WO2005068909A1 - Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing - Google Patents

Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing Download PDF

Info

Publication number
WO2005068909A1
WO2005068909A1 PCT/JP2004/010320 JP2004010320W WO2005068909A1 WO 2005068909 A1 WO2005068909 A1 WO 2005068909A1 JP 2004010320 W JP2004010320 W JP 2004010320W WO 2005068909 A1 WO2005068909 A1 WO 2005068909A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat
heat recovery
furnace
fluidized
Prior art date
Application number
PCT/JP2004/010320
Other languages
French (fr)
Japanese (ja)
Inventor
Norihisa Miyoshi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004012419A external-priority patent/JP4265975B2/en
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to EP04770831.8A priority Critical patent/EP1712839B1/en
Publication of WO2005068909A1 publication Critical patent/WO2005068909A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste

Definitions

  • Heat recovery method combustible material processing method, heat recovery device, and combustible material processing device
  • the present invention makes use of the heat generated to melt ash when treating combustible materials such as municipal garbage, waste plastic, shredder dust, construction waste, waste tires, biomass, and the like.
  • TECHNICAL FIELD The present invention relates to a heat recovery method capable of recovering heat, a method of treating combustibles, a heat recovery device, and a device of treating combustibles.
  • waste is partially burned at about 500 ° C to obtain a pyrolysis gas, and this pyrolysis gas is burned at a high temperature in a melting furnace to melt the ash contained in the gas. It is.
  • the pyrolysis gas obtained by this method is obtained by partial combustion of waste, and has a low calorific value due to the mixing of combustion gas. Therefore, when trying to obtain a temperature sufficient to melt the ash in the melting furnace, that is, a temperature of about 1200 ° C, the waste to be input may have a calorific value of about 7-8 Mj / kg. is necessary.
  • the ash contained in the pyrolysis gas flowing into the melting furnace contains, in addition to silica, alumina and calcium-based ones, low melting point metals and low boiling point metal salts.
  • the components to be melted in the furnace are mainly silica, alumina, and luciferous, and low-boiling metal salts and the like flow out of the melting furnace downstream along with the combustion gas.
  • ash in the gas is caused to collide with the wall surface of the melting furnace by inertia force by means such as forming a swirling flow of the gas inside and, in many cases, suddenly reversing the gas flow.
  • inertia force such as forming a swirling flow of the gas inside and, in many cases, suddenly reversing the gas flow.
  • To form a slag stream to increase the melting rate of the ash contained in the material to be melted. Structure is adopted. Therefore, large particles are trapped in the slag flow, and the particle size of the ash in the exhaust gas flowing downstream from the melting furnace is often less than 10 microns.
  • the ash in the gas flowing downstream of the melting furnace is characterized by a high salt concentration and a very small particle size, which causes various problems. From the high temperature range of 1200 ° C or more immediately after melting to the temperature range of about 400 ° C, the fine particles melted at each temperature adhere to the heat transfer surface of the equipment provided for heat recovery and transfer to the heat transfer surface. The heat coefficient is extremely reduced.
  • the heat transfer coefficient decreases, the function of the heat recovery equipment deteriorates such that the gas temperature cannot be lowered. Therefore, the gas temperature at the heat recovery process outlet rises, and the gas is installed downstream of the heat recovery process. There is a possibility that the temperature may exceed the allowable temperature of the dust collection step such as a bag filter. In particular, since the filter cloth of the bag filter is vulnerable to heat, the temperature at the entrance of the dust collection process must be lower than the allowable temperature. For this reason, a gas cooling process of the water spray method is provided in advance, or the heat transfer surface of the heat recovery device has sufficient heat transfer area to maintain the function of the heat recovery device sufficiently. The gas temperature in the section must be kept from exceeding the allowable temperature. This causes a cost increase due to an increase in equipment.
  • FIG. 1 is a diagram showing a process flow of a combustible material processing apparatus employing a conventional gasification and melting method (see Patent Document 1).
  • the combustible material processing apparatus includes a gasification furnace 101, a melting furnace 102, a boiler 103, an economizer or an air preheater 104, a gas cooling tower 105, a bag filter 106, an induction blower 107, a catalytic denitration tower 108, and a chimney 109.
  • the combustibles are supplied to the gasifier 101, where they are partially burned and thermally decomposed to generate pyrolysis gas, tar, char, fly ash and the like.
  • the pyrolysis gas containing the tar, char, fly ash and the like is supplied to the melting furnace 102 in its entirety.
  • the pyrolysis gas is burned at a high temperature of 1200 ° C or more, the ash is melted and discharged out of the furnace as molten slag, and the high-temperature combustion gas discharged from the melting furnace is guided to the boiler 103. I will be.
  • the combustion gas is cooled to about 450 ° C. in the boiler 103, and further cooled to about 200 ° C. in the economizer or the air preheater 104.
  • the ash contained in the high temperature combustion gas exiting the melting furnace 102 has a small particle size and a comparative A high percentage of metal salts having a low melting point, so that the adhesion is high, so that the metal salt easily adheres to the heat transfer surface of the boiler 103, economizer or air preheater 104. Therefore, as the operation continues, it gradually adheres to the heat transfer surface of the boiler 103, the economizer or the air preheater 104 and lowers the heat transfer coefficient. As the operation time elapses, it gradually cools down and the inlet temperature of the bag filter 106 rises.
  • the heat resistance temperature of the bag filter is about 220 ° C, so that the combustion gas must be sprayed with the gas cooling tower 105 to cool it so that the temperature does not exceed that temperature.
  • the progress of ash deposition on the heat transfer surface does not stop, and the temperature of the combustion gas at the inlet of the air preheater gradually increases, and the deposition becomes more severe.
  • the ash In a temperature range exceeding 450 ° C, the ash is in a semi-molten state, and it is difficult to mechanically remove or remove the ash, for example. It is difficult to stop. That is, once the function of the heat transfer surface has been reduced, it is difficult to suppress the progress of ash deposition in that state.
  • the heat transfer area of the boiler 103, the economizer, or the air preheater 104 which is a heat recovery step, has a sufficient safety factor and is attached to the heat transfer surface. Stable operation could not be continued except by providing means for forcibly removing ash. The ash attached to the heat transfer surface is forcibly removed while the force is applied, causing a significant change in the surface temperature of the heat transfer surface, and the protective coating formed on the heat transfer surface peels off due to thermal shock, resulting in corrosion of the heat transfer surface. Wear may be accelerated.
  • the ash collected by the bag filter 106 is to be returned to the melting furnace 102 in order to increase the ash melting rate, the ash is not converted into molten slag in the melting furnace but is directly transferred to exhaust gas.
  • a large amount of the low-melting-point substances and metal salts that are circulated in large quantities in the circulation path including the heat exchanger may accelerate the deposition of ash on the heat transfer surface of the heat exchanger.
  • FIG. 2 is a diagram showing a process flow of another processing device.
  • This combustible treatment system has a gasification furnace and a melting furnace, as in the conventional example, but the gasification furnace is an integrated fluidization chamber divided into a pyrolysis chamber 110-1 and a combustion chamber 110-2.
  • a floor gasifier 110 is employed.
  • the combustibles are mainly supplied to the pyrolysis chamber 110-1 side of the fluidized bed gasifier 110, where they generate pyrolysis gas, tar, char, fly ash and the like. Of these, those that do not remain in the fluidized bed are all supplied to the melting furnace 102, where they are burned at a high temperature of 1200 ° C or more, and the ash is melted.
  • the pyrolysis residue remaining in the fluidized bed flows into the combustion chamber 110-2 together with the fluidized medium. Fluidized air and secondary air are supplied so that the fluidized bed of the combustion chamber 110-2 is maintained at about 550 ° C to 700 ° C, and the freeboard above the fluidized bed is maintained at 850 ° C to 950 ° C. The total air ratio is maintained at 1 or more and complete combustion is performed.
  • the pyrolysis residue flowing through the pyrolysis chamber 110-1 may simply be burned into the combustion chamber 110-2, but the waste is directly supplied according to the pyrolysis and combustion characteristics of the waste. You can.
  • the combustion gas discharged from the combustion chamber 110-2 is introduced at a temperature of 850 ° C. to 950 ° C. into a dust collecting device 112 such as a cyclone.
  • the ash particles collected by the dust collector 112 are guided to the melting furnace 102 and melted.
  • the apparatus for treating combustibles having the above configuration has an excellent advantage that ash can be melted without using auxiliary fuel even for combustibles having a low calorific value, but the gas flowing into the boiler 103
  • the particles contained therein are collected by the melting furnace 102 on the side of the pyrolysis chamber 110-1 and by the dust collector 112 such as a cyclone on the side of the combustion chamber 110-2, so that very fine particles (particle size) (Small particles), which is not preferable from the viewpoint of preventing adhesion to the heat transfer surface of the boiler 103, the economizer, or the air preheater 104 as described above.
  • Patent Document 1 Japanese Patent No. 3153091
  • the present invention has been made in view of the above points, and it is possible to melt ash without the need of auxiliary fuel even for a combustible substance having a low calorific value of 6-7 Mj / kg, and to burn after the ash is melted. Even when recovering heat from gas, ash deposition on the heat transfer surface of the heat recovery device (boiler, economizer or air preheater) is suppressed, the margin of the heat transfer surface is minimized, and water spray gas cooling is used.
  • An object of the present invention is to provide a heat recovery method, a method for treating combustible materials, a heat recovery device, and a device for treating combustible materials, which can eliminate the need for facilities such as facilities.
  • the heat recovery method according to the invention of claim 1 recovers heat from the first gas G2 accompanied by many particles having a large particle size as shown in FIG. 3, for example. And a step of recovering heat by mixing the first gas G2 from which heat has been recovered with a second gas G3 accompanied by many particles having a small particle size.
  • heat is recovered from the first gas containing many particles having a large particle diameter, and then the second gas containing many particles having a small particle diameter is mixed.
  • the polishing function of polishing the heat transfer surface when particles having a large particle size collide with the heat transfer surface makes it possible to adhere the particles, particularly small particles having a small particle size that easily adhere to the heat transfer surface in the second gas. Can prevent the adhesion of heat to the heat transfer surface.
  • the first gas G2 supplies combustibles to the fluidized bed furnace 1
  • the second gas G3 was obtained by introducing the gas G1 generated in the fluidized-bed furnace 1 into the melting furnace 2 and melting the ash content. Consists of a gas with particles.
  • the gas generated in the fluidized bed furnace by supplying the combustibles to the fluidized bed furnace is a gas accompanied by a large number of particles having a large particle diameter, and the gas generated in the fluidized bed furnace is introduced into the melting furnace.
  • the gas obtained by melting the ash is a gas accompanied by particles having a small particle size, so the gas generated in the fluidized bed furnace is the first gas, and the gas obtained in the melting furnace is the second gas.
  • the combustible material 34 is thermally decomposed in the fluidized bed furnace 1 (21).
  • Configuration like this it is possible to generate fine particles and combustible gas from combustibles efficiently and in a manner in which the composition fluctuation of the gas is reduced.
  • the first gas G2 and the second gas A step of mixing G3, a step of cooling the mixed gas to 450 ° C or lower, a step of separating solids in the gas cooled by the dust collector 5, and a step of introducing the separated solids into the melting furnace 2. And melting.
  • the gas temperature after cooling is 450 ° C. or less, preferably 350 ° C. or less, more preferably 300 ° C. or less, and most preferably 250 ° C. or less.
  • the first gas G2 containing particles and the second gas G1 containing particles in the fluidized bed gasifier 1 are used.
  • Generating step introducing the first gas G2 from the fluidized bed gasifier 1 into the heat recovery unit 3, and performing heat exchange between the introduced gas G2 and the heat receiving fluid to recover heat.
  • the first gas from the fluidized-bed gasification furnace is introduced into the heat recovery device to recover heat, and the second gas from the fluidized-bed gasification furnace is introduced into the melting furnace. Since the gas discharged from the furnace is introduced into the same heat recovery device, the first gas is a gas accompanied by many particles with a large particle size. This can prevent the particles from adhering to the heat transfer surface.
  • the first gas G2 and the second gas G1 containing particles in the fluidized-bed gasification furnace 1 are mixed.
  • the heat recovery device that exchanges heat with the first gas and the heat recovery device that exchanges heat with the mixed gas of the first gas and the second gas may be the same or may be configured as separate devices. You can do it.
  • the first gas accompanied by many particles having a large particle diameter from the fluidized bed gasifier is introduced into the heat recovery device to recover heat, and then the heat is recovered by the recovered gas.
  • the second gas By mixing the second gas with many small particles discharged from the melting furnace and recovering heat, the large particles in the first gas collide with the heat transfer surface.
  • the polishing function can prevent particles from adhering to the heat transfer surface.
  • the first gas G2 and the second gas G3 are heated.
  • the gas temperature after cooling is 450 ° C or less, preferably 350 ° C or less, more preferably 300 ° C or less, and most preferably 250 ° C or less.
  • the heat recovery apparatus includes, for example, as shown in FIG. 3, a first inlet for introducing a first gas G2 containing many particles having a large particle diameter,
  • the second inlet which is located downstream of the first inlet with respect to the flow of the gas G2 introduced from the first inlet and introduces the second gas G3 containing many small-sized particles,
  • a heat transfer surface In order to recover heat by exchanging heat between the discharge port for discharging gas G4 after recovering heat and the gases G2 and G3 introduced from the first and second inlets and the heat receiving fluid, And a heat transfer surface.
  • the second gas for introducing the second gas containing many particles having a small particle diameter is provided downstream of the first inlet for introducing the first gas containing many particles having a large particle diameter. Since the inlet is provided, the polishing function when particles having a large particle diameter in the first gas introduced from the first inlet impinge on the heat transfer surface allows the particles to adhere, particularly the second inlet. It is possible to prevent adhesion of particles having a small particle diameter in the second gas which is likely to be introduced from the mouth and adheres. Also, the first entrance By providing the gas upstream of the second inlet, the first gas containing many particles having a large particle size is cooled, and then the second gas containing many particles having a small particle size is mixed. In other words, a region where a high-temperature gas containing particles having a small particle diameter that easily adheres to the heat transfer surface is not formed as much as possible.
  • the first gas G2 supplies combustibles to the fluidized bed furnace 1
  • the second gas G3 is a gas generated in the fluidized bed furnace 1, and is obtained by introducing the gas G1 generated in the fluidized bed furnace 1 into the melting furnace 2 and melting the ash contained in the gas. Gas.
  • the gas generated in the fluidized bed furnace by supplying combustibles to the fluidized bed furnace is a gas accompanied by a large number of particles having a large particle diameter, and the gas generated in the fluidized bed furnace is introduced into the melting furnace. Since the gas obtained by melting the ash is a gas accompanied by particles having a small particle size, the gas generated in the fluidized bed furnace is used as the first gas, and the gas obtained in the melting furnace is used as the second gas. By introducing the heat into the heat recovery device through the first inlet and the second inlet, respectively, the same operation as the invention described in claim 9 can be obtained.
  • the heat recovery device 3 in the heat recovery device 3 according to claim 10, for example, as shown in FIG. 3, after mixing the first gas G2 and the second gas G3, After cooling to 450 ° C. or less, the solid content in the mixed gas G2, G3 is separated by the dust collecting device 5, and the separated solid content is introduced into the melting furnace 2 to be melted.
  • the gas temperature after cooling is 450 ° C or less, preferably 350 ° C or less, more preferably 300 ° C or less, and most preferably 250 ° C or less.
  • the combustible material processing apparatus generates a first gas G2 and a second gas G1 containing particles by gasifying the combustible material as shown in Fig. 3, for example.
  • a fluidized-bed gasifier 1 a first gas G2 generated in the fluidized-bed gasifier 1, and a heat recovery device 3 for exchanging heat with a heat-receiving fluid to recover heat.
  • the melting furnace 2 for introducing the second gas G1 generated in the gasification furnace 1 to melt the ash, and the gas G3 discharged from the melting furnace 2 together with the particles further generated in the melting furnace 2 together with the heat recovery unit 3 is provided with a gas introduction channel.
  • the first gas containing particles generated in the fluidized bed gasifier is introduced to recover heat.
  • the second gas generated in the fluidized bed gasification furnace is introduced into the melting furnace and the gas discharged from the melting furnace is introduced into the heat recovery unit, so that the particles in the first gas transfer heat.
  • the polishing function at the time of collision with the surface can prevent the adhesion of particles, particularly the adhesion of the particles discharged from a melting furnace containing particles having a small particle diameter that easily adheres.
  • the apparatus for treating a combustible material according to the invention of claim 13 generates the first gas G2 and the second gas G1 containing particles by gasifying the combustible material as shown in FIG. 3, for example.
  • the heat recovery device that performs heat exchange with the first gas and the heat recovery device that performs heat exchange with a mixed gas of the first gas and the second gas may be the same or may be configured as separate devices. You may.
  • the fluidized-bed gasifier 1 thermally decomposes the combustibles 34. Then, a pyrolysis chamber 21 that generates the second gas G1, a combustion chamber 22 that burns the channel to generate the first gas G2, and a fluid medium from the combustion chamber 22 are moved to the pyrolysis chamber 21. And a flow path D and E for the use.
  • the second gas G1 from the pyrolysis chamber 11 is supplied to the melting furnace 2.
  • a flow path for introduction and a flow path for introducing the first gas G2 from the combustion chamber 12 into the heat recovery device 3 are provided.
  • the invention according to claim 16 is, for example, as shown in FIG. 3, in the combustible material treatment apparatus according to any one of claims 12 to 15, and the heat recovery apparatus 3 is a waste heat boiler. is there.
  • the apparatus for treating combustible material according to the invention according to claim 18 generates a first gas G2 and a second gas G1 containing particles by gasifying the combustible material as shown in Fig. 8, for example.
  • Fluidized bed gasifier 1 a solids separator 12 that collects particles in the first gas G2 generated in the fluidized bed gasifier 1, and a second separator generated in the fluidized bed gasifier 1
  • a melting furnace 2 that burns the gas G1 and melts the particles collected by the solid separator 12 and generates a flammable gas G5.
  • the solid separator that collects the particles is not only a filter that filters and collects the particles when the first gas containing the particles passes, but also has a difference in density like a cyclone, for example. Includes devices that separate solids from gases. With this configuration, no combustion gas is introduced into the melting furnace, and only large particles including ash are introduced. Therefore, even if the calorific value of the combustible is as low as 6-7 Mj / kg, for example, 1200 It is burned at a high temperature of ° C or higher and can melt ash without the need for a combustion aid.
  • the first gas power and heat which accompany many particles having a large particle diameter are recovered, and the particles having a large particle diameter are accompanied in the next step. Since the second gas is mixed, the polishing function of polishing the heat transfer surface when particles having a large particle diameter in the first gas collides with the heat transfer surface allows the particles to adhere, particularly the second gas. It is possible to provide a heat recovery method capable of preventing particles having a small particle diameter that easily adheres to the heat transfer surface in the heat transfer surface.
  • the first gas from the fluidized-bed gasifier is introduced into the heat recovery device to recover heat, and the second gas from the fluidized-bed gasifier is recovered.
  • the first gas is a gas accompanied by a large number of particles having a large particle size.
  • the polishing function at the time of colliding with the surface can provide a method for treating combustible materials that can prevent particles from adhering to the heat transfer surface.
  • the first gas accompanied by many particles having a large particle diameter from the fluidized-bed gasification furnace is introduced into the heat recovery device to recover heat,
  • the second gas accompanied by many small particles discharged from the melting furnace and recovering the heat the large particle diameter in the first gas is recovered.
  • the polishing function when particles collide with the heat transfer surface can provide a method for treating combustible materials that can further prevent particles from adhering to the heat transfer surface.
