JPH11118124A - Fluidized gassifying/melting apparatus, and method thereof - Google Patents

Fluidized gassifying/melting apparatus, and method thereof

Info

Publication number
JPH11118124A
JPH11118124A JP28744197A JP28744197A JPH11118124A JP H11118124 A JPH11118124 A JP H11118124A JP 28744197 A JP28744197 A JP 28744197A JP 28744197 A JP28744197 A JP 28744197A JP H11118124 A JPH11118124 A JP H11118124A
Authority
JP
Japan
Prior art keywords
fluidized
gas
melting
furnace
bed gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28744197A
Other languages
Japanese (ja)
Other versions
JP3836582B2 (en
Inventor
Masaki Sato
政樹 佐藤
Hisashi Morimoto
尚志 森本
Manabu Yamamoto
学 山本
Hiromichi Fujiwara
弘道 藤原
Hideji Mori
秀治 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP28744197A priority Critical patent/JP3836582B2/en
Publication of JPH11118124A publication Critical patent/JPH11118124A/en
Application granted granted Critical
Publication of JP3836582B2 publication Critical patent/JP3836582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the function of a fluidized bed gassifying/melting system for a combustible substance contained in various wastes such as municipal waste and/or industrial waste, and hence ensure stable operation. SOLUTION: Gas produced by thermally decomposing waste in a fluidized bed gassifying furnace 2 using a fluid medium is combusted in a combustion furnace 45, and resulting combustion gas is used to heat exchange with a heat exchange medium in an independent superheater 26, and then recirculation gas 19 after the heat exchange is used as a fluidizing fluid 13 of the fluid medium in the fluidized bed gassifying furnace 2. Thus, single operation is ensured in a state where the fluidized bed gassifying furnace 2 is separated from a melting furnace 4 and a heat recovery apparatus 5, and even when the operation of the fluidized bed gassifying furnace 2 or the succeeding melting furnace 4, etc., are interrupted for the purpose of maintenance or failure, the system including a fluidized bed gassifying furnace 2 system and the system including the melting furnace 4 and the heat recovery apparatus 5 are ensured to be single operated (warm-up operation). Thus, there is ensured a desirable state of the fluidized bed gassifying furnace 2 and the melting furnace 4 where temperature lowering due to the operation interruption should be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流動床を用いる都市
ごみ及び/又は各種廃棄物に含まれる可燃物の流動床式
ガス化溶融方法と装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed gasification and melting method for combustibles contained in municipal solid waste and / or various wastes using a fluidized bed.

【0002】[0002]

【従来の技術】都市ごみおよび各種廃棄物(以下、本発
明では単にごみと言うことがある。)の処理方式が種々
開発されているが、最近、新しい処理方式として、一つ
のシステム内でごみを熱分解し、生成した熱分解ガスや
チャーを熱源として灰分を溶融する方式が採用されてい
る。その方式の一つに、流動床式ガス化炉によりごみに
含まれる可燃分をガス化し、また灰分は溶融して固化す
るガス化溶融システムがある。
2. Description of the Related Art Various methods of treating municipal solid waste and various types of waste (hereinafter, simply referred to as garbage in the present invention) have been developed. Is pyrolyzed and ash is melted using the generated pyrolysis gas or char as a heat source. As one of the methods, there is a gasification and melting system in which combustibles contained in refuse are gasified by a fluidized-bed gasifier, and ash is melted and solidified.

【0003】上記ガス化溶融システムでは、流動床式ガ
ス化炉に供給されたごみは、砂等から成る流動媒体と混
合されて空気等の流動化流体を用いて流動化されなが
ら、吹き込まれた空気と反応して還元雰囲気でガス化さ
れ、可燃性の熱分解ガスと固体のチャーなどが生成す
る。そして得られた熱分解ガスはすべて熱分解ガス燃焼
炉で燃焼され排熱回収装置に導入される。またごみ中の
金属類、瓦礫などの不燃物(燃焼炉底残さ)はチャーに
含まれるか或いは粒度、比重などの物性の差を利用して
チャーからは分離される。そして、不燃物中の金属類が
回収された後、灰分は溶融固化された後あるいはそのま
まの状態で埋め立て処理などに利用される。可燃性のガ
ス、チャーおよひ飛灰などは流動床ガス化炉の後流側に
設けた灰溶融炉に送られて、熱源として利用され、飛灰
などの不燃物の大部分は溶融される。これらの処理がな
された後のガスは排ガス浄化装置で浄化処理された後、
大気中に放出される。
In the above gasification and melting system, refuse supplied to a fluidized-bed gasification furnace is blown while being mixed with a fluidization medium such as sand and fluidized using a fluidization fluid such as air. It reacts with air and is gasified in a reducing atmosphere, producing flammable pyrolysis gas and solid char. Then, all of the obtained pyrolysis gas is burned in a pyrolysis gas combustion furnace and introduced into an exhaust heat recovery device. In addition, incombustibles (residues from the bottom of the combustion furnace) such as metals and debris in the garbage are contained in the char or separated from the char by utilizing the difference in physical properties such as particle size and specific gravity. After the metals in the incombustibles are recovered, the ash is used for landfilling or the like after being melted and solidified or as it is. The combustible gas, char and fly ash are sent to the ash melting furnace located on the downstream side of the fluidized bed gasifier to be used as a heat source, and most of the incombustibles such as fly ash are melted. You. The gas after these treatments are purified by the exhaust gas purification device,
Released into the atmosphere.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の流動床
式ガス化溶融システムにおいては、流動床ガス化炉の後
流側には熱分解ガスの燃焼炉、溶融炉、排熱回収装置及
び排ガス浄化装置などが設けられているので、ガス化溶
融システムの起動時や溶融炉等の該システムを構成する
各装置のメンテナンスの後にシステムを再起動する時
に、流動床ガス化炉用の流動化流体はシステム全体が暖
気され、定常状態に達するまで所定の温度を得ることが
不可能であり、したがって流動床ガス化炉は起動が迅速
に行えない。すなわち、システム全体の起動に長時間を
要する欠点があった。
In the prior art fluidized bed gasification and melting system, a combustion furnace for pyrolysis gas, a melting furnace, an exhaust heat recovery device and an exhaust gas are provided downstream of the fluidized bed gasification furnace. Since a purification device is provided, the fluidized fluid for the fluidized bed gasification furnace is used when the gasification and melting system is started or when the system is restarted after maintenance of each device that composes the melting furnace and the like. It is not possible to obtain a predetermined temperature until the whole system is warmed up and a steady state is reached, so that a fluidized bed gasifier cannot be started up quickly. That is, there is a disadvantage that it takes a long time to start up the entire system.

【0005】また、流動床ガス化炉を含むごみ熱分解装
置部分と後続の溶融炉を含む溶融熱回収装置を含む部分
とがシステム的に相互に関連しているため、各々を単独
で運転することができない。すなわち、これらのいずれ
かの部分でメンテナンスのためあるいは不具合等により
運転を停止する場合はシステム全体を完全に停止する必
要がある。流動床ガス化炉内は高温状態の多量の砂など
からなる流動媒体が充填されており、また、溶融炉は温
度低下により溶融スラグが固化してしまう等、いずれも
可能な限り運転(暖気運転を含む)を継続させることが
望ましいが、従来技術の流動床式ガス化溶融システムで
は極めて難しいという欠点がある。
In addition, since a portion of a refuse pyrolyzer including a fluidized-bed gasifier and a portion including a subsequent heat recovery device including a melting furnace are systematically interconnected, each is operated independently. Can not do. That is, when the operation is stopped in any of these parts for maintenance or due to a failure or the like, it is necessary to completely stop the entire system. The fluidized-bed gasification furnace is filled with a fluid medium consisting of a large amount of sand and the like in a high temperature state, and the melting furnace is operated as much as possible (warm air operation Is desirable, but there is a disadvantage that the fluidized bed gasification melting system of the prior art is extremely difficult.

【0006】さらには、流動床ガス化炉に投入される都
市ごみや各種産業廃棄物には塩素分や各種重金属分(重
金属分は装置の腐食を加速する触媒的な要素になり得
る)を含有しており、これら塩素分などが熱分解ガスに
同伴されて熱回収部の構成部材を腐食させることがあっ
た。そのため、高温の過熱蒸気を得ることはできなく、
従って、この流動床式ガス化溶融システムを用いて、高
効率な発電を実現することができなかった。
[0006] Furthermore, municipal solid waste and various industrial wastes that are put into a fluidized-bed gasifier contain chlorine and various heavy metals (the heavy metals can be catalytic elements that accelerate the corrosion of equipment). As a result, the chlorine and the like may accompany the pyrolysis gas and corrode components of the heat recovery unit. Therefore, high-temperature superheated steam cannot be obtained,
Therefore, high-efficiency power generation could not be realized using this fluidized-bed gasification and melting system.

【0007】また、上記流動床式ガス化溶融システムに
導入されるごみ等の可燃物は性状が一定せず、また、ガ
ス化炉への投入量が時間経過と共に大きく変動すること
があり、安定した流動床燃焼を維持することが難しかっ
た。特にごみの量的な変動だけでなく、ごみ中の水分の
含有量の変動もあり、水分量が多いごみがガス化炉内に
一度に多量に投入されると、補助燃料の供給量を急激に
増加させることができないと流動床ガス化燃焼を維持で
きないおそれがあった。
In addition, combustibles such as refuse introduced into the fluidized-bed gasification and melting system are not uniform in properties, and the amount charged into the gasification furnace may fluctuate greatly with the passage of time. It was difficult to maintain the fluidized bed combustion. In particular, not only fluctuations in the amount of refuse, but also fluctuations in the water content of the refuse, the amount of auxiliary fuel supplied rapidly increases when refuse with a large amount of water is thrown into the gasifier in large quantities at once. Otherwise, fluidized bed gasification combustion may not be maintained.

【0008】本発明の課題は都市ごみ及び/又は産業廃
棄物などの各種廃棄物に含まれる可燃物の流動床式ガス
化溶融システムの機能を向上させ、安定した運転を可能
にし、また、高効率な発電を実現することである。
An object of the present invention is to improve the function of a fluidized-bed gasification and melting system for combustibles contained in various kinds of wastes such as municipal solid waste and / or industrial wastes, to enable a stable operation, and to achieve a high operation efficiency. It is to realize efficient power generation.

【0009】また、本発明の課題は起動時の迅速な立ち
上げを可能とし、またメインテナンス時あるいは一部の
装置の故障時における流動床式ガス化処理システムの中
の一部の装置の部分運転を可能にすることである。ま
た、本発明の課題は量的あるいは性状に変動の多いごみ
を定量的に、かつ性状的にもほぼ一定した状態で流動床
ガス化炉に投入することができるようにすることであ
る。
Another object of the present invention is to enable quick start-up at the time of start-up, and to perform partial operation of some devices in a fluidized-bed gasification treatment system at the time of maintenance or at the time of failure of some devices. Is to make it possible. Another object of the present invention is to make it possible to quantitatively and quantitatively and quantitatively and quantitatively inject a refuse having a large quantity or property into a fluidized bed gasification furnace.

【0010】[0010]

【課題を解決するための手段】本発明の課題は次の構成
によって解決される。 (1)固形物を含む可燃物を流動媒体を用いて熱分解ガ
ス化する流動床ガス化炉と前記可燃物を熱分解ガス化し
て得られた飛灰分などの固形分を溶融する溶融炉と流動
床ガス化炉系及び/又は溶融炉で得られる熱ガスを用い
て熱回収する熱回収装置と前記少なくともいずれかの装
置から排出する排ガスを浄化処理する排ガス浄化装置か
らなる流動床式ガス化溶融装置において、流動床ガス化
炉で生成した熱分解ガスを燃焼させる熱分解ガス燃焼炉
と、該燃焼炉の燃焼ガスを用いて熱交換をする独立熱交
換器と、該独立熱交換器での熱交換の後の燃焼ガスを流
動床ガス化炉の流動化流体とする再循環ガス流路を含む
ガス循環系統を備えた流動床式ガス化溶融装置。
The object of the present invention is solved by the following constitution. (1) A fluidized-bed gasifier for pyrolyzing and gasifying combustibles containing solids using a fluidized medium, and a melting furnace for melting solids such as fly ash obtained by pyrolyzing and gasifying the combustibles. Fluidized bed gasification comprising a heat recovery device that recovers heat using hot gas obtained in a fluidized bed gasification furnace system and / or a melting furnace, and an exhaust gas purification device that purifies exhaust gas discharged from at least one of the above devices. In the melting device, a pyrolysis gas combustion furnace that burns pyrolysis gas generated in a fluidized bed gasification furnace, an independent heat exchanger that performs heat exchange using combustion gas from the combustion furnace, and an independent heat exchanger A fluidized-bed gasification / melting apparatus comprising a gas circulation system including a recirculation gas flow path in which the combustion gas after heat exchange is used as a fluidization fluid of a fluidized-bed gasification furnace.

