JP4265975B2 - Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus - Google Patents

Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus Download PDF

Info

Publication number
JP4265975B2
JP4265975B2 JP2004012419A JP2004012419A JP4265975B2 JP 4265975 B2 JP4265975 B2 JP 4265975B2 JP 2004012419 A JP2004012419 A JP 2004012419A JP 2004012419 A JP2004012419 A JP 2004012419A JP 4265975 B2 JP4265975 B2 JP 4265975B2
Authority
JP
Japan
Prior art keywords
gas
pyrolysis
heat
heat recovery
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012419A
Other languages
Japanese (ja)
Other versions
JP2004309120A (en
Inventor
敬久 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004012419A priority Critical patent/JP4265975B2/en
Priority to EP04770831.8A priority patent/EP1712839B1/en
Priority to PCT/JP2004/010320 priority patent/WO2005068909A1/en
Publication of JP2004309120A publication Critical patent/JP2004309120A/en
Application granted granted Critical
Publication of JP4265975B2 publication Critical patent/JP4265975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Description

本発明は都市ゴミ、廃プラスチック、シュレッダダスト、建設廃棄物、廃タイヤ等の可燃性廃棄物を処理するのに際して、発生する熱を利用して灰を溶融させ、且つ効果的に熱回収することが可能な熱回収方法、可燃物の処理方法、熱回収システム及び可燃物の処理装置に関するものである。 In the present invention, when processing combustible waste such as municipal waste, waste plastic, shredder dust, construction waste, and waste tires, the heat generated is used to melt ash and effectively recover heat. The present invention relates to a heat recovery method, a combustible material processing method, a heat recovery system, and a combustible material processing apparatus.

近年都市ゴミ等の廃棄物焼却処理方法としてガス化溶融方式が注目されている。このガス化溶融方式とは廃棄物を500℃程度で部分燃焼させて熱分解ガスを得て、この熱分解ガスを溶融炉で高温燃焼させてガス中に含まれている灰分を溶融させる方式である。この方式で得られる熱分解ガスは廃棄物の部分燃焼によって得られたものであり、燃焼ガスが混入しており発熱量が低い。従って、溶融炉で灰を溶融させる十分な温度、即ち約1200℃程度の温度を得ようとすると、投入される廃棄物が7〜8MJ/kg程度の発熱量を有していることが必要である。   In recent years, the gasification and melting method has attracted attention as a method for incinerating waste such as municipal waste. This gasification and melting method is a method in which waste is partially burned at about 500 ° C. to obtain a pyrolysis gas, and this pyrolysis gas is burned at a high temperature in a melting furnace to melt ash contained in the gas. is there. The pyrolysis gas obtained by this method is obtained by partial combustion of waste, and the combustion gas is mixed in and the calorific value is low. Therefore, in order to obtain a sufficient temperature for melting the ash in the melting furnace, that is, a temperature of about 1200 ° C., it is necessary that the input waste has a calorific value of about 7 to 8 MJ / kg. is there.

しかしながら廃棄物、特に都市ゴミは発熱量の変動が大きく、発熱量が不足している場合は助燃料を供給したり、燃焼用酸素供給源として空気でなく酸素を用いたりせざるを得ないのが実情である。そのためランニングコストが増加したり、酸素発生装置を設置することによってイニシャルコストが増加したりすることが問題となっている。   However, waste, especially municipal waste, has a large fluctuation in calorific value, so if the calorific value is insufficient, you must supply auxiliary fuel or use oxygen instead of air as the oxygen source for combustion. Is the actual situation. Therefore, there are problems that the running cost increases and the initial cost increases by installing an oxygen generator.

また、溶融炉に流入する熱分解ガス中に含まれる灰分は、シリカ、アルミナ、カルシア系のものに加え、低融点金属や低沸点の金属塩等が含まれているが、溶融炉において溶融する成分はシリカ、アルミナ、カルシア系のものが主体であり、低沸点の金属塩等は燃焼ガスに伴い溶融炉から下流側に流出する。   The ash contained in the pyrolysis gas flowing into the melting furnace contains silica, alumina, calcia-based materials, low melting point metals, low boiling point metal salts, etc., but melts in the melting furnace. The main components are silica, alumina, and calcia, and low-boiling metal salts and the like flow out of the melting furnace downstream with the combustion gas.

また、溶融炉においては、内部にガスの旋回流を形成させると共に、多くの場合ガス流を急反転させる等の手段によって、ガス中の灰分を慣性力によって溶融炉壁面に衝突させてスラグ流を形成させ、被溶融物に含まれる灰分の溶融率を高めようとする構造が採用されている。従って、粒径の大きな粒子はスラグ流に捕捉されるため、溶融炉から下流に流出する排ガス中の灰分の粒径は結果として10ミクロン以下のものが多くなる。   In addition, in a melting furnace, a swirl flow of gas is formed inside, and in many cases, the ash content in the gas is collided with the wall of the melting furnace by an inertial force by means such as sudden reversal of the gas flow, thereby generating a slag flow. A structure that is formed to increase the melting rate of ash contained in the material to be melted is employed. Accordingly, since particles having a large particle size are trapped in the slag flow, the particle size of ash in the exhaust gas flowing downstream from the melting furnace increases as a result of 10 microns or less.

上記のように溶融炉の下流に流出するガス中の灰分は塩類濃度が高く粒径が非常に小さいのが特徴で、このことから様々な問題を引き起こしている。溶融直後の1200℃以上の高温域から400℃程度の温度域までそれぞれの温度で溶融した微小粒子が熱回収のために設けられた機器の伝熱面に付着して伝熱面の伝熱係数を極端に低下させてしまうのである。   As described above, the ash in the gas flowing out downstream of the melting furnace is characterized by a high salt concentration and a very small particle size, which causes various problems. From the high temperature range of 1200 ° C. or higher immediately after melting to the temperature range of about 400 ° C., fine particles melted at each temperature adhere to the heat transfer surface of the equipment provided for heat recovery and the heat transfer coefficient of the heat transfer surface Is drastically reduced.

伝熱係数が低下するとガス温度を下げることができなくなるなど熱回収機器の機能は低下するので、熱回収工程出口でのガス温度が上昇し、熱回収工程の下流に設けられたバグフィルタ等の集塵工程の許容温度を超えてしまう恐れがある。特にバグフィルタのろ布は熱に弱いため、集塵工程入口部での温度は許容温度以下にする必要がある。このため水噴霧方式のガス冷却工程を予め設けておいたり、熱回収機器の伝熱面において伝熱面積に十分な余裕を持たせ熱回収機器の機能を十分に維持し、集塵工程入口部でのガス温度が許容温度より高くなることを抑えなければならない。このことは設備増加によるコスト高の原因となる。   As the heat transfer coefficient decreases, the function of the heat recovery device decreases, such as being unable to decrease the gas temperature, so the gas temperature at the heat recovery process outlet rises, such as a bag filter provided downstream of the heat recovery process. The allowable temperature for the dust collection process may be exceeded. In particular, since the filter cloth of the bag filter is vulnerable to heat, the temperature at the entrance of the dust collection process needs to be lower than the allowable temperature. For this reason, a water spray type gas cooling process is provided in advance, or a sufficient heat transfer area is provided on the heat transfer surface of the heat recovery device so that the function of the heat recovery device is sufficiently maintained. It is necessary to prevent the gas temperature at the temperature from exceeding the allowable temperature. This causes high costs due to an increase in equipment.

図1は従来のガス化溶融方式を採用する可燃性廃棄物処理装置のプロセスフローを示す図である(特許文献1参照)。可燃性廃棄物処理装置は、ガス化炉101、溶融炉102、ボイラ103、エコノマイザ又は空気予熱器104、ガス冷却塔105、バグフィルタ106、誘引ブロワー107、触媒脱硝塔108及び煙突109を具備する。可燃性廃棄物はガス化炉101へ供給され、部分燃焼されると共に熱分解し、熱分解ガス、タール、チャー、飛灰等を発生させる。このタール、チャー、飛灰等を含む熱分解ガスは全量溶融炉102へ供給される。   FIG. 1 is a diagram showing a process flow of a combustible waste treatment apparatus that employs a conventional gasification melting method (see Patent Document 1). The combustible waste treatment apparatus includes a gasification furnace 101, a melting furnace 102, a boiler 103, an economizer or air preheater 104, a gas cooling tower 105, a bag filter 106, an induction blower 107, a catalyst denitration tower 108, and a chimney 109. . The combustible waste is supplied to the gasification furnace 101 and partially combusted and pyrolyzed to generate pyrolysis gas, tar, char, fly ash and the like. The pyrolysis gas containing tar, char, fly ash and the like is supplied to the melting furnace 102 in its entirety.

溶融炉102で熱分解ガスは1200℃以上の高温で燃焼され、灰分が溶融され溶融スラグとして炉外に排出されると共に、該溶融炉から出た高温燃焼ガスはボイラ103に導かれる。燃焼ガスはボイラ103で450℃程度にまで冷却され、更にエコノマイザ又は空気予熱器104で200℃程度にまで冷却される。   The pyrolysis gas is burned at a high temperature of 1200 ° C. or higher in the melting furnace 102, the ash is melted and discharged out of the furnace as molten slag, and the high-temperature combustion gas emitted from the melting furnace is guided to the boiler 103. The combustion gas is cooled to about 450 ° C. by the boiler 103 and further cooled to about 200 ° C. by the economizer or the air preheater 104.

溶融炉102を出た高温燃焼ガス中に含まれる灰分はその粒径が小さく、且つ比較的融点の低い金属塩類の割合が高いので付着性が高く、ボイラ103、エコノマイザ又は空気予熱器104の伝熱面に付着しやすい。そのため、運転を継続しているうちに次第にボイラ103、エコノマイザ又は空気予熱器104の伝熱面に付着して熱伝達係数を低下させるので、運転当初は十分に冷却されていた燃焼ガスが運転時間の経過と共に、次第に冷却されにくくなり、バグフィルタ106の入口温度が上昇してくる。   The ash contained in the high-temperature combustion gas exiting the melting furnace 102 has a small particle size and a high ratio of metal salts having a relatively low melting point, and thus has high adhesion, and is transferred to the boiler 103, economizer or air preheater 104. Easy to adhere to hot surface. Therefore, as the operation is continued, the heat transfer coefficient is gradually reduced by adhering to the heat transfer surface of the boiler 103, the economizer or the air preheater 104. As time passes, the cooling gradually becomes difficult and the inlet temperature of the bag filter 106 increases.

一般的にバグフィルタの耐熱温度は220℃程度なので、それを超える温度にならないように、ガス冷却塔105で燃焼ガス中に水を噴霧して冷却せざるを得ない。しかしながら、このようにして運転を継続しても伝熱面への灰付着の進行は止らず、空気予熱器入口の燃焼ガス温度は徐々に上昇し、付着が更に激しくなる。そして450℃を超える温度域においては、灰は半溶融状態となっており、付着を例えば機械的に掻き落としたり、払い落としたりすることが難しく、温度を下げないで灰付着の進行を止めることが困難である。即ち、一旦伝熱面の機能が低下してしまうと、その状態のままで灰付着の進行を抑制することは困難である。   In general, since the heat resistance temperature of the bag filter is about 220 ° C., the gas cooling tower 105 must be cooled by spraying water into the combustion gas so that the temperature does not exceed that. However, even if the operation is continued in this manner, the progress of the ash adhesion to the heat transfer surface does not stop, the combustion gas temperature at the inlet of the air preheater gradually increases, and the adhesion becomes further intense. In the temperature range above 450 ° C, the ash is in a semi-molten state, and it is difficult to mechanically scrape or wipe off the adhesion, for example, and stop the progress of ash adhesion without lowering the temperature. Is difficult. That is, once the function of the heat transfer surface is degraded, it is difficult to suppress the progress of ash adhesion in that state.

従って、従来の可燃性廃棄物処理装置では、熱回収工程であるボイラ103やエコノマイザ又は空気予熱器104の伝熱面積に十分な安全率を持っておき、且つ伝熱面に付着した灰を強制的に掻き落とす手段を設ける以外に安定した運転を継続させることができなかった。しかしながら伝熱面に付着した灰を強制的に掻き落すことによって伝熱面の表面温度が大きく変化し、せっかく形成された保護皮膜が熱衝撃によって剥れ、伝熱面の腐食摩耗を促進させる恐れもある。   Therefore, the conventional combustible waste treatment apparatus has a sufficient safety factor for the heat transfer area of the boiler 103, the economizer or the air preheater 104, which is a heat recovery process, and forces the ash adhering to the heat transfer surface. In addition, a stable operation could not be continued except for providing a means for scraping off. However, if the ash adhering to the heat transfer surface is forcibly scraped off, the surface temperature of the heat transfer surface will change greatly, and the protective film formed will peel off due to thermal shock, which may promote corrosion wear on the heat transfer surface. There is also.