  • the second gas containing many particles having a small particle size is provided downstream of the first inlet for introducing the first gas containing many particles having a large particle size. Since the second inlet for introducing the second gas is provided, the polishing function when the large-diameter particles in the first gas introduced from the first inlet collide with the heat transfer surface causes the particles to be removed. It is possible to provide a heat recovery device capable of preventing the adhesion, particularly the adhesion of particles having a small particle diameter in the second gas which is easily attached from the second inlet.
  • the first inlet upstream of the second inlet the first gas containing many particles having a large particle size is cooled, and then the first gas is cooled.
  • the second gas containing many particles having a small diameter is mixed, and a region in which a high-temperature gas containing particles having a small particle diameter easily adheres to the heat transfer surface is not formed as much as possible.
  • the fluidized-bed gasification furnace is provided in a heat recovery device that introduces the first gas containing fine particles generated in the fluidized-bed gasification furnace to recover heat. Since the second gas generated in the above step is introduced into the melting furnace and the gas discharged from the melting furnace is introduced, the polishing function when the particles in the first gas collide with the heat transfer surface causes the particles to be removed. It is possible to provide a combustible material treatment apparatus capable of preventing gas discharged from a melting furnace containing small particles having a small particle diameter, which is easily adhered, in particular, from adhering the fine particles.
  • the second gas containing fine particles generated in the fluidized bed gasifier and the large particles contained in the first gas generated in the fluidized bed gasifier are Is introduced into the melting furnace to melt the ash, so that the ash can be melted without using a combustion aid even if the combustible has a low calorific value.
  • FIG. 3 is a view showing a process flow of the combustible material processing apparatus according to the present invention.
  • the combustibles processing equipment is as follows: gasifier 1, melting furnace 2, boiler 3, heat recovery equipment such as economizer or air preheater 4, dust collecting equipment such as cyclone 5, gas cooling tower 6, bag filter It has a configuration including an induction blower 8, a catalytic denitration tower 9 and a chimney 10.
  • the gasification furnace 1 employs an integrated fluidized bed gasification furnace divided into a pyrolysis chamber 111 and a combustion chamber 112.
  • the gasifier 1 is connected to a combustible material supply device for supplying a combustible material to an external force.
  • the combustible material supply device 36 includes, for example, a hopper that receives combustible materials, a screw that crushes the combustible materials received by the hopper and sends the crushed combustible materials to the gasifier 1, and a flow path for combustible materials.
  • the combustibles are mainly supplied from the combustibles supply means 36 to the pyrolysis chamber 11 side of the gasifier 1, where they are pyrolyzed to generate pyrolysis gas, tar, char, fly ash and the like. generate.
  • pyrolysis gas G1 including tar, char, fly ash, etc. that does not remain in the fluidized bed is all supplied to melting furnace 2, where it is burned at a high temperature of 1200 ° C or more, and the ash content is reduced. It is melted and discharged out of the melting furnace 2 as molten slag.
  • the pyrolysis residue remaining in the fluidized bed of the pyrolysis chamber 111 of the gasification furnace 1 flows into the combustion chamber 1-2 together with the fluidized medium.
  • the fluidized bed in the combustion chambers 1 and 2 is maintained at around 550 ° C to 700 ° C, and the freeboard above the fluidized bed is maintained at 850 ° C to 950 ° C. Secondary air is supplied to the upper part of the free board, and the total air ratio is maintained at 1 or more, and complete combustion is performed.
  • the combustion chambers 1 and 2 may simply burn the pyrolysis residue flowing through the pyrolysis chambers 1 and 1, but supply the combustibles directly according to the pyrolysis and combustion characteristics of the combustibles. May be.
  • Combustion gas G2 discharged from the combustion chambers 112 of the gasification furnace 1 flows into the boiler 3 at a temperature of 850 ° C-950 ° C through a flow path composed of pipes and the like, and reaches 700 ° C. After being cooled to about ° C, it is mixed with the high-temperature combustion gas G3 discharged from the melting furnace 2. The mixing is performed at such a point that the gas temperature after mixing does not exceed 1100 ° C, preferably 1050 ° C, and more preferably 1000 ° C. If the temperature of the mixed gas is too high, a part of the ash contained in the mixed gas may be melted, and a trouble may be caused to adhere to the inner surface of the boiler tube ⁇ of the boiler 3.
  • the temperature of the mixed gas is too low, a part of the tar in the mixed gas may be condensed, causing a trouble to adhere to the inner surface of the boiler tube of the boiler 3; C or higher, preferably 500 ° C or higher.
  • the mixed combustion gas G4 is cooled to about 450 ° C in the boiler 3, and further cooled to about 200 ° C in a heat recovery device 4 such as an economizer or an air preheater.
  • the dust is removed by the dust collector 5.
  • These devices are also connected by a combustion gas flow path composed of piping and the like.
  • the ash 11 collected by the dust collecting device 5 is returned to the melting furnace 2 through a flow path constituted by a pipe or the like, and is melted in the melting furnace 2.
  • a heat exchanger such as an economizer or an air preheater may be omitted, in which case dust will be collected at a temperature of 450 ° C or less.
  • the dust collection temperature is preferably 350 ° C or less, more preferably 300 ° C or less, and most preferably 250 ° C or less.
  • the conditions of 350 ° C or lower are preferable because inexpensive carbon steel can be used as the material of the dust collecting device, and the power to greatly reduce the corrosion conditions. Also, as the temperature decreases to 300 ° C or lower and 250 ° C or lower, the probability that the low-melting-point metal exists in the solid state increases. It is reduced.
  • the combustion gas G4 after dust removal passes through the gas cooling tower 6 and is finally removed by the bag filter 7. In the present invention, the gas cooling tower 6 In many cases, it can be omitted.
  • Ash gas particles are contained in the combustion gas emitted from incinerating combustible materials such as municipal waste, waste plastic, shredder dust, construction waste, and waste tires. It is determined by various factors, such as the physical properties of the material, chemical changes associated with the combustion reaction, and the rise in combustion gases. In general, the ash that comes out of incineration of garbage varies depending on the type of incinerator, but the combustion gas that has passed through the melting furnace 2 is a large particle with a particle size of several tens to 100 microns. The ash particles contained in these are small particles of almost 10 microns or less.
  • Fluidized bed incinerators which had been adopted as incinerators for a large number of garbage before the gasification and melting furnace was commercialized, are highly reliable incineration technologies.
  • the ash particles in the exhaust gas introduced into the treatment process had a large amount of silica, alumina and luciferic components in the components and relatively large particle sizes. For this reason, ash deposition on the heat transfer surfaces of equipment used in the heat recovery process, such as boilers, economizers, and air preheaters, did not become a major problem.
  • the combustion gas G2 discharged from the combustion chambers 112 of the gasifier 1 in the combustible material processing apparatus of the present embodiment does not pass through the melting furnace 2, the ash particles in the combustion gas G2 Properties' shape ⁇ Size is the same as the properties, shape and size of ash particles in the combustion gas discharged from a conventional fluidized bed incinerator, and the heat from a boiler 3 and an economizer or an air preheater with a large particle size. There is no danger of causing trouble by adhering to the heat transfer surface of the equipment used in the heat recovery process of the recovery equipment 4.
  • the pyrolysis gas G1 from the pyrolysis chamber 11 of the gasification furnace 1 is introduced into the melting furnace 2 and burned through a flow path composed of pipes and the like. Since the combustion gas G3 discharged from the melting furnace 2 passes through the melting furnace 2, the combustion gas contains fine ash particles in the same manner as the conventional combustion gas discharged from the gasification melting furnace. According to the results of the tests conducted by the present inventors, when wastes were treated in the gasifier 1 which is an integrated fluidized bed gasifier, the pyrolysis gas G1 from the pyrolysis chamber 111 was used. The ratio of the gas amount of the combustion gas G2 from the combustion chambers 1-2 to the gas amount of the combustion gas G2 from the combustion chambers 1-2 is about 1: 3.
  • the combustion gas G3 discharged from the melting furnace 2 contains many ash particles having a small particle diameter as described above. Since the small-sized ash particles of the combustion gas G3 adhere to the heat transfer surface of the boiler 3, if only the combustion gas G3 is introduced into the boiler 3, the ash adhesion to the heat transfer surface is promoted.
  • the combustion gas G2 discharged from the combustion chambers 112 of the gasifier 1 is also introduced into the boiler 3. Since this combustion gas G2 contains a large amount of ash particles having a large particle diameter, the ash particles having a large particle diameter have a function of polishing a portion of the ash particle when the ash particle collides with the heat transfer surface. It has the effect of preventing adhesion.
  • the combustion gas G2 from the combustion chamber 1-2 and the combustion gas G3 from the melting furnace 2 are introduced into the boiler 3, the combustion gas G2 is merged with the combustion gas G3 and introduced.
  • An inlet is provided upstream of the combustion gas G3 inlet, and the combustion gas G2 is introduced from the upstream side of the combustion gas G3 to create an area where only the combustion gas G3 mixed with ash particles having a small particle size exists. I need to do it.
  • the combustion gas G2 from the combustion chamber 1-2 is cooled in the boiler 3 and then melted.
  • the high-temperature combustion gas G3 from the furnace 2 is mixed, so that the region where the high-temperature gas including the molten slag particles that easily adhere to the heat transfer surface exists is not formed as much as possible.
  • FIG. 4 is a diagram showing a process flow of another combustible material processing apparatus according to the present invention.
  • the ash 13 collected by the bag filter 12 as a solid separator disposed downstream of the gas cooling tower 6 is supplied to the melting furnace 2 and melted.
  • a solid separator such as a cyclone may be provided instead of the bag filter 12.
  • Activated carbon 14 is added to the combustion gas G4 discharged from the bag filter 12, a harmful substance is adsorbed on the activated carbon 14, and the activated carbon 14 adsorbing the harmful substance is collected and removed by the bag filter 7.
  • FIG. 5 is a diagram showing a configuration example of an integrated fluidized bed gasification furnace, which is an example of the gasification furnace 1.
  • Gasifier 1 has a pyrolysis chamber 21 (corresponding to pyrolysis chambers 1 and 1), a combustion chamber 22 (corresponds to combustion chambers 1 and 2), A heat recovery chamber 23 is provided.
  • the combustibles 34 supplied to the pyrolysis chamber 21 are pyrolyzed while being stirred by the fluid medium swirling in the pyrolysis chamber 21 indicated by the arrow F in the figure, and the pyrolysis gas, tar, char, fly ash And so on.
  • the pyrolysis gas G1 containing tar, char, fly ash, etc. flows into the melting furnace 2 as shown in FIGS.
  • Un-pyrolyzed products such as tar and char remaining in the fluidized bed of the pyrolysis chamber 21 flow into the combustion chamber 22 through the opening 26 of the partition wall 25 as shown by the arrow A, along with the fluid medium.
  • the unpyrolyzed products such as chars which flow into the combustion chamber 22 from the pyrolysis chamber 21 are burned in the combustion chamber 22 to generate the combustion gas G2, and the combustion heat heats the fluid medium.
  • the combustion gas G2 flows into the boiler 3, as shown in FIGS.
  • FIG. 6 is a diagram showing a configuration example of a fluidized bed gasification furnace of a two-tower type fluidized bed system which is an example of the gasification furnace 1.
  • the gasification furnace 1 is provided with a pyrolysis fluidized bed furnace 41 (corresponding to the pyrolysis chamber 11) and a combustion fluidized bed furnace 42 (corresponding to the combustion chamber 12).
  • the two inclined pipes 43 and 44 communicate with each other, and the fluid medium is circulated between the two layers through the inclined pipes 43 and 44, thereby supplementing the heat required for pyrolysis.
  • the combustible material when supplied to the thermal decomposition fluidized bed furnace 41, it is thermally decomposed and generates pyrolysis gas, fire, ash, fly ash and the like.
  • the pyrolysis gas G1 containing char and fly ash flows into the melting furnace 2 as shown in FIGS.
  • the unpyrolyzed products such as chars remaining in the fluidized bed of the pyrolysis fluidized-bed furnace 41 flow into the combustion fluidized-bed furnace 42 through the inclined pipe 43 along with the fluidized medium, where they are burned and combusted by the combustion gas.
  • G2 is emitted and the fluid medium is added by the heat of combustion.
  • the heated and heated fluid medium flows into the thermal decomposition fluidized bed furnace 41 through the inclined pipe 44 and is used as a heat source for thermal decomposition of combustibles.
  • the combustion gas G2 is supplied to the boiler 3, as shown in Figs.
  • the pyrolysis gas G1 contains no combustion gas, so that a pyrolysis gas G1 with a high gas calorific value is obtained, and this gas is supplied to the melting furnace. Therefore, even if the calorific value is as low as 67 MjZkg, even for combustible materials, high-temperature combustion of 1200 ° C or more can be performed without supplying auxiliary fuel in a melting furnace, and ash can be melted. be able to .
  • a gas containing no oxygen for example, steam, carbon dioxide gas, or nitrogen gas is used, and as the fluidized gas 46 of the fluidized bed of the combustion fluidized bed furnace 42.
  • a gas containing oxygen such as air.
  • FIG. 7 is a diagram showing one configuration example of the melting furnace 2.
  • the melting furnace 2 includes a primary combustion chamber 51, a secondary combustion chamber 52, and a tertiary combustion chamber 53.
  • the pyrolysis gas G1 from the gasifier 1 flows into the primary combustion chamber 51 of the melting furnace 2, and the combustion gas (air, oxygen-enriched air, oxygen) 55 flows into the furnace.
  • the combustion gas (air, oxygen-enriched air, oxygen) 55 flows into the furnace.
  • the combustion gas G3 is supplied to the tertiary combustion chamber 53.
  • the ash contained in the pyrolysis gas G1 and the ash 13 collected from the combustion gas G2 and supplied to the melting furnace 2 are melted and discharged as molten slag 56 from the slag discharge port 57 to the outside of the furnace.
  • a method of providing a water tank below the slag discharge port 57 and dropping the molten slag 56 can be used.
  • the molten slag 56 is cooled and pulverized into granular slag.
  • the granular slag settled in the water tank is transported out of the system by the conveyor installed in the water tank.
  • Gas G3 in the melting furnace is sealed with water in the water tank and does not leak out of the system.
  • FIG. 8 is a view showing a process flow of another combustible material processing apparatus according to the present invention.
  • the ash 13 collected by the bag filter 12 as a solid separator disposed downstream of the gas cooling tower 6 is supplied to the melting furnace 2 and melted.
  • a solid separator such as a cyclone may be provided.
  • fine ash may be trapped in the system and circulate. Therefore, a part 13a of the ash 13 is extracted by operating the control valves VI and V2.
  • the melting furnace 2 has a low calorie (4-6 kJ / Nm 3 (dry)) or a medium calorie (10 19 kj / Nm 3 (dry)) from the pyrolysis gas G1 from the pyrolysis chamber 1-1 of the gasifier 1.
  • This is a melting furnace for obtaining the gas in ().
  • the pyrolysis gas G1 from the pyrolysis chamber 1-1 flows into the melting furnace 2 and gasifies at a high temperature of 1300 ° C or higher, the char and tar contained therein are completely gasified, and the ash is converted into molten slag. Discharge outside the furnace.
  • the gasification gas a gas selected from oxygen-enriched air, steam, oxygen, or a mixture thereof is supplied to the melting furnace 2 separately or together.
  • the amount of oxygen in this gasified gas is adjusted to the pyrolysis gas G1, and the total amount of oxygen is set to 0.1-0.6 (melting amount) when the theoretical amount of oxygen required to completely burn the object is set to 1. (Oxygen ratio in the furnace), the low calorie or medium calorie combustible gas G5 can be obtained from the melting furnace 2.
  • the low calorie or medium calorie combustible gas G5 contains many useful gas components such as carbon monoxide C ⁇ and hydrogen H. Such flammable gas G from melting furnace 2
  • a heat recovery device 15 such as a boiler
  • a scrubber 16 to obtain an industrial fuel gas or a chemical industrial raw material gas 17.
  • the method for treating combustibles includes a pyrolysis step of pyrolyzing combustibles at a temperature of 350 ° C or more to obtain a pyrolysis gas and a pyrolysis step.
  • Combustion process in which tar and char are burned at a temperature of 500 ° C or more, and melt-burning process in which the pyrolysis gas generated in the pyrolysis process is burned at 1200 ° C or more and the ash accompanying the pyrolysis gas is melted
  • Combustion process power a heat recovery process that recovers sensible heat until the discharged combustion gas becomes 450 ° C or less, and a dust collection process that collects ash contained in the combustion gas downstream of the heat recovery process. The ash collected in the dust collecting step is supplied to the melting and burning step to be melted.
  • both the pyrolysis step and the combustion step are performed in a fluidized bed furnace, and the amount of heat required for the pyrolysis in the pyrolysis step is determined by the fluidized bed in which the combustion step is performed. It is characterized by being supplied by the sensible heat of the fluid medium of the furnace.
  • the amount of heat required for the thermal decomposition in the thermal decomposition step is covered by the sensible heat of the fluidized medium of the fluidized bed furnace in which the combustion step is performed. Running costs and initial costs, which do not require a generator or the like, are reduced.
  • the pyrolysis step is maintained at 650 ° C or lower, preferably 600 ° C or lower, more preferably 550 ° C or lower, and the temperature of the combustion step is 900 ° C or lower.
  • the temperature is maintained at 800 ° C or lower, more preferably 700 ° C or lower.
  • the lower temperature limit of the pyrolysis process differs depending on the type of combustibles.
  • the decomposition temperature of general lignin is 280 ° C. Therefore, the temperature is preferably higher than 300 ° C.
  • the decomposition temperature of general high-density polyethylene HDPE is 390 ° C, so it is preferable to set the temperature higher than 400 ° C.
  • a combustible material processing apparatus is provided with a pyrolysis chamber for pyrolyzing the combustible material at a temperature of 350 ° C or higher to obtain a fuel and a pyrolysis gas, and an unpyrolyzed product generated from the pyrolysis chamber.
  • Tar and charcoal are burned at a temperature of 500 ° C or more
  • a pyrolysis gas generated in the pyrolysis chamber is burned at 1200 ° C or more and ash that accompanies the pyrolysis gas is melted.
  • a furnace, a heat recovery device for recovering sensible heat of the combustion gas discharged from the combustion chamber to 450 ° C.
  • the combustion gas discharged from the combustion chamber does not pass through the melting furnace, the properties, shape, and size of the ash particles in the combustion gas are discharged from the conventional fluidized bed incinerator. Similar to the properties, shape, and size of the ash particles in the combustion gas, even if heat is recovered by a heat recovery device with a large particle size, there is no danger of adhesion to the heat transfer surface and causing trouble.
  • the ash collected by the dust collector is supplied to the melting furnace downstream of the heat recovery unit, for example, low-boiling substances and metal salts that have become fine particles by using a cyclone in the dust collector are collected and circulated. Slag conversion rate can be improved.
  • the pyrolysis chamber and the combustion chamber are both constituted by a fluidized bed furnace.
  • the pyrolysis chamber and the combustion chamber are both constituted by a fluidized-bed furnace, stable pyrolysis gasification of combustible materials in the pyrolysis chamber becomes possible, and the combustion chamber is incinerated by a fluidized-bed incinerator.
  • the ash particles in the combustion gas discharged from a conventional fluidized bed incinerator have the same properties, shape and size as the ash particles in the combustion gas discharged from the conventional fluidized bed incinerator.
  • the fluidized medium of the fluidized bed furnace constituting the thermal decomposition chamber and the fluidized medium of the fluidized bed furnace constituting the combustion chamber are circulated.
  • FIG. 1 is a view showing a process flow of a conventional combustible material processing apparatus.
  • FIG. 2 is a view showing a process flow of a conventional combustible material processing apparatus.
  • FIG. 3 is a view showing a process flow of a combustible material processing apparatus according to the present invention.
  • FIG. 4 is a view showing a process flow of a combustible material processing apparatus according to the present invention.
  • FIG. 5 is a view showing a configuration example of an integrated fluidized-bed gasification furnace used in the combustible material processing apparatus according to the present invention.
  • FIG. 6 is a view showing a configuration example of a two-tower type fluidized-bed gasification furnace used in the apparatus for treating combustibles according to the present invention.
  • FIG. 7 is a diagram showing a configuration example of a melting furnace used in the combustible material processing apparatus according to the present invention.
  • FIG. 8 is a view showing a process flow of a combustible material processing apparatus according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

A method of heat recovery, method of processing combustible materials, heat recovery apparatus and apparatus for combustible material processing, wherein no assist fuel is needed even when the heat release value of combustible materials is low and ashes can be melted, wherein even when heat recovery is performed from combustion gas after ash melting, the adhesion of ashes to the heating surface of heat recovery apparatus can be inhibited to thereby minimize the excess ratio of heating surface, and wherein facilities such as a water spray type gas cooling system can be rendered unnecessary. In particular, a method of heat recovery comprising the step of recovering heat from first gas (G2) containing particles with large diameter in high proportion and the step of mixing the first gas (G2) after heat recovery with second gas (G1) containing particles with small diameter in high proportion and effecting heat recovery. There are further provided a method of processing combustible materials which includes this heat recovery method and provided a heat recovery apparatus and apparatus for combustible material processing in which use is made of the heat recovery method.

Description

明 細 書  Specification
熱回収方法、可燃物の処理方法、熱回収装置及び可燃物の処理装置 技術分野  Heat recovery method, combustible material processing method, heat recovery device, and combustible material processing device
[0001] 本発明は都市ゴミ、廃プラスチック、シュレッダダスト、建設廃棄物、廃タイヤ、バイ ォマス等の可燃物を処理するのに際して、発生する熱を利用して灰を溶融させ、且 つ効果的に熱回収することが可能な熱回収方法、可燃物の処理方法、熱回収装置 及び可燃物の処理装置に関するものである。  [0001] The present invention makes use of the heat generated to melt ash when treating combustible materials such as municipal garbage, waste plastic, shredder dust, construction waste, waste tires, biomass, and the like. TECHNICAL FIELD The present invention relates to a heat recovery method capable of recovering heat, a method of treating combustibles, a heat recovery device, and a device of treating combustibles.
背景技術  Background art
[0002] 近年都巿ゴミ等の廃棄物焼却処理方法としてガス化溶融方式が注目されてレ、る。  [0002] In recent years, a gasification melting method has been attracting attention as a method for incinerating waste such as garbage in Tokyo.
このガス化溶融方式とは廃棄物を 500°C程度で部分燃焼させて熱分解ガスを得て、 この熱分解ガスを溶融炉で高温燃焼させてガス中に含まれている灰分を溶融させる 方式である。この方式で得られる熱分解ガスは廃棄物の部分燃焼によって得られた ものであり、燃焼ガスが混入しており発熱量が低い。従って、溶融炉で灰を溶融させ る十分な温度、即ち約 1200°C程度の温度を得ようとすると、投入される廃棄物が 7— 8Mj/kg程度の発熱量を有していることが必要である。  In this gasification and melting method, waste is partially burned at about 500 ° C to obtain a pyrolysis gas, and this pyrolysis gas is burned at a high temperature in a melting furnace to melt the ash contained in the gas. It is. The pyrolysis gas obtained by this method is obtained by partial combustion of waste, and has a low calorific value due to the mixing of combustion gas. Therefore, when trying to obtain a temperature sufficient to melt the ash in the melting furnace, that is, a temperature of about 1200 ° C, the waste to be input may have a calorific value of about 7-8 Mj / kg. is necessary.
[0003] し力、しながら廃棄物、特に都巿ゴミを供給した場合は発熱量の変動が大きぐ発熱 量が不足している場合は溶融炉等に助燃料を供給したり、溶融炉の燃焼用酸素供 給源として空気でなく酸素を用いたりせざるを得ないのが実情である。そのためラン ユングコストが増加したり、酸素発生装置を設置することによってイニシャルコストが増 加したりすることが問題となっている。  [0003] The amount of heat generated varies greatly when waste, particularly municipal waste, is supplied while supplementary fuel is supplied to a melting furnace or the like when the amount of generated heat is insufficient. In fact, it is necessary to use oxygen instead of air as the oxygen supply source for combustion. Therefore, there is a problem that the running cost increases and the initial cost increases by installing an oxygen generator.
[0004] また、溶融炉に流入する熱分解ガス中に含まれる灰分は、シリカ、アルミナ、カルシ ァ系のものに加え、低融点金属や低沸点の金属塩等が含まれているが、溶融炉に おいて溶融する成分はシリカ、アルミナ、力ルシア系のものが主体であり、低沸点の 金属塩等は燃焼ガスに伴レ、溶融炉から下流側に流出する。  [0004] Furthermore, the ash contained in the pyrolysis gas flowing into the melting furnace contains, in addition to silica, alumina and calcium-based ones, low melting point metals and low boiling point metal salts. The components to be melted in the furnace are mainly silica, alumina, and luciferous, and low-boiling metal salts and the like flow out of the melting furnace downstream along with the combustion gas.
[0005] また、溶融炉においては、内部にガスの旋回流を形成させると共に、多くの場合ガ ス流を急反転させる等の手段によって、ガス中の灰分を慣性力によって溶融炉壁面 に衝突させてスラグ流を形成させ、被溶融物に含まれる灰分の溶融率を高めようとす る構造が採用されている。従って、粒径の大きな粒子はスラグ流に捕捉されるため、 溶融炉から下流に流出する排ガス中の灰分の粒径は結果として 10ミクロン以下のも のが多くなる。 [0005] In the melting furnace, ash in the gas is caused to collide with the wall surface of the melting furnace by inertia force by means such as forming a swirling flow of the gas inside and, in many cases, suddenly reversing the gas flow. To form a slag stream to increase the melting rate of the ash contained in the material to be melted. Structure is adopted. Therefore, large particles are trapped in the slag flow, and the particle size of the ash in the exhaust gas flowing downstream from the melting furnace is often less than 10 microns.
[0006] 上記のように溶融炉の下流に流出するガス中の灰分は塩類濃度が高く粒径が非常 に小さいのが特徴で、このことから様々な問題を引き起こしている。溶融直後の 1200 °C以上の高温域から 400°C程度の温度域までそれぞれの温度で溶融した微小粒子 が熱回収のために設けられた機器の伝熱面に付着して伝熱面の伝熱係数を極端に 低下させてしまうのである。  [0006] As described above, the ash in the gas flowing downstream of the melting furnace is characterized by a high salt concentration and a very small particle size, which causes various problems. From the high temperature range of 1200 ° C or more immediately after melting to the temperature range of about 400 ° C, the fine particles melted at each temperature adhere to the heat transfer surface of the equipment provided for heat recovery and transfer to the heat transfer surface. The heat coefficient is extremely reduced.
[0007] 伝熱係数が低下するとガス温度を下げることができなくなるなど熱回収機器の機能 は低下するので、熱回収工程出口でのガス温度が上昇し、熱回収工程の下流に設 けられたバグフィルタ等の集塵工程の許容温度を超えてしまう恐れがある。特にバグ フィルタのろ布は熱に弱いため、集塵工程入口部での温度は許容温度以下にする 必要がある。このため水噴霧方式のガス冷却工程を予め設けておいたり、熱回収機 器の伝熱面において伝熱面積に十分な余裕を持たせ熱回収機器の機能を十分に 維持し、集塵工程入口部でのガス温度が許容温度より高くなることを抑えなければな らなレ、。このことは設備増加によるコスト高の原因となる。  [0007] If the heat transfer coefficient decreases, the function of the heat recovery equipment deteriorates such that the gas temperature cannot be lowered. Therefore, the gas temperature at the heat recovery process outlet rises, and the gas is installed downstream of the heat recovery process. There is a possibility that the temperature may exceed the allowable temperature of the dust collection step such as a bag filter. In particular, since the filter cloth of the bag filter is vulnerable to heat, the temperature at the entrance of the dust collection process must be lower than the allowable temperature. For this reason, a gas cooling process of the water spray method is provided in advance, or the heat transfer surface of the heat recovery device has sufficient heat transfer area to maintain the function of the heat recovery device sufficiently. The gas temperature in the section must be kept from exceeding the allowable temperature. This causes a cost increase due to an increase in equipment.
[0008] 図 1は従来のガス化溶融方式を採用する可燃物の処理装置のプロセスフローを示 す図である(特許文献 1参照)。可燃物の処理装置は、ガス化炉 101、溶融炉 102、 ボイラ 103、ェコノマイザ又は空気予熱器 104、ガス冷却塔 105、バグフィルタ 106、 誘引ブロワ一 107、触媒脱硝塔 108及び煙突 109を具備する。可燃物はガス化炉 1 01へ供給され、部分燃焼されると共に熱分解し、熱分解ガス、タール、チヤ一、飛灰 等を発生させる。このタール、チヤ一、飛灰等を含む熱分解ガスは全量溶融炉 102 へ供給される。  [0008] FIG. 1 is a diagram showing a process flow of a combustible material processing apparatus employing a conventional gasification and melting method (see Patent Document 1). The combustible material processing apparatus includes a gasification furnace 101, a melting furnace 102, a boiler 103, an economizer or an air preheater 104, a gas cooling tower 105, a bag filter 106, an induction blower 107, a catalytic denitration tower 108, and a chimney 109. . The combustibles are supplied to the gasifier 101, where they are partially burned and thermally decomposed to generate pyrolysis gas, tar, char, fly ash and the like. The pyrolysis gas containing the tar, char, fly ash and the like is supplied to the melting furnace 102 in its entirety.
[0009] 溶融炉 102で熱分解ガスは 1200°C以上の高温で燃焼され、灰分が溶融され溶融 スラグとして炉外に排出されると共に、該溶融炉から出た高温燃焼ガスはボイラ 103 に導かれる。燃焼ガスはボイラ 103で 450°C程度にまで冷却され、更にェコノマイザ 又は空気予熱器 104で 200°C程度にまで冷却される。  [0009] In the melting furnace 102, the pyrolysis gas is burned at a high temperature of 1200 ° C or more, the ash is melted and discharged out of the furnace as molten slag, and the high-temperature combustion gas discharged from the melting furnace is guided to the boiler 103. I will be. The combustion gas is cooled to about 450 ° C. in the boiler 103, and further cooled to about 200 ° C. in the economizer or the air preheater 104.
[0010] 溶融炉 102を出た高温燃焼ガス中に含まれる灰分はその粒径が小さぐ且つ比較 的融点の低い金属塩類の割合が高いので付着性が高ぐボイラ 103、ェコノマイザ 又は空気予熱器 104の伝熱面に付着しやすレ、。そのため、運転を継続しているうち に次第にボイラ 103、ェコノマイザ又は空気予熱器 104の伝熱面に付着して熱伝達 係数を低下させるので、運転当初は十分に冷却されてレ、た燃焼ガスが運転時間の 経過と共に、次第に冷却されに《なり、バグフィルタ 106の入口温度が上昇してくる [0010] The ash contained in the high temperature combustion gas exiting the melting furnace 102 has a small particle size and a comparative A high percentage of metal salts having a low melting point, so that the adhesion is high, so that the metal salt easily adheres to the heat transfer surface of the boiler 103, economizer or air preheater 104. Therefore, as the operation continues, it gradually adheres to the heat transfer surface of the boiler 103, the economizer or the air preheater 104 and lowers the heat transfer coefficient. As the operation time elapses, it gradually cools down and the inlet temperature of the bag filter 106 rises.
[0011] 一般的にバグフィルタの耐熱温度は 220°C程度なので、それを超える温度にならな いように、ガス冷却塔 105で燃焼ガス中に水を噴霧して冷却せざるを得ない。しかし ながら、このようにして運転を継続しても伝熱面への灰付着の進行は止らず、空気予 熱器入口の燃焼ガス温度は徐々に上昇し、付着が更に激しくなる。そして 450°Cを 超える温度域においては、灰は半溶融状態となっており、付着を例えば機械的に搔 き落としたり、払い落としたりすることが難しぐ温度を下げないで灰付着の進行を止 めることが困難である。即ち、一旦伝熱面の機能が低下してしまうと、その状態のまま で灰付着の進行を抑制することは困難である。 [0011] Generally, the heat resistance temperature of the bag filter is about 220 ° C, so that the combustion gas must be sprayed with the gas cooling tower 105 to cool it so that the temperature does not exceed that temperature. However, even if the operation is continued in this way, the progress of ash deposition on the heat transfer surface does not stop, and the temperature of the combustion gas at the inlet of the air preheater gradually increases, and the deposition becomes more severe. In a temperature range exceeding 450 ° C, the ash is in a semi-molten state, and it is difficult to mechanically remove or remove the ash, for example. It is difficult to stop. That is, once the function of the heat transfer surface has been reduced, it is difficult to suppress the progress of ash deposition in that state.
[0012] 従って、従来の可燃物の処理装置では、熱回収工程であるボイラ 103やェコノマイ ザ又は空気予熱器 104の伝熱面積に十分な安全率を持っておき、且つ伝熱面に付 着した灰を強制的に搔き落とす手段を設ける以外に安定した運転を継続させること ができなかった。し力 ながら伝熱面に付着した灰を強制的に搔き落すことによって 伝熱面の表面温度が大きく変化し、せつ力べ形成された保護皮膜が熱衝撃によって 剥れ、伝熱面の腐食摩耗を促進させる恐れもある。  [0012] Therefore, in the conventional combustible material processing apparatus, the heat transfer area of the boiler 103, the economizer, or the air preheater 104, which is a heat recovery step, has a sufficient safety factor and is attached to the heat transfer surface. Stable operation could not be continued except by providing means for forcibly removing ash. The ash attached to the heat transfer surface is forcibly removed while the force is applied, causing a significant change in the surface temperature of the heat transfer surface, and the protective coating formed on the heat transfer surface peels off due to thermal shock, resulting in corrosion of the heat transfer surface. Wear may be accelerated.
[0013] また、灰の溶融率を高めるためにバグフィルタ 106で捕集した灰を溶融炉 102へ戻 す戻し灰を行おうとすると、溶融炉において溶融スラグ化されずそのまま排ガスへと 移行してしまう大量の低融点物質、金属塩類が熱交換器部分を含む循環経路内を 大量に循環し、熱交換器の伝熱面への灰付着を加速度的に促進してしまう恐れがあ るため、戻し灰率を高めることができず、スラグ化率を一定限度以下にしか高められ ない等の問題があった。  [0013] In addition, if the ash collected by the bag filter 106 is to be returned to the melting furnace 102 in order to increase the ash melting rate, the ash is not converted into molten slag in the melting furnace but is directly transferred to exhaust gas. A large amount of the low-melting-point substances and metal salts that are circulated in large quantities in the circulation path including the heat exchanger may accelerate the deposition of ash on the heat transfer surface of the heat exchanger. There was a problem that the rate of reclaimed ash could not be increased, and the rate of slag conversion could only be increased below a certain limit.
[0014] 一方、近年、灰の溶融に助燃料を使用しないための方法として、部分燃焼方式の 熱分解ガスを全量溶融炉に導くのではなぐできるだけ熱分解ガスの発熱量を高め て溶融炉の温度を維持しやすくするために熱分解炉の方式をできるだけ酸素を使わ ないで乾留方式に近づけたものを適用する方法が提案されている。図 2は、他の処 理装置のプロセスフローを示す図である。 [0014] On the other hand, in recent years, as a method of not using auxiliary fuel for melting ash, the calorific value of the pyrolysis gas has to be increased as much as possible rather than leading the partial combustion type pyrolysis gas to the full melting furnace. In order to make it easier to maintain the temperature of the melting furnace, there has been proposed a method of applying a pyrolysis furnace that approximates the carbonization method without using oxygen as much as possible. FIG. 2 is a diagram showing a process flow of another processing device.
[0015] 図 2において、図 1と同一符号を付した部分は同一又は相当部分を示す。本可燃 物の処理装置も従来例と同様、ガス化炉と溶融炉を持った構成であるが、ガス化炉 は熱分解室 110 - 1と燃焼室 110 - 2に分れた統合型の流動床ガス化炉 110が採用 されている。可燃物は主に流動床ガス化炉 110の熱分解室 110-1側に供給され、そ こで熱分解ガス、タール、チヤ一、飛灰等を発生させる。これらのうち流動層内に留ま らない物は全て溶融炉 102に供給され、そこで 1200°C以上の高温で燃焼され、灰 は溶融される。 In FIG. 2, portions denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding portions. This combustible treatment system has a gasification furnace and a melting furnace, as in the conventional example, but the gasification furnace is an integrated fluidization chamber divided into a pyrolysis chamber 110-1 and a combustion chamber 110-2. A floor gasifier 110 is employed. The combustibles are mainly supplied to the pyrolysis chamber 110-1 side of the fluidized bed gasifier 110, where they generate pyrolysis gas, tar, char, fly ash and the like. Of these, those that do not remain in the fluidized bed are all supplied to the melting furnace 102, where they are burned at a high temperature of 1200 ° C or more, and the ash is melted.
[0016] 一方流動層内に留まった熱分解残渣は流動媒体と共に燃焼室 110—2に流入する 。燃焼室 110—2の流動層は 550°C 700°C程度、更に流動層上部のフリーボード 部は 850°C— 950°Cに維持されるよう流動空気、二次空気が供給されており、全体 の空気比は 1以上に保たれ完全燃焼される。該燃焼室 110-2には熱分解室 110— 1 を経由して流入する熱分解残渣を燃焼させるだけの場合もあるが、廃棄物の熱分解 特性、燃焼特性に応じて直接廃棄物を供給してもよレ、。  [0016] On the other hand, the pyrolysis residue remaining in the fluidized bed flows into the combustion chamber 110-2 together with the fluidized medium. Fluidized air and secondary air are supplied so that the fluidized bed of the combustion chamber 110-2 is maintained at about 550 ° C to 700 ° C, and the freeboard above the fluidized bed is maintained at 850 ° C to 950 ° C. The total air ratio is maintained at 1 or more and complete combustion is performed. In some cases, the pyrolysis residue flowing through the pyrolysis chamber 110-1 may simply be burned into the combustion chamber 110-2, but the waste is directly supplied according to the pyrolysis and combustion characteristics of the waste. You can.
[0017] 燃焼室 110-2から出た燃焼ガスは 850°C— 950°Cの温度でサイクロン等の集塵装 置 112に導入され、脱塵された後ボイラ 103に導入される。集塵装置 112で捕集され た灰分粒子は溶融炉 102に導かれ、溶融される。  The combustion gas discharged from the combustion chamber 110-2 is introduced at a temperature of 850 ° C. to 950 ° C. into a dust collecting device 112 such as a cyclone. The ash particles collected by the dust collector 112 are guided to the melting furnace 102 and melted.
[0018] 上記構成の可燃物の処理装置は、低発熱量の可燃物であっても助燃料を使うこと なく灰を溶融できるという優れた利点を有しているが、ボイラ 103に流入するガス中に 含まれる粒子が熱分解室 110— 1側は溶融炉 102、燃焼室 110—2側はサイクロン等 の集塵装置 112で捕集されてレ、るため、非常に細カ ヽ (粒径の小さい)粒子となって おり、上記のようにボイラ 103やェコノマイザ又は空気予熱器 104の伝熱面への付着 防止という観点から好ましいものではない。  The apparatus for treating combustibles having the above configuration has an excellent advantage that ash can be melted without using auxiliary fuel even for combustibles having a low calorific value, but the gas flowing into the boiler 103 The particles contained therein are collected by the melting furnace 102 on the side of the pyrolysis chamber 110-1 and by the dust collector 112 such as a cyclone on the side of the combustion chamber 110-2, so that very fine particles (particle size) (Small particles), which is not preferable from the viewpoint of preventing adhesion to the heat transfer surface of the boiler 103, the economizer, or the air preheater 104 as described above.
[0019] 特許文献 1 :特許第 3153091号公報  Patent Document 1: Japanese Patent No. 3153091
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0020] 本発明は上述の点に鑑みてなされたもので、発熱量が 6— 7Mj/kgと低い可燃物 であっても助燃料を必要とせず灰分が溶融でき、且つ灰分溶融後の燃焼ガスから熱 回収する場合でも熱回収装置 (ボイラやェコノマイザ又は空気予熱器)の伝熱面への 灰付着を抑制し、伝熱面の余裕率を最小限にすると共に、水噴霧式のガス冷却設備 等の設備を不要にすることができる熱回収方法、可燃物の処理方法、熱回収装置及 び可燃物の処理装置を提供することを目的とする。 Problems the invention is trying to solve [0020] The present invention has been made in view of the above points, and it is possible to melt ash without the need of auxiliary fuel even for a combustible substance having a low calorific value of 6-7 Mj / kg, and to burn after the ash is melted. Even when recovering heat from gas, ash deposition on the heat transfer surface of the heat recovery device (boiler, economizer or air preheater) is suppressed, the margin of the heat transfer surface is minimized, and water spray gas cooling is used. An object of the present invention is to provide a heat recovery method, a method for treating combustible materials, a heat recovery device, and a device for treating combustible materials, which can eliminate the need for facilities such as facilities.
課題を解決するための手段  Means for solving the problem
[0021] 上記課題を解決するため請求項 1に記載の発明に係る熱回収方法は、例えば図 3 に示すように、粒径の大きな粒子を多く伴った第 1のガス G2から熱を回収する工程と 、熱を回収した第 1のガス G2に粒径の小さな粒子を多く伴った第 2のガス G3を混合 して熱を回収する工程とを備える。  [0021] In order to solve the above problem, the heat recovery method according to the invention of claim 1 recovers heat from the first gas G2 accompanied by many particles having a large particle size as shown in FIG. 3, for example. And a step of recovering heat by mixing the first gas G2 from which heat has been recovered with a second gas G3 accompanied by many particles having a small particle size.
[0022] 上記のように粒径の大きな粒子を多く伴った第 1のガスから熱を回収し、次いで粒 径の小さな粒子を多く伴った第 2のガスを混合するので、第 1のガス中の粒径の大き い粒子が伝熱面に衝突した際の該伝熱面を研磨する研磨機能により、粒子の付着、 特に第 2のガス中の伝熱面に付着し易い粒径の小さな粒子の伝熱面への付着を防 止すること力 Sできる。  [0022] As described above, heat is recovered from the first gas containing many particles having a large particle diameter, and then the second gas containing many particles having a small particle diameter is mixed. The polishing function of polishing the heat transfer surface when particles having a large particle size collide with the heat transfer surface makes it possible to adhere the particles, particularly small particles having a small particle size that easily adhere to the heat transfer surface in the second gas. Can prevent the adhesion of heat to the heat transfer surface.
[0023] 請求項 2に記載の発明では、例えば図 3に示すように、請求項 1に記載の熱回収方 法において、第 1のガス G2は、可燃物を流動層炉 1に供給して該流動層炉 1にて生 成した粒子を伴ったガスからなり、第 2のガス G3は、流動層炉 1にて生成したガス G1 を溶融炉 2に導入して灰分を溶融して得た粒子を伴ったガスからなる。  In the invention according to claim 2, in the heat recovery method according to claim 1, for example, as shown in FIG. 3, the first gas G2 supplies combustibles to the fluidized bed furnace 1 The second gas G3 was obtained by introducing the gas G1 generated in the fluidized-bed furnace 1 into the melting furnace 2 and melting the ash content. Consists of a gas with particles.
[0024] 可燃物を流動層炉に供給して該流動層炉にて生成したガスは粒径の大きな粒子を 多く伴ったガスであり、流動層炉にて生成したガスを溶融炉に導入して灰分を溶融し て得たガスは粒径の小さな粒子を伴ったガスであるから、流動層炉にて生成したガス を第 1のガス、溶融炉で得られたガスを第 2のガスとすることにより、請求項 1に記載の 発明と同様の作用が得られる。  [0024] The gas generated in the fluidized bed furnace by supplying the combustibles to the fluidized bed furnace is a gas accompanied by a large number of particles having a large particle diameter, and the gas generated in the fluidized bed furnace is introduced into the melting furnace. The gas obtained by melting the ash is a gas accompanied by particles having a small particle size, so the gas generated in the fluidized bed furnace is the first gas, and the gas obtained in the melting furnace is the second gas. By doing so, the same operation as the invention described in claim 1 can be obtained.
[0025] 請求項 3に記載の発明では、例えば図 5に示すように、請求項 2に記載の熱回収方 法において、前記流動層炉 1 (21)にて、可燃物 34を熱分解してチヤ一とガス G1を 得る工程と、該チヤーを該炉 1 (22)内で燃焼させる工程とを備える。このように構成 することで、可燃物から微細な粒子と可燃性ガスを効率的且つ、ガスの組成変動を 少なくした態様にて生成させることができる。 [0025] In the invention according to claim 3, as shown in Fig. 5, for example, in the heat recovery method according to claim 2, the combustible material 34 is thermally decomposed in the fluidized bed furnace 1 (21). A step of obtaining a gas and a gas G1 by burning, and a step of burning the char in the furnace 1 (22). Configuration like this By doing so, it is possible to generate fine particles and combustible gas from combustibles efficiently and in a manner in which the composition fluctuation of the gas is reduced.
[0026] 請求項 4に記載の発明では、例えば図 5に示すように、請求項 3に記載の熱回収方 法において、前記チヤ一を燃焼室 22にて燃焼させる工程と、燃焼室 22から流動媒 体を、可燃物 34を熱分解する熱分解室 21に流入させる工程 D、 Eとを備える。このよ うに構成することで、燃焼室にてチヤ一を燃焼させて発生した熱を流動媒体に移行さ せ、この熱を熱分解室における可燃物の熱分解反応に有効に利用することができる  [0026] In the invention according to claim 4, for example, as shown in Fig. 5, in the heat recovery method according to claim 3, a step of burning the char in the combustion chamber 22; Steps D and E for flowing the fluid medium into the pyrolysis chamber 21 for pyrolyzing the combustibles 34 are provided. With this configuration, the heat generated by burning the chamber in the combustion chamber is transferred to the fluid medium, and this heat can be effectively used for the pyrolysis reaction of combustibles in the pyrolysis chamber.
[0027] 請求項 5に記載の発明では、例えば図 3に示すように、請求項 2乃至 4のいずれか 1 項に記載の熱回収方法において、前記第 1のガス G2と前記第 2のガス G3を混合す る工程と、混合したガスを 450°C以下に冷却する工程と、集塵装置 5により冷却した ガス中の固形分を分離する工程と、分離した固形分を溶融炉 2に導入し、溶融させる 工程とを備える。なお、冷却後のガス温度は 450°C以下である力 好ましくは 350°C 以下、更に好ましくは 300°C以下、最も好ましくは 250°C以下である。 In the invention according to claim 5, according to the heat recovery method according to any one of claims 2 to 4, for example, as shown in FIG. 3, the first gas G2 and the second gas A step of mixing G3, a step of cooling the mixed gas to 450 ° C or lower, a step of separating solids in the gas cooled by the dust collector 5, and a step of introducing the separated solids into the melting furnace 2. And melting. The gas temperature after cooling is 450 ° C. or less, preferably 350 ° C. or less, more preferably 300 ° C. or less, and most preferably 250 ° C. or less.
[0028] 請求項 6に記載の発明に係る可燃物の処理方法は、例えば図 3に示すように、流 動床ガス化炉 1において粒子を含む第 1のガス G2と第 2のガス G1を生成させる工程 と、流動床ガス化炉 1からの第 1のガス G2を熱回収装置 3に導入する工程と、導入さ れたガス G2と受熱流体との間で熱交換を行って熱回収する工程と、流動床ガス化炉 1からの第 2のガス G1を溶融炉 2に導入して粒子中の灰分を溶融する工程と、灰分を 溶融したガス G3を前記熱回収装置 3に導入する工程とを備える。  [0028] In the method for treating combustibles according to the invention as set forth in claim 6, for example, as shown in Fig. 3, the first gas G2 containing particles and the second gas G1 containing particles in the fluidized bed gasifier 1 are used. Generating step, introducing the first gas G2 from the fluidized bed gasifier 1 into the heat recovery unit 3, and performing heat exchange between the introduced gas G2 and the heat receiving fluid to recover heat. A step of introducing the second gas G1 from the fluidized bed gasifier 1 into the melting furnace 2 to melt the ash in the particles, and a step of introducing the gas G3 in which the ash is melted into the heat recovery unit 3. And
[0029] 上記のように流動床ガス化炉からの第 1のガスを熱回収装置に導入して熱回収し、 流動床ガス化炉からの第 2のガスを溶融炉に導入し、該溶融炉から排出されるガスを 同じ熱回収装置に導入するので、この第 1のガスには粒径の大きな粒子を多く伴った ガスであるから、該粒子が伝熱面に衝突した際の研磨機能により、粒子の伝熱面へ の付着を防止することができる。  [0029] As described above, the first gas from the fluidized-bed gasification furnace is introduced into the heat recovery device to recover heat, and the second gas from the fluidized-bed gasification furnace is introduced into the melting furnace. Since the gas discharged from the furnace is introduced into the same heat recovery device, the first gas is a gas accompanied by many particles with a large particle size. This can prevent the particles from adhering to the heat transfer surface.
[0030] 請求項 7に記載の発明に係る可燃物の処理方法は、例えば図 3に示すように、流 動床ガス化炉 1において粒子を含む第 1のガス G2と第 2のガス G1を生成させる工程 と、流動床ガス化炉 1からの第 1のガス G2を熱回収装置 3に導入する工程と、導入さ れたガス G2と受熱流体との間で熱交換を行って熱回収する工程と、流動床ガス化炉 1からの第 2のガス G1を溶融炉 2に導入して粒子中の灰分を溶融する工程と、灰分 が溶融されたガス G3を、第 1のガス G2が導入されている熱回収装置 3に導入するェ 程とを備える。なお、第 1のガスと熱交換する熱回収装置と第 1のガスと第 2のガスと の混合ガスと熱交換する熱回収装置とは、同一であってもよいし、別の装置として構 成しても良い。 [0030] In the method for treating combustible material according to the invention of claim 7, for example, as shown in FIG. 3, the first gas G2 and the second gas G1 containing particles in the fluidized-bed gasification furnace 1 are mixed. Generating the first gas G2 from the fluidized bed gasifier 1 into the heat recovery unit 3, and Heat exchange between the collected gas G2 and the heat receiving fluid to recover heat, and introducing the second gas G1 from the fluidized bed gasifier 1 into the melting furnace 2 to melt the ash in the particles And a step of introducing the gas G3 in which the ash is melted into the heat recovery device 3 into which the first gas G2 is introduced. Note that the heat recovery device that exchanges heat with the first gas and the heat recovery device that exchanges heat with the mixed gas of the first gas and the second gas may be the same or may be configured as separate devices. You can do it.
[0031] 上記のように流動床ガス化炉からの粒径の大きな粒子を多く伴った第 1のガスを熱 回収装置に導入して熱を回収し、次いでこの熱を回収されたガスに、溶融炉から排 出される粒径の小さな粒子を多く伴った第 2のガスを混合して熱を回収することにより 、第 1のガス中の粒径の大きな粒子が伝熱面へ衝突する際の研磨機能により、粒子 の伝熱面への付着を防止することができる。  [0031] As described above, the first gas accompanied by many particles having a large particle diameter from the fluidized bed gasifier is introduced into the heat recovery device to recover heat, and then the heat is recovered by the recovered gas. By mixing the second gas with many small particles discharged from the melting furnace and recovering heat, the large particles in the first gas collide with the heat transfer surface. The polishing function can prevent particles from adhering to the heat transfer surface.
[0032] 請求項 8に記載の発明では、例えば図 3に示すように、請求項 6又は 7に記載の可 燃物の処理方法において、前記第 1のガス G2及び第 2のガス G3を熱回収装置 3、 4 で熱回収し、 450°C以下に冷却する工程と、集塵装置 5により第 1のガス G2及び第 2 のガス G3中の固形分を分離する工程と、分離した固形分を溶融炉 2に導入し、溶融 させる工程とを備える。なお、冷却後のガス温度は 450°C以下である力 好ましくは 3 50°C以下、更に好ましくは 300°C以下、最も好ましくは 250°C以下である。  [0032] In the invention according to claim 8, in the method for treating a combustible material according to claim 6 or 7, for example, as shown in Fig. 3, the first gas G2 and the second gas G3 are heated. A step of recovering heat in the recovery devices 3 and 4 and cooling it to 450 ° C or lower, a step of separating solids in the first gas G2 and the second gas G3 by the dust collector 5, and a step of separating the separated solids. Into the melting furnace 2 to be melted. The gas temperature after cooling is 450 ° C or less, preferably 350 ° C or less, more preferably 300 ° C or less, and most preferably 250 ° C or less.
[0033] 請求項 9に記載の発明に係る熱回収装置は、例えば図 3に示すように、粒径の大き い粒子を多く含む第 1のガス G2を導入する第 1の導入口と、第 1の導入口から導入さ れたガス G2の流れに対して第 1の導入口の下流側に位置し、粒径の小さな粒子を 多く含む第 2のガス G3を導入する第 2の導入口と、熱を回収した後のガス G4を排出 するための排出口と、第 1及び第 2の導入口から導入されたガス G2、 G3と受熱流体 との間で熱交換して熱を回収するための伝熱面とを備える。  [0033] The heat recovery apparatus according to claim 9 includes, for example, as shown in FIG. 3, a first inlet for introducing a first gas G2 containing many particles having a large particle diameter, The second inlet, which is located downstream of the first inlet with respect to the flow of the gas G2 introduced from the first inlet and introduces the second gas G3 containing many small-sized particles, In order to recover heat by exchanging heat between the discharge port for discharging gas G4 after recovering heat and the gases G2 and G3 introduced from the first and second inlets and the heat receiving fluid, And a heat transfer surface.
[0034] 上記のように粒径の大きい粒子を多く含む第 1のガスを導入する第 1の導入口の下 流に、粒径の小さな粒子を多く含む第 2のガスを導入する第 2の導入口を設けたので 、第 1の導入口から導入された第 1のガス中の粒径の大きい粒子が伝熱面へ衝突す る際の研磨機能により、粒子の付着、特に第 2の導入口から導入される付着し易い第 2のガス中の粒径の小さな粒子の付着を防止することができる。また、第 1の導入口を 第 2の導入口より上流側に設けることによって、粒径の大きい粒子を多く含む第 1のガ スが冷却された後に、粒径の小さな粒子を多く含む第 2のガスが混入される結果とな り、伝熱面に付着し易い粒径の小さな粒子を含む高温ガスが存在する領域をできる だけ作らないことにもなる。 [0034] As described above, downstream of the first inlet for introducing the first gas containing many particles having a large particle diameter, the second gas for introducing the second gas containing many particles having a small particle diameter is provided. Since the inlet is provided, the polishing function when particles having a large particle diameter in the first gas introduced from the first inlet impinge on the heat transfer surface allows the particles to adhere, particularly the second inlet. It is possible to prevent adhesion of particles having a small particle diameter in the second gas which is likely to be introduced from the mouth and adheres. Also, the first entrance By providing the gas upstream of the second inlet, the first gas containing many particles having a large particle size is cooled, and then the second gas containing many particles having a small particle size is mixed. In other words, a region where a high-temperature gas containing particles having a small particle diameter that easily adheres to the heat transfer surface is not formed as much as possible.
[0035] 請求項 10に記載の発明では、例えば図 3に示すように、請求項 9に記載の熱回収 装置 3において、第 1のガス G2は、可燃物を流動層炉 1に供給して流動層炉 1にて 生成されたガスであり、第 2のガス G3は、流動層炉 1にて生成したガス G1を溶融炉 2 に導入して該ガス中に含まれる灰分を溶融して得られたガスである。  In the invention according to claim 10, in the heat recovery device 3 according to claim 9, for example, as shown in FIG. 3, the first gas G2 supplies combustibles to the fluidized bed furnace 1 The second gas G3 is a gas generated in the fluidized bed furnace 1, and is obtained by introducing the gas G1 generated in the fluidized bed furnace 1 into the melting furnace 2 and melting the ash contained in the gas. Gas.
[0036] 可燃物を流動層炉に供給して該流動層炉にて生成したガスは粒径の大きな粒子を 多く伴ったガスであり、流動層炉にて生成したガスを溶融炉に導入して灰分を溶融し て得たガスは粒径の小さな粒子を伴ったガスであるから、流動層炉にて生成したガス を第 1のガス、溶融炉で得られたガスを第 2のガスとしてそれぞれ第 1の導入口、第 2 の導入口から熱回収装置に導入することにより、請求項 9に記載の発明と同様の作 用が得られる。  [0036] The gas generated in the fluidized bed furnace by supplying combustibles to the fluidized bed furnace is a gas accompanied by a large number of particles having a large particle diameter, and the gas generated in the fluidized bed furnace is introduced into the melting furnace. Since the gas obtained by melting the ash is a gas accompanied by particles having a small particle size, the gas generated in the fluidized bed furnace is used as the first gas, and the gas obtained in the melting furnace is used as the second gas. By introducing the heat into the heat recovery device through the first inlet and the second inlet, respectively, the same operation as the invention described in claim 9 can be obtained.
[0037] 請求項 11に記載の発明では、例えば図 3に示すように、請求項 10に記載の熱回 収装置 3において、前記第 1のガス G2と前記第 2のガス G3を混合後、 450°C以下に 冷却した後、集塵装置 5により該混合ガス G2、 G3中の固形分を分離し、分離した固 形分を前記溶融炉 2に導入し、溶融させるように構成されている。なお、冷却後のガ ス温度は 450°C以下である力 好ましくは 350°C以下、更に好ましくは 300°C以下、 最も好ましくは 250°C以下である。  In the invention according to claim 11, in the heat recovery device 3 according to claim 10, for example, as shown in FIG. 3, after mixing the first gas G2 and the second gas G3, After cooling to 450 ° C. or less, the solid content in the mixed gas G2, G3 is separated by the dust collecting device 5, and the separated solid content is introduced into the melting furnace 2 to be melted. . The gas temperature after cooling is 450 ° C or less, preferably 350 ° C or less, more preferably 300 ° C or less, and most preferably 250 ° C or less.
[0038] 請求項 12に記載の発明に係る可燃物の処理装置は、例えば図 3に示すように、可 燃物をガス化して粒子を含む第 1のガス G2と第 2のガス G1を生成させる流動床ガス 化炉 1と、流動床ガス化炉 1にて発生した第 1のガス G2を導入して受熱流体との間で 熱交換して熱を回収する熱回収装置 3と、流動床ガス化炉 1にて発生した第 2のガス G1を導入して灰分を溶融する溶融炉 2と、溶融炉 2から排出されるガス G3を、溶融 炉 2で更に発生した粒子とともに前記熱回収装置 3に導入するガス導入流路とを備え る。  [0038] The combustible material processing apparatus according to the twelfth aspect of the present invention generates a first gas G2 and a second gas G1 containing particles by gasifying the combustible material as shown in Fig. 3, for example. A fluidized-bed gasifier 1, a first gas G2 generated in the fluidized-bed gasifier 1, and a heat recovery device 3 for exchanging heat with a heat-receiving fluid to recover heat. The melting furnace 2 for introducing the second gas G1 generated in the gasification furnace 1 to melt the ash, and the gas G3 discharged from the melting furnace 2 together with the particles further generated in the melting furnace 2 together with the heat recovery unit 3 is provided with a gas introduction channel.
[0039] 上記のように流動床ガス化炉にて発生した粒子を含む第 1のガスを導入して熱を回 収する熱回収装置に、流動床ガス化炉にて発生した第 2のガスを溶融炉に導入し、 該溶融炉から排出されるガスを導入するので、第 1のガス中の粒子が伝熱面へ衝突 する際の研磨機能により粒子の付着、特に付着し易い粒径の小さな粒子を含む溶融 炉から排出されるガスの該粒子の付着を防止することができる。 [0039] As described above, the first gas containing particles generated in the fluidized bed gasifier is introduced to recover heat. The second gas generated in the fluidized bed gasification furnace is introduced into the melting furnace and the gas discharged from the melting furnace is introduced into the heat recovery unit, so that the particles in the first gas transfer heat. The polishing function at the time of collision with the surface can prevent the adhesion of particles, particularly the adhesion of the particles discharged from a melting furnace containing particles having a small particle diameter that easily adheres.
[0040] 請求項 13に記載の発明に係る可燃物の処理装置は、例えば図 3に示すように、可 燃物をガス化して粒子を含む第 1のガス G2と第 2のガス G1を生成させる流動床ガス 化炉 1と、流動床ガス化炉 1にて発生した第 1のガス G2を導入して受熱流体との間で 熱交換して熱を回収する熱回収装置 3と、流動床ガス化炉 1にて発生した第 2のガス G1を導入して灰分を溶融する溶融炉 2と、溶融炉 2から排出されるガス G3を、該溶 融炉 2で更に発生した粒子とともに前記第 1のガス G2が導入されている熱回収装置 3に導入するガス導入流路とを備える。なお、第 1のガスと熱交換する熱回収装置と 第 1のガスと第 2のガスとの混合ガスと熱交換する熱回収装置とは、同一であってもよ いし、別の装置として構成しても良い。  The apparatus for treating a combustible material according to the invention of claim 13 generates the first gas G2 and the second gas G1 containing particles by gasifying the combustible material as shown in FIG. 3, for example. A fluidized-bed gasifier 1, a first gas G2 generated in the fluidized-bed gasifier 1, and a heat recovery device 3 for exchanging heat with a heat-receiving fluid to recover heat. The melting furnace 2 for introducing the second gas G1 generated in the gasification furnace 1 to melt the ash, and the gas G3 discharged from the melting furnace 2 together with the particles further generated in the melting furnace 2, And a gas introduction passage for introducing the heat recovery device 3 into which the first gas G2 is introduced. Note that the heat recovery device that performs heat exchange with the first gas and the heat recovery device that performs heat exchange with a mixed gas of the first gas and the second gas may be the same or may be configured as separate devices. You may.
[0041] 請求項 14に記載の発明では、例えば図 5に示すように、請求項 12又は 13に記載 の可燃物の処理装置において、前記流動床ガス化炉 1は、可燃物 34を熱分解して 第 2のガス G1を発生する熱分解室 21と、チヤ一を燃焼させ第 1のガス G2を発生する 燃焼室 22と、燃焼室 22からの流動媒体を該熱分解室 21に移動させるための流路 D 、 Eとを備える。  In the invention according to claim 14, in the apparatus for treating combustibles according to claim 12 or 13, for example, as shown in FIG. 5, the fluidized-bed gasifier 1 thermally decomposes the combustibles 34. Then, a pyrolysis chamber 21 that generates the second gas G1, a combustion chamber 22 that burns the channel to generate the first gas G2, and a fluid medium from the combustion chamber 22 are moved to the pyrolysis chamber 21. And a flow path D and E for the use.
[0042] 請求項 15に記載の発明では、例えば図 3に示すように、請求項 14に記載の可燃 物の処理装置において、熱分解室 1 1からの第 2のガス G1を溶融炉 2に導入する流 路と、燃焼室 1 2からの第 1のガス G2を熱回収装置 3に導入するための流路とを備 る。  [0042] In the invention according to claim 15, for example, as shown in FIG. 3, in the combustible material processing apparatus according to claim 14, the second gas G1 from the pyrolysis chamber 11 is supplied to the melting furnace 2. A flow path for introduction and a flow path for introducing the first gas G2 from the combustion chamber 12 into the heat recovery device 3 are provided.
[0043] 請求項 16に記載の発明は、例えば図 3に示すように、請求項 12乃至 15のいずれ 力、 1項に記載の可燃物の処理装置において、熱回収装置 3は廃熱ボイラである。  The invention according to claim 16 is, for example, as shown in FIG. 3, in the combustible material treatment apparatus according to any one of claims 12 to 15, and the heat recovery apparatus 3 is a waste heat boiler. is there.
[0044] 請求項 17に記載の発明では、例えば図 3に示すように、請求項 12乃至 16のいず れカ、 1項に記載の可燃物の処理装置において、第 1のガス G2と第 2のガス G1を混合 後、 450°C以下に冷却した後、集塵装置 5により混合ガス中の固形分を分離し、分離 した固形分を溶融炉 2に導入し、溶融させるように構成されている。なお、冷却後のガ ス温度は 450°C以下である力 好ましくは 350°C以下、更に好ましくは 300°C以下、 最も好ましくは 250°C以下である。 In the invention according to claim 17, in the apparatus for treating a combustible material according to any one of claims 12 to 16, as shown in FIG. 3, for example, as shown in FIG. After mixing the gas G1 of No. 2 and cooling it to 450 ° C or less, the solid content in the mixed gas is separated by the dust collector 5, and the separated solid content is introduced into the melting furnace 2 and melted. ing. Note that the gas after cooling The temperature is below 450 ° C, preferably below 350 ° C, more preferably below 300 ° C, most preferably below 250 ° C.
[0045] 請求項 18に記載の発明に係る可燃物の処理装置は、例えば図 8に示すように、可 燃物をガス化して粒子を含む第 1のガス G2と第 2のガス G1を生成させる流動床ガス 化炉 1と、流動床ガス化炉 1にて発生した第 1のガス G2中の粒子を捕集する固体分 離器 12と、流動床ガス化炉 1にて発生した第 2のガス G1を燃焼し、固体分離器 12で 捕集された粒子を溶融するとともに可燃性ガス G5を生成する溶融炉 2とを備える。こ こで、粒子を捕集する固体分離器には、粒子を含む第 1のガスが通過するときにろ過 され粒子が捕集されるフィルタだけではなぐ例えばサイクロンのように密度の差によ つて固体を気体から分離する装置などを含む。このように構成することで、溶融炉に は燃焼ガスが導入されず、灰分を含む大きな粒子だけが導入されるので、発熱量が 例えば 6— 7Mj/kgと低い可燃物であってもたとえば 1200°C以上の高温で燃焼さ れ、助燃剤を必要とせずに灰分を溶融することができる。 [0045] The apparatus for treating combustible material according to the invention according to claim 18 generates a first gas G2 and a second gas G1 containing particles by gasifying the combustible material as shown in Fig. 8, for example. Fluidized bed gasifier 1, a solids separator 12 that collects particles in the first gas G2 generated in the fluidized bed gasifier 1, and a second separator generated in the fluidized bed gasifier 1 And a melting furnace 2 that burns the gas G1 and melts the particles collected by the solid separator 12 and generates a flammable gas G5. Here, the solid separator that collects the particles is not only a filter that filters and collects the particles when the first gas containing the particles passes, but also has a difference in density like a cyclone, for example. Includes devices that separate solids from gases. With this configuration, no combustion gas is introduced into the melting furnace, and only large particles including ash are introduced. Therefore, even if the calorific value of the combustible is as low as 6-7 Mj / kg, for example, 1200 It is burned at a high temperature of ° C or higher and can melt ash without the need for a combustion aid.
[0046] この出願は、 日本国で 2003年 1月 20日に出願された特願 2003— 011496号およ び 2004年 1月 20曰 ίこ出願された特願 2004—012419号【こ基づレヽており、その内容 は本出願の内容として、その一部を形成する。 [0046] This application is based on Japanese Patent Application No. 2003-0111496 filed in Japan on January 20, 2003 and Japanese Patent Application No. 2004-012419 filed on January 20, 2004. The contents of which form part of the present application.
また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしな がら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説 明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更 、改変が本発明の精神と範囲内で、当業者にとって明らかだからである。  Also, the present invention may be more completely understood by the following detailed description. However, the detailed description and specific examples are preferred embodiments of the present invention, and have been described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art without departing from the spirit and scope of the invention.
出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなぐ開示 された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないも のも、均等論下での発明の一部とする。  Applicant may disclose any of the disclosed modifications or alternatives which are not intended to be publicly available to any of the described embodiments and which may not be literally within the scope of the claims. It is part of the invention under discussion.
本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は 、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および 複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示 または例示的な用語 (例えば、「等」)の使用も、単に本発明を説明し易くするという意 図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限をカ卩える ものではない。 The use of nouns and similar designations in the present specification and claims should be interpreted to include both the singular and the plural unless specifically stated otherwise or otherwise clearly contradicted by context. The use of any example or exemplary term provided herein (eg, "such as") is merely intended to facilitate the description of the invention, and is not particularly defined in the following claims. Unless otherwise limited in scope of the invention Not something.
発明の効果  The invention's effect
[0047] 以上説明したように各請求項に記載の発明によれば、下記のような優れた効果が 得られる。  [0047] As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0048] 請求項 1乃至 5に記載の発明によれば、粒径の大きな粒子を多く伴った第 1のガス 力、ら熱を回収し、次レ、で粒径の小さな粒子を多く伴った第 2のガスを混合するので、 第 1のガス中の粒径の大きい粒子が伝熱面に衝突した際の該伝熱面を研磨する研 磨機能により、粒子の付着、特に第 2のガス中の伝熱面に付着し易い粒径の小さな 粒子の伝熱面への付着を防止することができる熱回収方法を提供できる。  [0048] According to the inventions set forth in claims 1 to 5, the first gas power and heat which accompany many particles having a large particle diameter are recovered, and the particles having a large particle diameter are accompanied in the next step. Since the second gas is mixed, the polishing function of polishing the heat transfer surface when particles having a large particle diameter in the first gas collides with the heat transfer surface allows the particles to adhere, particularly the second gas. It is possible to provide a heat recovery method capable of preventing particles having a small particle diameter that easily adheres to the heat transfer surface in the heat transfer surface.
[0049] 請求項 6及び 7に記載の発明によれば、流動床ガス化炉からの第 1のガスを熱回収 装置に導入して熱回収し、流動床ガス化炉からの第 2のガスを溶融炉に導入し、該 溶融炉から排出されるガスを熱回収装置に導入するので、この第 1のガスは粒径の 大きな粒子を多く伴ったガスであるから、該粒子が伝熱面に衝突した際の研磨機能 により、粒子の伝熱面への付着を防止することができる可燃物の処理方法を提供で きる。  [0049] According to the invention set forth in claims 6 and 7, the first gas from the fluidized-bed gasifier is introduced into the heat recovery device to recover heat, and the second gas from the fluidized-bed gasifier is recovered. Is introduced into the melting furnace, and the gas discharged from the melting furnace is introduced into the heat recovery device. Therefore, the first gas is a gas accompanied by a large number of particles having a large particle size. The polishing function at the time of colliding with the surface can provide a method for treating combustible materials that can prevent particles from adhering to the heat transfer surface.
[0050] また、請求項 8に記載の発明によれば、流動床ガス化炉からの粒径の大きな粒子を 多く伴った第 1のガスを熱回収装置に導入して熱を回収し、次いでこの熱を回収され たガスに、溶融炉から排出される粒径の小さな粒子を多く伴った第 2のガスとを混合 して熱を回収することにより、第 1のガス中の粒径の大きな粒子が伝熱面へ衝突する 際の研磨機能により、更に粒子の伝熱面への付着を防止することができる可燃物の 処理方法を提供できる。  [0050] According to the invention described in claim 8, the first gas accompanied by many particles having a large particle diameter from the fluidized-bed gasification furnace is introduced into the heat recovery device to recover heat, By mixing this recovered gas with the second gas accompanied by many small particles discharged from the melting furnace and recovering the heat, the large particle diameter in the first gas is recovered. The polishing function when particles collide with the heat transfer surface can provide a method for treating combustible materials that can further prevent particles from adhering to the heat transfer surface.
[0051] 請求項 9乃至 11に記載の発明によれば、粒径の大きい粒子を多く含む第 1のガス を導入する第 1の導入口の下流に、粒径の小さな粒子を多く含む第 2のガスを導入 する第 2の導入口を設けたので、第 1の導入口から導入された第 1のガス中の粒径の 大きい粒子が伝熱面へ衝突する際の研磨機能により、粒子の付着、特に第 2の導入 口から導入される付着し易い第 2のガス中の粒径の小さな粒子の付着を防止すること ができる熱回収装置を提供できる。また、第 1の導入口を第 2の導入口より上流側に 設けることによって、粒径の大きい粒子を多く含む第 1のガスが冷却された後に、粒 径の小さな粒子を多く含む第 2のガスが混入される結果となり、伝熱面に付着し易い 粒径の小さな粒子を含む高温ガスが存在する領域をできるだけ作らないことにもなる [0051] According to the inventions set forth in claims 9 to 11, the second gas containing many particles having a small particle size is provided downstream of the first inlet for introducing the first gas containing many particles having a large particle size. Since the second inlet for introducing the second gas is provided, the polishing function when the large-diameter particles in the first gas introduced from the first inlet collide with the heat transfer surface causes the particles to be removed. It is possible to provide a heat recovery device capable of preventing the adhesion, particularly the adhesion of particles having a small particle diameter in the second gas which is easily attached from the second inlet. In addition, by providing the first inlet upstream of the second inlet, the first gas containing many particles having a large particle size is cooled, and then the first gas is cooled. As a result, the second gas containing many particles having a small diameter is mixed, and a region in which a high-temperature gas containing particles having a small particle diameter easily adheres to the heat transfer surface is not formed as much as possible.
[0052] 請求項 12乃至 17に記載の発明によれば、流動床ガス化炉にて発生した微粒子を 含む第 1のガスを導入して熱を回収する熱回収装置に、流動床ガス化炉にて発生し た第 2のガスを溶融炉に導入し、該溶融炉から排出されるガスを導入するので、第 1 のガス中の粒子が伝熱面へ衝突する際の研磨機能により粒子の付着、特に付着し 易い粒径の小さな微粒子を含む溶融炉から排出されるガスの該微粒子の付着を防 止することができる可燃物の処理装置を提供できる。 [0052] According to the invention as set forth in claims 12 to 17, the fluidized-bed gasification furnace is provided in a heat recovery device that introduces the first gas containing fine particles generated in the fluidized-bed gasification furnace to recover heat. Since the second gas generated in the above step is introduced into the melting furnace and the gas discharged from the melting furnace is introduced, the polishing function when the particles in the first gas collide with the heat transfer surface causes the particles to be removed. It is possible to provide a combustible material treatment apparatus capable of preventing gas discharged from a melting furnace containing small particles having a small particle diameter, which is easily adhered, in particular, from adhering the fine particles.
[0053] 請求項 18に記載の発明によれば、流動床ガス化炉にて発生した微粒子を含む第 2 のガスと流動床ガス化炉にて発生した第 1のガスに含まれる大きな粒子とを溶融炉に 導入して、灰分を溶融するので、発熱量が低い可燃物であっても、助燃剤を用いるこ となく灰分を溶融することができる。  [0053] According to the invention set forth in claim 18, the second gas containing fine particles generated in the fluidized bed gasifier and the large particles contained in the first gas generated in the fluidized bed gasifier are Is introduced into the melting furnace to melt the ash, so that the ash can be melted without using a combustion aid even if the combustible has a low calorific value.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 以下、本発明の実施の形態例を図面に基づいて説明する。図 3は本発明に係る可 燃物の処理装置のプロセスフローを示す図である。可燃物の処理装置は図示するよ うに、ガス化炉 1、溶融炉 2、ボイラ 3、ェコノマイザ又は空気予熱器等の熱回収機器 4 、サイクロン等の集塵装置 5、ガス冷却塔 6、バグフィルタ 7、誘引ブロワ一 8、触媒脱 硝塔 9及び煙突 10を具備する構成である。ガス化炉 1には熱分解室 1一 1、燃焼室 1一 2に分れた統合型の流動床ガス化炉が採用されている。ガス化炉 1には、可燃物を外 部力 供給する可燃物供給装置が接続している。可燃物供給装置 36は、例えば、 可燃物を受け入れるホッパーと、ホッパーで受け入れた可燃物を破砕しながらガス化 炉 1に送るスクリューと、可燃物の流路を備えている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a view showing a process flow of the combustible material processing apparatus according to the present invention. As shown in the figure, the combustibles processing equipment is as follows: gasifier 1, melting furnace 2, boiler 3, heat recovery equipment such as economizer or air preheater 4, dust collecting equipment such as cyclone 5, gas cooling tower 6, bag filter It has a configuration including an induction blower 8, a catalytic denitration tower 9 and a chimney 10. The gasification furnace 1 employs an integrated fluidized bed gasification furnace divided into a pyrolysis chamber 111 and a combustion chamber 112. The gasifier 1 is connected to a combustible material supply device for supplying a combustible material to an external force. The combustible material supply device 36 includes, for example, a hopper that receives combustible materials, a screw that crushes the combustible materials received by the hopper and sends the crushed combustible materials to the gasifier 1, and a flow path for combustible materials.
[0055] 可燃物は、可燃物供給手段 36から、主にガス化炉 1の熱分解室 1一 1側に供給され 、そこで熱分解され、熱分解ガス、タール、チヤ一、飛灰等を発生させる。これらのう ち流動層内に留まらないタール、チヤ一、飛灰等を含む熱分解ガス G1は全て溶融 炉 2に供給され、該溶融炉 2で 1200°C以上の高温で燃焼され、灰分は溶融され、溶 融スラグとなつて溶融炉 2の外に排出される。 [0056] 一方、ガス化炉 1の熱分解室 1一 1の流動層内に留まった熱分解残渣は流動媒体と 共に燃焼室 1 - 2に流入する。燃焼室 1 - 2の流動層は 550°C— 700°C程度、更に流 動層上部のフリーボード部は 850°C— 950°Cに維持されるように、炉下からの流動空 気、フリーボード上部に二次空気が供給されており、全体の空気比は 1以上に保た れ完全燃焼される。燃焼室 1一 2には熱分解室 1一 1を経由して流入する熱分解残渣 を燃焼させるだけの場合もあるが、可燃物の熱分解特性、燃焼特性に応じて直接可 燃物を供給してもよい。 [0055] The combustibles are mainly supplied from the combustibles supply means 36 to the pyrolysis chamber 11 side of the gasifier 1, where they are pyrolyzed to generate pyrolysis gas, tar, char, fly ash and the like. generate. Of these, pyrolysis gas G1 including tar, char, fly ash, etc. that does not remain in the fluidized bed is all supplied to melting furnace 2, where it is burned at a high temperature of 1200 ° C or more, and the ash content is reduced. It is melted and discharged out of the melting furnace 2 as molten slag. On the other hand, the pyrolysis residue remaining in the fluidized bed of the pyrolysis chamber 111 of the gasification furnace 1 flows into the combustion chamber 1-2 together with the fluidized medium. The fluidized bed in the combustion chambers 1 and 2 is maintained at around 550 ° C to 700 ° C, and the freeboard above the fluidized bed is maintained at 850 ° C to 950 ° C. Secondary air is supplied to the upper part of the free board, and the total air ratio is maintained at 1 or more, and complete combustion is performed. In some cases, the combustion chambers 1 and 2 may simply burn the pyrolysis residue flowing through the pyrolysis chambers 1 and 1, but supply the combustibles directly according to the pyrolysis and combustion characteristics of the combustibles. May be.
[0057] ガス化炉 1の燃焼室 1一 2から出た燃焼ガス G2は、配管などで構成された流路を通 つて、 850°C— 950°Cの温度でボイラ 3に流入し、 700°C程度にまで冷却された後、 上記溶融炉 2から排出された高温の燃焼ガス G3と混合される。このときの混合位置 で混合後のガス温度が 1100°C、好ましくは 1050°C、更に好ましくは 1000°Cを越え ることのないようなポイントで混合される。混合後のガスの温度が高過ぎると、混合し たガス中に含まれる灰分の一部が溶融して、ボイラ 3のボイラ管ゃ内面に付着するト ラブルを生ずる可能性があるので、上記の温度以下とする。また、混合後のガスの温 度が低すぎると、混合したガス中のタール分の一部が凝縮して、ボイラ 3のボイラ管ゃ 内面に付着するトラブルを生ずる可能性があるので、 400°C以上、好ましくは 500°C 以上とする。  [0057] Combustion gas G2 discharged from the combustion chambers 112 of the gasification furnace 1 flows into the boiler 3 at a temperature of 850 ° C-950 ° C through a flow path composed of pipes and the like, and reaches 700 ° C. After being cooled to about ° C, it is mixed with the high-temperature combustion gas G3 discharged from the melting furnace 2. The mixing is performed at such a point that the gas temperature after mixing does not exceed 1100 ° C, preferably 1050 ° C, and more preferably 1000 ° C. If the temperature of the mixed gas is too high, a part of the ash contained in the mixed gas may be melted, and a trouble may be caused to adhere to the inner surface of the boiler tube ボ of the boiler 3. It should be lower than the temperature. If the temperature of the mixed gas is too low, a part of the tar in the mixed gas may be condensed, causing a trouble to adhere to the inner surface of the boiler tube of the boiler 3; C or higher, preferably 500 ° C or higher.
[0058] 上記混合された燃焼ガス G4はボイラ 3で 450°C程度にまで冷却され、更にェコノマ ィザ又は空気予熱器等の熱回収機器 4で 200°C程度にまで冷却され、サイクロン等 の集塵装置 5で脱塵される。これらの機器の間も、配管などで構成された燃焼ガスの 流路により接続されている。集塵装置 5で集塵された灰 11は、配管などで構成された 流路を通って、溶融炉 2に戻され、該溶融炉 2で溶融される。ェコノマイザ又は空気 予熱器等の熱交換器は省略されても良ぐその場合は 450°C以下の温度で集塵され る。集塵温度としては好ましいのは 350°C以下である力 更に好ましいのは 300°C以 下、最も好ましいのは 250°C以下である。 350°C以下の条件が好ましいのは、集塵装 置の材質として安価な炭素鋼を用レ、ることができることと、腐食条件が大きく緩和され る力 である。また 300°C以下、 250°C以下と温度が下がるほど、低融点金属が固体 状態で存在する確率が高くなるため、集塵器内での低融点金属類によるトラブルも 軽減される。なお、本可燃物の処理装置では、脱塵後の燃焼ガス G4はガス冷却塔 6 を経てバグフィルタ 7で最終脱塵されるようになっている力 本発明においては、この ガス冷却塔 6は省略できる場合が多レ、。 [0058] The mixed combustion gas G4 is cooled to about 450 ° C in the boiler 3, and further cooled to about 200 ° C in a heat recovery device 4 such as an economizer or an air preheater. The dust is removed by the dust collector 5. These devices are also connected by a combustion gas flow path composed of piping and the like. The ash 11 collected by the dust collecting device 5 is returned to the melting furnace 2 through a flow path constituted by a pipe or the like, and is melted in the melting furnace 2. A heat exchanger such as an economizer or an air preheater may be omitted, in which case dust will be collected at a temperature of 450 ° C or less. The dust collection temperature is preferably 350 ° C or less, more preferably 300 ° C or less, and most preferably 250 ° C or less. The conditions of 350 ° C or lower are preferable because inexpensive carbon steel can be used as the material of the dust collecting device, and the power to greatly reduce the corrosion conditions. Also, as the temperature decreases to 300 ° C or lower and 250 ° C or lower, the probability that the low-melting-point metal exists in the solid state increases. It is reduced. In the present combustible material treatment apparatus, the combustion gas G4 after dust removal passes through the gas cooling tower 6 and is finally removed by the bag filter 7. In the present invention, the gas cooling tower 6 In many cases, it can be omitted.
[0059] 都市ゴミ、廃プラスチック、シュレッダダスト、建設廃棄物、廃タイヤ等の可燃物を焼 却して出てくる燃焼ガス中には灰分の粒子が含まれるが、この粒子の大きさは焼却物 の物理的性状、燃焼反応に伴う化学変化、燃焼ガスの上昇等の様々な要因で決まる 。一般的に都巿ゴミを焼却して出てくる灰は焼却炉の形式によって違いがあるが、粒 径が数 10ミクロンから 100ミクロン程度の大きな粒子である力 溶融炉 2を通過した燃 焼ガスに含まれる灰粒子は殆ど 10ミクロン以下の小さな粒子である。  [0059] Ash gas particles are contained in the combustion gas emitted from incinerating combustible materials such as municipal waste, waste plastic, shredder dust, construction waste, and waste tires. It is determined by various factors, such as the physical properties of the material, chemical changes associated with the combustion reaction, and the rise in combustion gases. In general, the ash that comes out of incineration of garbage varies depending on the type of incinerator, but the combustion gas that has passed through the melting furnace 2 is a large particle with a particle size of several tens to 100 microns. The ash particles contained in these are small particles of almost 10 microns or less.
[0060] ガス化溶融炉が製品化される以前に数多くの都巿ゴミの焼却設備として採用されて いた流動層焼却炉は、信頼性の高い焼却技術で、溶融炉を有していないため排ガス 処理工程に導入される排ガス中の灰粒子はその成分中にシリカ、アルミナ、力ルシア 成分が多ぐ且つ粒径も比較的大きかった。そのため、ボイラ、ェコノマイザ、空気予 熱器といった熱回収工程で使用される機器の伝熱面への灰付着は少なぐ大きな問 題になることはな力 た。  [0060] Fluidized bed incinerators, which had been adopted as incinerators for a large number of garbage before the gasification and melting furnace was commercialized, are highly reliable incineration technologies. The ash particles in the exhaust gas introduced into the treatment process had a large amount of silica, alumina and luciferic components in the components and relatively large particle sizes. For this reason, ash deposition on the heat transfer surfaces of equipment used in the heat recovery process, such as boilers, economizers, and air preheaters, did not become a major problem.
[0061] 本実施形態の可燃物の処理装置におけるガス化炉 1の燃焼室 1一 2から排出される 燃焼ガス G 2は溶融炉 2を経由しないので、この燃焼ガス G 2中の灰粒子の性状'形 状 ·大きさは従来の流動層焼却炉から排出される燃焼ガス中の灰粒子の性状 ·形状 · 大きさと同様で、粒径が大きぐボイラ 3及びェコノマイザ又は空気予熱器等の熱回 収機器 4の熱回収工程で使用される機器の伝熱面へ付着してトラブルを招く恐れは ない。  [0061] Since the combustion gas G2 discharged from the combustion chambers 112 of the gasifier 1 in the combustible material processing apparatus of the present embodiment does not pass through the melting furnace 2, the ash particles in the combustion gas G2 Properties' shape · Size is the same as the properties, shape and size of ash particles in the combustion gas discharged from a conventional fluidized bed incinerator, and the heat from a boiler 3 and an economizer or an air preheater with a large particle size. There is no danger of causing trouble by adhering to the heat transfer surface of the equipment used in the heat recovery process of the recovery equipment 4.
[0062] ガス化炉 1の熱分解室 1一 1からの熱分解ガス G1は、配管などで構成された流路を 通って、溶融炉 2に導入されて燃焼される。溶融炉 2から排出される燃焼ガス G3は溶 融炉 2を経由するため、従来のガス化溶融炉力 排出される燃焼ガスと同様、該燃焼 ガス中に微粒の灰粒子が含まれる。本発明者等が行った試験の結果によると、統合 型の流動床ガス化炉であるガス化炉 1で、都巿ゴミを処理した場合、熱分解室 1一 1か らの熱分解ガス G1のガス量と燃焼室 1—2からの燃焼ガス G2のガス量の比率は、約 1 : 3程度で燃焼室 1一 2からの燃焼ガス G2の方が多い。よって、ボイラ 3で混合後のガ スの灰粒子径分布は従来の流動層焼却炉のものに比較的近ぐボイラ 3及びェコノ マイザ又は空気予熱器等の熱回収機器 4の熱回収工程で使用される機器の伝熱面 へ付着してトラブルを招く恐れは少なレ、。 [0062] The pyrolysis gas G1 from the pyrolysis chamber 11 of the gasification furnace 1 is introduced into the melting furnace 2 and burned through a flow path composed of pipes and the like. Since the combustion gas G3 discharged from the melting furnace 2 passes through the melting furnace 2, the combustion gas contains fine ash particles in the same manner as the conventional combustion gas discharged from the gasification melting furnace. According to the results of the tests conducted by the present inventors, when wastes were treated in the gasifier 1 which is an integrated fluidized bed gasifier, the pyrolysis gas G1 from the pyrolysis chamber 111 was used. The ratio of the gas amount of the combustion gas G2 from the combustion chambers 1-2 to the gas amount of the combustion gas G2 from the combustion chambers 1-2 is about 1: 3. Therefore, the gas after mixing in boiler 3 Ash particle size distribution is relatively close to that of conventional fluidized bed incinerators and adheres to the heat transfer surface of equipment used in the heat recovery process of boiler 3 and heat recovery equipment 4 such as an economizer or air preheater There is little risk of causing trouble.
[0063] 溶融炉 2から排出される燃焼ガス G3には前述のように粒径の小さい灰粒子が多く 含まれる。この燃焼ガス G3の小粒径灰粒子はボイラ 3の伝熱面に付着するため、ボ イラ 3に燃焼ガス G3のみを導入した場合は、伝熱面への灰付着を促進してしまうが、 ここでは、ボイラ 3にガス化炉 1の燃焼室 1一 2から排出される燃焼ガス G2も導入して いる。この燃焼ガス G2中には粒径の大きい灰粒子が多く含まれているから、この粒 径の大きい灰粒子は伝熱面に衝突した際、その部分を研磨する機能を有し、灰粒子 の付着を防止する効果がある。従って、燃焼室 1-2からの燃焼ガス G2、溶融炉 2か らの燃焼ガス G3をボイラ 3に導入するに際し、燃焼ガス G2を燃焼ガス G3と合流させ て導入するか、又は燃焼ガス G2の導入口を燃焼ガス G3の導入口より上流側に設け 、燃焼ガス G2を燃焼ガス G3より上流側から導入することにより、粒径の小さい灰粒子 が混入する燃焼ガス G3のみが存在する領域を作らなレ、ようにする必要がある。  [0063] The combustion gas G3 discharged from the melting furnace 2 contains many ash particles having a small particle diameter as described above. Since the small-sized ash particles of the combustion gas G3 adhere to the heat transfer surface of the boiler 3, if only the combustion gas G3 is introduced into the boiler 3, the ash adhesion to the heat transfer surface is promoted. Here, the combustion gas G2 discharged from the combustion chambers 112 of the gasifier 1 is also introduced into the boiler 3. Since this combustion gas G2 contains a large amount of ash particles having a large particle diameter, the ash particles having a large particle diameter have a function of polishing a portion of the ash particle when the ash particle collides with the heat transfer surface. It has the effect of preventing adhesion. Therefore, when the combustion gas G2 from the combustion chamber 1-2 and the combustion gas G3 from the melting furnace 2 are introduced into the boiler 3, the combustion gas G2 is merged with the combustion gas G3 and introduced. An inlet is provided upstream of the combustion gas G3 inlet, and the combustion gas G2 is introduced from the upstream side of the combustion gas G3 to create an area where only the combustion gas G3 mixed with ash particles having a small particle size exists. I need to do it.
[0064] また、燃焼ガス G2の導入口を燃焼ガス G3の導入口より上流側に設けることによつ て、燃焼室 1-2からの燃焼ガス G2がボイラ 3内で冷却された後に、溶融炉 2からの高 温の燃焼ガス G3が混入される結果となり、伝熱面に付着しやすい溶融したスラグ粒 子を含む高温ガスが存在する領域をできるだけ作らないことにもなる。  [0064] Further, by providing the inlet for the combustion gas G2 upstream of the inlet for the combustion gas G3, the combustion gas G2 from the combustion chamber 1-2 is cooled in the boiler 3 and then melted. As a result, the high-temperature combustion gas G3 from the furnace 2 is mixed, so that the region where the high-temperature gas including the molten slag particles that easily adhere to the heat transfer surface exists is not formed as much as possible.
[0065] 図 4は本発明に係る他の可燃物の処理装置のプロセスフローを示す図である。図 示するようにここでは、ガス冷却塔 6の下流に配置された固体分離器としてのバグフィ ルタ 12で捕集した灰 13を溶融炉 2に供給して溶融している。なお、バグフィルタ 12に 代えて、サイクロン等の固体分離器を備えてもよい。この場合、捕集した灰 13の全量 を溶融炉 2に供給すると、微粒の灰が系内に閉じ込められ、循環する恐れがあるので 、調節弁 VI、 V2の操作により灰 13の一部 13aは抜き取る。バグフィルタ 12から出た 燃焼ガス G4には活性炭 14を添加し、該活性炭 14に有害物を吸着させ、バグフィル タ 7でこの有害物を吸着した活性炭 14を捕集除去する。  FIG. 4 is a diagram showing a process flow of another combustible material processing apparatus according to the present invention. As shown in the figure, the ash 13 collected by the bag filter 12 as a solid separator disposed downstream of the gas cooling tower 6 is supplied to the melting furnace 2 and melted. Note that, instead of the bag filter 12, a solid separator such as a cyclone may be provided. In this case, when the entire amount of the collected ash 13 is supplied to the melting furnace 2, fine ash may be trapped in the system and circulated, and therefore, by operating the control valves VI and V2, a part 13a of the ash 13 may be removed. Remove it. Activated carbon 14 is added to the combustion gas G4 discharged from the bag filter 12, a harmful substance is adsorbed on the activated carbon 14, and the activated carbon 14 adsorbing the harmful substance is collected and removed by the bag filter 7.
[0066] 図 5はガス化炉 1の一例である統合型の流動床ガス化炉の構成例を示す図である。  FIG. 5 is a diagram showing a configuration example of an integrated fluidized bed gasification furnace, which is an example of the gasification furnace 1.
ガス化炉 1は熱分解室 21 (熱分解室 1一 1に対応)、燃焼室 22 (燃焼室 1一 2に対応)、 熱回収室 23を備えている。熱分解室 21に供給された可燃物 34は、図中矢印 Fで示 される熱分解室 21内で旋回する流動媒体に攪拌されながら熱分解され、熱分解ガス 、タール、チヤ一、飛灰等を発生させる。タール、チヤ一や飛灰等を含む熱分解ガス G1は図 3及び図 4に示すように、溶融炉 2に流入する。熱分解室 21の流動層内に残 つたタール、チヤ一等の未熱分解物は流動媒体に伴って、矢印 Aに示すように仕切 り壁 25の開口部 26から燃焼室 22に流入する。このようにして熱分解室 21から燃焼 室 22に流入したチヤ一等の未熱分解物は燃焼室 22で燃焼して燃焼ガス G2を発す ると共に、その燃焼熱により流動媒体を加熱する。燃焼ガス G2は図 3及び図 4に示 すように、ボイラ 3に流入する。 Gasifier 1 has a pyrolysis chamber 21 (corresponding to pyrolysis chambers 1 and 1), a combustion chamber 22 (corresponds to combustion chambers 1 and 2), A heat recovery chamber 23 is provided. The combustibles 34 supplied to the pyrolysis chamber 21 are pyrolyzed while being stirred by the fluid medium swirling in the pyrolysis chamber 21 indicated by the arrow F in the figure, and the pyrolysis gas, tar, char, fly ash And so on. The pyrolysis gas G1 containing tar, char, fly ash, etc. flows into the melting furnace 2 as shown in FIGS. Un-pyrolyzed products such as tar and char remaining in the fluidized bed of the pyrolysis chamber 21 flow into the combustion chamber 22 through the opening 26 of the partition wall 25 as shown by the arrow A, along with the fluid medium. In this way, the unpyrolyzed products such as chars which flow into the combustion chamber 22 from the pyrolysis chamber 21 are burned in the combustion chamber 22 to generate the combustion gas G2, and the combustion heat heats the fluid medium. The combustion gas G2 flows into the boiler 3, as shown in FIGS.
[0067] 燃焼室 22で燃焼した、タール、チヤ一等の未熱分解物の燃焼により加熱された流 動媒体は、矢印 Bに示すように仕切り壁 24の上端を越えて熱回収室 23に流入し、熱 回収室 23内で界面より下方に位置するように配設された層内伝熱管 27で熱吸収さ れ、冷却された後、矢印 Cに示すように仕切り壁 24の下部開口 28を通って再び燃焼 室 22に流入する。また、燃焼室 22で加熱された流動媒体は、矢印 Dに示すように仕 切り壁 29の上端を越えて仕切り壁 29と仕切り壁 30の間の沈降室に流入し、さらに矢 印 Eに示すように仕切り壁 30の下部開口 31を通って熱分解室 21に流入する。上記 のようにガス化炉 1には、流動媒体の流路が形成されている。なお、流動媒体の流れ は流動化ガス 32、 33により調節されている。  [0067] The fluid medium heated by the combustion of the unpyrolyzed products such as tar and char, which has been burned in the combustion chamber 22, passes through the upper end of the partition wall 24 as shown by the arrow B and enters the heat recovery chamber 23. After flowing into the heat recovery chamber 23, the heat is absorbed by the in-layer heat transfer tube 27 disposed below the interface and cooled, and then the lower opening 28 of the partition wall 24 as shown by arrow C Through the combustion chamber 22 again. Further, the fluid medium heated in the combustion chamber 22 flows over the upper end of the partition wall 29 into the settling chamber between the partition wall 29 and the partition wall 30 as shown by the arrow D, and further shown by the arrow E. Flows into the pyrolysis chamber 21 through the lower opening 31 of the partition wall 30 as described above. As described above, the gasification furnace 1 is formed with a flow path of the fluid medium. The flow of the fluid medium is regulated by fluidizing gases 32 and 33.
[0068] 図 6はガス化炉 1の一例である二塔式流動層方式の流動床ガス化炉の構成例を示 す図である。本ガス化炉 1は図示するように、熱分解流動層炉 41 (熱分解室 1 1に 対応)と燃焼流動層炉 42 (燃焼室 1 2に対応)とを併設して両流動層炉を 2本の傾 斜管 43、 44で連絡し、流動媒体をこの傾斜管 43、 44を通して両層間に循環させる ことによって、熱分解に必要な熱量を補うようになっている。 FIG. 6 is a diagram showing a configuration example of a fluidized bed gasification furnace of a two-tower type fluidized bed system which is an example of the gasification furnace 1. As shown in FIG. As shown in the figure, the gasification furnace 1 is provided with a pyrolysis fluidized bed furnace 41 (corresponding to the pyrolysis chamber 11) and a combustion fluidized bed furnace 42 (corresponding to the combustion chamber 12). The two inclined pipes 43 and 44 communicate with each other, and the fluid medium is circulated between the two layers through the inclined pipes 43 and 44, thereby supplementing the heat required for pyrolysis.
[0069] 即ち、熱分解流動層炉 41に可燃物が供給されると、熱分解され、熱分解ガス、ター ノレ、チヤ一、飛灰等を発生させる。チヤ一や飛灰等を含む熱分解ガス G1は図 3及び 図 4に示すように、溶融炉 2に流入する。熱分解流動層炉 41の流動層内に残ったチ ヤー等の未熱分解物は流動媒体に伴って、傾斜管 43を通って燃焼流動層炉 42に 流入し、ここで燃焼して燃焼ガス G2を発すると共に、その燃焼熱により流動媒体を加 熱し、加熱された流動媒体は傾斜管 44を通って、熱分解流動層炉 41に流入し、可 燃物の熱分解用の熱源として利用される。 That is, when the combustible material is supplied to the thermal decomposition fluidized bed furnace 41, it is thermally decomposed and generates pyrolysis gas, fire, ash, fly ash and the like. The pyrolysis gas G1 containing char and fly ash flows into the melting furnace 2 as shown in FIGS. The unpyrolyzed products such as chars remaining in the fluidized bed of the pyrolysis fluidized-bed furnace 41 flow into the combustion fluidized-bed furnace 42 through the inclined pipe 43 along with the fluidized medium, where they are burned and combusted by the combustion gas. G2 is emitted and the fluid medium is added by the heat of combustion. The heated and heated fluid medium flows into the thermal decomposition fluidized bed furnace 41 through the inclined pipe 44 and is used as a heat source for thermal decomposition of combustibles.
[0070] 燃焼ガス G2は図 3及び図 4に示すように、ボイラ 3に供給される。この二塔式流動層 方式の流動床ガス化炉は、熱分解ガス G1に燃焼ガスが含まれないから、高いガス熱 量の熱分解ガス G1が得られ、このガスが溶融炉に供給されることになるので、発熱 量が例えば 6 7MjZkgと低レ、可燃物であつても、溶融炉で助燃料を供給すること なぐ 1200°C以上の高温燃焼をさせることが可能となり、灰分を溶融することができる 。熱分解流動層炉 41の流動層の流動化ガス 45としては酸素を含まないガス、例え ば水蒸気、炭酸ガス、窒素ガスが用いられ、燃焼流動層炉 42の流動層の流動化ガ ス 46としては空気等の酸素を含有するガスが用いられる。  [0070] The combustion gas G2 is supplied to the boiler 3, as shown in Figs. In this two-column fluidized-bed fluidized-bed gasifier, the pyrolysis gas G1 contains no combustion gas, so that a pyrolysis gas G1 with a high gas calorific value is obtained, and this gas is supplied to the melting furnace. Therefore, even if the calorific value is as low as 67 MjZkg, even for combustible materials, high-temperature combustion of 1200 ° C or more can be performed without supplying auxiliary fuel in a melting furnace, and ash can be melted. be able to . As the fluidized gas 45 of the fluidized bed of the pyrolysis fluidized bed furnace 41, a gas containing no oxygen, for example, steam, carbon dioxide gas, or nitrogen gas is used, and as the fluidized gas 46 of the fluidized bed of the combustion fluidized bed furnace 42. Is a gas containing oxygen such as air.
[0071] 図 7は溶融炉 2の一構成例を示す図である。溶融炉 2は一次燃焼室 51、二次燃焼 室 52、三次燃焼室 53を具備する構成である。図 3及び図 4に示すように、ガス化炉 1 力 熱分解ガス G1が溶融炉 2の一次燃焼室 51に流入すると共に、燃焼用ガス(空気 、酸素富化空気、酸素) 55が流入し、旋回流を形成しながら混合し、燃焼し二次燃焼 室 52に移動しながら高温燃焼(1200°C— 1400°C、好ましくは 1350°C)し、燃焼ガ ス G3は三次燃焼室 53で燃焼用ガス 55と混合し、ここでガス中の未燃物は完全燃焼 し、燃焼ガス G3として排出する。この高温燃焼により、熱分解ガス G1に含まれる灰分 、および燃焼ガス G2から捕集され溶融炉 2に供給された灰 13は溶融され溶融スラグ 56としてスラグ排出口 57から炉外に排出される。溶融スラグ 56の系外への排出は、 例えば、スラグ排出口 57の下部に水槽を設けて、溶融スラグ 56を落下させる方法を 用いることができる。水槽内で、溶融スラグ 56は、冷却、粉碎されて、粒状スラグにな る。水槽内に設置されたコンべャによって、水槽内に沈んだ粒状スラグは系外へ搬 送される。溶融炉内のガス G3は、水槽内の水によって水封されており、系外に漏れ ることはない。  FIG. 7 is a diagram showing one configuration example of the melting furnace 2. The melting furnace 2 includes a primary combustion chamber 51, a secondary combustion chamber 52, and a tertiary combustion chamber 53. As shown in FIGS. 3 and 4, the pyrolysis gas G1 from the gasifier 1 flows into the primary combustion chamber 51 of the melting furnace 2, and the combustion gas (air, oxygen-enriched air, oxygen) 55 flows into the furnace. , Mixing while forming a swirling flow, burning and moving to the secondary combustion chamber 52 to perform high-temperature combustion (1200 ° C-1400 ° C, preferably 1350 ° C), and the combustion gas G3 is supplied to the tertiary combustion chamber 53. It is mixed with the combustion gas 55, where the unburned substances in the gas are completely burned and discharged as combustion gas G3. By this high-temperature combustion, the ash contained in the pyrolysis gas G1 and the ash 13 collected from the combustion gas G2 and supplied to the melting furnace 2 are melted and discharged as molten slag 56 from the slag discharge port 57 to the outside of the furnace. For discharging the molten slag 56 out of the system, for example, a method of providing a water tank below the slag discharge port 57 and dropping the molten slag 56 can be used. In the water tank, the molten slag 56 is cooled and pulverized into granular slag. The granular slag settled in the water tank is transported out of the system by the conveyor installed in the water tank. Gas G3 in the melting furnace is sealed with water in the water tank and does not leak out of the system.
[0072] 図 8は本発明に係る他の可燃物の処理装置のプロセスフローを示す図である。図 示するようにここでは、図 4と同様、ガス冷却塔 6の下流に配置された固体分離器とし てのバグフィルタ 12で捕集した灰 13を溶融炉 2に供給して溶融している。なお、バグ フィルタ 12に代わり、サイクロン等の固体分離器を備えてもよい。この場合、捕集した 灰 13の全量を溶融炉 2に供給すると、微粒の灰が系内に閉じ込められ、循環する恐 れがあるので、調節弁 VI、 V2の操作により灰 13の一部 13aは抜き取る。 FIG. 8 is a view showing a process flow of another combustible material processing apparatus according to the present invention. As shown in the figure, here, as in FIG. 4, the ash 13 collected by the bag filter 12 as a solid separator disposed downstream of the gas cooling tower 6 is supplied to the melting furnace 2 and melted. . Instead of the bag filter 12, a solid separator such as a cyclone may be provided. In this case, When the entire amount of the ash 13 is supplied to the melting furnace 2, fine ash may be trapped in the system and circulate. Therefore, a part 13a of the ash 13 is extracted by operating the control valves VI and V2.
[0073] 溶融炉 2はガス化炉 1の熱分解室 1-1からの熱分解ガス G1から低カロリー(4一 6kJ /Nm3 (dry) )若しくは中カロリー(10 19kj/Nm3 (dry) )のガスを得るための溶融 炉である。熱分解室 1-1からの熱分解ガス G1が溶融炉 2に流入し、 1300°C以上で 高温ガス化すると、そこに含まれるチヤ一やタールは完全ガス化して、灰分は溶融ス ラグとして炉外に排出する。ここで溶融炉 2にはガス化ガスとして酸素富化空気、スチ ーム、酸素或いはこれらの混合気体の中から選択したものを別々又は一緒に炉内へ 供給する。このガス化ガスの酸素量を熱分解ガス G1に合わせて、全酸素量が被処 理物を完全燃焼させるために必要な理論酸素量を 1とした場合の 0. 1-0. 6 (溶融 炉における酸素比)の範囲とすると、溶融炉 2から上記低カロリー若しくは中カロリー の可燃性ガス G5を得ることができる。 The melting furnace 2 has a low calorie (4-6 kJ / Nm 3 (dry)) or a medium calorie (10 19 kj / Nm 3 (dry)) from the pyrolysis gas G1 from the pyrolysis chamber 1-1 of the gasifier 1. This is a melting furnace for obtaining the gas in (). When the pyrolysis gas G1 from the pyrolysis chamber 1-1 flows into the melting furnace 2 and gasifies at a high temperature of 1300 ° C or higher, the char and tar contained therein are completely gasified, and the ash is converted into molten slag. Discharge outside the furnace. Here, as the gasification gas, a gas selected from oxygen-enriched air, steam, oxygen, or a mixture thereof is supplied to the melting furnace 2 separately or together. The amount of oxygen in this gasified gas is adjusted to the pyrolysis gas G1, and the total amount of oxygen is set to 0.1-0.6 (melting amount) when the theoretical amount of oxygen required to completely burn the object is set to 1. (Oxygen ratio in the furnace), the low calorie or medium calorie combustible gas G5 can be obtained from the melting furnace 2.
[0074] この低カロリー若しくは中カロリーの可燃性ガス G5中には、一酸化炭素 C〇、水素 Hといった有用ガス成分が多く含まれている。溶融炉 2からのこのような可燃性ガス G [0074] The low calorie or medium calorie combustible gas G5 contains many useful gas components such as carbon monoxide C 一 and hydrogen H. Such flammable gas G from melting furnace 2
2 2
5を例えばボイラなどの熱回収機器 15を通して熱回収し、スクラバー 16を通すことに より、工業用燃料ガス或いは化学工業用原料ガス 17が得られる。  5 is recovered through a heat recovery device 15 such as a boiler, and then passed through a scrubber 16 to obtain an industrial fuel gas or a chemical industrial raw material gas 17.
[0075] また、可燃物の処理方法を、可燃物を 350°C以上の温度で熱分解してチヤ一と熱 分解ガスを得る熱分解工程と、熱分解工程力 発生した未熱分解物、タール、チヤ 一を 500°C以上の温度で燃焼させる燃焼工程と、熱分解工程で発生した熱分解ガス を 1200°C以上で燃焼させると共に熱分解ガスに同伴した灰分を溶融させる溶融燃 焼工程と、燃焼工程力 排出された燃焼ガスを 450°C以下になるまで顕熱を回収す る熱回収工程と、燃焼ガスに含まれる灰分を該熱回収工程の下流で捕集する集塵 工程とを具備し、集塵工程で捕集した灰分を溶融燃焼工程に供給して溶融させるよ うにする。 [0075] Further, the method for treating combustibles includes a pyrolysis step of pyrolyzing combustibles at a temperature of 350 ° C or more to obtain a pyrolysis gas and a pyrolysis step. Combustion process in which tar and char are burned at a temperature of 500 ° C or more, and melt-burning process in which the pyrolysis gas generated in the pyrolysis process is burned at 1200 ° C or more and the ash accompanying the pyrolysis gas is melted Combustion process power: a heat recovery process that recovers sensible heat until the discharged combustion gas becomes 450 ° C or less, and a dust collection process that collects ash contained in the combustion gas downstream of the heat recovery process. The ash collected in the dust collecting step is supplied to the melting and burning step to be melted.
[0076] また、このような可燃物の処理方法においては、燃焼工程から排出される燃焼ガス は溶融炉を経由しなレ、ので、この燃焼ガス中の灰粒子の性状 ·形状 ·大きさは従来の 流動層焼却炉力 排出される燃焼ガス中の灰粒子の性状 ·形状 ·大きさと同様で、粒 径が大きぐ熱回収工程で熱回収を行っても熱回収設備の伝熱面へ付着してトラブ ルを招く恐れはない。 [0076] In such a method for treating combustibles, since the combustion gas discharged from the combustion step does not pass through a melting furnace, the properties, shape, and size of the ash particles in the combustion gas are as follows. Conventional fluidized bed incinerator power Same as the properties, shape and size of ash particles in the discharged combustion gas, but adheres to the heat transfer surface of heat recovery equipment even if heat recovery is performed in the heat recovery process where the particle size is large Then There is no danger of inviting.
[0077] また、上記可燃物の処理方法にぉレ、て、熱分解工程と燃焼工程は共に流動層炉 で実施され、熱分解工程における熱分解に必要な熱量は燃焼工程を実施する流動 層炉の流動媒体の顕熱で賄われることを特徴とする。  [0077] Further, according to the above-described method for treating combustibles, both the pyrolysis step and the combustion step are performed in a fluidized bed furnace, and the amount of heat required for the pyrolysis in the pyrolysis step is determined by the fluidized bed in which the combustion step is performed. It is characterized by being supplied by the sensible heat of the fluid medium of the furnace.
[0078] 上記のように熱分解工程における熱分解に必要な熱量は燃焼工程を実施する流 動層炉の流動媒体の顕熱で賄われるので、助燃焼や燃焼用酸素供給源としての酸 素発生装置等が必要でなぐランニングコストやイニシャルコストが安価となる。  [0078] As described above, the amount of heat required for the thermal decomposition in the thermal decomposition step is covered by the sensible heat of the fluidized medium of the fluidized bed furnace in which the combustion step is performed. Running costs and initial costs, which do not require a generator or the like, are reduced.
[0079] また、上記可燃物の処理方法において、熱分解工程を 650°C以下、好ましくは 600 °C以下、更に好ましくは 550°C以下に維持し、燃焼工程の温度を 900°C以下、好ま しくは 800°C以下、更に好ましくは 700°C以下に保つことを特徴とする。  [0079] In the method for treating combustibles, the pyrolysis step is maintained at 650 ° C or lower, preferably 600 ° C or lower, more preferably 550 ° C or lower, and the temperature of the combustion step is 900 ° C or lower. Preferably, the temperature is maintained at 800 ° C or lower, more preferably 700 ° C or lower.
[0080] 上記のように、都巿ゴミ等の可燃物を変動少なく安定に熱分解ガス化するには、 65 0°C以下の低い温度で行うのが好ましぐ 550°C以下で行うことにより、更に安定した 熱分解ガス化が実施できる。また、熱分解工程においても都巿ゴミ等の可燃物を変 動少なく安定に燃焼させるためには低温を維持することが好ましぐ 700°C以下の低 い温度で行うことが好ましい。また、 900°C以上の高温では特に分散ノズル等の金属 部分の耐熱性等に問題がある。熱分解工程の温度下限値は、可燃物の種類によつ て異なる。可燃物が、例えばバイオマスだけの場合には、一般的なリグニンの分解温 度が 280°Cであるので、それ以上の温度とし、 300°C以上とするのが好ましい。また、 可燃物にプラスチックが含まれる場合には、一般的な高密度ポリエチレン HDPEの 分解温度が 390°Cであるので、それ以上の温度とし、 400°C以上とするのが好ましい  [0080] As described above, in order to stably pyrolyze gas into combustibles such as garbage with little fluctuation, it is preferable to carry out at a low temperature of 650 ° C or less, and to carry out at 550 ° C or less. Thereby, more stable pyrolysis gasification can be performed. In addition, in the pyrolysis step, in order to stably burn combustible materials such as garbage with little fluctuation, it is preferable to maintain the low temperature at a low temperature of 700 ° C. or lower. At a high temperature of 900 ° C or more, there is a problem particularly in heat resistance of a metal portion such as a dispersion nozzle. The lower temperature limit of the pyrolysis process differs depending on the type of combustibles. When the combustibles are, for example, only biomass, the decomposition temperature of general lignin is 280 ° C. Therefore, the temperature is preferably higher than 300 ° C. In addition, when plastic is contained in combustibles, the decomposition temperature of general high-density polyethylene HDPE is 390 ° C, so it is preferable to set the temperature higher than 400 ° C.
[0081] また、可燃物の処理装置を、可燃物を 350°C以上の温度で熱分解してチヤ一と熱 分解ガスを得る熱分解室と、該熱分解室から発生した未熱分解物、タール、チヤ一を 500°C以上の温度で燃焼させる燃焼室と、該熱分解室で発生した熱分解ガスを 120 0°C以上で燃焼させると共に熱分解ガスに同伴した灰分を溶融させる溶融炉と、該燃 焼室から排出された燃焼ガスを 450°C以下になるまで顕熱を回収する熱回収装置と 、該燃焼ガスに含まれる灰分を該熱回収装置の下流で捕集する集塵装置とを具備し 、集塵装置で捕集した灰分を前記溶融炉に供給して溶融するようにする。 [0082] 上記のように、燃焼室から排出される燃焼ガスは溶融炉を経由しないので、この燃 焼ガス中の灰粒子の性状 ·形状 ·大きさは従来の流動層焼却炉から排出される燃焼 ガス中の灰粒子の性状 ·形状 ·大きさと同様で、粒径が大きぐ熱回収装置で熱回収 を行っても伝熱面へ付着してトラブルを招く恐れはない。また、熱回収装置の下流で 集塵装置で捕集した灰分を溶融炉に供給するので、例えば集塵装置にサイクロンを 用いることにより微粒子になった低沸点物質や金属塩類は捕集されて循環すること がなぐスラグ化率を向上させることができる。 [0081] Further, a combustible material processing apparatus is provided with a pyrolysis chamber for pyrolyzing the combustible material at a temperature of 350 ° C or higher to obtain a fuel and a pyrolysis gas, and an unpyrolyzed product generated from the pyrolysis chamber. , Tar and charcoal are burned at a temperature of 500 ° C or more, and a pyrolysis gas generated in the pyrolysis chamber is burned at 1200 ° C or more and ash that accompanies the pyrolysis gas is melted. A furnace, a heat recovery device for recovering sensible heat of the combustion gas discharged from the combustion chamber to 450 ° C. or less, and a collector for collecting ash contained in the combustion gas downstream of the heat recovery device. And a dust device, wherein the ash collected by the dust collector is supplied to the melting furnace to be melted. [0082] As described above, since the combustion gas discharged from the combustion chamber does not pass through the melting furnace, the properties, shape, and size of the ash particles in the combustion gas are discharged from the conventional fluidized bed incinerator. Similar to the properties, shape, and size of the ash particles in the combustion gas, even if heat is recovered by a heat recovery device with a large particle size, there is no danger of adhesion to the heat transfer surface and causing trouble. In addition, since the ash collected by the dust collector is supplied to the melting furnace downstream of the heat recovery unit, for example, low-boiling substances and metal salts that have become fine particles by using a cyclone in the dust collector are collected and circulated. Slag conversion rate can be improved.
[0083] また、上記可燃物の処理装置にぉレ、て、熱分解室と燃焼室が共に流動層炉で構 成されたことを特徴とする。  [0083] In the above combustible material processing apparatus, the pyrolysis chamber and the combustion chamber are both constituted by a fluidized bed furnace.
[0084] 上記のように熱分解室と燃焼室が共に流動層炉で構成することにより、熱分解室に おける可燃物の安定した熱分解ガス化が可能になると共に、燃焼室は流動層焼却炉 として作用することとなり、ここからの燃焼ガスは従来の流動層焼却炉から排出される 燃焼ガス中の灰粒子の性状 ·形状 ·大きさと同様で、粒径が大きぐ熱回収工程で熱 回収を行っても使用される機器の伝熱面へ付着してトラブルを招く恐れはない。  [0084] As described above, since the pyrolysis chamber and the combustion chamber are both constituted by a fluidized-bed furnace, stable pyrolysis gasification of combustible materials in the pyrolysis chamber becomes possible, and the combustion chamber is incinerated by a fluidized-bed incinerator. The ash particles in the combustion gas discharged from a conventional fluidized bed incinerator have the same properties, shape and size as the ash particles in the combustion gas discharged from the conventional fluidized bed incinerator. However, there is no danger of adhesion to the heat transfer surface of the equipment used and causing trouble.
[0085] また、上記可燃物の処理装置において、熱分解室を構成する流動層炉と燃焼室を 構成する流動層炉の流動媒体は循環していることを特徴とする。  [0085] In the above combustible material processing apparatus, the fluidized medium of the fluidized bed furnace constituting the thermal decomposition chamber and the fluidized medium of the fluidized bed furnace constituting the combustion chamber are circulated.
[0086] 上記のように熱分解室を構成する流動層炉と燃焼室を構成する流動層炉の流動媒 体は循環しているので、熱分解室の流動層に留まった未熱分解物、タール、チヤ一 は流動媒体と共に燃焼室に移動し、該燃焼室でこの未熱分解物、タール、チヤ一は 燃焼する。そしてこの燃焼により加熱された燃焼室の流動層の流動媒体は熱分解室 に移動し、熱分解ガス化熱として利用される。  [0086] As described above, since the fluidized media of the fluidized bed furnace constituting the thermal decomposition chamber and the fluidized bed furnace constituting the combustion chamber are circulating, the non-pyrolyzed product remaining in the fluidized bed of the thermal decomposition chamber, The tar and char move with the flowing medium into the combustion chamber, where the unpyrolyzed product, tar and char are burned. The fluidized medium in the fluidized bed of the combustion chamber heated by the combustion moves to the thermal decomposition chamber and is used as heat of gasification.
[0087] また、上記可燃物の処理装置にぉレ、て、熱分解室を構成する流動層炉の流動層 の流動化ガスとして水蒸気、炭酸ガス、窒素ガス、燃焼排ガスを用いることを特徴とす る。 [0087] Further, in the above combustible material processing apparatus, steam, carbon dioxide gas, nitrogen gas, and combustion exhaust gas are used as fluidizing gas of the fluidized bed of the fluidized bed furnace constituting the thermal decomposition chamber. You.
[0088] 上記のように熱分解室を構成する流動層炉の流動層の流動化ガスとして水蒸気、 炭酸ガス、窒素ガスを用レ、ることにより、熱分解室に供給された可燃物の部分燃焼が なぐこの燃焼による流動媒体の加熱がないから、燃焼室からの流動媒体の熱を効 果的に吸収できる。また、熱分解室での可燃物の部分燃焼がないことから、熱分解ガ ス中に燃焼ガスが含まれることなぐ熱分解室から発熱量の高いガスが得られ、この ガスが溶融炉に供給されることになり、発熱量が例えば 6— 7Mj/kgと低い可燃物で あっても、溶融炉で助燃料を供給することなぐ 1200°C以上の高温燃焼をさせること が可能となり、灰分を溶融することができる。 [0088] As described above, by using steam, carbon dioxide gas, and nitrogen gas as the fluidizing gas of the fluidized bed of the fluidized bed furnace constituting the thermal decomposition chamber, the portion of the combustible material supplied to the thermal decomposition chamber Since there is no heating of the fluidized medium due to this combustion, the heat of the fluidized medium from the combustion chamber can be effectively absorbed. In addition, since there is no partial combustion of combustibles in the pyrolysis chamber, A gas with a high calorific value is obtained from the pyrolysis chamber where the combustion gas is not contained in the gas, and this gas is supplied to the melting furnace, and the calorific value is low, for example, 6-7 Mj / kg. Even if it does, it is possible to burn at a high temperature of 1200 ° C or more without supplying auxiliary fuel in the melting furnace, and it is possible to melt ash.
[0089] なお、上記例は本発明の一実施形態例であり、各請求項に記載の発明は、これに 限定されるものではなぐ各請求項に記載の発明と同一の技術的思想の範囲内で変 形は可能である。 The above example is an embodiment of the present invention, and the invention described in each claim is not limited to the scope of the same technical idea as the invention described in each claim. Deformation is possible within.
図面の簡単な説明  Brief Description of Drawings
[0090] [図 1]従来の可燃物の処理装置のプロセスフローを示す図である。  FIG. 1 is a view showing a process flow of a conventional combustible material processing apparatus.
[図 2]従来の可燃物の処理装置のプロセスフローを示す図である。  FIG. 2 is a view showing a process flow of a conventional combustible material processing apparatus.
[図 3]本発明に係る可燃物の処理装置のプロセスフローを示す図である。  FIG. 3 is a view showing a process flow of a combustible material processing apparatus according to the present invention.
[図 4]本発明に係る可燃物の処理装置のプロセスフローを示す図である。  FIG. 4 is a view showing a process flow of a combustible material processing apparatus according to the present invention.
[図 5]本発明に係る可燃物の処理装置に用いる統合型流動床ガス化炉の構成例を 示す図である。  FIG. 5 is a view showing a configuration example of an integrated fluidized-bed gasification furnace used in the combustible material processing apparatus according to the present invention.
[図 6]本発明に係る可燃物の処理装置に用いる二塔式流動床ガス化炉の構成例を 示す図である。  FIG. 6 is a view showing a configuration example of a two-tower type fluidized-bed gasification furnace used in the apparatus for treating combustibles according to the present invention.
[図 7]本発明に係る可燃物の処理装置に用いる溶融炉の構成例を示す図である。  FIG. 7 is a diagram showing a configuration example of a melting furnace used in the combustible material processing apparatus according to the present invention.
[図 8]本発明に係る可燃物の処理装置のプロセスフローを示す図である。  FIG. 8 is a view showing a process flow of a combustible material processing apparatus according to the present invention.
符号の説明  Explanation of symbols
[0091] 1ガス化炉 [0091] 1 Gasifier
2溶融炉  2 melting furnace
3ボイラ  3 boilers
4熱回収機器  4 Heat recovery equipment
5集塵装置  5 Dust collector
6ガス冷却塔  6 gas cooling tower
7バグフィルタ  7 bug filter
8誘引ブロワ一  8 Induction blower
9触媒脱硝塔 煙突 9 catalytic denitration tower chimney
Ash
バグフィルタ(固体分離器) 灰 Bag filter (solid separator) Ash
活性炭 Activated carbon
ボイラ boiler
スクラバー Scrubber
原料ガス Raw material gas
熱分解室 Pyrolysis chamber
燃焼室 Combustion chamber
熱回収室 Heat recovery room
仕切り壁 Partition wall
仕切り壁 Partition wall
開口部 Aperture
層内伝熱管 In-layer heat transfer tube
下部開口 Lower opening
仕切り壁 Partition wall
仕切り壁 Partition wall
下部開口 Lower opening
流動化ガス Fluidizing gas
流動化ガス Fluidizing gas
可燃物供給装置 熱分解流動層炉 Combustibles supply device Pyrolysis fluidized bed furnace
燃焼流動層炉 Combustion fluidized bed furnace
傾斜管 Inclined tube
傾斜管 Inclined tube
流動化ガス Fluidizing gas
流動化ガス 一次燃焼室 二次燃焼室 三次燃焼室 燃焼用ガス 溶融スラグ スラグ ί非出口 Fluidizing gas Primary combustion chamber Secondary combustion chamber Tertiary combustion chamber Combustion gas Molten slag Slag ίNon-exit

Claims

請求の範囲 The scope of the claims
[1] 粒径の大きな粒子を多く伴った第 1のガスから熱を回収する工程と;  [1] recovering heat from the first gas with many large particles;
前記熱を回収した第 1のガスに粒径の小さな粒子を多く伴った第 2のガスを混合し て熱を回収する工程とを備える;  Recovering heat by mixing the first gas from which the heat has been recovered with a second gas accompanied by a large number of particles having a small particle size;
熱回収方法。  Heat recovery method.
[2] 前記第 1のガスは、可燃物を流動層炉に供給して該流動層炉にて生成した粒子を 伴ったガスからなり、  [2] The first gas is composed of a gas containing particles generated in the fluidized bed furnace by supplying combustibles to the fluidized bed furnace,
前記第 2のガスは、前記流動層炉にて生成したガスを溶融炉に導入して灰分を溶 融して得た粒子を伴ったガスからなる、  The second gas comprises a gas accompanied by particles obtained by introducing a gas generated in the fluidized-bed furnace into a melting furnace to melt ash.
請求項 1に記載の熱回収方法。  The heat recovery method according to claim 1.
[3] 前記流動層炉にて、可燃物を熱分解してチヤ一とガスを得る工程と; [3] a step of pyrolyzing the combustibles in the fluidized bed furnace to obtain gas and gas;
該チヤーを該炉内で燃焼させる工程とを備える;  Burning said char in said furnace;
請求項 2に記載の熱回収方法。  The heat recovery method according to claim 2.
[4] 前記チヤ一を燃焼室にて燃焼させる工程と; [4] burning the char in a combustion chamber;
該燃焼室から流動媒体を、可燃物を熱分解する熱分解室に流入させる工程とを備 る;  Flowing the fluidized medium from the combustion chamber to a pyrolysis chamber for pyrolyzing the combustibles;
請求項 3に記載の熱回収方法。  4. The heat recovery method according to claim 3.
[5] 前記第 1のガスと前記第 2のガスを混合する工程と;  [5] a step of mixing the first gas and the second gas;
前記混合したガスを 450°C以下に冷却する工程と;  Cooling the mixed gas below 450 ° C;
集塵装置により前記冷却したガス中の固形分を分離する工程と;  Separating a solid content in the cooled gas by a dust collector;
前記分離した固形分を前記溶融炉に導入し、溶融させる工程とを備える; 請求項 2乃至 4のいずれ力 4項に記載の熱回収方法。  The heat recovery method according to any one of claims 2 to 4, further comprising: introducing the separated solid content into the melting furnace and melting the solid content.
[6] 流動床ガス化炉において粒子を含む第 1のガスと第 2のガスを生成させる工程と; 前記流動床ガス化炉からの第 1のガスを熱回収装置に導入する工程と; 該導入されたガスと受熱流体との間で熱交換を行って熱回収する工程と; 前記流動床ガス化炉からの第 2のガスを溶融炉に導入して粒子中の灰分を溶融す る工程と;  [6] a step of generating a first gas and a second gas containing particles in a fluidized-bed gasifier; a step of introducing the first gas from the fluidized-bed gasifier into a heat recovery device; A step of performing heat exchange between the introduced gas and the heat-receiving fluid to recover heat; and a step of introducing a second gas from the fluidized-bed gasification furnace into a melting furnace to melt ash in the particles. When;
前記灰分を溶融したガスを前記熱回収装置に導入する工程とを備える; 可燃物の処理方法。 Introducing a gas in which the ash is melted into the heat recovery device; How to treat combustibles.
[7] 流動床ガス化炉において粒子を含む第 1のガスと第 2のガスを生成させる工程と; 前記流動床ガス化炉からの第 1のガスを熱回収装置に導入する工程と; 該導入されたガスと受熱流体との間で熱交換を行って熱回収する工程と; 前記流動床ガス化炉からの第 2のガスを溶融炉に導入して粒子中の灰分を溶融す る工程と;  [7] a step of generating a first gas and a second gas containing particles in a fluidized-bed gasification furnace; a step of introducing the first gas from the fluidized-bed gasification furnace into a heat recovery device; A step of performing heat exchange between the introduced gas and the heat-receiving fluid to recover heat; and a step of introducing a second gas from the fluidized-bed gasification furnace into a melting furnace to melt ash in the particles. When;
前記灰分が溶融されたガスを、前記第 1のガスが導入されている熱回収装置に導 入する工程とを備える;  Introducing the gas in which the ash has been melted into a heat recovery device into which the first gas has been introduced;
可燃物の処理方法。  How to treat combustibles.
[8] 前記第 1のガス及び第 2のガスを熱回収装置で熱回収し、 450°C以下に冷却する 工程と;  [8] recovering heat of the first gas and the second gas with a heat recovery device, and cooling the gas to 450 ° C or less;
集塵装置により前記第 1のガス及び第 2のガス中の固形分を分離する工程と; 前記分離した固形分を前記溶融炉に導入し、溶融させる工程とを備える; 請求項 6又は 7に記載の可燃物の処理方法。  The method according to claim 6 or 7, further comprising: a step of separating solids in the first gas and the second gas by a dust collector; and a step of introducing the separated solids into the melting furnace and melting the solids. The method for treating combustible materials described in the above.
[9] 粒径の大きレ、粒子を多く含む第 1のガスを導入する第 1の導入口と; [9] a first inlet for introducing a first gas having a large particle diameter and a large amount of particles;
前記第 1の導入口から導入されたガスの流れ側に対して前記第 1の導入口の下流 に位置し、粒径の小さな粒子を多く含む第 2のガスを導入する第 2の導入口と; 熱を回収した後のガスを排出するための排出口と;  A second inlet that is located downstream of the first inlet with respect to a flow side of the gas introduced from the first inlet and that introduces a second gas containing many particles having a small particle diameter; An outlet for discharging gas after recovering heat;
前記第 1及び第 2の導入口から導入されたガスと受熱流体との間で熱交換して熱を 回収するための伝熱面とを備える;  A heat transfer surface for recovering heat by exchanging heat between the gas introduced from the first and second inlets and the heat receiving fluid;
熱回収装置。  Heat recovery device.
[10] 前記第 1のガスは、可燃物を流動層炉に供給して該流動層炉にて生成されたガス であり、  [10] The first gas is a gas generated by supplying a combustible material to a fluidized bed furnace and producing the gas in the fluidized bed furnace.
前記第 2のガスは、前記流動層炉にて生成したガスを溶融炉に導入して該ガス中 に含まれる灰分を溶融して得られたガスである、請求項 9に記載の熱回収装置。  The heat recovery apparatus according to claim 9, wherein the second gas is a gas obtained by introducing a gas generated in the fluidized-bed furnace into a melting furnace to melt ash contained in the gas. .
[11] 前記第 1のガスと前記第 2のガスを混合後、 450°C以下に冷却した後、集塵装置に より該混合ガス中の固形分を分離し、分離した固形分を前記溶融炉に導入し、溶融 させるように構成された; 請求項 10に記載の熱回収装置。 [11] After mixing the first gas and the second gas, the mixture is cooled to 450 ° C. or less, and then the solid content in the mixed gas is separated by a dust collector, and the separated solid content is melted. Configured to be introduced into the furnace and melted; The heat recovery device according to claim 10.
[12] 可燃物をガス化して粒子を含む第 1のガスと第 2のガスを生成させる流動床ガスィ匕 炉と; [12] A fluidized-bed gasi furnace for gasifying combustibles to generate a first gas and a second gas containing particles;
前記流動床ガス化炉にて発生した第 1のガスを導入して受熱流体との間で熱交換 して熱を回収する熱回収装置と;  A heat recovery device for recovering heat by introducing the first gas generated in the fluidized bed gasifier and exchanging heat with a heat receiving fluid;
前記流動床ガス化炉にて発生した第 2のガスを導入して灰分を溶融する溶融炉と; 前記溶融炉力 排出されるガスを、該溶融炉で更に発生した粒子とともに前記熱回 収装置に導入するガス導入流路とを備えた;  A melting furnace for introducing a second gas generated in the fluidized-bed gasification furnace to melt ash; and a melting furnace power for discharging the discharged gas together with particles further generated in the melting furnace. A gas introduction passage for introducing the gas into the air;
可燃物の処理装置。  Combustible material processing equipment.
[13] 可燃物をガス化して粒子を含む第 1のガスと第 2のガスを生成させる流動床ガスィ匕 炉と;  [13] A fluidized-bed gasifier which gasifies combustibles to generate a first gas and a second gas containing particles;
前記流動床ガス化炉にて発生した第 1のガスを導入して受熱流体との間で熱交換 して熱を回収する熱回収装置と;  A heat recovery device for recovering heat by introducing the first gas generated in the fluidized bed gasifier and exchanging heat with a heat receiving fluid;
前記流動床ガス化炉にて発生した第 2のガスを導入して灰分を溶融する溶融炉と; 前記溶融炉から排出されるガスを、該溶融炉で更に発生した粒子とともに前記第 1 のガスが導入されている熱回収装置に導入するガス導入流路とを備えた;  A melting furnace for introducing a second gas generated in the fluidized-bed gasification furnace to melt ash; and a gas discharged from the melting furnace, together with particles further generated in the melting furnace, the first gas. A gas introduction passage for introducing into a heat recovery apparatus into which a gas is introduced;
可燃物の処理装置。  Combustible material processing equipment.
[14] 前記流動床ガス化炉は、可燃物を熱分解して前記第 2のガスを発生する熱分解室 と、チヤ一を燃焼させ前記第 1のガスを発生する燃焼室と、該燃焼室からの流動媒体 を該熱分解室に移動させるための流路とを備える;  [14] The fluidized-bed gasifier includes a pyrolysis chamber that pyrolyzes combustibles to generate the second gas, a combustion chamber that burns fuel and generates the first gas, A flow path for moving fluidized medium from the chamber to the pyrolysis chamber;
請求項 12又は 13に記載の可燃物の処理装置。  14. The apparatus for treating combustible materials according to claim 12 or 13.
[15] 前記熱分解室からの第 2のガスを前記溶融炉に導入する流路と; [15] a flow path for introducing the second gas from the pyrolysis chamber into the melting furnace;
前記燃焼室からの第 1のガスを前記熱回収装置に導入するための流路とを備える; 請求項 14に記載の可燃物の処理装置。  The apparatus for treating combustible matter according to claim 14, further comprising: a flow path for introducing a first gas from the combustion chamber into the heat recovery device.
[16] 前記熱回収装置は廃熱ボイラである、請求項 12乃至 15のいずれ力、 1項に記載の 可燃物の処理装置。 [16] The combustible material processing apparatus according to any one of claims 12 to 15, wherein the heat recovery apparatus is a waste heat boiler.
[17] 前記第 1のガスと前記第 2のガスを混合後、 450°C以下に冷却した後、集塵装置に より該混合ガス中の固形分を分離し、分離した固形分を前記溶融炉に導入し、溶融 させるように構成された; [17] After mixing the first gas and the second gas, the mixture is cooled to 450 ° C. or lower, and then the solid content in the mixed gas is separated by a dust collector, and the separated solid content is melted. Introduce into furnace and melt Configured to cause;
請求項 12乃至 16のいずれか 1項に記載の可燃物の処理装置。  An apparatus for treating combustible materials according to any one of claims 12 to 16.
可燃物をガス化して粒子を含む第 1のガスと第 2のガスを生成させる流動床ガスィ匕 炉と;  A fluidized-bed gasifier for gasifying combustibles to produce a first gas and a second gas containing particles;
前記流動床ガス化炉にて発生した第 1のガス中の前記粒子を捕集する固体分離器 と;  A solid separator for collecting the particles in the first gas generated in the fluidized bed gasifier;
前記流動床ガス化炉にて発生した第 2のガスを燃焼し、前記固体分離器で捕集さ れた前記粒子を溶融するとともに可燃性ガスを生成する溶融炉とを備える; 可燃物の処理装置。  A melting furnace that burns the second gas generated in the fluidized-bed gasification furnace, melts the particles collected by the solid separator, and generates a flammable gas; apparatus.
PCT/JP2004/010320 2004-01-20 2004-07-20 Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing WO2005068909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04770831.8A EP1712839B1 (en) 2004-01-20 2004-07-20 Method of heat recovery and heat recovery apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-012419 2004-01-20
JP2004012419A JP4265975B2 (en) 2003-01-20 2004-01-20 Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus

Publications (1)

Publication Number Publication Date
WO2005068909A1 true WO2005068909A1 (en) 2005-07-28

Family

ID=34792377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010320 WO2005068909A1 (en) 2004-01-20 2004-07-20 Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing

Country Status (2)

Country Link
EP (1) EP1712839B1 (en)
WO (1) WO2005068909A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPI20070039A1 (en) * 2007-04-10 2008-10-11 Delca S P A PLANT AND METHOD FOR THE PRODUCTION OF ELECTRICITY
NL2001501C2 (en) * 2008-04-18 2009-10-20 Dhv B V Synthetic building material e.g. brick, producing method, involves heating mixture of fly ash, sewage sludge, bottom ash, biomass materials, incineration ash, wood fines and waste ash with energy to specific temperature
CN102671410B (en) * 2012-05-29 2014-12-24 上海锅炉厂有限公司 Sensible heat recovery device with ash capture for preventing slag bonding and staining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165426A (en) * 1999-12-03 2001-06-22 Kawasaki Heavy Ind Ltd Method and equipment for reducing dioxin and related compound in refuse gasification melting apparatus of char separation system
JP2003156209A (en) * 2001-09-07 2003-05-30 Ebara Corp Gas supply device, gas supply utilizing system, gasifying/ fusing system, and gas supply method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276274B2 (en) * 1995-09-13 2002-04-22 三菱重工業株式会社 Superheated steam production equipment using waste incineration heat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165426A (en) * 1999-12-03 2001-06-22 Kawasaki Heavy Ind Ltd Method and equipment for reducing dioxin and related compound in refuse gasification melting apparatus of char separation system
JP2003156209A (en) * 2001-09-07 2003-05-30 Ebara Corp Gas supply device, gas supply utilizing system, gasifying/ fusing system, and gas supply method

Also Published As

Publication number Publication date
EP1712839A4 (en) 2012-12-19
EP1712839B1 (en) 2018-11-21
EP1712839A1 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
US20060137579A1 (en) Gasification system
JP2003279013A (en) Waste gasifying and fusing system
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JPH11294726A (en) Waste treatment method
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
WO2005068909A1 (en) Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JP4265975B2 (en) Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus
JP3091197B1 (en) Method and apparatus for reducing dioxins in garbage gasification and melting equipment with char separation method
JP2007147270A (en) Processing method, and gasifying and melting device for waste
JP2898625B1 (en) Method and apparatus for removing and decomposing dioxins with unburned ash
JP3663715B2 (en) Circulating fluidized bed boiler
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP2004347274A (en) Waste treatment device
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP3270456B2 (en) Waste treatment method and gasification and melting equipment
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JP3046309B1 (en) Method and apparatus for reducing dioxins in a garbage gasifier for char separation
JP3270452B2 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP2002115830A (en) Method for waste treatment and gasification and melting apparatus
JP2004264017A (en) Municipal waste gasification furnace and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004770831

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004770831

Country of ref document: EP