【0011】(2)上記構成に加えて、流動床ガス化炉
と熱分解ガス燃焼炉との間のガス流路に設けた流動床ガ
ス化炉で生成した熱分解ガスに同伴されるチャーを熱分
解ガスと分離する分離器と、該分離器で分離されたチャ
ーを貯留するチャー貯留槽を備えた流動床式ガス化溶融
装置。
(2) In addition to the above configuration, a char entrained by the pyrolysis gas generated by the fluidized-bed gasification furnace provided in the gas flow path between the fluidized-bed gasification furnace and the pyrolysis-gas combustion furnace is provided. A fluidized bed gasification / melting apparatus comprising a separator for separating pyrolysis gas and a char storage tank for storing the char separated by the separator.

【0012】(3)固形物を含む可燃物を流動媒体を用
いて熱分解ガス化する流動床ガス化炉と前記可燃物を熱
分解ガス化して得られた固形分を溶融する溶融炉と流動
床ガス化炉及び/又は溶融炉で得られる熱ガスを用いて
熱回収する熱回収装置と前記少なくともいずれかの装置
から排出する排ガスを浄化処理する排ガス浄化装置から
なる流動床式ガス化溶融装置において、複数の可動板の
往復運動により前記可燃物の層厚をならしながら流動床
ガス化炉に固形可燃物を供給する前処理装置を設けた流
動床式ガス化溶融装置。
(3) A fluidized bed gasifier for pyrolyzing and gasifying combustibles containing solids using a fluidized medium, and a melting furnace for melting solids obtained by pyrolyzing and gasifying the combustibles and fluidizing A fluidized bed gasification / melting device comprising a heat recovery device for recovering heat using a hot gas obtained in a bed gasification furnace and / or a melting furnace, and an exhaust gas purification device for purifying exhaust gas discharged from at least one of the above devices. 3. The fluidized-bed gasification and melting apparatus according to claim 1, further comprising a pretreatment device for supplying a solid combustible to a fluidized-bed gasification furnace while leveling the thickness of the combustible by reciprocating motion of a plurality of movable plates.

【0013】(4)固形物を含む可燃物を流動媒体を用
いて流動床ガス化炉内で熱分解ガス化して得られる熱分
解ガスを熱源として熱回収媒体に熱回収し、前記可燃物
を熱分解ガス化して得られた固形分を溶融する流動床式
ガス化溶融方法において、流動床ガス化炉で生成した熱
分解ガスを燃焼させて、該燃焼ガスの燃焼熱から熱回収
媒体に熱交換をした後、熱交換の後の燃焼ガスを流動床
ガス化炉の流動媒体の流動化流体として用いる流動床式
ガス化溶融方法。
(4) Pyrolytic gasification of a combustible material including a solid substance in a fluidized bed gasifier using a fluidized medium, and recovering heat in a heat recovery medium using a pyrolyzed gas obtained as a heat source, and recovering the combustible material. In a fluidized-bed gasification and melting method in which a solid content obtained by pyrolysis gasification is melted, a pyrolysis gas generated in a fluidized-bed gasification furnace is burned, and heat from the combustion heat of the combustion gas is transferred to a heat recovery medium. A fluidized-bed gasification / melting method in which after the exchange, the combustion gas after the heat exchange is used as a fluidizing fluid of a fluidized medium of a fluidized-bed gasifier.

【0014】(5)固形物を含む可燃物を流動媒体を用
いて流動床ガス化炉内で熱分解ガス化して得られた熱分
解ガスを熱源として熱回収媒体に熱回収し、前記可燃物
を熱分解ガス化して得られた固形分を溶融する流動床式
ガス化溶融方法において、前記可燃物の層厚をならしな
がら乾燥させて、前記層厚と水分含有率がほぼ均一な前
記可燃物を順次流動床ガス化炉に供給する流動床式ガス
化溶融方法。
(5) Pyrolytic gasification of a combustible material including a solid substance in a fluidized-bed gasification furnace using a fluidized medium, and recovering heat in a heat recovery medium using a pyrolysis gas obtained as a heat source; In the fluidized-bed gasification melting method of melting the solids obtained by pyrolyzing and gasifying the combustible material, the combustible material is dried while the layer thickness is leveled, and the combustible material has a substantially uniform thickness and moisture content. Fluidized-bed gasification and melting method in which materials are sequentially supplied to a fluidized-bed gasification furnace.

【0015】こうして、本発明によれば流動床ガス化炉
で発生した可燃性の熱分解ガスは熱分解ガス燃焼炉で燃
焼され、独立過熱器などの独立熱交換器に導入され、完
全燃焼する。独立過熱器などの独立熱交換器で熱回収さ
れた燃焼ガスは流動床ガス化炉の流動化流体として再循
環使用される。この構成により後流の溶融炉および排熱
回収部の運転とは完全に切り離して流動床ガス化炉を起
動させることあるいは運転を継続させることを可能にす
る。
Thus, according to the present invention, the flammable pyrolysis gas generated in the fluidized bed gasifier is burned in the pyrolysis gas combustion furnace, introduced into an independent heat exchanger such as an independent superheater, and completely burned. . The combustion gas recovered by heat in an independent heat exchanger such as an independent superheater is recycled as a fluidizing fluid in a fluidized-bed gasification furnace. With this configuration, it is possible to completely start up the fluidized-bed gasification furnace or to continue the operation, completely separated from the operation of the downstream melting furnace and the exhaust heat recovery unit.

【0016】本発明によれば、流動床ガス化炉を溶融
炉、熱回収装置から切り離した状態で単独運転をするこ
とができるため、流動床ガス化炉あるいは後続の溶融炉
等のメンテナンス時に、またはこれらを不具合等で停止
した時におのおの流動床ガス化炉を含むガス循環系統と
溶融炉と熱回収装置を含む固形分及びガス処理系統を単
独に運転(暖気運転)を継続することが可能となる。こ
のことは可能な限り運転停止による温度低下を避けたい
流動床ガス化炉を含むガス循環系統と溶融炉と熱回収装
置を含む固形分及びガス処理系統において望ましい状態
を提供できる。
According to the present invention, since the fluidized bed gasifier can be operated independently in a state of being separated from the melting furnace and the heat recovery apparatus, the maintenance can be performed during maintenance of the fluidized bed gasifier or the subsequent melting furnace. Or, when these are stopped due to troubles, it is possible to continue the operation (warm-up operation) of each of the gas circulation system including the fluidized bed gasification furnace, the solid content and the gas treatment system including the melting furnace and the heat recovery unit independently. Become. This can provide a desirable condition in a gas circulation system including a fluidized-bed gasifier and a solids and gas processing system including a melting furnace and a heat recovery unit, in which it is desired to avoid a temperature decrease due to a shutdown as much as possible.

【0017】また、本発明のガス化溶融炉の起動時にお
いて熱分解ガスが少量あるいは低温時には独立熱交換器
での補助燃料の燃焼量を調整することで流動床ガス化炉
の空燃比などを所定の条件に合致させることが容易にで
きるので、流動床ガス化炉の迅速な起動が可能となる。
また、流動床ガス化炉に消石灰などの脱塩剤を供給し、
適切なごみの熱分解条件、すなわち、流動床ガス化炉内
の流動層の温度を500〜700℃に維持させることに
より、ごみ中に含まれる塩素分や発生した塩化水素は消
石灰や灰分中のカルシウムと反応して固定化され、熱分
解ガスは塩化水素含有量の少ない清浄なガスになる。
Further, when the gasification and melting furnace of the present invention is started, when the amount of pyrolysis gas is small or at low temperature, the air-fuel ratio of the fluidized-bed gasification furnace is adjusted by adjusting the combustion amount of the auxiliary fuel in the independent heat exchanger. Since it is easy to meet the predetermined conditions, the fluidized-bed gasifier can be quickly started.
In addition, a desalinating agent such as slaked lime is supplied to the fluidized bed gasifier,
By maintaining appropriate garbage pyrolysis conditions, that is, maintaining the temperature of the fluidized bed in the fluidized bed gasifier at 500 to 700 ° C, chlorine contained in the garbage and generated hydrogen chloride are reduced to calcium in slaked lime and ash. And the pyrolysis gas becomes a clean gas with a low hydrogen chloride content.

【0018】また、本発明では、流動床ガス化炉の後流
側のガス流路にサイクロンなどの固形分分離器を設ける
と、該分離器でチャー、灰分、反応生成物(塩化カルシ
ウムなど)及び重金属などがガス成分から分離されると
共に、該分離器内で前記反応を促進させて、塩化水素ガ
ス含有量を更に少なくすることができる。このとき前記
分離器内に消石灰などの脱塩剤を供給しても良い。
Further, in the present invention, when a solids separator such as a cyclone is provided in the gas flow path on the downstream side of the fluidized bed gasifier, char, ash, reaction products (such as calcium chloride) are provided in the separator. And the heavy metals and the like are separated from the gas components, and the reaction is promoted in the separator, so that the hydrogen chloride gas content can be further reduced. At this time, a desalinating agent such as slaked lime may be supplied into the separator.

【0019】この清浄ガスを本発明のガス化溶融装置を
構成する各種装置に循環使用することにより、流動床ガ
ス化炉をはじめとして、本発明のガス化溶融装置の運転
に悪影響を及ぼすこれら塩化水素や重金属類成分の濃
縮、蓄積がなくなり、ガス化溶融装置の保守、保全上の
効果がある。
By circulating the clean gas to various devices constituting the gasification and melting apparatus of the present invention, these chlorides which adversely affect the operation of the gasification and melting apparatus of the present invention, including the fluidized bed gasifier, are used. Concentration and accumulation of hydrogen and heavy metal components are eliminated, and there is an effect on maintenance and maintenance of the gasification and melting equipment.

【0020】特に過熱器の高温腐食の原因となる塩素分
の少ない清浄な熱分解ガスを独立過熱器に供給できるた
め、独立過熱器での高温高圧蒸気の回収が可能となり高
効率発電を実現できる。また、独立熱交換器の典型例で
ある独立過熱器の前段に流動床ガス化炉から得られた塩
素分の少ない清浄な熱分解ガスの燃焼炉を配置して、そ
の燃焼制御などにより安定した高温蒸気(約500℃程
度)を容易に得ることができ、高効率発電を達成するこ
とができる。
In particular, since a clean pyrolysis gas containing a small amount of chlorine, which causes high-temperature corrosion of the superheater, can be supplied to the independent superheater, high-temperature, high-pressure steam can be recovered by the independent superheater, and high-efficiency power generation can be realized. . In addition, a combustion furnace for clean pyrolysis gas with low chlorine content obtained from a fluidized-bed gasification furnace was placed in front of the independent superheater, which is a typical example of an independent heat exchanger, and its combustion was stabilized by controlling its combustion. High-temperature steam (about 500 ° C.) can be easily obtained, and high-efficiency power generation can be achieved.

【0021】また流動床ガス化炉に投入する前のごみは
グレート式の乾燥機などの前処理装置に入れられるが、
その時、山状の堆積ごみの高さはグレート式の乾燥機な
どの前処理装置で平均化してれて、順次排出口からまん
べんなく排出させることができるため、ごみの流動床ガ
ス化炉への定量供給が容易になる。それと同時に、水分
含有量の均一化されたごみがまんべんなく順次流動床ガ
ス化炉へ投入されるので、ガス化炉内の流動床内のごみ
燃焼用に補助燃料を用いる必要がない利点もある。
The waste before being put into the fluidized bed gasifier is put into a pretreatment device such as a great dryer.
At that time, the height of the piled-up debris is averaged by a pre-treatment device such as a great dryer, and can be discharged uniformly from the discharge port. Supply becomes easy. At the same time, refuse having a uniform moisture content is uniformly and sequentially introduced into the fluidized-bed gasification furnace, so that there is an advantage that it is not necessary to use an auxiliary fuel for refuse combustion in the fluidized bed in the gasification furnace.

【0022】また、この時、前処理装置に導入するごみ
乾燥用の流体として本発明のガス化溶融装置の少なくと
もいずれかの装置、例えば流動床ガス化炉、溶融炉、熱
回収装置または独立熱交換器などから得られる予熱空気
又は熱ガスを導入し、さらに、前処理装置から排出する
ごみ乾燥後の流体を本発明のガス化溶融装置の少なくと
もいずれかの装置に導くことで、ごみ乾燥用の流体をガ
ス化溶融装置の系外に排出する量を減少させることがで
きる。
Further, at this time, at least one of the gasification and melting apparatuses of the present invention, such as a fluidized bed gasification furnace, a melting furnace, a heat recovery apparatus, or an independent heat source, is used as a waste drying fluid to be introduced into the pretreatment apparatus. By introducing preheated air or hot gas obtained from an exchanger or the like, and further guiding the fluid after drying the waste discharged from the pretreatment device to at least any one of the gasification and melting devices of the present invention, for drying the waste. The amount of the fluid discharged outside the system of the gasification and melting apparatus can be reduced.

【0023】ごみ乾燥後の流体としては、ガス化炉で用
いられる予熱空気の一部を用いるか独立熱交換器または
熱回収装置から排出する熱ガスを用いる。前記予熱空気
をごみ乾燥用に用いる場合はごみ乾燥後は流動床ガス化
炉、溶融炉、熱分解ガス燃焼炉に供給され、また独立熱
交換器または熱回収装置から排出する熱ガスをごみ乾燥
用に用いる場合は、ごみ乾燥後は流動床ガス化炉または
熱回収装置にに供給されれる。また、臭気の強いごみ乾
燥後の流体を大気排出時に浄化処理する負担も小さくな
り、同時に、万一、このごみ乾燥用の流体がリークして
も、それは本発明のガス化溶融装置のの系内であるの
で、後処理でトラブルが生じることがない。
As the fluid after the refuse is dried, a part of the preheated air used in the gasification furnace is used, or a hot gas discharged from an independent heat exchanger or a heat recovery device is used. When the preheated air is used for refuse drying, after the refuse is dried, it is supplied to a fluidized bed gasifier, a melting furnace, and a pyrolysis gas combustion furnace, and the refuse is dried for hot gas discharged from an independent heat exchanger or a heat recovery device. When used for wastewater, after the refuse is dried, it is supplied to a fluidized bed gasifier or a heat recovery unit. In addition, the burden of purifying the odor-removed refuse-dried fluid at the time of discharge to the atmosphere is reduced, and at the same time, even if the refuse-drying fluid leaks, it is still the system of the gasification and melting apparatus of the present invention. Therefore, no trouble occurs in the post-processing.

【0024】[0024]

【発明の実施の形態】本発明の実施の形態について図面
と共に以下説明する。図1に本実施の形態のガス化溶融
システムの概略フローを示すが、このフローの概略を説
明する。前処理設備1から流動床ガス化炉2に投入され
た都市ごみ及び/又は各種廃棄物(以下、ごみというこ
とがある)が燃焼され、固形分と熱分解ガスとに分離さ
れる。熱分解ガスから熱分解ガスに同伴するチャーなど
の固形分をサイクロンセバレータ25などの分離器で分
離した後、本発明の特徴である独立過熱器26前段の燃
焼炉45で燃焼し、燃焼ガスは独立過熱器26で過熱蒸
気に熱回収される。一方、流動床ガス化炉2で得られた
固形分の中の灰分とチャーは分別設備3を経由して溶融
炉4に送られ、同時に溶融炉4には流動床ガス化炉2か
らの熱分解ガスと該熱分解ガスに同伴されたチャーなど
の固形分も供給されてごみから得られた固形分中の灰が
溶融される。溶融炉で得られた熱ガスは二次燃焼炉5内
で過熱器6、蒸発器7、空気予熱器8及び節炭器9で流
体の熱交換に利用された後、排ガス処理装置10で浄化
処理され、煙突31から大気中に放出される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic flow of the gasification and melting system of the present embodiment, and the outline of this flow will be described. Municipal refuse and / or various wastes (hereinafter, sometimes referred to as refuse) supplied from the pretreatment facility 1 to the fluidized bed gasifier 2 are burned and separated into solids and pyrolysis gas. After the solid content such as char accompanying the pyrolysis gas is separated from the pyrolysis gas by a separator such as a cyclone separator 25, the solid content is burned in a combustion furnace 45 in front of an independent superheater 26 which is a feature of the present invention. Is recovered by an independent superheater 26 into superheated steam. On the other hand, the ash and char in the solid content obtained in the fluidized-bed gasification furnace 2 are sent to the melting furnace 4 via the separation facility 3, and at the same time, the heat from the fluidized-bed gasification furnace 2 is supplied to the melting furnace 4. The cracked gas and solids such as char entrained by the pyrolyzed gas are also supplied, and the ash in the solids obtained from the refuse is melted. The hot gas obtained in the melting furnace is used for heat exchange of fluid in the superheater 6, the evaporator 7, the air preheater 8 and the economizer 9 in the secondary combustion furnace 5, and then purified by the exhaust gas treatment device 10. It is processed and released from the chimney 31 into the atmosphere.

【0025】図1において破砕されたごみ11は乾燥機
能などを有する前処理設備1から定量供給器32を介し
て投入部12より流動床ガス化炉2に投入される。流動
床ガス化炉2内において空燃比が約0.3程度の条件下
で、破砕ごみ11は流動化流体13によって熱分解さ
れ、熱分解ガスとチャーとが流動床ガス化炉2の頂部か
ら熱分解ガス15として取り出される。チャーを含まな
い熱分解ガス15はごみ等の組成によって変わるが、後
述する消石灰をガス化炉2内に添加していない場合の一
例を示すと次の様な成分とその含有割合(重量%)から
なり、その発熱量は1,066kcal/kgであっ
た。 CO 12.4; CH4 8.4; N2 22.7; H2O 50.2; CO2 6.2; Cl2 200ppm
In FIG. 1, crushed refuse 11 is introduced from a pretreatment facility 1 having a drying function and the like into a fluidized bed gasification furnace 2 from an introduction section 12 via a constant-rate feeder 32. Under the condition that the air-fuel ratio is about 0.3 in the fluidized bed gasifier 2, the crushed waste 11 is thermally decomposed by the fluidizing fluid 13, and the pyrolysis gas and the char are separated from the top of the fluidized bed gasifier 2 It is taken out as pyrolysis gas 15. The pyrolysis gas 15 containing no char varies depending on the composition of the refuse and the like, but the following components and their content ratio (% by weight) are shown in an example where slaked lime described below is not added into the gasification furnace 2. And its calorific value was 1,066 kcal / kg. CO 12.4; CH 4 8.4; N 2 22.7; H 2 O 50.2; CO 2 6.2; Cl 2 200ppm

【0026】また、金属や不燃物およびチャーなどの燃
焼残さ(炉底残さとも言う)はガス化炉2の炉底より不
燃物・チャー抜出装置33により排出され、分別設備3
によって金属等の資源化物14と灰・チャー混合物16
に分別される。流動床ガス化炉2で生成した熱分解ガス
15はサイクロンセパレータ25に送られ、サイクロン
セパレータ25では熱分解ガス15からなるガス成分と
熱分解ガス15に同伴される灰及びチャーからなる固体
成分に分離される。サイクロンセパレータ25で分離さ
れたガス成分は独立過熱器26の前段に設けられた燃焼
炉45で燃焼させる。燃焼炉45では燃焼性の高い熱分
解ガスとチャーだけを燃焼させるので、約1100〜1
200℃の高温ガスが得られる。しかし、本ガス化溶融
システムの起動時などに必要ならば、灯油、プロパンガ
スなどを用いる補助燃料17を加えて燃焼させても良
い。そして、この燃焼熱は過熱器26内に供給され、過
熱器26内の約250〜300℃の蒸気の過熱に利用さ
れ、約500℃の過熱蒸気を得ることができる。この蒸
気は図示しない蒸気タービンに使用される。
Further, combustion residues such as metals, incombustibles, and chars (also referred to as furnace bottoms) are discharged from the furnace bottom of the gasification furnace 2 by a noncombustibles / char extracting device 33, and separated by a separation facility 3.
Resources 14 such as metals and ash-char mixture 16
Is separated into The pyrolysis gas 15 generated in the fluidized-bed gasification furnace 2 is sent to a cyclone separator 25, which converts the pyrolysis gas 15 into a gas component composed of the pyrolysis gas 15 and a solid component composed of ash and char accompanying the pyrolysis gas 15. Separated. The gas component separated by the cyclone separator 25 is burned in a combustion furnace 45 provided in a stage preceding the independent superheater 26. In the combustion furnace 45, only the pyrolytic gas and char having high combustibility are burned.
A 200 ° C. hot gas is obtained. However, if necessary at the time of starting the gasification and melting system, the auxiliary fuel 17 using kerosene, propane gas, or the like may be added and burned. Then, this combustion heat is supplied into the superheater 26, and is used for superheating the steam at about 250 to 300 ° C in the superheater 26, so that superheated steam at about 500 ° C can be obtained. This steam is used for a steam turbine (not shown).

【0027】独立過熱器26で利用された約400〜4
50℃の燃焼ガス23の一部は再循環ガス19として用
いられ、ガス化炉2に供給される高温空気24と合流し
て流動媒体とごみの混合物の流動化流体13となる。流
動床ガス化炉2に再循環されるガスとして使用する再循
環ガス19は流動化流体13として必要な圧力以上に昇
圧することが必要であるが、再循環ガス19を再循環ポ
ンプ35により昇圧される。このように再循環ガス19
はガス化炉2に用いる流動化流体13として必要な圧力
以上に昇圧することが必要であるが、再循環ガス19の
代わりに熱分解ガス15を昇圧してもよい。
About 400 to 4 used in the independent superheater 26
A part of the combustion gas 23 at 50 ° C. is used as the recirculation gas 19 and merges with the high-temperature air 24 supplied to the gasification furnace 2 to become the fluidized fluid 13 of the mixture of the fluidized medium and the refuse. The pressure of the recirculated gas 19 used as the gas to be recirculated to the fluidized bed gasifier 2 needs to be increased to a pressure higher than the pressure required for the fluidized fluid 13. Is done. Thus, the recirculated gas 19
It is necessary to increase the pressure above the pressure required as the fluidizing fluid 13 used in the gasification furnace 2, but the pressure of the pyrolysis gas 15 may be increased instead of the recirculation gas 19.

【0028】サイクロンセパレータ25で熱分解ガス1
5から分離されたチャーはチャーサービスホッパー34
に一旦、貯められる。また、ガス化炉2の炉底からは、
水冷ジャケットからなる流路を経て、例えばスクリュー
コンベアなどからなる抜出装置33により不燃物とチャ
ーが抜き出され、次いで例えば多段のふるいからなる約
250℃に冷却された不燃物とチャーは分別設備3によ
り、金属、金属製品などの資源化物14と灰とチャーの
混合物16に、例えば、粒度や比重差により分別され
る。そして、灰とチャーの混合物16もチャーサービス
ホッパー34に供給される。独立過熱器26の炉底から
も燃焼炉45の燃焼残さが供給される。灰とチャーの混
合物16中に流動媒体(砂など)が含まれている場合
は、適宜分別してガス化炉2に戻しても良い。なお、こ
れらの固形分の搬送は不活性ガス等による気流搬送で行
われる。
Pyrolysis gas 1 in cyclone separator 25
Char separated from 5 is a char service hopper 34
Once stored. Also, from the bottom of the gasifier 2,
The incombustibles and the char are extracted through a flow path composed of a water-cooled jacket, for example, by an extracting device 33 composed of a screw conveyor or the like. By the method 3, the material 14 is separated into a recyclable material 14 such as a metal or a metal product and a mixture 16 of ash and char by, for example, particle size or specific gravity difference. Then, the mixture 16 of ash and char is also supplied to the char service hopper 34. The combustion residue of the combustion furnace 45 is also supplied from the furnace bottom of the independent superheater 26. When a fluid medium (such as sand) is contained in the mixture 16 of ash and char, the mixture may be appropriately separated and returned to the gasification furnace 2. The transport of these solids is performed by airflow transport using an inert gas or the like.

【0029】チャーサービスホッパー34から灰とチャ
ーの混合物16が溶融炉4に送られる。溶融炉4では、
チャーサービスホッパー34から供給されるチャー及び
必要に応じて補助燃料17の燃焼熱により約1400〜
1500℃で灰が溶融される。また、溶融炉4にはサイ
クロンセパレータ25で分離したガス成分の一部も供給
されて灰の溶融のための熱源となる。また、溶融炉4か
らの溶融スラグ18は水冷方式の水タンク21に流下
し、水砕スラグ40として回収される。
The mixture 16 of ash and char is sent from the char service hopper 34 to the melting furnace 4. In the melting furnace 4,
Approximately 1400 to 1400 depending on the char supplied from the char service hopper 34 and the heat of combustion of the auxiliary fuel 17 as necessary.
At 1500 ° C. the ash is melted. Further, a part of the gas components separated by the cyclone separator 25 is also supplied to the melting furnace 4 and serves as a heat source for melting the ash. Further, the molten slag 18 from the melting furnace 4 flows down to a water tank 21 of a water cooling system and is collected as granulated slag 40.