また、灰の溶融率を高めるためにバグフィルタ106で捕集した灰を溶融炉102へ戻す戻し灰を行おうとすると、溶融炉において溶融スラグ化されずそのまま排ガスへと移行してしまう大量の低融点物質、金属塩類が熱交換器部分を含む循環経路内を大量に循環し、熱交換器の伝熱面への灰付着を加速度的に促進してしまう恐れがあるため、戻し灰率を高めることができず、スラグ化率を一定限度以下にしか高められない等の問題があった。   In addition, in order to return the ash collected by the bag filter 106 to the melting furnace 102 in order to increase the ash melting rate, a large amount of low ash that is not melted into slag in the melting furnace and is transferred to the exhaust gas as it is. Since the melting point material and metal salts circulate in large quantities in the circulation path including the heat exchanger part, there is a risk of accelerating the adhesion of ash to the heat transfer surface of the heat exchanger. There is a problem that the slag conversion rate cannot be increased below a certain limit.

一方、近年、灰の溶融に助燃料を使用しないための方法として、部分燃焼方式の熱分解ガスを全量溶融炉に導くのではなく、できるだけ熱分解ガスの発熱量を高めて溶融炉の温度を維持しやすくするために熱分解炉の方式をできるだけ酸素を使わないで乾留方式に近づけたものを適用する方法が提案されている。図2は本願発明者等が提案した可燃性廃棄物処理装置のプロセスフローを示す図である(特許文献2参照)。   On the other hand, as a method not to use auxiliary fuel for melting ash in recent years, rather than introducing the partial combustion type pyrolysis gas to the melting furnace, the heat generation amount of the pyrolysis gas is increased as much as possible to increase the temperature of the melting furnace. In order to make it easier to maintain, there has been proposed a method in which a pyrolysis furnace system is used which is as close to a dry distillation system as possible without using oxygen. FIG. 2 is a diagram showing a process flow of the combustible waste treatment apparatus proposed by the inventors of the present application (see Patent Document 2).

図2において、図1と同一符号を付した部分は同一又は相当部分を示す。本可燃性廃棄物処理装置も従来例と同様、ガス化炉と溶融炉を持った構成であるが、ガス化炉は熱分解室110−1と燃焼室110−2に分れた統合型の流動層ガス化炉110が採用されている。可燃性廃棄物は主に流動層ガス化炉110の熱分解室110−1側に供給され、そこで熱分解ガス、タール、チャー、飛灰等を発生させる。これらのうち流動層内に留まらない物は全て溶融炉102に供給され、そこで1200℃以上の高温で燃焼され、灰は溶融される。   2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. The combustible waste treatment apparatus has a gasification furnace and a melting furnace as in the conventional example, but the gasification furnace is an integrated type divided into a pyrolysis chamber 110-1 and a combustion chamber 110-2. A fluidized bed gasification furnace 110 is employed. The combustible waste is mainly supplied to the pyrolysis chamber 110-1 side of the fluidized bed gasification furnace 110, where pyrolysis gas, tar, char, fly ash and the like are generated. Of these, all that does not remain in the fluidized bed is supplied to the melting furnace 102 where it is burned at a high temperature of 1200 ° C. or higher, and the ash is melted.

一方流動層内に留まった熱分解残渣は流動媒体と共に燃焼室110−2に流入する。燃焼室110−2の流動層は550℃〜700℃程度、更に流動層上部のフリーボード部は850℃〜950℃に維持されるよう流動空気、二次空気が供給されており、全体の空気比は1以上に保たれ完全燃焼される。該燃焼室110−2には熱分解室110−1を経由して流入する熱分解残渣を燃焼させるだけの場合もあるが、廃棄物の熱分解特性、燃焼特性に応じて直接廃棄物を供給してもよい。   On the other hand, the pyrolysis residue remaining in the fluidized bed flows into the combustion chamber 110-2 together with the fluidized medium. Fluidized air and secondary air are supplied so that the fluidized bed in the combustion chamber 110-2 is maintained at about 550 ° C to 700 ° C, and the freeboard portion above the fluidized bed is maintained at 850 ° C to 950 ° C. The ratio is maintained at 1 or more and complete combustion is performed. In some cases, the combustion chamber 110-2 only burns the pyrolysis residue flowing in via the pyrolysis chamber 110-1, but directly supplies waste according to the thermal decomposition characteristics and combustion characteristics of the waste. May be.

燃焼室110−2から出た燃焼ガスは850℃〜950℃の温度でサイクロン等の集塵装置112に導入され、脱塵された後ボイラ103に導入される。集塵装置112で捕集された灰分粒子は溶融炉102に導かれ、溶融される。   The combustion gas emitted from the combustion chamber 110-2 is introduced into a dust collector 112 such as a cyclone at a temperature of 850 ° C. to 950 ° C., and after being dedusted, is introduced into the boiler 103. The ash particles collected by the dust collector 112 are guided to the melting furnace 102 and melted.

上記構成の可燃性廃棄物処理装置は、低発熱量の廃棄物であっても助燃料を使うことなく灰を溶融できるという優れた利点を有しているが、ボイラ103に流入するガス中に含まれる粒子が熱分解室110−1側は溶融炉102、燃焼室110−2側はサイクロン等の集塵装置112で捕集されているため、非常に細かい(粒径の小さい)粒子となっており、上記のようにボイラ103やエコノマイザ又は空気予熱器104の伝熱面への付着防止という観点から好ましいものではない。   The combustible waste treatment apparatus having the above-described configuration has an excellent advantage that ash can be melted without using auxiliary fuel even in the case of waste having a low calorific value, but in the gas flowing into the boiler 103, Since the contained particles are collected by the melting furnace 102 on the pyrolysis chamber 110-1 side and the dust collector 112 such as a cyclone on the combustion chamber 110-2 side, the particles are very fine (small particle size). As described above, it is not preferable from the viewpoint of preventing adhesion to the heat transfer surface of the boiler 103, the economizer, or the air preheater 104.

特許第3153091号公報Japanese Patent No. 3153091 特願2001−271497号明細書Japanese Patent Application No. 2001-271497

本発明は上述の点に鑑みてなされたもので、発熱量が6〜7MJ/kgと低い可燃性廃棄物であっても助燃料を必要とせず灰分が溶融でき、且つ灰分溶融後の燃焼ガスから熱回収する場合でも熱回収装置(ボイラやエコノマイザ又は空気予熱器)の伝熱面への灰付着を抑制し、伝熱面の余裕率を最小限にすると共に、水噴霧式のガス冷却設備等の設備を不要にすることができる熱回収方法、可燃物の処理方法、熱回収システム及び可燃物の処理装置を提供することを目的とする。 The present invention has been made in view of the above points, and even if the calorific value is as low as 6 to 7 MJ / kg, ash can be melted without requiring auxiliary fuel and combustion gas after ash melting is achieved. Even when heat is recovered from the heat source, ash adhesion to the heat transfer surface of the heat recovery device (boiler, economizer, or air preheater) is suppressed to minimize the heat transfer surface margin, and water spray type gas cooling equipment An object of the present invention is to provide a heat recovery method, a combustible material processing method, a heat recovery system, and a combustible material processing apparatus that can eliminate the need for such facilities.

上記課題を解決するため請求項1に記載の発明は、可燃物を熱分解室と燃焼室で構成された流動層ガス化炉に供給し、可燃物を熱分解室にて熱分解して熱分解ガスと熱分解残渣を生成し、熱分解残渣を燃焼室で燃焼させ、燃焼室にて生成した粒径の大きな粒子を多く含む第1のガスを生成させ、熱分解室にて生成された熱分解ガスを溶融炉に導入して燃焼させ灰分を溶融して粒径の小さな粒子を多く含む第2のガスを生成させると共に、第1のガスを直接熱交換するための伝熱面を有する熱回収装置に導入し、該導入したガスと受熱流体との間で熱交換を行って熱を回収し、次いで第2のガスを第1のガスを熱回収装置に導入した箇所よりもガスの流れに対して下流側で熱回収装置に導入し第1のガスに第2のガスを混合して熱を回収することを特徴とする熱回収方法にある。 In order to solve the above-mentioned problem, the invention according to claim 1 supplies a combustible material to a fluidized bed gasification furnace composed of a thermal decomposition chamber and a combustion chamber, and thermally decomposes the combustible material in the thermal decomposition chamber. The cracked gas and the pyrolysis residue are generated, the pyrolysis residue is burned in the combustion chamber, the first gas containing a large number of large particles generated in the combustion chamber is generated, and is generated in the pyrolysis chamber . A pyrolysis gas is introduced into a melting furnace and burned to melt the ash to generate a second gas containing a large number of small particles, and has a heat transfer surface for directly exchanging the first gas. It is introduced into the heat recovery device, heat is exchanged between the introduced gas and the heat receiving fluid to recover heat, and then the second gas is more gas than the portion where the first gas is introduced into the heat recovery device. the first gas to the second gas mixture to the heat recovery child introduced into the heat recovery device downstream relative to the flow In heat recovery method comprising.

上記のように粒径の大きな粒子を多く含む第1のガスから熱を回収し、次いで粒径の小さな粒子を多く含む第2のガスを混合するので、第1のガス中の粒径の大きい粒子が伝熱面に衝突した際の該伝熱面を研磨する研磨機能により、粒子の付着、特に第2のガス中の伝熱面に付着し易い粒径の小さな粒子の伝熱面への付着を防止することができる。 As described above, heat is recovered from the first gas containing many particles having a large particle size, and then the second gas containing many particles having a small particle size is mixed, so that the particle size in the first gas is large. Due to the polishing function for polishing the heat transfer surface when the particles collide with the heat transfer surface, the particles adhere to the heat transfer surface, particularly the particles having a small particle size that easily adhere to the heat transfer surface in the second gas. Adhesion can be prevented.

燃焼室から排出される第1のガスは溶融炉を経由しないので粒径の大きな粒子を多く含んでおりそのまま熱回収装置に供給されるから、熱回収装置の伝熱面に付着してトラブルを招く恐れは少なく、また、第1のガスを第2のガスの上流側から導入して第2のガスと混合させるから、伝熱面に付着し易い粒径の小さな粒子を多く含む第2のガスのみが存在する領域がなくなる。また、第1のガスが熱回収装置で冷却された後に高温の第2のガスが導入されて混合されるから、伝熱面に付着し易い溶融したスラグ粒子を含む高温の第2のガスのみが存在する領域を作らないことにもなる。Since the first gas discharged from the combustion chamber does not pass through the melting furnace, it contains a large amount of large particles and is supplied to the heat recovery device as it is. In addition, since the first gas is introduced from the upstream side of the second gas and mixed with the second gas, the second gas containing many particles having a small particle size that easily adhere to the heat transfer surface. There is no region where only gas exists. In addition, since the high-temperature second gas is introduced and mixed after the first gas is cooled by the heat recovery device, only the high-temperature second gas containing molten slag particles that easily adhere to the heat transfer surface is used. It will also not make the area where there is.

請求項に記載の発明は、請求項に記載の熱回収方法において、熱分解室の流動層内に残ったチャーを流動媒体に伴って燃焼室に導入して燃焼させ、該燃焼室から加熱された流動媒体を可燃物を熱分解する熱分解室に流入させることを特徴とする。このように構成することで、燃焼室にてチャーを燃焼させて発生した熱を流動媒体に移行させ、この熱を熱分解室における可燃物の熱分解反応に有効に利用することができる。 According to a second aspect of the invention, the heat recovery method of claim 1, the remaining char fluidized bed of the pyrolysis chamber with the fluidized medium by combustion is introduced into the combustion chamber, the combustion chamber The heated fluid medium is caused to flow into a pyrolysis chamber for pyrolyzing the combustible material. With this configuration, the heat generated by burning the char in the combustion chamber can be transferred to the fluid medium, and this heat can be effectively used for the pyrolysis reaction of the combustible material in the pyrolysis chamber.

請求項に記載の発明は、請求項1又は2に記載の熱回収方法において、第1のガスと第2のガスを混合後、450℃以下に冷却した後、集塵装置により該混合ガス中の固形分を分離し、分離した固形分を溶融炉に導入し、溶融させることを特徴とする。なお、冷却後のガス温度は450℃以下であるが、好ましくは350℃以下、更に好ましくは300℃以下、最も好ましくは250℃以下である。 The invention according to claim 3 is the heat recovery method according to claim 1 or 2 , wherein after mixing the first gas and the second gas, the mixture is cooled to 450 ° C. or lower, and then the mixed gas is collected by a dust collector. The solid content is separated, and the separated solid content is introduced into a melting furnace and melted. The gas temperature after cooling is 450 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, and most preferably 250 ° C. or lower.

請求項に記載の発明は、可燃物を熱分解室と燃焼室で構成された流動層ガス化炉に供給し、可燃物を熱分解室にて熱分解して熱分解ガスと熱分解残渣を生成し、熱分解残渣を燃焼室で燃焼させ、燃焼室において粒径の大きな粒子を多く含む第1のガスを生成させ、熱分解室にて生成された熱分解ガスを溶融炉に導入して燃焼させ灰分を溶融して粒径の小さな粒子を多く含む第2のガスを生成させ、燃焼室からの第1のガスを直接熱交換するための伝熱面を有する熱回収装置に導入し、該導入したガスと受熱流体との間で熱交換を行って熱回収し、溶融炉から排出される第2のガスを第1のガスを熱回収装置に導入した箇所よりもガスの流れに対して下流側で熱回収装置に導入し第1のガスと混合して熱を回収することを特徴とする可燃物の処理方法にある。 The invention according to claim 4 supplies a combustible material to a fluidized bed gasification furnace composed of a pyrolysis chamber and a combustion chamber, and pyrolyzes the combustible material in the pyrolysis chamber to produce pyrolysis gas and pyrolysis residue. The pyrolysis residue is burned in the combustion chamber, the first gas containing many particles having a large particle size is generated in the combustion chamber, and the pyrolysis gas generated in the pyrolysis chamber is introduced into the melting furnace. introduced into the heat recovery unit with a heat transfer surface of the small particles to produce a second gas containing a large amount of, for the first gas direct heat exchange from the combustion chamber of the particle size by melting ash is burned Te and performs heat exchange between the introduced gas and the heat receiving fluid heat recovery, the second gas discharged from the solvent Toruro first gas of the gas than portions introduced into the heat recovery device The combustible material is characterized in that it is introduced into the heat recovery device downstream of the flow and mixed with the first gas to recover heat. Some sense way.

上記のように燃焼室からの粒径の大きな粒子を多く含む第1のガスを熱回収装置に導入して熱を回収し、次いでこの熱を回収されたガスに、溶融炉から排出される粒径の小さな粒子を多く含む第2のガスを第1のガスを熱回収装置に導入した箇所よりもガスの流れに対して下流側で熱回収装置に導入し第1のガスと混合して熱を回収するので、第1のガス中の粒径の大きな粒子が伝熱面へ衝突する際の研磨機能により、粒子の伝熱面への付着を防止することができる。 As described above, the first gas containing a large number of large particles from the combustion chamber is introduced into the heat recovery device to recover the heat, and then this heat is recovered into the recovered gas as particles discharged from the melting furnace. The second gas containing a large number of small-diameter particles is introduced into the heat recovery device downstream of the location where the first gas is introduced into the heat recovery device and mixed with the first gas to heat the gas. Therefore , the particles can be prevented from adhering to the heat transfer surface by the polishing function when the large particle in the first gas collides with the heat transfer surface.

請求項に記載の発明は、請求項に記載の可燃物の処理方法において、第1のガス及び第2のガスを熱回収装置で熱回収し、450℃以下に冷却した後、集塵装置により該ガス中の固形分を分離し、分離した固形分を溶融炉に導入し、溶融させることを特徴とする。なお、冷却後のガス温度は450℃以下であるが、好ましくは350℃以下、更に好ましくは300℃以下、最も好ましくは250℃以下である。 According to a fifth aspect of the present invention, in the method for treating a combustible material according to the fourth aspect , the first gas and the second gas are recovered by a heat recovery device, cooled to 450 ° C. or lower, and then collected. apparatus by separating solids of the gas, and introducing the solids separated in the solvent Toruro, characterized in that to melt. The gas temperature after cooling is 450 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, and most preferably 250 ° C. or lower.

請求項に記載の発明は、可燃物を熱分解して、熱分解ガスと熱分解残渣を生成させる熱分解室と熱分解残渣を燃焼させ粒径の大きい粒子を多く含む第1のガスを生成させる燃焼室とで構成された流動層ガス化炉と、熱分解室にて生成した熱分解ガスを溶融炉に導入して燃焼させ熱分解ガス流に含まれる灰分を溶融して粒径の小さい粒子を多く含む第2のガスを生成させる溶融炉と、第1のガスを流動層ガス化炉から直接導入する第1の導入口、第2のガスを溶融炉から直接導入する第2の導入口を備え、熱回収した後のガスを排出するための排出口を備え、該第1及び第2の導入口から導入されたガスと受熱流体との間で熱交換して熱を回収するための熱回収装置を備え、熱回収装置は受熱流体と導入されたガスとの間で熱交換するための伝熱面を備えるとともに、第1の導入口から導入されたガスの流れに対して下流に、第2の導入口を設けたことを特徴とする熱回収システムにある。 The invention according to claim 6 is a method of pyrolyzing a combustible material to produce a pyrolysis gas and a pyrolysis residue, burning the pyrolysis residue, and burning the pyrolysis residue to contain a first gas containing many particles having a large particle size. and fluidized-bed gasification furnace which is composed of a combustion chamber to produce, by melting ash content contained pyrolysis gas produced by thermal decomposition chamber to the pyrolysis gas stream is combusted by introducing into the melting furnace particle size A melting furnace for generating a second gas containing a large amount of small particles, a first inlet for directly introducing the first gas from the fluidized bed gasification furnace, and a second for directly introducing the second gas from the melting furnace. And an exhaust port for exhausting the gas after heat recovery, and heat is recovered by exchanging heat between the gas introduced from the first and second inlets and the heat receiving fluid. A heat recovery device for exchanging heat between the heat receiving fluid and the introduced gas. Provided with a heat transfer surface, on the downstream side for the the flow of gas introduced from the first inlet, in a heat recovery system characterized in that a second inlet.

上記のように粒径の大きい粒子を多く含む第1のガスを導入する第1の導入口の下流に、粒径の小さな粒子を多く含む第2のガスを導入する第2の導入口を設けたので、第1の導入口から導入された第1のガス中の粒径の大きい粒子が伝熱面へ衝突する際の研磨機能により、粒子の付着、特に第2の導入口から導入される付着し易い第2のガス中の粒径の小さな粒子の付着を防止することができる。また、第1の導入口を第2の導入口より上流側に設けることによって、粒径の大きい粒子を多く含む第1のガスが冷却された後に、粒径の小さな粒子を多く含む第2のガスが混入される結果となり、伝熱面に付着し易い粒径の小さな粒子を含む高温ガスが存在する領域をできるだけ作らないことにもなる。   As described above, the second introduction port for introducing the second gas containing many particles having a small particle diameter is provided downstream of the first introduction port for introducing the first gas containing many particles having a large particle size. Therefore, due to the polishing function when particles having a large particle diameter in the first gas introduced from the first introduction port collide with the heat transfer surface, the particles are adhered, particularly introduced from the second introduction port. It is possible to prevent adhesion of particles having a small particle diameter in the second gas that easily adheres. In addition, by providing the first inlet on the upstream side of the second inlet, the second gas containing many particles having a small particle size is cooled after the first gas containing many particles having a large particle size is cooled. As a result, gas is mixed in, and as a result, a region in which high-temperature gas containing particles having a small particle diameter that easily adheres to the heat transfer surface exists is not formed as much as possible.

請求項に記載の発明は、請求項に記載の熱回収システムにおいて、第1のガスと第2のガスを混合後、450℃以下に冷却した後、集塵装置により該混合ガス中の固形分を分離し、分離した固形分を溶融炉に導入し、溶融させることを特徴とする。なお、冷却後のガス温度は450℃以下であるが、好ましくは350℃以下、更に好ましくは300℃以下、最も好ましくは250℃以下である。 The invention according to claim 7 is the heat recovery system according to claim 6 , wherein the first gas and the second gas are mixed, then cooled to 450 ° C. or lower, and then collected in the mixed gas by a dust collector. The solid content is separated, and the separated solid content is introduced into a melting furnace and melted. The gas temperature after cooling is 450 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, and most preferably 250 ° C. or lower.

請求項に記載の発明は、可燃物を供給する可燃物供給手段から供給された可燃物を熱分解して、熱分解ガスと熱分解残渣を生成させる熱分解室と熱分解残渣を燃焼させ粒径の大きい粒子を多く含む第1のガスを生成させる燃焼室とで構成された流動層ガス化炉と、燃焼室にて発生した第1のガスを直接導入して受熱流体との間で熱交換して熱を回収する伝熱面を有する熱回収装置と、熱分解室にて発生した熱分解ガスを導入して燃焼させ熱分解ガス中の灰分を溶融し、粒径の小さい粒子を多く含む第2のガスを生成する溶融炉を備えた可燃物の処理装置において、溶融炉から排出される第2のガスを、該溶融炉で更に発生した粒子の輸送ガスとして、該粒子とともに第1のガスを熱回収装置に導入した箇所よりもガスの流れに対して下流側で熱回収装置に導入するガス導入手段を備えたことを特徴とする可燃物の処理装置にある。 According to the eighth aspect of the present invention, the combustible material supplied from the combustible material supply means for supplying the combustible material is pyrolyzed to burn the pyrolysis chamber and the pyrolysis residue that generate the pyrolysis gas and the pyrolysis residue. Between a fluidized bed gasification furnace composed of a combustion chamber for generating a first gas containing a large number of particles having a large particle size, and a heat receiving fluid by directly introducing the first gas generated in the combustion chamber A heat recovery device with a heat transfer surface that recovers heat by exchanging heat and a pyrolysis gas generated in the pyrolysis chamber is introduced and burned to melt the ash in the pyrolysis gas to produce particles with a small particle size. in the processing apparatus of combustibles having a melting furnace to produce a second gas containing a large amount, a second gas discharged from the melting furnace, as a transport gas for further generated particles the melting furnace, the with particles 1 downstream of the gas flow from the location where the gas 1 is introduced into the heat recovery device In processor combustibles, characterized in that it comprises a gas introducing means for introducing the heat recovery device.

上記のように溶融炉から排出される第2のガスを該溶融炉で更に発生した粒子の輸送ガスとして、該粒子とともに第1のガスを熱回収装置に導入した箇所よりもガスの流れに対して下流側で熱回収装置に導入するガス導入手段を備えたので、第1のガス中の粒径の大きな粒子が伝熱面へ衝突する際の研磨機能により粒子の付着、特に付着し易い粒径の小さい粒子を含む溶融炉から排出される第2のガスの粒子の付着を防止することができる。 As described above, the second gas discharged from the melting furnace is used as a transport gas for the particles further generated in the melting furnace, and the gas flow is more than the portion where the first gas is introduced into the heat recovery apparatus together with the particles. Since the gas introduction means for introducing the heat recovery device downstream is provided , the particles having a large particle size in the first gas are adhered to the heat transfer surface by the polishing function. a second attachment grain terminal of gas discharged from the melting furnace comprising small particles of size can be prevented.

請求項に記載の発明は、請求項に記載の可燃物の処理装置において、第1のガスを熱回収装置に導入して熱を回収する手段と、該熱の回収されたガスに溶融炉から排出される第2のガスを混合して更に熱を回収する手段を少なくとも備えたことを特徴とする。 The invention according to claim 9 is the combustible material processing apparatus according to claim 8 , wherein the first gas is introduced into the heat recovery device to recover the heat, and the heat is recovered in the recovered gas. It is characterized by comprising at least means for mixing the second gas discharged from the furnace and further recovering heat.

請求項10に記載の発明は、請求項又はに記載の可燃物の処理装置において、燃焼室からの流動媒体を熱分解室に移動させるための手段を備えたことを特徴とする。 The invention according to claim 10, in the processing apparatus of combustibles according to claim 8 or 9, the fluid medium from the combustion chamber, characterized in that it comprises means for moving the pyrolysis chamber.

請求項11に記載の発明は、請求項10に記載の可燃物の処理装置において、熱分解室からの第2のガスを溶融炉に導入する手段と、燃焼室からの第1のガスを熱回収装置に導入するための手段を備えたことを特徴とする。 An eleventh aspect of the present invention is the combustible material processing apparatus according to the tenth aspect , wherein the second gas from the pyrolysis chamber is introduced into the melting furnace, and the first gas from the combustion chamber is heated. Means for introducing into the recovery device is provided.

請求項12に記載の発明は、請求項乃至11のいずれか1項に記載の可燃物の処理装置において、熱回収装置は廃熱ボイラであることを特徴とする。 A twelfth aspect of the present invention is the combustible material treatment apparatus according to any one of the eighth to eleventh aspects, wherein the heat recovery device is a waste heat boiler.

請求項13に記載の発明は、請求項乃至12のいずれか1項に記載の可燃物の処理装置において、第1のガスと第2のガスを混合後、450℃以下に冷却した後、集塵装置により該混合ガス中の固形分を分離し、分離した固形分を溶融炉に導入し、溶融させることを特徴とする。なお、冷却後のガス温度は450℃以下であるが、好ましくは350℃以下、更に好ましくは300℃以下、最も好ましくは250℃以下である。 The invention according to claim 13 is the combustible material processing apparatus according to any one of claims 8 to 12 , wherein the first gas and the second gas are mixed and then cooled to 450 ° C. or lower, The solid content in the mixed gas is separated by a dust collector, and the separated solid content is introduced into a melting furnace and melted. The gas temperature after cooling is 450 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower, and most preferably 250 ° C. or lower.

また、可燃性廃棄物処理方法を、可燃性廃棄物を350℃以上の温度で熱分解してチャーと熱分解ガスを得る熱分解工程と、熱分解工程から発生した未熱分解物、タール、チャーを500℃以上の温度で燃焼させる燃焼工程と、熱分解工程で発生した熱分解ガスを1200℃以上で燃焼させると共に熱分解ガスに同伴した灰分を溶融させる溶融燃焼工程と、燃焼工程から排出された燃焼ガスを450℃以下になるまで顕熱を回収する熱回収工程と、燃焼ガスに含まれる灰分を該熱回収工程の下流で捕集する集塵工程とを具備し、集塵工程で捕集した灰分を溶融燃焼工程に供給して溶融させるようにする。   In addition, a combustible waste treatment method includes a pyrolysis process in which a combustible waste is pyrolyzed at a temperature of 350 ° C. or more to obtain char and pyrolysis gas, an unthermally decomposed product generated from the pyrolysis process, tar, Combustion process in which char is combusted at a temperature of 500 ° C. or higher, a pyrolysis gas generated in the pyrolysis process is combusted at 1200 ° C. or higher, and an ash content accompanying the pyrolysis gas is melted. A heat recovery step of recovering sensible heat until the burned combustion gas reaches 450 ° C. or less, and a dust collection step of collecting ash contained in the combustion gas downstream of the heat recovery step. The collected ash is supplied to the melting combustion process and melted.

可燃性廃棄物を焼却して出てくる燃焼ガスには灰分の粒子が含まれるが、この粒子の大きさは焼却物の物理的性状、燃焼反応に伴う化学変化、燃焼ガスの上昇等の様々な要因で決まる。一般的に都市ゴミを焼却して出てくる灰は焼却炉の形式によって違いがあるが、最大粒径は数10ミクロンから100ミクロン程度であり、溶融炉を通過した燃焼ガスに含まれる灰粒子は殆ど10ミクロン以下である。   Combustion gas generated by incineration of combustible waste contains ash particles, but the size of these particles varies depending on the physical properties of the incinerated materials, chemical changes associated with combustion reactions, combustion gas rises, etc. It depends on various factors. Generally, the ash that is produced by incineration of municipal waste varies depending on the type of incinerator, but the maximum particle size is about several tens to 100 microns, and the ash particles contained in the combustion gas that has passed through the melting furnace. Is almost 10 microns or less.

ガス化溶融炉が商用化される以前に数多くの都市ゴミの焼却設備として採用されていた流動層焼却炉は、信頼性の高い焼却技術で、溶融炉を有していないため灰粒子のシリカ、アルミナ、カルシア成分が多く、且つ燃焼ガスに同伴するダストの粒子径も比較的大きかったため、ボイラ、エコノマイザ、空気予熱器といった熱回収工程で使用される機器の伝熱面への灰付着は少なく、大きな問題になることはなかった。   The fluidized bed incinerator, which was used as an incineration facility for many municipal wastes before the gasification melting furnace was commercialized, is a highly reliable incineration technology, because it does not have a melting furnace, so silica of ash particles, Because there are many alumina and calcia components and the particle size of the dust accompanying the combustion gas is relatively large, there is little ash adhesion on the heat transfer surface of equipment used in heat recovery processes such as boilers, economizers, air preheaters, It never became a big problem.

また、このような可燃性廃棄物処理方法においては、燃焼工程から排出される燃焼ガスは溶融炉を経由しないので、この燃焼ガス中の灰粒子の形状は従来の流動層焼却炉から排出される燃焼ガス中の灰粒子の形状と同様であり、熱回収工程で熱回収を行っても熱回収設備の伝熱面へ付着してトラブルを招く恐れはない。   Further, in such a combustible waste treatment method, the combustion gas discharged from the combustion process does not pass through the melting furnace, so the shape of the ash particles in the combustion gas is discharged from the conventional fluidized bed incinerator. It is the same as the shape of the ash particles in the combustion gas, and even if heat recovery is performed in the heat recovery process, there is no risk that it will adhere to the heat transfer surface of the heat recovery facility and cause trouble.

また、上記可燃性廃棄物処理方法において、熱分解工程と燃焼工程は共に流動層炉で実施され、熱分解工程における熱分解に必要な熱量は燃焼工程を実施する流動層炉の流動媒体の顕熱で賄われることを特徴とする。   In the combustible waste treatment method described above, both the pyrolysis step and the combustion step are performed in a fluidized bed furnace, and the amount of heat required for the pyrolysis in the pyrolysis step is the manifestation of the fluidized medium in the fluidized bed furnace in which the combustion step is performed. It is characterized by being covered with heat.

上記のように熱分解工程における熱分解に必要な熱量は燃焼工程を実施する流動層炉の流動媒体の顕熱で賄われるので、助燃焼や燃焼用酸素供給源としての酸素発生装置等が必要でなく、ランニングコストやイニシャルコストが安価となる。   As described above, the amount of heat required for pyrolysis in the pyrolysis process is covered by the sensible heat of the fluidized medium in the fluidized bed furnace that carries out the combustion process, so an oxygen generator, etc., is required as an auxiliary combustion or oxygen source for combustion. In addition, running costs and initial costs are low.

また、上記可燃性廃棄物処理方法において、熱分解工程を650℃以下、好ましくは600℃以下、更に好ましくは550℃以下に維持し、燃焼工程の温度を900℃以下、好ましくは800℃以下、更に好ましくは700℃以下に保つことを特徴とする。   In the combustible waste treatment method, the pyrolysis step is maintained at 650 ° C. or lower, preferably 600 ° C. or lower, more preferably 550 ° C. or lower, and the temperature of the combustion step is 900 ° C. or lower, preferably 800 ° C. or lower. More preferably, the temperature is maintained at 700 ° C. or lower.

上記のように、都市ゴミ等の可燃性廃棄物を変動少なく安定に熱分解ガス化するには、650℃以下の低い温度で行うのが好ましく、550℃以下で行うことにより、更に安定した熱分解ガス化が実施できる。また、熱分解工程においても都市ゴミ等の可燃性廃棄物を変動少なく安定に燃焼させるためには低温を維持することが好ましく、700℃以下の低い温度で行うことが好ましい。また、900℃以上の高温では特に分散ノズル等の金属部分の耐熱性等に問題がある。   As described above, in order to stably pulverize combustible waste such as municipal waste with little fluctuation, it is preferable to carry out at a low temperature of 650 ° C. or less, and by carrying out at 550 ° C. or less, more stable heat Decomposition gasification can be performed. Also, in the pyrolysis process, it is preferable to maintain a low temperature in order to stably burn combustible waste such as municipal waste with little fluctuation, and it is preferable to carry out at a low temperature of 700 ° C. or lower. In addition, at a high temperature of 900 ° C. or higher, there is a problem in heat resistance of a metal part such as a dispersion nozzle.

また、可燃性廃棄物処理装置を、可燃性廃棄物を350℃以上の温度で熱分解してチャーと熱分解ガスを得る熱分解室と、該熱分解室から発生した未熱分解物、タール、チャーを500℃以上の温度で燃焼させる燃焼室と、該熱分解室で発生した熱分解ガスを1200℃以上で燃焼させると共に熱分解ガスに同伴した灰分を溶融させる溶融炉と、該燃焼室から排出された燃焼ガスを450℃以下になるまで顕熱を回収する熱回収装置と、該燃焼ガスに含まれる灰分を該熱回収装置の下流で捕集する集塵装置とを具備し、集塵装置で捕集した灰分を前記溶融炉に供給して溶融させるようにする。   In addition, the combustible waste treatment apparatus includes a pyrolysis chamber in which the combustible waste is pyrolyzed at a temperature of 350 ° C. or higher to obtain char and pyrolysis gas, an unpyrolyzed product generated from the pyrolysis chamber, tar A combustion chamber for burning char at a temperature of 500 ° C. or higher, a melting furnace for burning pyrolysis gas generated in the thermal decomposition chamber at 1200 ° C. or higher and melting ash accompanying the pyrolysis gas, and the combustion chamber A heat recovery device that recovers sensible heat until the combustion gas discharged from the reactor reaches 450 ° C. or less, and a dust collector that collects ash contained in the combustion gas downstream of the heat recovery device. The ash collected by the dust device is supplied to the melting furnace to be melted.

上記のように、燃焼室から排出される燃焼ガスは溶融炉を経由しないので、この燃焼ガス中の灰粒子の形状は従来の流動層焼却炉から排出される燃焼ガス中の灰粒子の形状と同様であり、請求項1に記載の発明と同様、熱回収装置で熱回収を行っても伝熱面へ付着してトラブルを招く恐れはない。また、熱回収装置の下流で集塵装置で捕集した灰分を溶融炉に供給するので、例えば集塵装置にサイクロンを用いることにより微粒子になった低沸点物質や金属塩類を捕集されて循環することがなく、スラグ化率を向上させることができる。   As described above, since the combustion gas discharged from the combustion chamber does not pass through the melting furnace, the shape of the ash particles in the combustion gas is the same as the shape of the ash particles in the combustion gas discharged from the conventional fluidized bed incinerator. Similarly to the first aspect of the present invention, even if heat recovery is performed by the heat recovery device, there is no possibility that it will adhere to the heat transfer surface and cause trouble. In addition, the ash collected by the dust collector downstream of the heat recovery device is supplied to the melting furnace. For example, cyclones are used in the dust collector to collect and circulate the low-boiling substances and metal salts that have become fine particles. Without this, the slag conversion rate can be improved.

また、上記可燃性廃棄物処理装置において、熱分解室と燃焼室が共に流動層炉で構成されたことを特徴とする。   In the combustible waste treatment apparatus, the pyrolysis chamber and the combustion chamber are both constituted by a fluidized bed furnace.

上記のように熱分解室と燃焼室が共に流動層炉で構成することにより、熱分解室における可燃性廃棄物の安定した熱分解ガス化が可能になると共に、燃焼室は流動層焼却炉となり、ここからの燃焼ガスは従来の流動層焼却炉から排出される燃焼ガス中の灰粒子の形状と同様であり、熱回収工程で熱回収を行っても使用される機器の伝熱面へ付着してトラブルを招く恐れはない。   As described above, the pyrolysis chamber and the combustion chamber are both composed of a fluidized bed furnace, which enables stable pyrolysis gasification of combustible waste in the pyrolysis chamber, and the combustion chamber becomes a fluidized bed incinerator. The combustion gas from here is the same as the shape of the ash particles in the combustion gas discharged from the conventional fluidized bed incinerator, and it adheres to the heat transfer surface of the equipment used even if heat recovery is performed in the heat recovery process There is no fear of trouble.

また、上記可燃性廃棄物処理装置において、熱分解室を構成する流動層炉と燃焼室を構成する流動層炉の流動媒体は循環していることを特徴とする。   In the combustible waste treatment apparatus, the fluidized bed furnace constituting the thermal decomposition chamber and the fluidized bed furnace constituting the combustion chamber are circulated.

上記のように熱分解室を構成する流動層炉と燃焼室を構成する流動層炉の流動媒体は循環しているので、熱分解室の流動層に留まった未熱分解物、タール、チャーは流動媒体と伴に燃焼室に移動し、該燃焼室でこの未熱分解物、タール、チャーは燃焼する。そしてこの燃焼により加熱された燃焼室の流動層の流動媒体を熱分解室に移動し、熱分解ガス化熱として利用される。   Since the fluidized medium in the fluidized bed furnace constituting the pyrolysis chamber and the fluidized bed furnace constituting the combustion chamber circulates as described above, unheated decomposition products, tar and char remaining in the fluidized bed in the pyrolysis chamber are It moves to the combustion chamber along with the fluid medium, and the unheated decomposition product, tar and char are combusted in the combustion chamber. Then, the fluidized medium in the fluidized bed of the combustion chamber heated by this combustion is moved to the thermal decomposition chamber and used as thermal decomposition gasification heat.

また、上記可燃性廃棄物処理装置において、熱分解室を構成する流動層炉の流動層の流動化ガスとして水蒸気、炭酸ガス、窒素ガス、燃焼排ガスを用いることを特徴とする。   The combustible waste treatment apparatus is characterized in that water vapor, carbon dioxide gas, nitrogen gas, or combustion exhaust gas is used as the fluidizing gas in the fluidized bed of the fluidized bed furnace constituting the thermal decomposition chamber.

上記のように熱分解室を構成する流動層炉の流動層の流動化ガスとして水蒸気、炭酸ガス、窒素ガスを用いることにより、熱分解室に供給された可燃性廃棄物の部分燃焼がなく、この燃焼による流動媒体の加熱がないから、燃焼室からの流動媒体の熱を効果的に吸収できる。また、熱分解室での可燃性廃棄物の部分燃焼がないことから、熱分解ガス中に燃焼ガスが含まれることなく、熱分解室から発熱量の高いガスが得られ、このガスが溶融炉に供給されることになり、溶融炉で助燃料を供給することなく、1200℃以上の高温燃焼をさせることが可能となる。   By using water vapor, carbon dioxide gas, nitrogen gas as the fluidizing gas of the fluidized bed of the fluidized bed furnace constituting the pyrolysis chamber as described above, there is no partial combustion of combustible waste supplied to the pyrolysis chamber, Since there is no heating of the fluid medium by this combustion, the heat of the fluid medium from the combustion chamber can be effectively absorbed. In addition, since there is no partial combustion of combustible waste in the pyrolysis chamber, a gas with a high calorific value is obtained from the pyrolysis chamber without the combustion gas being contained in the pyrolysis gas. Thus, high-temperature combustion at 1200 ° C. or higher can be performed without supplying auxiliary fuel in the melting furnace.

以上説明したように各請求項に記載の発明によれば、下記のような優れた効果が得られる。   As described above, according to the invention described in each claim, the following excellent effects can be obtained.

請求項1乃至に記載の発明によれば、粒径の大きな粒子を多く含む第1のガスから熱を回収し、次いで粒径の小さな粒子を多く含む第2のガスを混合するので、第1のガス中の粒径の大きい粒子が伝熱面に衝突した際の該伝熱面を研磨する研磨機能により、粒子の付着、特に第2のガス中の伝熱面に付着し易い粒径の小さな粒子の伝熱面への付着を防止することができる熱回収方法を提供できる。 According to the first to third aspects of the present invention, heat is recovered from the first gas containing many particles having a large particle size, and then the second gas containing many particles having a small particle size is mixed. Due to the polishing function for polishing the heat transfer surface when a particle having a large particle size in the gas 1 collides with the heat transfer surface, the particle is likely to adhere to the heat transfer surface in the second gas, in particular. It is possible to provide a heat recovery method capable of preventing adhesion of small particles to the heat transfer surface.

請求項4乃至5に記載の発明によれば、燃焼室からの第1ガスを熱回収装置に導入して熱を回収し、熱分解室からの熱分解ガスを溶融炉に導入し、該溶融炉から排出される第2のガスを熱回収装置に導入するので、この第1のガスは粒径の大きな粒子を多く含むガスであるから、該粒子が伝熱面に衝突した際の研磨機能により、粒子の伝熱面への付着を防止することができる可燃物の処理方法を提供できる。 According to invention of Claim 4 thru | or 5 , the 1st gas from a combustion chamber is introduce | transduced into a heat recovery apparatus, heat | fever is collect | recovered, pyrolysis gas from a thermal decomposition chamber is introduce | transduced into a melting furnace, and this melting | fusing Since the second gas discharged from the furnace is introduced into the heat recovery device, the first gas is a gas containing many particles having a large particle size, and therefore the polishing function when the particles collide with the heat transfer surface. Thus, it is possible to provide a method for treating a combustible material that can prevent the particles from adhering to the heat transfer surface.

請求項4乃至5に記載の発明によれば、燃焼室からの粒径の大きな粒子を多く含む第1のガスを熱回収装置に導入して熱を回収し、次いでこの熱を回収されたガスに、溶融炉から排出される粒径の小さな粒子を多く含む第2のガスとを混合して熱を回収することにより、第1のガス中の粒径の大きな粒子が伝熱面に衝突する際の研磨機能により、更に粒子の伝熱面への付着を防止することができる可燃物の処理方法を提供できる。 According to the inventions described in claims 4 to 5 , the first gas containing a large amount of particles having a large particle diameter from the combustion chamber is introduced into the heat recovery device to recover the heat, and then the gas from which the heat has been recovered In addition, the heat recovery is performed by mixing the second gas containing many particles having a small particle size discharged from the melting furnace, so that the particles having a large particle size in the first gas collide with the heat transfer surface. A combustible treatment method that can further prevent particles from adhering to the heat transfer surface can be provided by the polishing function.

請求項6乃至7に記載の発明によれば、粒径の大きい粒子を多く含む第1のガスを導入する第1の導入口の下流に、粒径の小さな粒子を多く含む第2のガスを導入する第2の導入口を設けたので、第1の導入口から導入された第1のガス中の粒径の大きい粒子が伝熱面へ衝突する際の研磨機能により、粒子の付着、特に第2の導入口から導入される付着し易い第2のガス中の粒径の小さな粒子の付着を防止することができる熱回収システムを提供できる。また、第1の導入口を第2の導入口より上流側に設けることによって、粒径の大きい粒子を多く含む第1のガスが冷却された後に、粒径の小さな粒子を多く含む第2のガスが混入される結果となり、伝熱面に付着し易い粒径の小さな粒子を含む高温ガスが存在する領域をできるだけ作らないことにもなる。 According to the invention described in claims 6 to 7 , the second gas containing many particles having a small particle diameter is provided downstream of the first inlet for introducing the first gas containing many particles having a large particle diameter. Since the second introduction port to be introduced is provided, due to the polishing function when the particles having a large particle size in the first gas introduced from the first introduction port collide with the heat transfer surface, the adhesion of the particles, particularly It is possible to provide a heat recovery system that can prevent adhesion of particles having a small particle diameter in the second gas that is easily introduced from the second introduction port. In addition, by providing the first inlet on the upstream side of the second inlet, the second gas containing many particles having a small particle size is cooled after the first gas containing many particles having a large particle size is cooled. As a result, gas is mixed in, and as a result, a region in which high-temperature gas containing particles having a small particle diameter that easily adheres to the heat transfer surface exists is not formed as much as possible.

請求項乃至13に記載の発明によれば、溶融炉から排出される第2のガスを該溶融炉で更に発生した粒子の輸送ガスとして、該粒子とともに第1のガスを熱回収装置に導入した箇所よりもガスの流れに対して下流側で熱回収装置に導入するガス導入手段を備えたので、第1のガス中の粒径の大きな粒子が伝熱面へ衝突する際の研磨機能により、粒子の付着、特に付着し易い粒径の小さな粒子を含む溶融炉から排出される第2のガスの粒子の付着を防止することができる可燃物の処理装置を提供できる。 According to the invention described in claims 8 to 13, the second gas discharged from the melting furnace is used as a transport gas for the particles further generated in the melting furnace, and the first gas is introduced into the heat recovery apparatus together with the particles. Since the gas introduction means for introducing the gas into the heat recovery apparatus is provided downstream of the gas flow with respect to the gas flow, the polishing function when particles having a large particle size in the first gas collide with the heat transfer surface is provided. it can provide a processing apparatus combustibles which can prevent the adhesion of the second grain terminal of gas discharged from the melting furnace including a small grain terminal of easy particle size adhering deposition of particles, in particular.

以下、本発明の実施の形態例を図面に基づいて説明する。図3は本発明に係る可燃性廃棄物処理装置のプロセスフローを示す図である。可燃性廃棄物処理装置は図示するように、ガス化炉1、溶融炉2、ボイラ3、エコノマイザ又は空気予熱器等の熱回収機器4、サイクロン等の集塵装置5、ガス冷却塔6、バグフィルタ7、誘引ブロワー8、触媒脱硝塔9及び煙突10を具備する構成である。ガス化炉1には熱分解室1−1、燃焼室1−2に分れた統合型の流動層ガス化炉が採用されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a diagram showing a process flow of the combustible waste treatment apparatus according to the present invention. As shown in the figure, the combustible waste treatment apparatus includes a gasification furnace 1, a melting furnace 2, a boiler 3, a heat recovery device 4 such as an economizer or an air preheater, a dust collector 5 such as a cyclone, a gas cooling tower 6, a bug The filter 7, the induction blower 8, the catalyst denitration tower 9, and the chimney 10 are provided. The gasification furnace 1 employs an integrated fluidized bed gasification furnace divided into a pyrolysis chamber 1-1 and a combustion chamber 1-2.

可燃性廃棄物は主にガス化炉1の熱分解室1−1側に供給され、そこで熱分解され、熱分解ガス、タール、チャー、飛灰等を発生させる。これらのうち流動層内に留まらないタール、チャー、飛灰等を含む熱分解ガスG1は全て溶融炉2に供給され、該溶融炉2で1200℃以上の高温で燃焼され、灰分は溶融され、溶融スラグとなって溶融炉2の外に排出される。   The combustible waste is mainly supplied to the pyrolysis chamber 1-1 side of the gasification furnace 1, where it is pyrolyzed to generate pyrolysis gas, tar, char, fly ash and the like. Of these, pyrolysis gas G1 containing tar, char, fly ash, etc. not staying in the fluidized bed is all supplied to the melting furnace 2 and burned at a high temperature of 1200 ° C. or higher in the melting furnace 2, and the ash is melted. It becomes molten slag and is discharged out of the melting furnace 2.

一方、ガス化炉1の熱分解室1−1の流動層内に留まった熱分解残渣は流動媒体と伴に燃焼室1−2に流入する。燃焼室1−2の流動層は550℃〜700℃程度、更に流動層上部のフリーボード部は850℃〜950℃に維持されるように流動空気、二次空気が供給されており、全体の空気比は1以上に保たれ完全燃焼される。燃焼室1−2には熱分解室1−1を経由して流入する熱分解残渣を燃焼させるだけの場合もあるが、可燃性廃棄物の熱分解特性、燃焼特性に応じて直接可燃性廃棄物を供給してもよい。   On the other hand, the pyrolysis residue remaining in the fluidized bed of the pyrolysis chamber 1-1 of the gasification furnace 1 flows into the combustion chamber 1-2 together with the fluidized medium. Fluidized air and secondary air are supplied so that the fluidized bed in the combustion chamber 1-2 is maintained at about 550 ° C. to 700 ° C., and the free board portion at the top of the fluidized bed is maintained at 850 ° C. to 950 ° C. The air ratio is maintained at 1 or more and complete combustion is performed. The combustion chamber 1-2 may only burn the pyrolysis residue that flows through the pyrolysis chamber 1-1, but the combustible waste is directly combustible depending on the pyrolysis characteristics and combustion characteristics of the combustible waste. Goods may be supplied.

ガス化炉1の燃焼室1−2から出た燃焼ガスG2は850℃〜950℃の温度でボイラ3に流入し、700℃程度にまで冷却された後、上記溶融炉2から排出された高温の燃焼ガスG3と混合される。このときの混合位置で混合後のガス温度が1100℃、好ましくは1050℃、更に好ましくは1000℃を越えることのないようなポイントで混合される。   The combustion gas G2 emitted from the combustion chamber 1-2 of the gasification furnace 1 flows into the boiler 3 at a temperature of 850 ° C. to 950 ° C., cooled to about 700 ° C., and then discharged from the melting furnace 2. Is mixed with the combustion gas G3. At the mixing position at this time, the mixed gas is mixed at such a point that the gas temperature after mixing does not exceed 1100 ° C., preferably 1050 ° C., more preferably 1000 ° C.

上記混合された燃焼ガスG4はボイラ3で450℃程度にまで冷却され、更にエコノマイザ又は空気予熱器等の熱回収機器4で200℃程度にまで冷却され、サイクロン等の集塵装置5で脱塵される。集塵装置5で集塵された灰11は溶融炉2に戻され、該溶融炉2で溶融される。エコノマイザ又は空気予熱器等の熱交換器は省略されても良く、その場合は450℃以下の温度で集塵される。集塵温度としては好ましいのは350℃以下であるが、更に好ましいのは300℃以下、最も好ましいのは250℃以下である。350℃以下の条件が好ましいのは、集塵装置の材質として安価な炭素鋼を用いることができることと、腐食条件が大きく緩和されるからである。また300℃以下、250℃以下と温度が下がるほど、低融点金属が固体状態で存在する確率が高くなるため、集塵器内での低融点金属類によるトラブルも軽減される。なお、本可燃性廃棄物処理装置では、脱塵後の燃焼ガスG4はガス冷却塔6を経てバグフィルタ7で最終脱塵されるようになっているが、本発明においては、このガス冷却塔6は省略できる場合が多い。   The mixed combustion gas G4 is cooled to about 450 ° C. by the boiler 3, further cooled to about 200 ° C. by a heat recovery device 4 such as an economizer or an air preheater, and dedusted by a dust collector 5 such as a cyclone. Is done. The ash 11 collected by the dust collector 5 is returned to the melting furnace 2 and melted in the melting furnace 2. A heat exchanger such as an economizer or an air preheater may be omitted, in which case dust is collected at a temperature of 450 ° C. or lower. The dust collection temperature is preferably 350 ° C. or less, more preferably 300 ° C. or less, and most preferably 250 ° C. or less. The conditions of 350 ° C. or lower are preferable because inexpensive carbon steel can be used as the material of the dust collector and the corrosion conditions are greatly relaxed. Further, as the temperature decreases to 300 ° C. or lower and 250 ° C. or lower, the probability that a low melting point metal exists in a solid state increases, so troubles due to low melting point metals in the dust collector are reduced. In the combustible waste treatment apparatus, the dust-burned combustion gas G4 is finally dedusted by the bag filter 7 through the gas cooling tower 6. In the present invention, this gas cooling tower is used. 6 can often be omitted.

都市ゴミ、廃プラスチック、シュレッダダスト、建設廃棄物、廃タイヤ等の可燃性廃棄物を焼却して出てくる燃焼ガス中には灰分の粒子が含まれるが、この粒子の大きさは焼却物の物理的性状、燃焼反応に伴う化学変化、燃焼ガスの上昇等の様々な要因で決まる。一般的に都市ゴミを焼却して出てくる灰は焼却炉の形式によって違いがあるが、最大粒径は数10ミクロンから100ミクロン程度であるが、溶融炉2を通過した燃焼ガスに含まれる灰粒子は殆ど10ミクロン以下である。   The combustion gas generated from incineration of combustible waste such as municipal waste, waste plastic, shredder dust, construction waste, and waste tires contains ash particles, but the size of these particles is It depends on various factors such as physical properties, chemical changes accompanying combustion reactions, and rising combustion gases. Generally, the ash that is generated by incineration of municipal waste varies depending on the type of incinerator, but the maximum particle size is about several tens of microns to 100 microns, but it is included in the combustion gas that has passed through the melting furnace 2. Ash particles are almost 10 microns or less.

ガス化溶融炉が製品化される以前に数多くの都市ゴミの焼却設備として採用されていた流動層焼却炉は、信頼性の高い焼却技術で、溶融炉を有していないため排ガス処理工程に導入される排ガス中の灰粒子はその成分中にシリカ、アルミナ、カルシア成分が多く、且つ粒子径も比較的大きかった。そのため、ボイラ、エコノマイザ、空気予熱器といった熱回収工程で使用される機器の伝熱面への灰付着は少なく、大きな問題になることはなかった。   The fluidized bed incinerator, which was used as an incineration facility for many municipal wastes before the gasification melting furnace was commercialized, is a highly reliable incineration technology and has been introduced into the exhaust gas treatment process because it does not have a melting furnace. The ash particles contained in the exhaust gas contained a large amount of silica, alumina, and calcia components, and the particle diameter was relatively large. Therefore, ash adhesion to the heat transfer surface of equipment used in the heat recovery process such as a boiler, an economizer, and an air preheater is small and does not become a big problem.

本実施形態の可燃性廃棄物処理装置におけるガス化炉1の燃焼室1−2から排出される燃焼ガスG2は溶融炉2を経由しないので、この燃焼ガスG2中の灰粒子の性状・形状は従来の流動層焼却炉から排出される燃焼ガス中の灰粒子の性状・形状と同様であり、ボイラ3及びエコノマイザ又は空気予熱器等の熱回収機器4の熱回収工程で使用される機器の伝熱面へ付着してトラブルを招く恐れはない。   Since the combustion gas G2 discharged from the combustion chamber 1-2 of the gasification furnace 1 in the combustible waste treatment apparatus of this embodiment does not pass through the melting furnace 2, the properties and shapes of the ash particles in the combustion gas G2 are It is the same as the nature and shape of the ash particles in the combustion gas discharged from the conventional fluidized bed incinerator, and the transmission of equipment used in the heat recovery process of the heat recovery equipment 4 such as the boiler 3 and the economizer or the air preheater. There is no risk of sticking to the hot surface and causing trouble.

ガス化炉1の熱分解室1−1からの熱分解ガスG1は溶融炉2で燃焼され、溶融炉2から排出される燃焼ガスG3は溶融炉2を経由するため、従来のガス化溶融炉から排出される燃焼ガスと同様、該燃焼ガス中に微粒の灰粒子が含まれるが、本発明者等が行った試験の結果によると、統合型の流動層ガス化炉であるガス化炉1で、都市ゴミを処理した場合、熱分解室1−1からの熱分解ガスG1のガス量と燃焼室1−2からの燃焼ガスG2のガス量の比率は、約1:3程度で燃焼室1−2からの燃焼ガスG2の方が多いので、ボイラ3で混合後のガスの灰粒子径分布は従来の流動層焼却炉のものに比較的近く、ボイラ3及びエコノマイザ又は空気予熱器等の熱回収機器4の熱回収工程で使用される機器の伝熱面へ付着してトラブルを招く恐れは少ない。   The pyrolysis gas G1 from the pyrolysis chamber 1-1 of the gasification furnace 1 is combusted in the melting furnace 2, and the combustion gas G3 discharged from the melting furnace 2 passes through the melting furnace 2, so that the conventional gasification melting furnace is used. The combustion gas contains fine ash particles in the same manner as the combustion gas discharged from the gas. According to the results of tests conducted by the present inventors, the gasification furnace 1 is an integrated fluidized bed gasification furnace. When municipal waste is treated, the ratio of the amount of pyrolysis gas G1 from the pyrolysis chamber 1-1 and the amount of combustion gas G2 from the combustion chamber 1-2 is about 1: 3 and the combustion chamber Since the combustion gas G2 from 1-2 is more, the ash particle size distribution of the gas after mixing in the boiler 3 is relatively close to that of the conventional fluidized bed incinerator, such as the boiler 3 and the economizer or air preheater. There is a risk of causing trouble by adhering to the heat transfer surface of equipment used in the heat recovery process of the heat recovery equipment 4 Less.

溶融炉2から排出される燃焼ガスG3には前述のように粒径の小さい灰粒子が混入する。この燃焼ガスG3の小粒径灰粒子はボイラ3の伝熱面に付着するため、ボイラ3に燃焼ガスG3のみを導入した場合は、伝熱面への灰付着を促進してしまうが、ここでは、ボイラ3にガス化炉1の燃焼室1−2から排出される燃焼ガスG2も導入している。この燃焼ガスG2中には粒径の大きい灰粒子が混入しているから、この粒径の大きい灰粒子は伝熱面に衝突した際、その部分を研磨する機能を有し、灰粒子の付着を防止する効果がある。従って、燃焼室1−2からの燃焼ガスG2、溶融炉2からの燃焼ガスG3をボイラ3に導入するに際し、燃焼ガスG2を燃焼ガスG3と合流させて導入するか、又は燃焼ガスG2の導入口を燃焼ガスG3の導入口より上流側に設け、燃焼ガスG2を燃焼ガスG3より上流側から導入することにより、粒径の小さい灰粒子が混入する燃焼ガスG3のみが存在する領域を作らないようにする必要がある。   As described above, ash particles having a small particle size are mixed in the combustion gas G3 discharged from the melting furnace 2. Since the small particle size ash particles of the combustion gas G3 adhere to the heat transfer surface of the boiler 3, when only the combustion gas G3 is introduced into the boiler 3, the ash adhesion to the heat transfer surface is promoted. Then, the combustion gas G2 discharged | emitted from the combustion chamber 1-2 of the gasification furnace 1 is also introduce | transduced into the boiler 3. FIG. Since ash particles having a large particle size are mixed in the combustion gas G2, this ash particle having a large particle size has a function of polishing the portion when it collides with the heat transfer surface, and the adhesion of the ash particles. There is an effect to prevent. Therefore, when introducing the combustion gas G2 from the combustion chamber 1-2 and the combustion gas G3 from the melting furnace 2 into the boiler 3, the combustion gas G2 is introduced together with the combustion gas G3, or the combustion gas G2 is introduced. By providing the inlet upstream from the inlet of the combustion gas G3 and introducing the combustion gas G2 from the upstream side of the combustion gas G3, a region where only the combustion gas G3 into which ash particles having a small particle size are present does not exist. It is necessary to do so.

また、燃焼ガスG2の導入口を燃焼ガスG3の導入口より上流側に設けることによって、燃焼室1−2からの燃焼ガスG2がボイラ3内で冷却された後に、溶融炉2からの高温の燃焼ガスG3が混入される結果となり、伝熱面に付着しやすい溶融したスラグ粒子を含む高温ガスが存在する領域をできるだけ作らないことにもなる。   Further, by providing the inlet for the combustion gas G2 upstream of the inlet for the combustion gas G3, the combustion gas G2 from the combustion chamber 1-2 is cooled in the boiler 3 and then the high temperature from the melting furnace 2 is increased. As a result, the combustion gas G3 is mixed, and as a result, a region where high-temperature gas containing molten slag particles that easily adhere to the heat transfer surface is present is not formed as much as possible.

図4は本発明に係る他の可燃性廃棄物処理装置のプロセスフローを示す図である。図示するようにここでは、ガス冷却塔6の下流に配置されたバグフィルタ12で捕集した灰13を溶融炉2に供給して溶融している。この場合、捕集した灰13の全量を溶融炉2に供給すると、微粒の灰が系内に閉じ込められ、循環する恐れがあるので、調節弁V1、V2の操作により灰13の一部13aは抜き取る。バグフィルタ12から出た燃焼ガスG4には活性炭14を添加し、該活性炭14に有害物を吸着させ、バグフィルタ7でこの有害物を吸着した活性炭14を捕集除去する。   FIG. 4 is a diagram showing a process flow of another combustible waste treatment apparatus according to the present invention. As shown in the drawing, here, the ash 13 collected by the bag filter 12 disposed downstream of the gas cooling tower 6 is supplied to the melting furnace 2 and melted. In this case, if the total amount of the collected ash 13 is supplied to the melting furnace 2, fine ash is trapped in the system and may circulate. Therefore, the operation of the control valves V1 and V2 causes a part 13a of the ash 13 to be Pull out. Activated carbon 14 is added to the combustion gas G4 emitted from the bag filter 12 to adsorb harmful substances on the activated carbon 14, and the activated carbon 14 adsorbing the harmful substances is collected and removed by the bag filter 7.

図5はガス化炉1の一例である統合型の流動層ガス化炉の構成例を示す図である。ガス化炉1は熱分解室21(熱分解室1−1に対応)、燃焼室22(燃焼室1−2に対応)、熱回収室23を備えている。熱分解室21に供給された可燃性廃棄物34は、熱分解され、熱分解ガス、タール、チャー、飛灰等を発生させる。タール、チャーや飛灰等を含む熱分解ガスG1は図3及び図4に示すように、溶融炉2に流入する。熱分解室21の流動層内に残ったタール、チャー等の未熱分解物は流動媒体に伴って、矢印Aに示すように仕切り壁25の開口部26から燃焼室22に流入する。このようにして熱分解室21から燃焼室22に流入したチャー等の未熱分解物は燃焼室22で燃焼して燃焼ガスG2を発すると共に、その燃焼熱により流動媒体を加熱する。燃焼ガスG2は図3及び図4に示すように、ボイラ3に流入する。   FIG. 5 is a diagram illustrating a configuration example of an integrated fluidized bed gasification furnace which is an example of the gasification furnace 1. The gasification furnace 1 includes a pyrolysis chamber 21 (corresponding to the pyrolysis chamber 1-1), a combustion chamber 22 (corresponding to the combustion chamber 1-2), and a heat recovery chamber 23. The combustible waste 34 supplied to the pyrolysis chamber 21 is pyrolyzed to generate pyrolysis gas, tar, char, fly ash and the like. The pyrolysis gas G1 containing tar, char, fly ash, etc. flows into the melting furnace 2 as shown in FIGS. Unheated decomposition products such as tar and char remaining in the fluidized bed of the pyrolysis chamber 21 flow into the combustion chamber 22 from the opening 26 of the partition wall 25 as indicated by an arrow A along with the fluidized medium. The unheated decomposition product such as char flowing from the thermal decomposition chamber 21 into the combustion chamber 22 in this manner is burned in the combustion chamber 22 to generate combustion gas G2, and the fluidized medium is heated by the combustion heat. The combustion gas G2 flows into the boiler 3 as shown in FIGS.

燃焼室22で燃焼した、タール、チャー等の未熱分解物の燃焼により加熱された流動媒体は、矢印Bに示すように仕切り壁24の上端を越えて熱回収室23に流入し、熱回収室23内で界面より下方に位置するように配設された層内伝熱管27で熱吸収され、冷却された後、矢印Cに示すように仕切り壁24の下部開口28を通って再び燃焼室22に流入する。また、燃焼室22で加熱された流動媒体は、矢印Dに示すように仕切り壁29の上端を越えて仕切り壁29と仕切り壁30の間の沈降室に流入し、さらに矢印Eに示すように仕切り壁30の下部開口31を通って熱分解室21に流入する。   The fluidized medium heated in the combustion chamber 22 and heated by the combustion of unheated decomposition products such as tar and char passes over the upper end of the partition wall 24 as shown by the arrow B and flows into the heat recovery chamber 23 to recover the heat. After being absorbed by the in-layer heat transfer tube 27 disposed so as to be positioned below the interface in the chamber 23 and cooled, the combustion chamber again passes through the lower opening 28 of the partition wall 24 as indicated by an arrow C. 22 flows in. Further, the fluid medium heated in the combustion chamber 22 flows into the settling chamber between the partition wall 29 and the partition wall 30 over the upper end of the partition wall 29 as indicated by an arrow D, and as indicated by an arrow E. It flows into the pyrolysis chamber 21 through the lower opening 31 of the partition wall 30.

図6はガス化炉1の一例である二塔式流動層方式の流動層ガス化炉の構成例を示す図である。本ガス化炉1は図示するように、熱分解流動層炉41(熱分解室1−1に対応)と燃焼流動層炉42(燃焼室1−2に対応)とを併設して両流動層炉を2本の傾斜管43、44で連絡し、流動媒体をこの傾斜管43、44を通して両層間に循環させることによって、熱分解に必要な熱量を補うようになっている。   FIG. 6 is a diagram showing a configuration example of a two-column fluidized bed type fluidized bed gasification furnace which is an example of the gasification furnace 1. As shown in the figure, the gasifier 1 includes a pyrolysis fluidized bed furnace 41 (corresponding to the pyrolysis chamber 1-1) and a combustion fluidized bed furnace 42 (corresponding to the combustion chamber 1-2). The furnace is connected by two inclined pipes 43 and 44, and the fluid medium is circulated between the two layers through the inclined pipes 43 and 44, thereby supplementing the amount of heat necessary for thermal decomposition.

即ち、熱分解流動層炉41に可燃性廃棄物が供給されると、熱分解され、熱分解ガス、タール、チャー、飛灰等を発生させる。チャーや飛灰等を含む熱分解ガスG1は図3及び図4に示すように、溶融炉2に流入する。熱分解流動層炉41の流動層内に残ったチャー等の未熱分解物は流動媒体に伴って、傾斜管43を通って燃焼流動層炉42に流入し、ここで燃焼して燃焼ガスG2を発すると共に、その燃焼熱により流動媒体を加熱し、加熱された流動媒体は傾斜管44を通って、熱分解流動層炉41に流入し、可燃性廃棄物の熱分解用の熱源として利用される。   That is, when combustible waste is supplied to the pyrolysis fluidized bed furnace 41, it is pyrolyzed to generate pyrolysis gas, tar, char, fly ash and the like. The pyrolysis gas G1 containing char, fly ash, etc. flows into the melting furnace 2 as shown in FIGS. The unheated decomposition product such as char remaining in the fluidized bed of the pyrolysis fluidized bed furnace 41 flows into the combustion fluidized bed furnace 42 through the inclined pipe 43 along with the fluidized medium, and combusts and burns here. The heated fluid medium is heated by the combustion heat, and the heated fluid medium flows into the pyrolysis fluidized bed furnace 41 through the inclined tube 44 and is used as a heat source for the pyrolysis of combustible waste. The

燃焼ガスG2は図3及び図4に示すように、ボイラ3に供給される。この二塔式流動層方式の流動層ガス化炉は、熱分解ガスG1に燃焼ガスが含まれないから、高いガス熱量の熱分解ガスG1が得られる。熱分解流動層炉41の流動層の流動化ガス45としては酸素の含まないガス、例えば水蒸気、炭酸ガス、窒素ガスが用いられ、燃焼流動層炉42の流動層の流動化ガス46としては空気等の酸素を含有するガスが用いられる。   The combustion gas G2 is supplied to the boiler 3 as shown in FIGS. In this two-column fluidized bed gasification furnace, the pyrolysis gas G1 contains no combustion gas, so that a pyrolysis gas G1 having a high gas calorific value is obtained. As the fluidized gas 45 in the fluidized bed of the pyrolysis fluidized bed furnace 41, a gas not containing oxygen, for example, water vapor, carbon dioxide, or nitrogen gas is used, and as the fluidized gas 46 in the fluidized bed of the combustion fluidized bed furnace 42, air. A gas containing oxygen such as is used.

図7は溶融炉2の一構成例を示す図である。溶融炉2は一次燃焼室51、二次燃焼室52、三次燃焼室53を具備する構成である。図3及び図4に示すように、ガス化炉1から熱分解ガスG1が溶融炉2の一次燃焼室51に流入すると共に、燃焼用ガス(空気、酸素富活空気、酸素)55が流入し、旋回流を形成しながら混合し、燃焼し二次燃焼室52に移動しながら高温燃焼(1200℃〜1400℃、好ましくは1350℃)し、燃焼ガスG3は三次燃焼室53で燃焼用ガス55と混合し、完全燃焼し、燃焼ガスG3として排出する。この高温燃焼により熱分解ガスG1に含まれる灰分は溶融され溶融スラグ56としてスラグ排出口57から炉外に排出される。   FIG. 7 is a diagram illustrating a configuration example of the melting furnace 2. The melting furnace 2 includes a primary combustion chamber 51, a secondary combustion chamber 52, and a tertiary combustion chamber 53. As shown in FIGS. 3 and 4, the pyrolysis gas G1 flows from the gasification furnace 1 into the primary combustion chamber 51 of the melting furnace 2, and the combustion gas (air, oxygen-enriched air, oxygen) 55 flows in. , Mixed while forming a swirl flow, burned and moved to the secondary combustion chamber 52 and combusted at a high temperature (1200 ° C. to 1400 ° C., preferably 1350 ° C.), and the combustion gas G 3 is a combustion gas 55 in the tertiary combustion chamber 53. And is completely burned and discharged as a combustion gas G3. As a result of this high-temperature combustion, the ash contained in the pyrolysis gas G1 is melted and discharged as molten slag 56 from the slag discharge port 57 to the outside of the furnace.

図8は本発明に係る他の可燃性廃棄物処理装置のプロセスフローを示す図である。図示するようにここでは、図4と同様、ガス冷却塔6の下流に配置されたバグフィルタ12で捕集した灰13を溶融炉2に供給して溶融している。この場合、捕集した灰13の全量を溶融炉2に供給すると、微粒の灰が系内に閉じ込められ、循環する恐れがあるので、調節弁V1、V2の操作により灰13の一部13aは抜き取る。   FIG. 8 is a diagram showing a process flow of another combustible waste treatment apparatus according to the present invention. As shown in FIG. 4, as in FIG. 4, the ash 13 collected by the bag filter 12 disposed downstream of the gas cooling tower 6 is supplied to the melting furnace 2 and melted. In this case, if the total amount of the collected ash 13 is supplied to the melting furnace 2, fine ash is trapped in the system and may circulate. Therefore, the operation of the control valves V1 and V2 causes a part 13a of the ash 13 to be Pull out.

溶融炉2はガス化炉1の熱分解室1−1からの熱分解ガスG1から低カロリー(1000〜1500kcal/Nm3(dry))若しくは中カロリー(2500〜4500kcal/Nm3(dry))のガスを得るための溶融炉である。熱分解室1−1からの熱分解ガスG1が溶融炉2に流入し、1300℃以上で高温ガス化すると、そこに含まれるチャーやタールは完全ガス化して、灰分は溶融スラグとして炉外に排出する。ここで溶融炉2にはガス化ガスとして酸素富活空気、スチーム、酸素或いはこれらの混合気体の中から選択したものを別々又は一緒に炉内へ供給する。このガス化ガスの酸素量を熱分解ガスG1に合わせて、全酸素量が被処理物を完全燃焼させるために必要な理論酸素量を1とした場合の0.1〜0.6の範囲とすると、溶融炉2から上記低カロリー若しくは中カロリーの燃料ガスG5を得ることができる。 Melting furnace 2 Low calorie from the pyrolysis gas G1 from the pyrolysis chamber 1-1 of the gasification furnace 1 (1000~1500kcal / Nm 3 (dry )) or medium calorie (2500~4500kcal / Nm 3 (dry) ) of It is a melting furnace for obtaining gas. When the pyrolysis gas G1 from the pyrolysis chamber 1-1 flows into the melting furnace 2 and is gasified at a high temperature at 1300 ° C. or higher, char and tar contained therein are completely gasified, and ash is melted as slag outside the furnace. Discharge. Here, the melting furnace 2 is supplied with gas selected from oxygen-enriched air, steam, oxygen or a mixed gas thereof separately or together into the furnace. The oxygen amount of this gasification gas is adjusted to the pyrolysis gas G1, and the total oxygen amount is in the range of 0.1 to 0.6 when the theoretical oxygen amount necessary for completely burning the object to be processed is 1. Then, the low calorie or medium calorie fuel gas G5 can be obtained from the melting furnace 2.

この低カロリー若しくは中カロリーの燃料ガスG5中には、CO、H2といった有用ガス成分が多く含まれている。溶融炉2からのこのような燃料ガスG5を熱回収機器15を通して熱回収し、スクラバー16を通すことにより、工業用燃料ガス或いは化学工業用原料ガス17が得られる。 This low calorie or medium calorie fuel gas G5 contains many useful gas components such as CO and H 2 . The fuel gas G5 from the melting furnace 2 is heat-recovered through the heat recovery device 15 and passed through the scrubber 16, whereby the industrial fuel gas or the chemical industry raw material gas 17 is obtained.

なお、上記例は本発明の一実施形態例であり、各請求項に記載の発明は、これに限定されるものではなく、各請求項に記載の発明と同一の技術的思想の範囲内で変形は可能である。   The above example is one embodiment of the present invention, and the invention described in each claim is not limited to this, and within the scope of the same technical idea as the invention described in each claim. Variations are possible.

従来の可燃性廃棄物処理装置のプロセスフローを示す図である。It is a figure which shows the process flow of the conventional combustible waste processing apparatus. 従来の可燃性廃棄物処理装置のプロセスフローを示す図である。It is a figure which shows the process flow of the conventional combustible waste processing apparatus. 本発明に係る可燃性廃棄物処理装置のプロセスフローを示す図である。It is a figure which shows the process flow of the combustible waste processing apparatus which concerns on this invention. 本発明に係る可燃性廃棄物処理装置のプロセスフローを示す図である。It is a figure which shows the process flow of the combustible waste processing apparatus which concerns on this invention. 本発明に係る可燃性廃棄物処理装置に用いる統合型流動層ガス化炉の構成例を示す図である。It is a figure which shows the structural example of the integrated fluidized bed gasification furnace used for the combustible waste processing apparatus which concerns on this invention. 本発明に係る可燃性廃棄物処理装置に用いる二塔式流動層ガス化炉の構成例を示す図である。It is a figure which shows the structural example of the two-column type fluidized bed gasification furnace used for the combustible waste processing apparatus which concerns on this invention. 本発明に係る可燃性廃棄物処理装置に用いる溶融炉の構成例を示す図である。It is a figure which shows the structural example of the melting furnace used for the combustible waste processing apparatus which concerns on this invention. 本発明に係る可燃性廃棄物処理装置のプロセスフローを示す図である。It is a figure which shows the process flow of the combustible waste processing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 ガス化炉
2 溶融炉
3 ボイラ
4 熱回収機器
5 集塵装置
6 ガス冷却塔
7 バグフィルタ
8 誘引ブロワー
9 触媒脱硝塔
10 煙突
11 灰
12 バグフィルタ
13 灰
14 活性炭
15 ボイラ
16 スクラバー
17 原料ガス
21 熱分解室
22 燃焼室
23 熱回収室
24 仕切り壁
25 仕切り壁
26 開口部
27 層内伝熱管
28 下部開口
29 仕切り壁
30 仕切り壁
31 下部開口
32 流動化ガス
33 流動化ガス
41 熱分解流動層炉
42 燃焼流動層炉
43 傾斜管
44 傾斜管
45 流動化ガス
46 流動化ガス
51 一次燃焼室
52 二次燃焼室
53 三次燃焼室
55 燃焼用ガス
56 溶融スラグ
57 スラグ排出口
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Melting furnace 3 Boiler 4 Heat recovery equipment 5 Dust collector 6 Gas cooling tower 7 Bag filter 8 Attraction blower 9 Catalytic denitration tower 10 Chimney 11 Ash 12 Bag filter 13 Ash 14 Activated carbon 15 Boiler 16 Scrubber 17 Raw material gas 21 Pyrolysis chamber 22 Combustion chamber 23 Heat recovery chamber 24 Partition wall 25 Partition wall 26 Opening 27 Heat transfer tube in the layer 28 Lower opening 29 Partition wall 30 Partition wall 31 Lower opening 32 Fluidized gas 33 Fluidized gas 41 Pyrolysis fluidized bed furnace 42 Combustion Fluidized Bed Furnace 43 Inclined Tube 44 Inclined Tube 45 Fluidized Gas 46 Fluidized Gas 51 Primary Combustion Chamber 52 Secondary Combustion Chamber 53 Tertiary Combustion Chamber 55 Combustion Gas 56 Molten Slag 57 Slag Discharge Port

Claims (13)

可燃物を熱分解室と燃焼室で構成された流動層ガス化炉に供給し、前記可燃物を前記熱分解室にて熱分解して熱分解ガスと熱分解残渣を生成し、前記熱分解残渣を前記燃焼室で燃焼させ、前記燃焼室にて生成した粒径の大きな粒子を多く含む第1のガスを生成させ、
前記熱分解室にて生成された熱分解ガスを溶融炉に導入して燃焼させ灰分を溶融して粒径の小さな粒子を多く含む第2のガスを生成させると共に、
前記第1のガスを直接熱交換するための伝熱面を有する熱回収装置に導入し、該導入したガスと受熱流体との間で熱交換を行って熱を回収し、
次いで前記第2のガスを前記第1のガスを前記熱回収装置に導入した箇所よりもガスの流れに対して下流側で前記熱回収装置に導入し前記第1のガスに前記第2のガスを混合して熱を回収することを特徴とする熱回収方法。
Combustible material is supplied to a fluidized bed gasification furnace composed of a pyrolysis chamber and a combustion chamber, and the combustible material is pyrolyzed in the pyrolysis chamber to generate a pyrolysis gas and a pyrolysis residue. The residue is burned in the combustion chamber, and a first gas containing a large amount of large particles generated in the combustion chamber is generated.
The pyrolysis gas generated in the pyrolysis chamber is introduced into a melting furnace and burned to melt the ash to generate a second gas containing a large number of small particles,
Introducing into the heat recovery device having a heat transfer surface for direct heat exchange of the first gas, heat is exchanged between the introduced gas and the heat receiving fluid, heat is recovered,
Next, the second gas is introduced into the heat recovery device downstream from the portion where the first gas is introduced into the heat recovery device with respect to the gas flow, and the second gas is added to the first gas. A heat recovery method characterized by mixing heat and recovering heat.
請求項に記載の熱回収方法において、熱分解室の流動層内に残ったチャーを流動媒体に伴って燃焼室に導入して燃焼させ、該燃焼室から加熱された流動媒体を可燃物を熱分解する熱分解室に流入させることを特徴とする熱回収方法。 The heat recovery method according to claim 1 , wherein the char remaining in the fluidized bed of the pyrolysis chamber is introduced into the combustion chamber along with the fluidized medium and burned, and the fluidized medium heated from the combustion chamber is combusted. A heat recovery method characterized by flowing into a pyrolysis chamber for thermal decomposition. 請求項1又は2に記載の熱回収方法において、前記第1のガスと前記第2のガスを混合後、450℃以下に冷却した後、集塵装置により該混合ガス中の固形分を分離し、分離した固形分を前記溶融炉に導入し、溶融させることを特徴とする熱回収方法。 3. The heat recovery method according to claim 1 , wherein after mixing the first gas and the second gas, the mixture is cooled to 450 ° C. or lower, and then a solid content in the mixed gas is separated by a dust collector. A heat recovery method, wherein the separated solid content is introduced into the melting furnace and melted. 可燃物を熱分解室と燃焼室で構成された流動層ガス化炉に供給し
前記可燃物を熱分解室にて熱分解して熱分解ガスと熱分解残渣を生成し
前記熱分解残渣を前記燃焼室で燃焼させ、前記燃焼室において粒径の大きな粒子を多く含む第1のガスを生成させ
前記熱分解室にて生成された熱分解ガスを溶融炉に導入して燃焼させ灰分を溶融して粒径の小さな粒子を多く含む第2のガスを生成させ、
前記燃焼室からの第1のガスを直接熱交換するための伝熱面を有する熱回収装置に導入し、該導入したガスと受熱流体との間で熱交換を行って熱回収し
記溶融炉から排出される第2のガスを前記第1のガスを前記熱回収装置に導入した箇所よりもガスの流れに対して下流側で前記熱回収装置に導入し前記第1のガスと混合して熱を回収することを特徴とする可燃物の処理方法。
Supplying combustible materials to a fluidized bed gasifier consisting of a pyrolysis chamber and a combustion chamber ;
Pyrolyzing the combustible in a pyrolysis chamber to produce pyrolysis gas and pyrolysis residue ;
Burning the pyrolysis residue in the combustion chamber, generating a first gas containing a large number of large particles in the combustion chamber ;
The pyrolysis gas generated in the pyrolysis chamber is introduced into a melting furnace and burned to melt the ash to generate a second gas containing many small particles ,
Introducing into the heat recovery device having a heat transfer surface for directly exchanging the first gas from the combustion chamber , heat exchange is performed between the introduced gas and the heat receiving fluid, heat recovery ,
The first gas is introduced into the heat recovery device downstream of the first gas and the second gas to the flow of gas than portions introduced into the heat recovery device to be discharged from the pre-Symbol melting furnace A method for treating a combustible material, wherein the heat is recovered by mixing with a mixture.
請求項に記載の可燃物の処理方法において、前記第1のガス及び前記第2のガスを前記熱回収装置で熱回収し、450℃以下に冷却した後、集塵装置により該ガス中の固形分を分離し、分離した固形分を前記溶融炉に導入し、溶融させることを特徴とする可燃物の処理方法。 5. The method for treating a combustible material according to claim 4 , wherein the first gas and the second gas are heat-recovered by the heat recovery device, cooled to 450 ° C. or lower, and then collected by the dust collector. A method for treating a combustible material, comprising: separating a solid content, introducing the separated solid content into the melting furnace, and melting the solid content. 可燃物を熱分解して、熱分解ガスと熱分解残渣を生成させる熱分解室と前記熱分解残渣を燃焼させ粒径の大きい粒子を多く含む第1のガスを生成させる燃焼室とで構成された流動層ガス化炉と、
前記熱分解室にて生成した熱分解ガスを溶融炉に導入して燃焼させ熱分解ガス流に含まれる灰分を溶融して粒径の小さい粒子を多く含む第2のガスを生成させる溶融炉と、
前記第1のガスを前記流動層ガス化炉から直接導入する第1の導入口、前記第2のガスを前記溶融炉から直接導入する第2の導入口を備え、熱回収した後のガスを排出するための排出口を備え、該第1及び第2の導入口から導入されたガスと受熱流体との間で熱交換して熱を回収するための熱回収装置を備え、
前記熱回収装置は受熱流体と導入されたガスとの間で熱交換するための伝熱面を備えるとともに、前記第1の導入口から導入されたガスの流れに対して下流に、前記第2の導入口を設けたことを特徴とする熱回収システム。
Combustible materials by thermal decomposition, is composed of a combustion chamber to produce a first gas containing a large amount of large particles having a particle size by burning the pyrolysis residue and pyrolysis chamber to produce pyrolysis gas and pyrolysis residue and fluidized-bed gasification furnace,
Melting furnace to produce a second gas to melt the ash included in the pyrolysis gas stream is combusted by introducing pyrolysis gas produced by the pyrolysis chamber to the melting furnace containing a large amount of small particles of particle size When,
A first inlet for directly introducing the first gas from the fluidized bed gasification furnace; and a second inlet for directly introducing the second gas from the melting furnace. A discharge port for discharging, a heat recovery device for recovering heat by exchanging heat between the gas introduced from the first and second inlets and the heat receiving fluid;
Together with the heat recovery device comprises a heat transfer surface for heat exchange with the gas introduced with the heat receiving fluid, to the downstream side against the Re said first flow of gas introduced from the inlet of the A heat recovery system provided with a second introduction port.
請求項に記載の熱回収システムにおいて、前記第1のガスと前記第2のガスを混合後、450℃以下に冷却した後、集塵装置により該混合ガス中の固形分を分離し、分離した固形分を前記溶融炉に導入し、溶融させることを特徴とする熱回収システム。 The heat recovery system according to claim 6 , wherein after mixing the first gas and the second gas, after cooling to 450 ° C. or less, the solid content in the mixed gas is separated by a dust collector, and separated. A heat recovery system, wherein the solid content is introduced into the melting furnace and melted. 可燃物を供給する可燃物供給手段から供給された可燃物を熱分解して、熱分解ガスと熱分解残渣を生成させる熱分解室と前記熱分解残渣を燃焼させ粒径の大きい粒子を多く含む第1のガスを生成させる燃焼室とで構成された流動層ガス化炉と、
前記燃焼室にて発生した第1のガスを直接導入して受熱流体との間で熱交換して熱を回収する伝熱面を有する熱回収装置と、
前記熱分解室にて発生した熱分解ガスを導入して燃焼させ前記熱分解ガス中の灰分を溶融し、粒径の小さい粒子を多く含む第2のガスを生成する溶融炉を備えた可燃物の処理装置において、
前記溶融炉から排出される第2のガスを、該溶融炉で更に発生した粒子の輸送ガスとして、該粒子とともに前記第1のガスを前記熱回収装置に導入した箇所よりもガスの流れに対して下流側で前記熱回収装置に導入するガス導入手段を備えたことを特徴とする可燃物の処理装置。
Combustible material supplied from the combustible material supply means for supplying combustible material is thermally decomposed to generate a pyrolysis gas and a pyrolysis residue, and the pyrolysis residue is burned to contain a large number of large particles. A fluidized bed gasification furnace composed of a combustion chamber for generating a first gas ;
A heat recovery device having a heat transfer surface for directly introducing the first gas generated in the combustion chamber and exchanging heat with the heat receiving fluid to recover the heat;
Combustible material provided with a melting furnace for introducing a pyrolysis gas generated in the pyrolysis chamber and burning it to melt the ash in the pyrolysis gas and generate a second gas containing a large number of small particles In the processing apparatus of
The second gas discharged from the melting furnace is used as a transport gas for the particles further generated in the melting furnace, and the gas flows more than the portion where the first gas is introduced into the heat recovery apparatus together with the particles. A combustible material processing apparatus comprising gas introducing means for introducing the heat recovery apparatus downstream.
請求項に記載の可燃物の処理装置において、前記第1のガスを熱回収装置に導入して熱を回収する手段と、該熱の回収されたガスに前記溶融炉から排出される第2のガスを混合して更に熱を回収する手段を少なくとも備えたことを特徴とする可燃物の処理装置。 The combustible material processing apparatus according to claim 8 , wherein the first gas is introduced into a heat recovery device to recover heat, and the heat recovered gas is discharged from the melting furnace to the second furnace . An apparatus for treating a combustible material, comprising at least means for recovering heat by mixing the gas. 請求項又はに記載の可燃物の処理装置において、前記燃焼室からの流動媒体を前記熱分解室に移動させるための手段を備えたことを特徴とする可燃物の処理装置。 In the processing apparatus of combustibles according to claim 8 or 9, pre-Symbol processor combustibles which the fluidized medium characterized by comprising a means for moving the pyrolysis chamber from the combustion chamber. 請求項10に記載の可燃物の処理装置において、前記熱分解室からの第2のガスを前記溶融炉に導入する手段と、前記燃焼室からの第1のガスを前記熱回収装置に導入するための手段を備えたことを特徴とする可燃物の処理装置。 The combustible material processing apparatus according to claim 10 , wherein the second gas from the pyrolysis chamber is introduced into the melting furnace, and the first gas from the combustion chamber is introduced into the heat recovery device. An apparatus for treating a combustible material, characterized by comprising means for the above. 請求項乃至11のいずれか1項に記載の可燃物の処理装置において、前記熱回収装置は廃熱ボイラであることを特徴とする可燃物の処理装置。 The combustible material processing apparatus according to any one of claims 8 to 11 , wherein the heat recovery device is a waste heat boiler. 請求項乃至12のいずれか1項に記載の可燃物の処理装置において、前記第1のガスと前記第2のガスを混合後、450℃以下に冷却した後、集塵装置により該混合ガス中の固形分を分離し、分離した固形分を前記溶融炉に導入し、溶融させることを特徴とする可燃物の処理装置。 The combustible material processing apparatus according to any one of claims 8 to 12 , wherein the first gas and the second gas are mixed, cooled to 450 ° C or lower, and then mixed with the dust collector. A combustible material processing apparatus, comprising: separating a solid content therein; introducing the separated solid content into the melting furnace;
JP2004012419A 2003-01-20 2004-01-20 Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus Expired - Fee Related JP4265975B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004012419A JP4265975B2 (en) 2003-01-20 2004-01-20 Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus
EP04770831.8A EP1712839B1 (en) 2004-01-20 2004-07-20 Method of heat recovery and heat recovery apparatus
PCT/JP2004/010320 WO2005068909A1 (en) 2004-01-20 2004-07-20 Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003011496 2003-01-20
JP2004012419A JP4265975B2 (en) 2003-01-20 2004-01-20 Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus

Publications (2)

Publication Number Publication Date
JP2004309120A JP2004309120A (en) 2004-11-04
JP4265975B2 true JP4265975B2 (en) 2009-05-20

Family

ID=33477927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012419A Expired - Fee Related JP4265975B2 (en) 2003-01-20 2004-01-20 Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus

Country Status (1)

Country Link
JP (1) JP4265975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271793B1 (en) * 2013-02-26 2013-06-07 효성에바라엔지니어링 주식회사 Gasification apparatus with dual-type fluidized bed reactors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278016A (en) * 2013-04-29 2013-09-04 中色科技股份有限公司 Method of pre-heating pre-loaded material by using waste heat of flue gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271793B1 (en) * 2013-02-26 2013-06-07 효성에바라엔지니어링 주식회사 Gasification apparatus with dual-type fluidized bed reactors

Also Published As

Publication number Publication date
JP2004309120A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
EP0767343B1 (en) Heat recovery system and power generation system
WO1998040672A1 (en) Combustion device
US20060137579A1 (en) Gasification system
JP3936824B2 (en) Waste heat recovery boiler and waste treatment facility
US6709636B1 (en) Method and apparatus for gasifying fluidized bed
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP4265975B2 (en) Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus
JP3091197B1 (en) Method and apparatus for reducing dioxins in garbage gasification and melting equipment with char separation method
EP1712839B1 (en) Method of heat recovery and heat recovery apparatus
JP3663715B2 (en) Circulating fluidized bed boiler
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JP2005330370A (en) Indirectly heating-type fluidized bed gasification system
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP3046309B1 (en) Method and apparatus for reducing dioxins in a garbage gasifier for char separation
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP3270456B2 (en) Waste treatment method and gasification and melting equipment
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP3270452B2 (en) Waste treatment method and gasification and melting equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Ref document number: 4265975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees