃棄物燃焼システムの問題点を解消し、各
種廃棄物の燃焼に伴って生成する排ガス中の有害物質を
容易に高温熱分解した上で、熱回収、排ガス処理を行っ
て大気中に放出できるようにした無公害の廃棄物燃焼シ
ステムを提供することを目的とする。This invention has been made in consideration of the above points, and solves the problems of the conventional waste combustion system described above, and easily decomposes harmful substances in the exhaust gas generated by the combustion of various wastes at high temperature. The purpose of the present invention is to provide a pollution-free waste combustion system that recovers heat, processes exhaust gas, and releases it into the atmosphere.
上記目的を達成するために、この発明は廃棄物の燃焼手
段、熱回収手段、排ガス処理手段を組合せ”C構成し、
廃棄物を燃焼させてその排ガス中から熱回収、ダスト除
去を行う廃棄物燃焼システムにおいて、前記廃棄物の燃
焼手段として一次燃焼炉と、該燃焼炉の後段に接続した
二次高温分解炉とを組合せ、廃棄物を一次燃焼炉で燃焼
した後にその排ガスを後段の二次高温分解炉に導き、こ
の高温分解炉内で排ガスを高温加熱して排ガス中に含ま
れる有害な有機物質等を熱分解するようにしたものであ
り、特に二次高温分解炉へは廃棄物が燃焼排ガスの状態
で導入されるので炉内の燃焼温度をさらに高めつつ、炉
内温度分布、および排ガスの炉内滞留時間の均一維持が
容易に図れることになり、これにより一次燃焼炉から二
次高温分解炉内に導入された排ガスに含まれる未分解成
分を炉内で充分に高温熱分解して未分解成分の炉外放出
を防止するとともに、併せて効率的な熱回収も可能とな
る。In order to achieve the above object, the present invention combines a waste combustion means, a heat recovery means, and an exhaust gas treatment means,
In a waste combustion system that burns waste and recovers heat and removes dust from its exhaust gas, a primary combustion furnace is used as a means for burning the waste, and a secondary high-temperature decomposition furnace is connected to the downstream of the combustion furnace. After the waste is burned in the primary combustion furnace, the exhaust gas is led to the secondary high-temperature decomposition furnace, which heats the exhaust gas to a high temperature to thermally decompose harmful organic substances contained in the exhaust gas. In particular, since the waste is introduced into the secondary high-temperature cracking furnace in the form of flue gas, the combustion temperature inside the furnace is further raised, while the temperature distribution inside the furnace and the residence time of the flue gas inside the furnace are improved. As a result, the undecomposed components contained in the exhaust gas introduced from the primary combustion furnace into the secondary high-temperature cracking furnace are sufficiently high-temperature pyrolyzed in the furnace, and the undecomposed components are removed from the furnace. In addition to preventing heat from being released to the outside, it also enables efficient heat recovery.
第1図はこの発明の実施例による廃棄物燃焼システムの
系統図、第2図は第1図における熱交換器の構成図を示
すものであり、図において1は固形状廃棄物の燃焼を行
う一次燃焼炉、2は液状廃棄物の燃焼を行う一次燃焼炉
、3は前記一次燃焼炉の後段に接続された二次高温分解
炉であり、これら−火炉と二次炉を組合せて廃棄物燃焼
手段を構成している。また前記廃棄物燃焼手段の後段に
は排ガス中に含まれているダストを除去するサイクロン
4を経て排ガス/空気熱交換器5.水管ボイラ6、煙管
ボイラ7等の組合せから成る熱回収手段と、さらに電気
集塵機8.排風機9を経て煙突10に至る排ガス処理手
段が設備されている。また前記一次燃焼炉1.2および
二次高温分解炉3のバーナに・対しては、助燃油タンク
11よりポンプ12を経て配管された助燃油供給ライン
13を通じて助燃油が供給され、かつ燃焼空気としては
ブロア14より前記の排ガス/空気熱交換器5に送気し
て高温加熱され、さらに煙管ボイラ7を経て配管された
燃焼空気供給ライン15を通じて高温空気が各炉のバー
ナに供給される。また前記の二次高温分解炉3は一次燃
焼炉から送り込まれる排ガスの入口が円筒形の炉体に対
して偏心して開口しており、該入口を通じて炉内導入さ
れる排ガスは燃焼ガスとともに炉体内部を旋回しながら
上昇して出口端に至るようになる。
一方、前記の水管ボイラ6、煙管ボイラ7で発生した蒸
気はアキュムレータ17を経て熱利用系18に送られる
。さらに19は廃棄物の排ガス中に含まれている塩化水
素等の腐食性のある有害物質を中和する例えば炭酸力ル
シュウム等の中和剤を収容した中和剤バンカであり、ブ
ロア20を通じて空気搬送により中和剤を二次高温分解
炉3の出口側に導入するようにしている。
次に上記構成のシステムによる廃棄物の燃焼プロセスに
付いて説明すると、まず固形状、液状の廃棄物は一次燃
焼炉1.2に導入され、バーナへの助燃油、高温燃焼空
気の供給により炉内燃焼温度600〜1100℃で燃焼
してガス化され、その排ガスが二次高温分解炉3に導入
される。この高温分解炉3では助燃油とともに燃焼空気
を加圧供給し、助燃油を炉内に向けて噴霧して燃焼を行
う。ここでバーナを通じて炉内に供給される助燃油、空
気量を圃節することにより燃焼温度を高温、好ましくは
1200℃以上となるようにコントロールして排ガスを
高温加熱する。これにより一次燃焼炉から送りこまれた
排ガスは高温分解炉の炉内を流れる過程で万遍なく高温
に晒され、前述したような排ガス中に含まれる有害物質
は充分に高温熱分解されるようになる。
続いて高温分解炉3から出た排ガスをサイクロン4に導
いて排ガス中のダスト成分を分離除去し、さらに排ガス
/空気熱交換器5へ導入し、てブロア14を通じて供給
された空気と熱交換させる。ここで高温加熱された空気
は煙管ボイラ7に導かれて熱回収を行った後に先述のよ
うに燃焼空気供給うイン15を通じて一火炉、二次炉の
バーナへ供給される。一方、熱交換後の排ガスは温度が
下がった状態で後段の水管ボイラ6に導入され、ここで
熱回収が行われる。なおこの水管ボイラ6の入口では排
ガス温度が300℃前後に低下しており、水管ボイラ6
の金属伝熱管を腐食させる恐れはない。
さらに水管ボイラ6を出た排ガスは電気集塵機8で微粒
ダストが除去され、排風機9.煙突lOを経て大気中に
放出される。またこの運転過程で炭酸カルシュラム等の
中和剤が中和剤バンカ19より高温分解炉3の出口側配
管内に供給される。これにより炭酸力ルシュウムは高温
で酸化カルシュラムと炭酸ガスとに熱解離し、かつこの
内の酸化カルシュラムが塩化ビニール等の塩素系廃棄物
を燃焼した際に生じる排ガス中の塩化水素と反応して塩
化カルシュラムを生成し、後段のサイクロン4゜電気集
塵機8で除去される。これにより排ガス中の塩化水素の
濃度を充分に下げて設備系内の腐食。
大気中への放出による公害の防止が図れるようになる。
なお前記した排ガス/空気熱交換器5の構成は第2図に
示すごとくであり、内面に耐火物51を内張したシェル
52の内部に多数のセラミック製伝熱管53を配管し、
その両端に空気導入側のマニホールド54.および加熱
空気排出側のマニホールド55を配備して構成されてい
る。ここで二次高温分解炉より排出した高温排ガスは矢
印Aのようにシェル52の内部を通流し、この過程で伝
熱管53内を流れる空気と熱交換して空気を高温加熱す
る。
ここで上記のように伝熱管53にセラミック製パイプを
採用したことにより高い耐熱性、耐蝕性が得られ、高温
分解炉の後段に接続する熱交換器としてより一層の長寿
命化と信軌性の向上が図れるようになる。またこの熱交
換器5を水管ボイラ6の前段に介装したことにより、排
ガス/空気の熱交換が高温の下で行われるので、熱交換
器は伝熱面積が少なくて小形に構成でき、かつ前段のサ
イクロンに続いて熱交換器内でもダストが伝熱管上に造
粒して排ガス中より除去されるので後段の水管ボイラに
対する耐蝕性を高める利点が得られる。
かかる点、従来公知のシステムでは燃焼炉の直後に水管
ボイラを介装して熱回収を行い、空気加熱器等の排ガス
/空気熱交換器は水管ボイラの後段に接続されており、
このために水管ボイラの腐食の進行が早まり、さらに水
管ボイラの出口では排ガスの温度が低下するために空気
加熱器は大きな伝熱面積を必要として大形化する。
なお上記した熱回収に付いて発明者お行った実験によれ
ば、二次高温分解炉で排ガスを1200℃まで昇温した
場合と、高温分解炉を設けず一次燃焼炉のみでその燃焼
温度を900℃とした場合では、熱回収率が前者では3
3.6%、後者では26.6%であり、二次高温分解炉
を設けることにより熱回収率を7%も向上できることが
確認されている。Fig. 1 is a system diagram of a waste combustion system according to an embodiment of the present invention, and Fig. 2 is a block diagram of a heat exchanger in Fig. 1. In the figure, 1 is a system for burning solid waste. A primary combustion furnace, 2 is a primary combustion furnace that burns liquid waste, and 3 is a secondary high-temperature decomposition furnace connected to the latter stage of the primary combustion furnace, and these furnaces and secondary furnaces are combined to burn waste. constitutes a means. Further, at the downstream stage of the waste combustion means, the exhaust gas/air heat exchanger 5 passes through a cyclone 4 for removing dust contained in the exhaust gas. A heat recovery means consisting of a combination of a water tube boiler 6, a smoke tube boiler 7, etc., and an electrostatic precipitator 8. Exhaust gas treatment means is provided which passes through the exhaust fan 9 and reaches the chimney 10. Further, to the burners of the primary combustion furnace 1.2 and the secondary high-temperature cracking furnace 3, auxiliary oil is supplied from an auxiliary oil tank 11 through an auxiliary oil supply line 13 piped via a pump 12, and combustion air is The blower 14 sends air to the exhaust gas/air heat exchanger 5 to heat it at a high temperature, and the high-temperature air is further supplied to the burners of each furnace through a combustion air supply line 15 piped through the smoke tube boiler 7. Furthermore, in the secondary high-temperature cracking furnace 3, the inlet for the exhaust gas sent from the primary combustion furnace is opened eccentrically with respect to the cylindrical furnace body, and the exhaust gas introduced into the furnace through the inlet is introduced into the furnace body together with the combustion gas. It rises while swirling inside and reaches the exit end. On the other hand, the steam generated in the water tube boiler 6 and the smoke tube boiler 7 is sent to the heat utilization system 18 via the accumulator 17. Furthermore, 19 is a neutralizer bunker containing a neutralizer such as lucium carbonate, which neutralizes corrosive harmful substances such as hydrogen chloride contained in waste exhaust gas. The neutralizing agent is introduced into the outlet side of the secondary high temperature decomposition furnace 3 by the conveyance. Next, to explain the waste combustion process using the system with the above configuration, first, solid and liquid waste is introduced into the primary combustion furnace 1.2, and the burner is supplied with auxiliary fuel oil and high-temperature combustion air. It is combusted and gasified at an internal combustion temperature of 600 to 1100°C, and the exhaust gas is introduced into the secondary high temperature cracking furnace 3. In this high-temperature decomposition furnace 3, combustion air is supplied under pressure together with auxiliary oil, and the auxiliary oil is sprayed into the furnace to perform combustion. Here, by controlling the amount of auxiliary fuel oil and air supplied into the furnace through the burner, the combustion temperature is controlled to a high temperature, preferably 1200° C. or higher, and the exhaust gas is heated to a high temperature. As a result, the exhaust gas sent from the primary combustion furnace is exposed to high temperatures evenly as it flows through the high-temperature decomposition furnace, and the harmful substances contained in the exhaust gas as mentioned above are sufficiently thermally decomposed at high temperatures. Become. Next, the exhaust gas discharged from the high-temperature decomposition furnace 3 is guided to a cyclone 4 to separate and remove dust components in the exhaust gas, and then introduced to an exhaust gas/air heat exchanger 5 where it is heat exchanged with air supplied through a blower 14. . The air heated to a high temperature here is guided to the smoke tube boiler 7 for heat recovery, and is then supplied to the burners of the primary furnace and the secondary furnace through the combustion air supply in 15 as described above. On the other hand, the exhaust gas after heat exchange is introduced into the downstream water tube boiler 6 in a state where the temperature has decreased, and heat recovery is performed here. Note that the exhaust gas temperature has dropped to around 300°C at the inlet of the water tube boiler 6.
There is no risk of corrosion of metal heat exchanger tubes. Furthermore, fine dust is removed from the exhaust gas exiting the water tube boiler 6 by an electric precipitator 8, and then by an exhaust fan 9. It is released into the atmosphere through the chimney lO. Also, during this operation process, a neutralizing agent such as calcium carbonate is supplied from the neutralizing agent bunker 19 into the outlet side piping of the high temperature decomposition furnace 3. As a result, lucium carbonate thermally dissociates into calcium oxide and carbon dioxide gas at high temperatures, and the calcium oxide reacts with hydrogen chloride in the exhaust gas generated when chlorinated waste such as vinyl chloride is burned, resulting in chlorination. Calculum is generated and removed by the cyclone 4° electrostatic precipitator 8 in the subsequent stage. This sufficiently reduces the concentration of hydrogen chloride in the exhaust gas and prevents corrosion within the equipment system. It will be possible to prevent pollution caused by release into the atmosphere. The structure of the above-described exhaust gas/air heat exchanger 5 is as shown in FIG. 2, in which a large number of ceramic heat transfer tubes 53 are arranged inside a shell 52 whose inner surface is lined with a refractory material 51.
Air introduction side manifold 54. and a manifold 55 on the heated air discharge side. Here, the high-temperature exhaust gas discharged from the secondary high-temperature decomposition furnace flows through the interior of the shell 52 as shown by arrow A, and in this process exchanges heat with the air flowing through the heat transfer tubes 53 to heat the air to a high temperature. As mentioned above, by adopting a ceramic pipe for the heat transfer tube 53, high heat resistance and corrosion resistance are obtained, and as a heat exchanger connected to the latter stage of the high-temperature cracking furnace, it has a much longer life and reliability. will be able to improve their performance. In addition, by installing this heat exchanger 5 in the front stage of the water tube boiler 6, heat exchange between exhaust gas and air is performed at high temperatures, so the heat exchanger has a small heat transfer area and can be configured compactly. Since the dust is granulated on the heat exchanger tubes in the heat exchanger following the cyclone in the previous stage and is removed from the exhaust gas, there is an advantage that the corrosion resistance of the water tube boiler in the latter stage is improved. In this regard, in conventionally known systems, a water tube boiler is inserted immediately after the combustion furnace to recover heat, and an exhaust gas/air heat exchanger such as an air heater is connected after the water tube boiler.
This accelerates the progress of corrosion in the water tube boiler, and furthermore, the temperature of the exhaust gas decreases at the outlet of the water tube boiler, so the air heater needs a large heat transfer area and becomes larger. According to the experiments conducted by the inventor regarding the above-mentioned heat recovery, the combustion temperature was lowered when the exhaust gas was heated to 1200°C in a secondary high-temperature cracking furnace, and when the combustion temperature was raised only in a primary combustion furnace without a high-temperature cracking furnace. In the case of 900℃, the heat recovery rate is 3 in the former case.
3.6%, and the latter is 26.6%, and it has been confirmed that the heat recovery rate can be improved by as much as 7% by providing a secondary high-temperature cracking furnace.
以上述べたようにこの発明によれば、廃棄物の燃焼手段
、熱回収手段、排ガス処理手段を組合せて構成し、廃棄
物を燃焼させてその排ガス中から熱回収、ダスト除去を
行う廃棄物燃焼システムにおいて、前記廃棄物の燃焼手
段として一次燃焼炉と、該燃焼炉の後段に接続した二次
高温分解炉とを組合せ、廃棄物を一次燃焼炉で燃焼した
後にその排ガスを後段の二次高温分解炉に導き、この高
温分解炉内で排ガスを高温加熱して排ガス中に含まれる
有害な有機物質等を熱分解するように構成したことによ
り、
txt一次燃焼炉で燃焼された廃棄物の排ガス中に含ま
れているダイオキシン等の有害物質成分を二次高温分解
炉で容易、かつ充分に熱分解することができ、かくして
有害物質を未分解のまま大気中に放出することが無くな
り、充分な低公害化を図ることができる。
(2)排ガスを高温に昇温した状態で、この排ガスより
直接熱回収を行うことができるので、熱回収率のより一
層の向上を図ることができる。
等、公害発生が無く、かつ運転性能の高い廃棄物燃焼シ
ステムを提供することができる。As described above, according to the present invention, waste combustion is configured by combining a waste combustion means, a heat recovery means, and an exhaust gas treatment means, and performs waste combustion to recover heat and remove dust from the exhaust gas. In the system, a primary combustion furnace is used as a combustion means for the waste, and a secondary high-temperature decomposition furnace is connected to the latter stage of the combustion furnace. By introducing the exhaust gas into a decomposition furnace and heating the exhaust gas at high temperature in this high-temperature decomposition furnace to thermally decompose harmful organic substances contained in the exhaust gas, the exhaust gas of waste burned in the TXT primary combustion furnace is The components of harmful substances such as dioxins contained in the water can be easily and sufficiently thermally decomposed in the secondary high-temperature decomposition furnace. It is possible to reduce pollution. (2) Since heat can be directly recovered from the exhaust gas while the exhaust gas is heated to a high temperature, the heat recovery rate can be further improved. etc., it is possible to provide a waste combustion system that does not generate pollution and has high operational performance.
第1図はこの発明の実施例による廃棄物燃焼システム全
体の系統図、第2図は第1図における徘ガス/空気熱交
換器の構成図である。各図において。FIG. 1 is a system diagram of the entire waste combustion system according to an embodiment of the present invention, and FIG. 2 is a block diagram of the wandering gas/air heat exchanger in FIG. 1. In each figure.
Claims (1)
組合せて構成し、廃棄物を燃焼させてその排ガス中から
熱回収、ダスト除去を行う廃棄物燃焼システムにおいて
、前記廃棄物の燃焼手段として一次燃焼炉と、該燃焼炉
の後段に接続した二次高温分解炉とを組合せ、廃棄物を
一次燃焼炉で燃焼した後にその排ガスを後段の二次高温
分解炉に導き、この高温分解炉内で排ガスを高温加熱し
て排ガス中に含まれる有害な有機物質等を熱分解するよ
うにしたことを特徴とする廃棄物燃焼システム。 2)特許請求の範囲第1項記載の燃焼システムにおいて
、一次燃焼炉の燃焼温度を600〜1100℃、二次高
温分解炉の燃焼温度を1200℃以上にして廃棄物の燃
焼、および排ガス中に含まれている燃焼生成物の高温熱
分解を行うことを特徴とする廃棄物燃焼システム。 3)特許請求の範囲第1項記載の廃棄物燃焼システムに
おいて、熱回収手段を通じて加熱した空気を燃焼空気と
して一次燃焼炉および二次高温分解炉に導入するように
したことを特徴とする廃棄物燃焼システム。 4)特許請求の範囲第1項記載の燃焼システムにおいて
、熱回収手段が高温分解炉の後段に順に接続された排ガ
ス/空気熱交換器、蒸気発生ボイラから成ることを特徴
とする廃棄物燃焼システム。 5)特許請求の範囲第4項記載の燃焼システムにおいて
、排ガス/空気熱交換器がセラミック製の伝熱管を採用
したシェルアンドチューブ型熱交換器であることを特徴
とする廃棄物燃焼システム。[Claims] 1) A waste combustion system that is configured by combining a waste combustion means, a heat recovery means, and an exhaust gas treatment means, and which burns waste and recovers heat and removes dust from the exhaust gas, The waste combustion means is a combination of a primary combustion furnace and a secondary high-temperature decomposition furnace connected to the downstream stage of the combustion furnace, and after the waste is combusted in the primary combustion furnace, the exhaust gas is sent to the downstream secondary high-temperature decomposition furnace. A waste combustion system is characterized in that the exhaust gas is heated to a high temperature in the high-temperature decomposition furnace to thermally decompose harmful organic substances contained in the exhaust gas. 2) In the combustion system according to claim 1, the combustion temperature of the primary combustion furnace is set to 600 to 1100°C, and the combustion temperature of the secondary high temperature decomposition furnace is set to 1200°C or higher to burn the waste and to incinerate the waste gas. A waste combustion system characterized by carrying out high-temperature pyrolysis of the combustion products contained therein. 3) A waste combustion system according to claim 1, characterized in that air heated through a heat recovery means is introduced as combustion air into a primary combustion furnace and a secondary high-temperature decomposition furnace. combustion system. 4) A waste combustion system according to claim 1, characterized in that the heat recovery means comprises an exhaust gas/air heat exchanger and a steam generation boiler connected in sequence after the high-temperature decomposition furnace. . 5) A waste combustion system according to claim 4, wherein the exhaust gas/air heat exchanger is a shell-and-tube type heat exchanger employing a ceramic heat exchanger tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17507086A JPS6332210A (en) | 1986-07-25 | 1986-07-25 | Waste combustion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17507086A JPS6332210A (en) | 1986-07-25 | 1986-07-25 | Waste combustion system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6332210A true JPS6332210A (en) | 1988-02-10 |
Family
ID=15989703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17507086A Pending JPS6332210A (en) | 1986-07-25 | 1986-07-25 | Waste combustion system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6332210A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0498007A (en) * | 1990-08-15 | 1992-03-30 | Shokin Chin | Tunnel type refuse incinerator |
JPH0763315A (en) * | 1993-08-25 | 1995-03-07 | Kazuichi Katsuki | Incinerating apparatus for toxic substance |
WO2001053753A1 (en) * | 1999-11-20 | 2001-07-26 | Yeon Mook Choi | Apparatus for treating exhausted heating gas |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57117325A (en) * | 1981-01-14 | 1982-07-21 | Nippon Steel Corp | Method of decreasing amount of noxious gas component in combustion gas discharged from refuse melting furnace |
JPS6051873A (en) * | 1983-09-01 | 1985-03-23 | Fuji Photo Film Co Ltd | Small-sized electrophotographic copying machine |
JPS6096823A (en) * | 1983-11-01 | 1985-05-30 | Babcock Hitachi Kk | Disposal of burning unsuitable refuse |
JPS6179908A (en) * | 1984-09-21 | 1986-04-23 | エスケーエフ スティール エンジニアリング アクテイエボラーグ | Method of decomposing noxious waste |
-
1986
- 1986-07-25 JP JP17507086A patent/JPS6332210A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57117325A (en) * | 1981-01-14 | 1982-07-21 | Nippon Steel Corp | Method of decreasing amount of noxious gas component in combustion gas discharged from refuse melting furnace |
JPS6051873A (en) * | 1983-09-01 | 1985-03-23 | Fuji Photo Film Co Ltd | Small-sized electrophotographic copying machine |
JPS6096823A (en) * | 1983-11-01 | 1985-05-30 | Babcock Hitachi Kk | Disposal of burning unsuitable refuse |
JPS6179908A (en) * | 1984-09-21 | 1986-04-23 | エスケーエフ スティール エンジニアリング アクテイエボラーグ | Method of decomposing noxious waste |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0498007A (en) * | 1990-08-15 | 1992-03-30 | Shokin Chin | Tunnel type refuse incinerator |
JPH0763315A (en) * | 1993-08-25 | 1995-03-07 | Kazuichi Katsuki | Incinerating apparatus for toxic substance |
WO2001053753A1 (en) * | 1999-11-20 | 2001-07-26 | Yeon Mook Choi | Apparatus for treating exhausted heating gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rutberg et al. | The technology and execution of plasmachemical disinfection of hazardous medical waste | |
JPH06505667A (en) | Method and device for detoxifying waste gas from waste incinerators | |
JP2756505B2 (en) | Waste pyrolysis method and apparatus | |
JP3781339B2 (en) | Waste carbonization pyrolysis reactor and carbonization pyrolysis method | |
JPS6332210A (en) | Waste combustion system | |
JP2013164226A (en) | Waste material incinerator and waste material incinerating method | |
RU91409U1 (en) | INSTALLATION FOR THERMAL PROCESSING OF SOLID DOMESTIC WASTE | |
KR102083131B1 (en) | Incinerator with nozzle pipe that generates rotating airflow | |
JP2001304521A (en) | Waste combustion apparatus | |
JP2004002552A (en) | Waste gasification method, waste gasification device, and waste treatment apparatus using the same | |
JPH08110021A (en) | Produced gas processing apparatus for waste melting furnace | |
KR20110016307A (en) | Waste water treatment system using brown gas | |
JP2989351B2 (en) | Waste incineration method | |
JP3900951B2 (en) | Thermal decomposition method and facility | |
JPH0712321A (en) | Combustion discharged gas toxic substance thermal decomposition furnace | |
CN216203396U (en) | Novel RTO burns system | |
CN219283341U (en) | Domestic waste high temperature carbonization device | |
KR20080064550A (en) | Trash incineration system | |
JP3654932B2 (en) | Fluidized bed waste incineration method and apparatus | |
JP2003065514A (en) | Waste treatment method | |
JP2006023052A (en) | Exhaust gas processing method for ash melting furnace, and processing facility therefor | |
JP2000266324A (en) | Waste thermal decomposing disposal apparatus | |
JPH1144414A (en) | Thermally decomposing melt combustion equipment for waste | |
JP2005164059A (en) | Waste incinerating treatment method and its plant | |
JP3272582B2 (en) | Superheated steam production equipment using waste incineration heat |