【0030】溶融炉4での灰分の溶融により得られる約
1400〜1500℃の熱ガスは二次燃焼炉5の水冷壁
により冷却されて約1100℃となり、過熱器6、蒸発
器7、空気予熱器8及び節炭器9の加熱に利用される。
また、二次燃焼炉5内の空燃比を1.3程度とするとす
ることで、溶融炉4からのガスを含めて、二次燃焼炉5
内でガス成分の完全燃焼を図っている。
The hot gas of about 1400 to 1500 ° C. obtained by melting the ash in the melting furnace 4 is cooled by the water cooling wall of the secondary combustion furnace 5 to about 1100 ° C., and the superheater 6, the evaporator 7, the air preheating It is used for heating the vessel 8 and the economizer 9.
Further, by setting the air-fuel ratio in the secondary combustion furnace 5 to about 1.3, the secondary combustion furnace 5 including the gas from the melting furnace 4 can be used.
The gas components are completely burned inside.

【0031】空気予熱器8には空気ブロア28から常温
の空気が供給され、空気予熱器8で予熱された約300
〜400℃の空気は独立過熱器26での熱分解ガス、チ
ャー及び補助燃料17などの燃焼用空気として利用され
るものと流動床ガス化炉2の散気管22に送られるもの
とがある。また、二次燃焼炉5の最下流部側の底部には
飛散してくるガス中の灰が捕集されるので、この捕集飛
灰はブロア又は圧縮機38による押し込み搬送空気によ
り溶融炉4に供給され、再び溶融される。
Air at a normal temperature is supplied to the air preheater 8 from the air blower 28 and the air preheater 8
The air at 400 ° C. is used as combustion air for pyrolysis gas, char and auxiliary fuel 17 in the independent superheater 26, and air sent to the diffuser 22 of the fluidized bed gasifier 2. Further, the ash in the scattered gas is collected at the bottom portion on the most downstream side of the secondary combustion furnace 5, and the collected fly ash is pushed into the melting furnace 4 by a blower or compressed air by a compressor 38. And melted again.

【0032】また、灰とチャー混合物16又は溶融炉4
内に消石灰などの脱塩剤を投入しておくと、灰中等に含
まれる塩素分は除去される。二次燃焼炉5から排出した
ガスは排ガス処理設備10に送られる。排ガス処理設備
10には図示していないが、冷却塔、バクフィルタ、脱
硝触媒塔及び活性炭塔などが配置されているので、この
排ガス処理設備10により、排ガス処理設備10に流入
する約200℃のガスは150℃程度に冷却されてバグ
フィルタでの集塵効率を高め、次いで脱硝処理がなされ
る。また、塩素成分により生成するダイオキシンは高温
の雰囲気下にある溶融炉4及び二次燃焼炉5内では、ほ
ぼ完全に生成が抑制されるが、前記炉の出口とガス処理
設備10との間で再合成されるダイオキシンはバグフィ
ルタで除去され、更に、脱硝触媒塔や活性炭塔により痕
跡程度の残っているダイオキシン及び重金属成分が除か
れる。
The ash and char mixture 16 or the melting furnace 4
If a desalinating agent such as slaked lime is charged in the tank, chlorine contained in the ash and the like is removed. The gas discharged from the secondary combustion furnace 5 is sent to an exhaust gas treatment facility 10. Although not shown in the exhaust gas treatment equipment 10, since a cooling tower, a back filter, a denitration catalyst tower, an activated carbon tower, and the like are arranged, the exhaust gas treatment equipment 10 allows the exhaust gas The gas is cooled to about 150 ° C. to increase the dust collection efficiency at the bag filter, and then subjected to denitration. Further, dioxin generated by the chlorine component is almost completely suppressed in the melting furnace 4 and the secondary combustion furnace 5 under a high-temperature atmosphere, but between the outlet of the furnace and the gas treatment equipment 10, Dioxin to be resynthesized is removed by a bag filter, and traces of remaining dioxin and heavy metal components are removed by a denitration catalyst tower or an activated carbon tower.

【0033】排ガス処理設備10から薬剤処理装置36
に燃焼飛灰が排出され、薬剤処理装置36でキレート固
定化処理により、重金属の溶出防止が図られ、無害化さ
れて、埋め立て処理される。また、排ガス処理設備10
から排出する浄化されたガス成分は誘引通風機30によ
り煙突31に送られ、大気中に排出される。なお、排ガ
ス処理設備10にて捕集された燃焼飛灰20は図1では
薬剤処理槽36処理した後、埋め立てに使用されること
になっているが、これは溶融炉4に戻してもよい。ま
た、図1の各流体流路には流路開閉弁44が設けられて
いる。図1にはチャーなどを燃焼として灰を溶融する溶
融炉4の例を図示したが、この溶融炉4に代えて、個々
にはその他の燃焼炉、熱風炉または加熱炉を配置しても
良い。
From the exhaust gas treatment equipment 10 to the chemical treatment device 36
The combustion fly ash is discharged, and the chemical treatment device 36 prevents the elution of heavy metals by chelating and immobilizing treatment, renders it harmless, and performs landfill treatment. In addition, exhaust gas treatment equipment 10
The purified gas component discharged from the air is sent to the chimney 31 by the induction ventilator 30 and discharged to the atmosphere. In FIG. 1, the combustion fly ash 20 collected in the exhaust gas treatment facility 10 is to be used for landfill after being treated in the chemical treatment tank 36, but this may be returned to the melting furnace 4. . Further, a passage opening / closing valve 44 is provided in each fluid passage of FIG. FIG. 1 shows an example of a melting furnace 4 for melting ash by burning char or the like. Instead of the melting furnace 4, another combustion furnace, a hot blast furnace or a heating furnace may be individually arranged. .

【0034】本発明においては、流動床ガス化炉2内の
空塔部から消石灰等の脱塩剤を添加することを特徴と
し、次式(1)のように消石灰でごみ等に含まれる塩素
成分が塩化カルシウムとして固定化できる。 Ca(OH)2+HCl→CaCl2+2H2O (1) この反応は最適温度500〜700℃で進行するので、
流動床ガス化炉3内はこの温度領域に成るように温度調
整する。なお、この温度調整は散気管22からの予熱空
気24の供給量や予熱空気24に混合される再循環ガス
19の量などの制御により行う。
The present invention is characterized in that a desalinating agent such as slaked lime is added from the empty tower in the fluidized-bed gasification furnace 2, and the slaked lime contained in the litter and the like is expressed by the following formula (1). The component can be immobilized as calcium chloride. Ca (OH) 2 + HCl → CaCl 2 + 2H 2 O (1) Since this reaction proceeds at an optimum temperature of 500 to 700 ° C.,
The temperature inside the fluidized-bed gasification furnace 3 is adjusted to be within this temperature range. This temperature adjustment is performed by controlling the supply amount of the preheated air 24 from the air diffuser 22 and the amount of the recirculated gas 19 mixed with the preheated air 24.

【0035】前記したように、熱分解ガスの組成中の塩
素濃度は約200ppmであるので、この塩素成分から
発生する塩化水素に対して約3〜5モルの消石灰などの
脱塩剤を流動床ガス化炉2内に添加する。ここで上記消
石灰に代えてその他の脱塩剤、例えば生石灰、水酸化マ
グネシウム、カセイソーダ、カリウムなどを用いても良
い。
As described above, since the chlorine concentration in the composition of the pyrolysis gas is about 200 ppm, about 3 to 5 mol of a desalinating agent such as slaked lime is added to the fluidized bed with respect to hydrogen chloride generated from the chlorine component. It is added into the gasification furnace 2. Here, in place of the slaked lime, other desalting agents, for example, quicklime, magnesium hydroxide, caustic soda, potassium and the like may be used.

【0036】また、流動床ガス化炉2で生成した熱分解
ガス15と飛散チャーがガス化炉2の頂部からサイクロ
ンセパレータ25に供給されるが、上記式(1)の反応
は流動床ガス化炉2からサイクロンセパレータ25に至
る間でも進行する。熱分解ガス15中にはアルカリ成分
(カルシウム、ナトリウム、カリなど)が含まれるの
で、前記脱塩剤として添加した消石灰からのカルシウム
成分だけでなく、前記アルカリ成分により、脱塩反応が
進行する。特にサイクロンセパレータ25中では熱分解
ガス15が攪拌されるので、熱分解ガス15に同伴した
前記アルカリ成分とごみ等から生成した塩素成分との接
触効率が良く、上記式(1)の反応及びこれに類似する
アルカリ成分と塩素成分の反応が効果的に行われる。実
測値によるとサイクロンセパレータ25入口ガス中の塩
化水素濃度は200ppmであったが、サイクロンセパ
レータ25出口ガス中のその濃度は50ppmに低下し
ていた。
The pyrolysis gas 15 and the scattered char generated in the fluidized bed gasifier 2 are supplied to the cyclone separator 25 from the top of the gasifier 2. The process proceeds even from the furnace 2 to the cyclone separator 25. Since the pyrolysis gas 15 contains an alkali component (calcium, sodium, potassium, etc.), the desalination reaction proceeds not only with the calcium component from slaked lime added as the desalting agent but also with the alkali component. In particular, since the pyrolysis gas 15 is agitated in the cyclone separator 25, the contact efficiency between the alkali component entrained in the pyrolysis gas 15 and the chlorine component generated from dust and the like is good, and the reaction of the above formula (1) The reaction between the alkali component and the chlorine component similar to the above is effectively performed. According to the measured values, the concentration of hydrogen chloride in the gas at the inlet of the cyclone separator 25 was 200 ppm, but the concentration in the gas at the outlet of the cyclone separator 25 was reduced to 50 ppm.

【0037】また、サイクロンセパレータ25で熱分解
ガス15と灰・チャー混合物16を分離することによ
り、塩素分は灰・チャー混合物16に固定化されやすい
ので、独立過熱器26に供給される熱分解ガス15中の
塩素含有量がさらに少なくなるため、独立過熱器26の
高温腐食防止により効果がある。なお、消石灰等の脱塩
剤はサイクロンセパレータ25に添加しても良い。
Further, since the pyrolysis gas 15 and the ash / char mixture 16 are separated by the cyclone separator 25, chlorine is easily fixed to the ash / char mixture 16. Since the chlorine content in the gas 15 is further reduced, the effect of preventing the high temperature corrosion of the independent superheater 26 is effective. Note that a desalinating agent such as slaked lime may be added to the cyclone separator 25.

【0038】熱分解ガス15中の塩化水素濃度が50p
pm程度であると、当該ガス15の腐食性はほとんど問
題にならない。従って、この熱分解ガス15を燃料源と
して、独立過熱器26の前段に設けられる燃焼炉45で
燃焼させて、約1100〜1200℃の熱ガスを生成さ
せて独立過熱器26の図示しない伝熱管を加熱するが、
塩素成分がほとんどないので独立過熱器26の伝熱管は
腐食されるおそれがない。
When the concentration of hydrogen chloride in the pyrolysis gas 15 is 50 p
When the pressure is about pm, the corrosiveness of the gas 15 hardly matters. Therefore, the pyrolysis gas 15 is used as a fuel source and burned in a combustion furnace 45 provided in a stage preceding the independent superheater 26 to generate a hot gas of about 1100 to 1200 ° C. Is heated,
Since there is almost no chlorine component, the heat transfer tube of the independent superheater 26 is not likely to be corroded.

【0039】従来ごみなどに含まれる可燃物を燃焼させ
ると、得られる燃焼ガス中の塩化水素濃度が高くなる。
塩化水素濃度の高い高温ガスは腐食性が強いので、これ
を過熱器の加熱に利用しても、せいぜい400℃の過熱
蒸気しか得られなく、そのため蒸気タービン用に十分過
熱された蒸気を供給することはできなかった。しかし、
本発明によれば、流動床ガス化炉2とサイクロンセパレ
ータ25とによる上述した脱塩処理により高温腐食のお
それのない熱ガスを得ることができる。さらに、こうし
て得られた高温熱ガスを用いた燃焼炉45で燃焼させて
サイクロンセパレータ25の直後の独立過熱器26から
約500℃の高温過熱蒸気を得ることができる。
When combustibles contained in conventional refuse and the like are burned, the concentration of hydrogen chloride in the obtained combustion gas increases.
Since high-temperature gas with high hydrogen chloride concentration is highly corrosive, even if it is used for heating the superheater, only superheated steam of at most 400 ° C. is obtained, and therefore, a sufficiently superheated steam for a steam turbine is supplied. I couldn't do that. But,
According to the present invention, a hot gas free from high-temperature corrosion can be obtained by the above-described desalting treatment by the fluidized-bed gasification furnace 2 and the cyclone separator 25. Further, by burning in the combustion furnace 45 using the high-temperature hot gas thus obtained, a high-temperature superheated steam of about 500 ° C. can be obtained from the independent superheater 26 immediately after the cyclone separator 25.

【0040】また、独立過熱器26で過熱蒸気を加熱し
た後の約450℃の熱ガス23は再循環ポンプ35が設
けられた再循環ガス流路を経て、再循環ガス19として
流動床ガス化炉2の散気管22に供給され、流動化流体
13として使用される。こうして、流動床ガス化炉2に
おける流動化流体13には一般に空気予熱器8にて加熱
された高温(約350〜400℃)の空気24あるいは
適当な温度域(約450℃以下)の再循環ガス19を再
循環して単独または混合して使用する。
After the superheated steam is heated by the independent superheater 26, the hot gas 23 at about 450 ° C. passes through a recirculation gas passage provided with a recirculation pump 35, and is converted into a recirculated gas 19 by fluidized bed gasification. The gas is supplied to the diffuser 22 of the furnace 2 and used as the fluidizing fluid 13. Thus, the fluidized fluid 13 in the fluidized bed gasifier 2 is generally recirculated to the high temperature (about 350 to 400 ° C.) air 24 heated by the air preheater 8 or a suitable temperature range (about 450 ° C. or less). The gas 19 is recycled and used alone or as a mixture.

【0041】また、上記独立過熱器26として図4に示
すように、独立過熱器26出口の蒸気配管51内の蒸気
温度を温度計52aと蒸気流量を流量計52bで検出
し、当該温度を所定温度にして、ごみの性状及び供給量
の変動にかかわらず、蒸気量を一定化するように、制御
装置56により熱分解ガス15の供給量及び独立過熱器
26の伝熱管52の接続部に設けられる減温器53への
冷却水55の供給量の調整をそれぞれの開閉弁57、5
8で行う。このようにして、独立過熱器26内で得られ
る過熱蒸気量を安定化させることができ、図示しない蒸
気タービンの駆動制御が容易になる。また、本発明では
図1に示す独立過熱器26に代えて、空気予熱器、水加
熱器等、流体加熱用の設備を設置することができる。
As shown in FIG. 4, the independent superheater 26 detects the steam temperature in the steam pipe 51 at the outlet of the independent superheater 26 with a thermometer 52a and a steam flow rate with a flow meter 52b. A controller 56 is provided at the connection between the supply amount of the pyrolysis gas 15 and the heat transfer tube 52 of the independent superheater 26 so that the temperature is maintained at a constant temperature regardless of the variation in the property and supply amount of the refuse. The adjustment of the supply amount of the cooling water 55 to the temperature reducer 53 is controlled by the respective on-off valves 57,
Step 8 In this manner, the amount of superheated steam obtained in the independent superheater 26 can be stabilized, and drive control of a steam turbine (not shown) is facilitated. Further, in the present invention, equipment for fluid heating such as an air preheater and a water heater can be installed instead of the independent superheater 26 shown in FIG.

【0042】前処理装置1はグレート式の乾燥装置であ
り、その詳細図を図5に示す。図5(a)は前処理装置
1の縦断面視図であり、図2(b)は図2(a)のA−
A線方向から見たごみの堆積状況を示す図である。前処
理装置1の天井部の一端にごみ投入口1aを設け、他端
の側壁部下端部にごみ排出口1bを設けた保温材が取り
付けられたケーシング1cとケーシング1c底部には可
動グレート61と固定グレート62が交互に複数個、互
いに一部重ね合せられる状態で並列配置されている。可
動グレート61はごみ投入口1aから排出口1bに向け
て、ケーシング1c底面全体に伸びている可動フレーム
63に固定されていて、固定グレート62は図示しない
箇所でケーシング1cに支持固定されている。支持軸6
4上を可動フレーム63は油圧シリンダ66に駆動制御
される伸縮アーム67により図示の矢印方向に往復運動
をする。
The pretreatment device 1 is a great drying device, and its detailed view is shown in FIG. FIG. 5A is a longitudinal sectional view of the pretreatment device 1, and FIG.
It is a figure showing the accumulation situation of the garbage seen from the direction of A. A waste inlet 1a is provided at one end of the ceiling of the pretreatment device 1, a casing 1c provided with a heat insulating material provided with a waste outlet 1b at the lower end of the side wall at the other end, and a movable grate 61 at the bottom of the casing 1c. A plurality of fixed greats 62 are alternately arranged in a state where they are alternately partially overlapped with each other. The movable grate 61 is fixed to a movable frame 63 extending from the dust inlet 1a to the discharge outlet 1b over the entire bottom surface of the casing 1c, and the fixed grate 62 is supported and fixed to the casing 1c at a location not shown. Support shaft 6
The movable frame 63 reciprocates in a direction indicated by an arrow in FIG.

【0043】したがって、図5(a)に示すように、ご
み投入口1aから投入されるごみは投入口1a側に頂点
を有する山状に堆積するが、可動グレート61によりご
み排出口1b側に向けて移動し、山状の堆積ごみの高さ
がケーシング1c内で平均化されて、順次排出口1bか
らまんべんなく排出する。そのため、次の段の定量供給
器32によるごみのガス化炉2への定量供給が容易にな
る効果もある。
Therefore, as shown in FIG. 5 (a), the refuse introduced from the refuse inlet 1a is piled up in a mountain shape having a vertex on the inlet 1a side. Then, the height of the piled-up garbage is averaged in the casing 1c, and the garbage is sequentially and uniformly discharged from the discharge port 1b. Therefore, there is also an effect that the quantitative supply of the refuse to the gasification furnace 2 by the quantitative supply device 32 in the next stage becomes easy.

【0044】なお、図5(b)において、ごみが十分に
拡散しない部分をごみ投入口近傍の下方のグレードは盲
グレード(孔を有していない)として空気の流れを遮断
することができる。可動フレーム63の下方は仕切壁6
8により二つの室69、70が形成されており、ごみ排
出口1b側の室69からごみ乾燥用の流体を導入する。
この乾燥用流体は可動グレート61又は固定グレート6
2に設けられた多数の孔からごみに向けて噴出されるの
で、ごみが乾燥される。このごみ乾燥用の流体としては
新たにホット空気を導入しても良いが、本ガス化溶融シ
ステムのいずれかの装置、例えば流動床ガス化炉2、溶
融炉4、二次燃焼炉5または空気予熱器8などから得ら
れる熱ガス又は予熱空気を導入しても良い。この前処理
処装置1により、例えば水分含有率50重量%程度のご
み(可燃分40重量%、灰分10重量%)は乾燥されて
水分含有率30重量%程度のごみになる。
In FIG. 5 (b), the portion where the dust is not sufficiently diffused is graded as a blind grade (having no holes) near the dust inlet so that the air flow can be shut off. The partition wall 6 is located below the movable frame 63.
8, two chambers 69, 70 are formed, and a fluid for drying dust is introduced from the chamber 69 on the side of the dust outlet 1b.
The drying fluid may be a movable great 61 or a fixed great 6
The dust is blown out toward the dust from a large number of holes provided in 2, so that the dust is dried. As the fluid for refuse drying, hot air may be newly introduced, but any device of the present gasification and melting system, for example, fluidized bed gasification furnace 2, melting furnace 4, secondary combustion furnace 5, or air Hot gas or preheated air obtained from the preheater 8 or the like may be introduced. By this pretreatment device 1, for example, refuse having a moisture content of about 50% by weight (combustible component 40% by weight, ash content 10% by weight) is dried to become refuse having a moisture content of about 30% by weight.

【0045】そして、前処理装置1から排出するごみ乾
燥後の流体は本ガス化溶融システムのいずれかの装置、
例えば流動床ガス化炉2、溶融炉4、二次燃焼炉5また
は熱分解ガス燃焼炉45などに導くことで、本システム
の系外に排出する量が減り、臭気の強いごみ乾燥後の流
体を大気排出用に浄化処理する負担が小さくなり、同時
に、万一、このごみ乾燥用の流体が定量供給機32側に
リークしても、それは本システムの系内であるので、後
処理でトラブルが生じることがない。ごみ乾燥後の流体
は高含水量になるので、前処理装置1からの排出後、速
やかに冷却して該流体に含まれる腐食性成分の露点以下
の温度に下げで前記各装置に循環供給する事が望まし
い。
[0045] The waste-dried fluid discharged from the pretreatment device 1 can be any one of the devices in the present gasification and melting system.
For example, by introducing the fluidized bed gasification furnace 2, the melting furnace 4, the secondary combustion furnace 5, the pyrolysis gas combustion furnace 45, or the like, the amount discharged to the outside of the system of the present system is reduced, and the odor-dried fluid having a strong odor is dried. The burden of purifying the waste for air discharge is reduced, and at the same time, even if the waste drying fluid leaks to the fixed-quantity feeder 32 side, since it is within the system of the present system, trouble occurs in post-processing. Does not occur. Since the fluid after refuse drying has a high water content, after discharging from the pretreatment device 1, it is quickly cooled, cooled to a temperature lower than the dew point of the corrosive component contained in the fluid, and circulated and supplied to the respective devices. Things are desirable.

【0046】また、量的に不均一で、かつ水分含有量が
大きく変動するごみをガス化炉に投入すると、例えば水
分含有率が50%程度のごみが一気にガス化炉2内に投
入された場合には補助燃料が無いとごみの燃焼を持続さ
せることができないが、本発明では前処理装置1として
グレート式の乾燥装置を用いることで、山状に堆積した
ごみの高さが可動グレード61及び固定グレード62上
で平均化されて、順次排出口1bからまんべんなく排出
され、同時に乾燥もされるので、定量供給機32による
ごみのガス化炉2への定量供給が容易になると同時に、
水分含有量の均一化されたごみがまんべんなく投入され
るので、ガス化炉内の流動床内のごみ燃焼用に補助燃料
を用いる必要がない利点もある。
Further, when refuse having a non-uniform quantity and a large change in water content is put into the gasification furnace, refuse having a water content of about 50%, for example, is put into the gasification furnace 2 at once. In this case, the combustion of the refuse cannot be sustained without the auxiliary fuel, but in the present invention, the height of the refuse accumulated in a mountain shape is reduced by using a movable type 61 by using a great drying apparatus as the pretreatment apparatus 1. And averaged on the fixed grade 62, and are uniformly discharged from the discharge port 1b sequentially and dried at the same time, so that the quantitative supply of the refuse to the gasification furnace 2 by the quantitative feeder 32 becomes easy,
Since the refuse having a uniform moisture content is uniformly supplied, there is an advantage that it is not necessary to use an auxiliary fuel for refuse combustion in the fluidized bed in the gasification furnace.

【0047】また、従来技術に回転キルンを用いてごみ
乾燥をする前処理装置があるが、キルン内面や、キルン
付属部品にごみ中のプラスチックなどが付着し易く、こ
のようなキルン内に300℃程度の乾燥用空気を導入す
ると、キルン内部に付着したごみの一部が燃焼して部分
ガス化が起こるため、ガス化炉内で得られる熱分解ガス
の発熱量が低下することがあつたが、本発明の上記グレ
ート式の前処理装置1ではそのような問題点も無い。
Further, there is a pretreatment apparatus for drying refuse using a rotary kiln in the prior art. However, plastic in the refuse easily adheres to the inner surface of the kiln and the attached parts of the kiln. If a certain amount of drying air is introduced, some of the refuse adhering to the inside of the kiln will burn and partial gasification will occur, so the calorific value of the pyrolysis gas obtained in the gasification furnace may decrease. The above-mentioned great-type pretreatment device 1 of the present invention does not have such a problem.

【0048】図1に示すガス化溶融システムにおいて、
流動床ガス化炉2において発生した可燃性の熱分解ガス
15は独立過熱器26に導入され前に、燃焼炉45によ
り、場合によっては補助燃料17を使用して完全燃焼す
る。独立過熱器26で熱回収に利用された燃焼ガス23
の一部は流動床ガス化炉2の流動化流体として再循環使
用される。したがって、流動床ガス化炉2よりガス流路
の後流側に配置される溶融炉4および排熱回収装置であ
る二次燃焼部5の運転とは完全に切り離して流動床ガス
化炉2を起動させることあるいは運転を継続させること
が可能となる。
In the gasification and melting system shown in FIG.
The combustible pyrolysis gas 15 generated in the fluidized bed gasifier 2 is completely burned by the combustion furnace 45 and possibly using the auxiliary fuel 17 before being introduced into the independent superheater 26. Combustion gas 23 used for heat recovery in the independent superheater 26
Is recycled as a fluidizing fluid in the fluidized-bed gasification furnace 2. Accordingly, the fluidized bed gasifier 2 is completely separated from the operation of the melting furnace 4 and the secondary combustion unit 5 which is the exhaust heat recovery device disposed downstream of the fluidized bed gasifier 2 in the gas flow path. It is possible to start or continue the operation.

【0049】例えば、約1400〜1500℃の高温下
にある溶融炉4の構成部材はしばしば取り替える必要が
あり、または溶融炉4の内壁に溶着したクリンカの除去
作業などのために溶融炉4の運転停止をすることがある
が、このように、溶融炉4および排熱回収装置である二
次燃焼部5などを故障修理または補修作業などの理由で
運転停止しいる場合でも、これら、溶融炉4、二次燃焼
部5または排ガス浄化設備10などの運転とは完全に切
り離して流動床ガス化炉2及び独立過熱器26の運転が
可能である。
For example, the components of the melting furnace 4 at a high temperature of about 1400 to 1500 ° C. often need to be replaced, or the operation of the melting furnace 4 for removing clinker deposited on the inner wall of the melting furnace 4 or the like. As described above, even when the melting furnace 4 and the secondary combustion unit 5 serving as the exhaust heat recovery device are shut down for reasons such as failure repair or repair work, the melting furnace 4 and the melting furnace 4 may be stopped. The operation of the fluidized-bed gasification furnace 2 and the independent superheater 26 can be completely separated from the operation of the secondary combustion unit 5 or the exhaust gas purification equipment 10 or the like.

【0050】このとき、流動床ガス化炉2からの熱分解
ガス15は流動床ガス化炉2に再循環させるだけでな
く、運転停止中の二次燃焼炉5の過熱器6付近に導入す
ること又は排ガス処理設備10に導入することができ
る。また、熱交換前の独立過熱器26内の燃焼ガス37
をブロア35により二次燃焼炉5の過熱器6の前流域に
導入し、例えば過熱器6と蒸気ドラム43と独立過熱器
26の間を循環しているボイラ水や蒸気の加熱に利用す
ることができる。
At this time, the pyrolysis gas 15 from the fluidized-bed gasification furnace 2 is not only recirculated to the fluidized-bed gasification furnace 2 but also introduced into the vicinity of the superheater 6 of the secondary combustion furnace 5 whose operation is stopped. Or into the exhaust gas treatment facility 10. Further, the combustion gas 37 in the independent superheater 26 before the heat exchange is performed.
Is introduced into the upstream region of the superheater 6 of the secondary combustion furnace 5 by the blower 35, and is used for heating boiler water and steam circulating between the superheater 6, the steam drum 43, and the independent superheater 26, for example. Can be.

【0051】また、サイクロンセパレータ25で分離し
て得られるチャー成分または流動床ガス化炉2の炉底か
ら得られる灰・チャー混合物16はチャーサービスホッ
パー34に貯蔵しておき、溶融炉4が再度運転開始をし
たときにこれを利用することができる。同様に流動床ガ
ス化炉2と独立過熱器26側が故障した場合又は点検・
補修を行う場合に、溶融炉4及び二次燃焼炉5側を単独
で運転することができる。
The char component separated by the cyclone separator 25 or the ash / char mixture 16 obtained from the bottom of the fluidized bed gasifier 2 is stored in the char service hopper 34, and the melting furnace 4 This can be used when starting operation. Similarly, if the fluidized-bed gasifier 2 and the independent superheater 26 are out of order,
When performing repairs, the melting furnace 4 and the secondary combustion furnace 5 can be operated independently.

【0052】また、このごみガス化溶融システムを起動
または再起動させる場合は、まず流動床ガス化炉2を立
ち上げる。起動初期においては熱分解ガス15は発生し
ないため独立過熱器26の補助燃料17を燃焼させるこ
とにより、燃焼ガス23を生成させ、流動化流体13と
して使用する。熱分解ガス15が発生してきた時点で、
補助燃料17の量を減少させることにより燃焼ガス23
を空燃比が流動床ガス化に適当な条件に調整する。ただ
し、破砕ごみ11の発熱量が高ければ熱分解ガス15の
熱量も高くなり、熱分解ガス15の熱量だけで自燃する
ため補助燃料17が不要となることもある。
When starting or restarting the refuse gasification / melting system, first, the fluidized bed gasification furnace 2 is started up. Since the pyrolysis gas 15 is not generated in the initial stage of the startup, the auxiliary fuel 17 of the independent superheater 26 is burned to generate the combustion gas 23, which is used as the fluidized fluid 13. When the pyrolysis gas 15 is generated,
By reducing the amount of the auxiliary fuel 17, the combustion gas 23
Is adjusted to an air-fuel ratio suitable for fluidized bed gasification. However, if the calorific value of the crushed refuse 11 is high, the calorific value of the pyrolysis gas 15 also increases, and the fuel itself burns only by the calorific value of the pyrolysis gas 15, so that the auxiliary fuel 17 may not be necessary.

【0053】このように、ごみガス化溶融システム全体
を起動する場合において、熱分解ガス15が少量あるい
は低温時には独立過熱器26での補助燃料17の燃焼量
を調整することで流動化流体13を所定の条件にするこ
とが容易にできるので、流動床ガス化炉2の迅速な起動
が可能となる。このことにより、流動床ガス化炉2の立
ち上げに必要な流動化流体13を容易に、かつ迅速に生
成し、運転することが可能となり、したがって流動床ガ
ス化炉2並びにガス化溶融システム全体の起動または再
起動を迅速に行うことができる。
As described above, when the entire refuse gasification and melting system is started, when the amount of the pyrolysis gas 15 is small or at a low temperature, the amount of combustion of the auxiliary fuel 17 in the independent superheater 26 is adjusted so that the fluidized fluid 13 is formed. Since the predetermined conditions can be easily set, the fluidized-bed gasification furnace 2 can be quickly started. This makes it possible to easily and quickly generate and operate the fluidized fluid 13 required for starting up the fluidized-bed gasifier 2, and therefore the fluidized-bed gasifier 2 and the entire gasification and melting system. Can be started or restarted quickly.

【0054】本発明の他の実施の形態を図2並びに図3
に示す。図2は図1に示す熱分解ガス15中のチャーを
分離するためのサイクロンセパレータ25を設置しない
場合の例である。その他の構成は図1に示す場合と同一
であるので、それらの説明は省略する。また、図3に示
す例は独立過熱器26の代わりに独立空気予熱器29を
設置し、二次燃焼炉5のガス流れの後流側には空気予熱
器8を備えたガス冷却塔27を配置した例である。空気
予熱器8の設置位置はガス冷却塔27のガス流れの後流
側でもよい。また、このガス冷却塔27内の空気予熱器
8のガス流れの後流側には噴霧水41用のスプレノズル
42を設けている。図3に示すその他の構成は図1に示
す場合と同一であるのでそれらの説明は省略する。ま
た、図3に示す例のガス化炉2の塔頂出口には図2に示
す熱分解ガス15中のチャーを分離するためのサイクロ
ンセパレータ25を設置しても良い。
FIGS. 2 and 3 show another embodiment of the present invention.
Shown in FIG. 2 shows an example in which the cyclone separator 25 for separating the char in the pyrolysis gas 15 shown in FIG. 1 is not provided. The other configuration is the same as that shown in FIG. 1, and the description thereof is omitted. In the example shown in FIG. 3, an independent air preheater 29 is provided instead of the independent superheater 26, and a gas cooling tower 27 having an air preheater 8 is provided on the downstream side of the gas flow of the secondary combustion furnace 5. This is an example of arrangement. The installation position of the air preheater 8 may be on the downstream side of the gas flow of the gas cooling tower 27. A spray nozzle 42 for spray water 41 is provided downstream of the gas flow of the air preheater 8 in the gas cooling tower 27. The other configuration shown in FIG. 3 is the same as that shown in FIG. 1, and the description thereof is omitted. Further, a cyclone separator 25 for separating the char in the pyrolysis gas 15 shown in FIG. 2 may be installed at the top outlet of the gasification furnace 2 in the example shown in FIG.

【0055】図3に示す例でガス化溶融システムの起動
時または溶融炉4及びその後流側のガス冷却塔側27を
運転停止する場合は独立空気予熱器29には空気ブロワ
28から供給される空気は空気予熱器8をバイパスする
バイパス流路47から直接独立空気予熱器29に供給す
る。
In the example shown in FIG. 3, when the gasification and melting system is started or when the melting furnace 4 and the gas cooling tower side 27 downstream thereof are shut down, the independent air preheater 29 is supplied from the air blower 28. The air is supplied to the independent air preheater 29 directly from the bypass channel 47 that bypasses the air preheater 8.

【0056】図3に示すシステムのように、ガス冷却設
備として図1等に示す二次燃焼炉5を設置しないで水噴
射式のガス冷却塔27を設置した場合でも図1の実施例
と同様に流動床ガス化炉2側のガス循環系統又は溶融炉
4側のガス処理系統とをそれぞれ単独運転することが可
能となり、それぞれの系統のメインテナンス時または故
障時の単独運転または流動床ガス化炉2並びにガス化溶
融システムの起動または再起動を迅速に行うことができ
る効果がある。
As in the system shown in FIG. 3, even when the water-cooling type gas cooling tower 27 is installed without installing the secondary combustion furnace 5 shown in FIG. It is possible to independently operate the gas circulation system on the fluidized bed gasifier 2 side or the gas treatment system on the melting furnace 4 side independently, and to operate the respective systems independently during maintenance or failure or in the fluidized bed gasifier. (2) There is an effect that the starting or restarting of the gasification and melting system can be quickly performed.

【0057】また、図1に示すシステムには設けている
サイクロンセパレータ25を設けない例を図2に示した
が、これと同様に図3に示す例をはじめ、その他の図1
の独立過熱器26に代えて、空気予熱器、水加熱器等、
流体加熱用の設備を設ける場合にもサイクロンセパレー
タ25を設置してもしなくても良い。
FIG. 2 shows an example in which the cyclone separator 25 provided in the system shown in FIG. 1 is not provided. Similarly to this, the example shown in FIG.
In place of the independent superheater 26, air preheater, water heater, etc.
The cyclone separator 25 may or may not be provided even when equipment for heating the fluid is provided.

【0058】[0058]

【発明の効果】本発明によれば流動床ガス化炉部を溶融
炉、熱回収装置から切り離した状態で単独運転が可能で
あるため、流動床ガス化炉あるいは後続の溶融炉部等に
おいてメンテナンス上、または不具合等で停止する場合
でもおのおのを単独に運転(暖気運転)を継続すること
が可能となる。また、流動床炉を迅速に定常状態まで立
ち上げることが可能となり、ガス化溶融装置全体の起動
や再起動を迅速に行う事ができる効果がある。
According to the present invention, since the fluidized bed gasification furnace can be operated independently in a state of being separated from the melting furnace and the heat recovery unit, maintenance can be performed in the fluidized bed gasification furnace or the subsequent melting furnace. It is possible to continue the operation (warm-up operation) independently of each other even in the case of stopping due to the above or a failure or the like. In addition, the fluidized bed furnace can be quickly started up to a steady state, and the entire gasification and melting apparatus can be quickly started and restarted.

【0059】さらに、流動床ガス化炉での熱分解ガス中
の塩化水素が、この清浄ガスを循環使用することで流動
床ガス化炉をはじめとして、運転に悪影響を及ぼすこと
なく成分の濃縮、蓄積がなくなり、システムの保守、保
全上の効果があり、特に過熱器の高温腐食の原因となる
塩化水素の少ない清浄な熱分解ガスを独立過熱器などの
独立熱交換器に供給できるため、独立過熱器などでの高
温高圧蒸気の回収が可能となり、また、独立過熱器の前
段の熱分解ガスの燃焼炉の燃焼制御などにより独立過熱
器内の高温の過熱蒸気量の安定化を容易に行うことがで
きるので、高効率発電を達成することができる。
Further, hydrogen chloride in the pyrolysis gas in the fluidized-bed gasifier is used to concentrate the components without adversely affecting the operation of the fluidized-bed gasifier, including the fluidized-bed gasifier, by circulating the clean gas. This eliminates accumulation and has an effect on system maintenance and maintenance.In particular, clean pyrolysis gas with low hydrogen chloride, which causes high-temperature corrosion of the superheater, can be supplied to an independent heat exchanger such as an independent superheater. High-temperature and high-pressure steam can be collected in a superheater, and the amount of high-temperature superheated steam in the independent superheater can be easily stabilized by controlling the combustion of the pyrolysis gas in the furnace before the independent superheater. Therefore, high-efficiency power generation can be achieved.

【0060】また流動床ガス化炉に投入する前のごみは
グレート式の乾燥機である前処理装置で平均化されて、
順次排出口からまんべんなく排出することができるた
め、ごみの流動床ガス化炉への定量供給が容易になると
同時に、水分含有量の均一化されたごみがまんべんなく
順次流動床ガス化炉投入されるので、流動床ガス化炉内
の流動床内のごみ燃焼用に補助燃料を用いる必要がなく
なる。また、前処理装置に導入するごみ乾燥用の流体し
て本発明のガス化溶融装置の少なくとものいずれかの装
置、例えば流動床ガス化炉、溶融炉、熱回収装置または
独立熱交換器などから得られる予熱空気又は熱ガスを用
いて、さらに、前処理装置から排出するごみ乾燥後の流
体はガス化溶融装置の少なくともいずれかの装置に導く
ことで、ガス化溶融装置の系外に排出することがなくな
り、ごみ乾燥用流体が系内で自給できる。
The refuse before being put into the fluidized-bed gasifier is averaged by a pretreatment device which is a great dryer,
Since the waste can be discharged uniformly from the discharge port, it is easy to supply the refuse to the fluidized-bed gasification furnace at the same time, and at the same time, the garbage with a uniform moisture content is uniformly introduced into the fluidized-bed gasification furnace. In addition, there is no need to use an auxiliary fuel for burning waste in a fluidized bed in a fluidized bed gasifier. In addition, a fluid for refuse drying to be introduced into the pretreatment device and at least one of the devices of the gasification and melting device of the present invention, such as a fluidized-bed gasification furnace, a melting furnace, a heat recovery device, or an independent heat exchanger. Using the obtained preheated air or hot gas, the refuse-dried fluid discharged from the pretreatment device is guided to at least one of the gasification and melting devices to be discharged out of the gasification and melting device system. And the refuse drying fluid can be self-contained in the system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の流動床ガス化溶融シス
テムのフロー図である。
FIG. 1 is a flow chart of a fluidized bed gasification and melting system according to an embodiment of the present invention.

【図2】 本発明の実施の形態の流動床ガス化溶融シス
テムのフロー図である。
FIG. 2 is a flow chart of a fluidized bed gasification and melting system according to an embodiment of the present invention.

【図3】 本発明の実施の形態の流動床ガス化溶融シス
テムのフロー図である。
FIG. 3 is a flow chart of a fluidized bed gasification and melting system according to an embodiment of the present invention.

【図4】 本発明の実施の形態の独立過熱器を示す図で
ある。
FIG. 4 is a diagram showing an independent superheater according to an embodiment of the present invention.

【図5】 本発明の実施の形態の前処理装置の図であ
る。
FIG. 5 is a diagram of a pretreatment device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 前処理設備 2 流動床ガス化炉 3 分別設備 4 溶融炉 5 二次燃焼炉 6 過熱器 7 蒸発器 8 空気予熱器 9 節炭器 10 排ガス処理装置 25 サイクロンセパレータ 26 独立過熱器 27 ガス冷却塔 29 独立空気予熱器 33 不燃物・チャー抜出装置 34 チャーサービス
ホッパー 45 燃焼炉
REFERENCE SIGNS LIST 1 Pretreatment equipment 2 Fluidized bed gasifier 3 Separation equipment 4 Melting furnace 5 Secondary combustion furnace 6 Superheater 7 Evaporator 8 Air preheater 9 Economizer 10 Exhaust gas treatment device 25 Cyclone separator 26 Independent superheater 27 Gas cooling tower 29 Independent air preheater 33 Incombustibles / char extraction device 34 Char service hopper 45 Combustion furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 学 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 藤原 弘道 神奈川県横浜市磯子区磯子一丁目2番10号 バブコック日立株式会社横浜エンジニア リングセンター内 (72)発明者 守 秀治 神奈川県横浜市磯子区磯子一丁目2番10号 バブコック日立株式会社横浜エンジニア リングセンター内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) The inventor, Manabu Yamamoto, 3-36, Takara-cho, Kure-shi, Hiroshima Pref. Babcock Hitachi Kure Research Laboratory (72) The inventor, Hiromichi Fujiwara 1-2-10, Isogo, Isogo-ku, Yokohama-shi, Kanagawa Inside the Babcock Hitachi, Ltd. Yokohama Engineering Center (72) Inventor Hideharu Mori 1-2-10 Isogo, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Babcock Hitachi, Ltd. Yokohama Engineering Center

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 固形物を含む可燃物を流動媒体を用いて
熱分解ガス化する流動床ガス化炉系と前記可燃物を熱分
解ガス化して得られた固形分を溶融する溶融炉と流動床
ガス化炉及び/又は溶融炉で得られる熱ガスを用いて熱
回収する熱回収装置と前記少なくともいずれかの装置か
ら排出する排ガスを浄化処理する排ガス浄化装置からな
る流動床式ガス化溶融装置において、 流動床ガス化炉系には流動床ガス化炉で生成した熱分解
ガスを燃焼させる熱分解ガス燃焼炉と、該燃焼炉の燃焼
ガスを用いて熱交換をする独立熱交換器と、該独立熱交
換器での熱交換の後の燃焼ガスを流動床ガス化炉の流動
化流体とする再循環ガス流路を含むガス循環系統を設け
たことを特徴とする流動床式ガス化溶融装置。
1. A fluidized bed gasification furnace system for pyrolyzing and gasifying combustibles containing solids using a fluidized medium, and a melting furnace for melting solids obtained by pyrolyzing and gasifying the combustibles. A fluidized bed gasification / melting device comprising a heat recovery device for recovering heat using a hot gas obtained in a bed gasification furnace and / or a melting furnace, and an exhaust gas purification device for purifying exhaust gas discharged from at least one of the above devices. In the fluidized bed gasifier system, a pyrolysis gas combustion furnace that burns pyrolysis gas generated in the fluidized bed gasifier, and an independent heat exchanger that performs heat exchange using the combustion gas of the combustion furnace, A fluidized-bed gasification / melting system comprising a gas circulation system including a recirculation gas flow path that uses combustion gas after heat exchange in the independent heat exchanger as a fluidization fluid of a fluidized-bed gasification furnace. apparatus.
【請求項2】 前記流動床ガス化炉と独立熱交換器と再
循環ガス流路を含むガス循環系統の他に溶融炉及び熱回
収装置とを含む固形分及びガス処理系統を設け、前記2
つの処理系統は各々が単独でも運転可能な構成であるこ
とを特徴とする請求項1記載の流動床式ガス化溶融装
置。
2. A solid content and gas treatment system including a melting furnace and a heat recovery unit in addition to the gas circulation system including the fluidized bed gasifier, the independent heat exchanger, and the recirculation gas flow path,
2. The fluidized bed gasification and melting apparatus according to claim 1, wherein each of the two processing systems can be operated independently.
【請求項3】 流動床ガス化炉系に脱塩剤を添加する添
加部を設けたことを特徴とする請求項1記載の流動床式
ガス化溶融装置。
3. The fluidized-bed gasification and melting apparatus according to claim 1, further comprising an addition section for adding a desalting agent to the fluidized-bed gasification furnace system.
【請求項4】 独立熱交換器は蒸気過熱器、空気予熱器
または給水加熱器であることを特徴とする請求項1記載
の流動床式ガス化溶融装置。
4. The fluidized-bed gasification and melting apparatus according to claim 1, wherein the independent heat exchanger is a steam superheater, an air preheater, or a feedwater heater.
【請求項5】 独立熱交換器として蒸気過熱器を設置
し、該蒸気過熱器の蒸気出口部に蒸気温度計測手段及び
蒸気流量計測手段を設け、該2つの計測手段の計測値に
基づき、蒸気過熱器出口の過熱蒸気温度と過熱蒸気量が
所定値になるように熱分解ガス燃焼炉の燃焼制御を行う
制御装置を設けたことを特徴とする請求項1記載の流動
床式ガス化溶融装置。
5. A steam superheater is installed as an independent heat exchanger, steam temperature measuring means and steam flow rate measuring means are provided at a steam outlet of the steam superheater, and steam is measured based on measured values of the two measuring means. 2. A fluidized bed gasification and melting apparatus according to claim 1, further comprising a control device for controlling the combustion of the pyrolysis gas combustion furnace so that the superheated steam temperature and the superheated steam amount at the superheater outlet become predetermined values. .
【請求項6】 固形物を含む可燃物を流動媒体を用いて
熱分解ガス化する流動床ガス化炉系と前記可燃物を熱分
解ガス化して得られた固形分を溶融する溶融炉と流動床
ガス化炉及び/又は溶融炉で得られる熱ガスを用いて熱
回収する熱回収装置と前記少なくともいずれかの装置か
ら排出する排ガスを浄化処理する排ガス浄化装置からな
る流動床式ガス化溶融装置において、 流動床ガス化炉系には流動床ガス化炉で生成した熱分解
ガスを燃焼させる熱分解ガス燃焼炉と、該燃焼炉の燃焼
ガスを用いて熱交換をする独立熱交換器と、該独立熱交
換器での熱交換の後の燃焼ガスを流動床ガス化炉の流動
化流体とする再循環ガス流路を含むガス循環系統と、流
動床ガス化炉と熱分解ガス燃焼炉との間のガス流路に設
けた流動床ガス化炉で生成した熱分解ガスに同伴される
チャーを熱分解ガスと分離する分離器と、該分離器で分
離されたチャーを貯留するチャー貯留槽を備えたことを
特徴とする流動床式ガス化溶融装置。
6. A fluidized-bed gasification furnace system for pyrolyzing and gasifying combustibles containing solids using a fluid medium, and a melting furnace for melting solids obtained by pyrolyzing and gasifying the combustibles. A fluidized bed gasification / melting device comprising a heat recovery device for recovering heat using a hot gas obtained in a bed gasification furnace and / or a melting furnace, and an exhaust gas purification device for purifying exhaust gas discharged from at least one of the above devices. In the fluidized bed gasifier system, a pyrolysis gas combustion furnace that burns pyrolysis gas generated in the fluidized bed gasifier, and an independent heat exchanger that performs heat exchange using the combustion gas of the combustion furnace, A gas circulation system including a recirculation gas flow path that uses combustion gas after heat exchange in the independent heat exchanger as a fluidizing fluid of a fluidized bed gasifier, a fluidized bed gasifier and a pyrolysis gas combustion furnace; Generated by a fluidized-bed gasifier installed in the gas flow path between A separator for separating the char entrained in the gas and the pyrolysis gas, the fluidized bed gasification melting apparatus characterized by having a char storage tank for storing the separated char in the separator.
【請求項7】 チャー貯留槽から溶融炉にチャーを供給
できるチャー搬送路を設けたことを特徴とする請求項6
記載の可燃物の熱分解ガス化溶融装置。
7. A char transfer path capable of supplying char from a char storage tank to a melting furnace is provided.
An apparatus for pyrolysis gasification and melting of combustibles as described in the above.
【請求項8】 前記流動床ガス化炉と独立熱交換器と再
循環ガス流路を含むガス循環系統の他にチャー貯留槽か
ら供給されたチャーを用いる熔融炉及び熱回収装置とを
含む固形分及びガス処理系統を設け、前記2つの処理系
統は各々が単独でも運転可能な構成であることを特徴と
する請求項7記載の流動床式ガス化溶融装置。
8. A solid-state furnace including a fluidized-bed gasifier, an independent heat exchanger, a gas circulation system including a recirculation gas flow path, a melting furnace using a char supplied from a char storage tank, and a heat recovery device. The fluidized-bed gasification and melting apparatus according to claim 7, wherein a separation and gas treatment system is provided, and each of the two treatment systems is operable independently.
【請求項9】 独立熱交換器として蒸気過熱器を設置
し、該蒸気過熱器の蒸気出口部に蒸気温度計測手段及び
蒸気流量計測手段を設け、該2つの計測手段の計測値に
基づき、熱分解ガス燃焼炉の燃焼制御を行う制御装置を
設けたことを特徴とする請求項6記載の流動床式ガス化
溶融装置。
9. A steam superheater is installed as an independent heat exchanger, steam temperature measuring means and steam flow rate measuring means are provided at a steam outlet of the steam superheater, and heat is measured based on measured values of the two measuring means. 7. The fluidized bed gasification and melting apparatus according to claim 6, further comprising a control device for controlling combustion of the cracked gas combustion furnace.
【請求項10】 固形物を含む可燃物を流動媒体を用い
て熱分解ガス化する流動床ガス化炉と前記可燃物を熱分
解ガス化して得られた固形分を溶融する溶融炉と流動床
ガス化炉及び/又は溶融炉で得られる熱ガスを用いて熱
回収する熱回収装置と前記少なくともいずれかの装置か
ら排出する排ガスを浄化処理する排ガス浄化装置からな
る流動床式ガス化溶融装置において、 複数の可動板の往復運動により前記可燃物の層厚をなら
しながら流動床ガス化炉に固形可燃物を供給する前処理
装置を設けたことを特徴とする流動床式ガス化溶融装
置。
10. A fluidized-bed gasifier for pyrolyzing and gasifying combustibles containing solids using a fluidized medium, a melting furnace for melting solids obtained by pyrolyzing and gasifying the combustibles, and a fluidized bed. In a fluidized bed gasification / melting apparatus comprising a heat recovery apparatus for recovering heat using a hot gas obtained in a gasification furnace and / or a melting furnace and an exhaust gas purification apparatus for purifying exhaust gas discharged from at least one of the apparatuses. A fluidized-bed gasification and melting apparatus, comprising a pretreatment device for supplying a solid combustible to a fluidized-bed gasification furnace while leveling the thickness of the combustible by reciprocating motion of a plurality of movable plates.
【請求項11】 前処理装置内に流動床ガス化炉と溶融
炉と熱回収装置と排ガス浄化装置を含む流動床式ガス化
溶融装置を構成する装置の少なくともいずれかの装置か
ら発生する温風や温風以外のガスを可燃物の乾燥用に供
給するガス流路を設けたことを特徴とする請求項10記
載の流動床式ガス化溶融装置。
11. Hot air generated from at least one of devices constituting a fluidized-bed gasification / melting device including a fluidized-bed gasifier, a melting furnace, a heat recovery device, and an exhaust gas purification device in a pretreatment device. 11. The fluidized-bed gasification and melting apparatus according to claim 10, wherein a gas flow path for supplying a gas other than hot air and hot air for drying the combustibles is provided.
【請求項12】 前処理装置から排出した前記可燃物の
乾燥用ガスを前記流動床ガス化炉と溶融炉と熱回収装置
と排ガス浄化装置を含む流動床式ガス化溶融装置を構成
する装置の少なくともいずれかの装置に供給することを
特徴とする請求項11記載の流動床式ガス化溶融装置。
12. An apparatus constituting a fluidized-bed gasification and melting apparatus including the fluidized-bed gasification furnace, a melting furnace, a heat recovery apparatus, and an exhaust gas purification apparatus by using the combustible material drying gas discharged from the pretreatment apparatus. The fluidized-bed gasification and melting apparatus according to claim 11, wherein the gas is supplied to at least one of the apparatuses.
【請求項13】 固形物を含む可燃物を流動媒体を用い
て流動床ガス化炉内で熱分解ガス化して得られる熱分解
ガスを熱源として熱回収媒体に熱回収し、前記可燃物を
熱分解ガス化して得られた固形分を溶融する流動床式ガ
ス化溶融方法において、 流動床ガス化炉で生成した熱分解ガスを燃焼させて、該
燃焼ガスの燃焼熱から熱回収媒体に熱交換をした後、熱
交換の後の燃焼ガスを流動床ガス化炉の流動媒体の流動
化流体として用いることを特徴とする流動床式ガス化溶
融方法。
13. A heat recovery medium using a pyrolysis gas obtained by pyrolyzing a combustible material containing a solid substance in a fluidized bed gasifier using a fluidizing medium as a heat source, recovering the combustible material by heat. In a fluidized bed gasification and melting method for melting a solid content obtained by cracking gasification, a pyrolysis gas generated in a fluidized bed gasification furnace is burned, and heat exchange is performed from a combustion heat of the combustion gas to a heat recovery medium. And then using the combustion gas after heat exchange as a fluidizing fluid of a fluidized medium in a fluidized bed gasifier.
【請求項14】 流動床ガス化炉で生成した熱分解ガス
を燃焼させて、該燃焼ガスの燃焼熱から熱回収媒体に熱
回収した後、熱交換の後の燃焼ガスを流動床ガス化炉の
流動媒体の流動化流体として用いるガス循環系統と、前
記可燃物を熱分解ガス化して得られた固形分を溶融し
て、該溶融時に生成した熱ガスから熱回収媒体に熱回収
する固形分及びガス処理系統とを設け、各々の処理系統
が単独でも運転可能にすることを特徴とする請求項13
記載の流動床式ガス化溶融方法。
14. A pyrolysis gas generated in a fluidized-bed gasification furnace is burned, heat is recovered from a combustion heat of the combustion gas to a heat recovery medium, and the combustion gas after the heat exchange is converted to a fluidized-bed gasification furnace. A gas circulation system used as a fluidizing fluid for the fluidized medium, and a solid content obtained by melting a solid content obtained by pyrolyzing and gasifying the combustible material and recovering heat from a hot gas generated during the melting to a heat recovery medium. And a gas processing system, wherein each processing system can be operated independently.
The fluidized bed gasification melting method as described in the above.
【請求項15】 流動床ガス化炉では熱分解ガスの他に
チャーが生成され、該チャーが熱分解ガスに同伴される
場合には、前記チャーを熱分解ガスと分離した後、該分
離したチャーを一旦、貯留しておき、該貯留してあるチ
ャーを可燃物を熱分解ガス化して得られた固形分を溶融
する場合の熱源として用いることを特徴とする請求項1
4記載の流動床式ガス化溶融方法。
15. In the fluidized bed gasifier, char is generated in addition to the pyrolysis gas, and when the char is entrained by the pyrolysis gas, the char is separated from the pyrolysis gas and then separated. 2. A method according to claim 1, wherein the char is temporarily stored, and the stored char is used as a heat source when a solid content obtained by pyrolyzing and gasifying a combustible material is melted.
5. The fluidized bed gasification and melting method according to 4.
【請求項16】 流動床ガス化炉内での前記可燃物の熱
分解ガス化時または流動床ガス化炉で生成した熱分解ガ
スに同伴されるチャーを熱分解ガスと分離する時に脱塩
剤を添加し、熱分解ガスの脱塩反応を行わせることを特
徴とする請求項14記載の流動床式ガス化溶融方法。
16. A desalting agent when pyrolyzing and gasifying the combustibles in a fluidized-bed gasifier or separating chars entrained by the pyrolysis gas generated in the fluidized-bed gasifier from the pyrolysis gas. The fluidized bed gasification and melting method according to claim 14, wherein a desalting reaction of the pyrolysis gas is carried out by adding a gas.
【請求項17】 流動床ガス化炉で生成した熱分解ガス
を燃焼させて、該燃焼ガスの燃焼熱から熱回収媒体に熱
回収する際に、該熱回収媒体として過熱蒸気を用い、前
記燃焼ガスの燃焼熱により過熱される蒸気温度と蒸気量
が所定の値となるように熱分解ガスの燃焼制御を行うこ
とを特徴とする請求項14記載の流動床式ガス化溶融方
法。
17. When the pyrolysis gas generated in the fluidized-bed gasifier is burned and heat is recovered to the heat recovery medium from the heat of combustion of the combustion gas, superheated steam is used as the heat recovery medium. 15. The fluidized-bed gasification and melting method according to claim 14, wherein the combustion control of the pyrolysis gas is performed such that the temperature and the amount of steam superheated by the heat of combustion of the gas become predetermined values.
【請求項18】 固形物を含む可燃物を流動媒体を用い
て流動床ガス化炉内で熱分解ガス化して得られた熱分解
ガスを熱源として熱回収媒体に熱回収し、前記可燃物を
熱分解ガス化して得られた固形分を溶融する流動床式ガ
ス化溶融方法において、 前記可燃物の層厚をならしながら乾燥させて、前記層厚
と水分含有率がほぼ均一な前記可燃物を順次流動床ガス
化炉に供給することを特徴とする流動床式ガス化溶融方
法。
18. A heat recovery medium using a pyrolysis gas obtained by pyrolyzing a combustible material containing a solid matter in a fluidized bed gasifier using a fluidized medium, and recovering the combustible material. In the fluidized-bed gasification and melting method for melting a solid content obtained by pyrolysis gasification, the combustible material is dried while the layer thickness of the combustible material is leveled, and the combustible material whose layer thickness and moisture content are substantially uniform Is supplied to a fluidized bed gasifier in sequence.
JP28744197A 1997-10-20 1997-10-20 Fluidized bed gasification melting apparatus and method Expired - Fee Related JP3836582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28744197A JP3836582B2 (en) 1997-10-20 1997-10-20 Fluidized bed gasification melting apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28744197A JP3836582B2 (en) 1997-10-20 1997-10-20 Fluidized bed gasification melting apparatus and method

Publications (2)

Publication Number Publication Date
JPH11118124A true JPH11118124A (en) 1999-04-30
JP3836582B2 JP3836582B2 (en) 2006-10-25

Family

ID=17717372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28744197A Expired - Fee Related JP3836582B2 (en) 1997-10-20 1997-10-20 Fluidized bed gasification melting apparatus and method

Country Status (1)

Country Link
JP (1) JP3836582B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063026B1 (en) 2004-12-10 2006-06-20 Masao Kanai Waste carbonizing and energy utilizing system
WO2012070453A1 (en) * 2010-11-25 2012-05-31 三菱重工業株式会社 Bin system and char collection device
WO2013077435A1 (en) * 2011-11-25 2013-05-30 三菱重工業株式会社 Bin system and char recycling equipment
CN111790731A (en) * 2020-07-20 2020-10-20 杭州碳氢科技研究有限公司 Industrial waste salt conversion device and method
CN114854437A (en) * 2022-05-30 2022-08-05 浙江大学 Method and system for reducing slagging characteristics of high-sodium coal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063026B1 (en) 2004-12-10 2006-06-20 Masao Kanai Waste carbonizing and energy utilizing system
WO2012070453A1 (en) * 2010-11-25 2012-05-31 三菱重工業株式会社 Bin system and char collection device
CN103068703A (en) * 2010-11-25 2013-04-24 三菱重工业株式会社 Bin system and char collection device
US9199806B2 (en) 2010-11-25 2015-12-01 Mitsubishi Hitachi Power Systems, Ltd. Bin system and char recovery unit
WO2013077435A1 (en) * 2011-11-25 2013-05-30 三菱重工業株式会社 Bin system and char recycling equipment
CN111790731A (en) * 2020-07-20 2020-10-20 杭州碳氢科技研究有限公司 Industrial waste salt conversion device and method
CN114854437A (en) * 2022-05-30 2022-08-05 浙江大学 Method and system for reducing slagging characteristics of high-sodium coal
CN114854437B (en) * 2022-05-30 2023-07-25 浙江大学 Method and system for reducing slag formation characteristics of high-sodium coal

Also Published As

Publication number Publication date
JP3836582B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP5521187B2 (en) Combustible gas generator for gasifying waste and method for producing combustible gas
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP4452273B2 (en) Combustible raw material supply device, combustible raw material gasifier, and combustible raw material gasification method
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
JP2001153347A (en) Waste heat recovery boiler and facility for treating waste
US20070294937A1 (en) Gasifier
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP2003279013A (en) Waste gasifying and fusing system
JP3836582B2 (en) Fluidized bed gasification melting apparatus and method
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP3639404B2 (en) Waste carbonization pyrolysis melting combustion equipment
JP4614442B2 (en) Waste gasification treatment system and treatment method
JP3681228B2 (en) Combined facilities of gas turbine power generation equipment and waste carbonization pyrolysis melting combustion equipment
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JPH0533916A (en) Treatment of waste by means of rotary kiln and rotary kiln therefor
JP4161462B2 (en) Waste treatment method and waste treatment system
JP4089079B2 (en) Waste treatment method and waste treatment system
JP3317843B2 (en) Dry distillation pyrolysis melting combustion equipment for waste
JP2004347274A (en) Waste treatment device
JPH10323647A (en) Apparatus for thermally decomposing and gasifying and melting waste and method for thermally decomposing and gasifying and melting treatment
JP3573609B2 (en) Heat recovery method and apparatus in incineration equipment
JP2002115829A (en) Method for waste treatment and gasification and melting apparatus
JP2003232506A (en) Thermal decomposition treatment method and facility therefor
JPH11294736A (en) Thermal decomposition melt combustion apparatus for wastes
WO2005068909A1 (en) Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060621

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees