JP2007255844A - Fusing equipment and fusing method of gasification fusing system - Google Patents

Fusing equipment and fusing method of gasification fusing system Download PDF

Info

Publication number
JP2007255844A
JP2007255844A JP2006083640A JP2006083640A JP2007255844A JP 2007255844 A JP2007255844 A JP 2007255844A JP 2006083640 A JP2006083640 A JP 2006083640A JP 2006083640 A JP2006083640 A JP 2006083640A JP 2007255844 A JP2007255844 A JP 2007255844A
Authority
JP
Japan
Prior art keywords
slag
melting
extraction chute
granulation tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006083640A
Other languages
Japanese (ja)
Inventor
Shizuo Yasuda
静生 保田
Hirotoshi Horizoe
浩俊 堀添
Jun Sato
佐藤  淳
Takehiro Kitsuta
岳洋 橘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006083640A priority Critical patent/JP2007255844A/en
Publication of JP2007255844A publication Critical patent/JP2007255844A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly operate fusing equipment by preventing the cooling of a slag cinder notch by water vapor generated from a water granulation tank and troubles to appliances such as an auxiliary burner. <P>SOLUTION: In this fusing equipment 1 of the thermal decomposition gasification system composed of a rotary fusing furnace 2 comprising a thermal decomposition gas burner 3, the slag cinder notch 6, and a slag extraction chute 7 extending from the slag cinder notch 6 to the water granulation tank 20, and a secondary combustion chamber 15 disposed at an upper portion of the rotary fusing furnace, the lower end of the slag extraction chute 7 is dipped in the water granulation tank 20 to form a water seal, the lower end 7a of the slat extraction chute extends to a lower portion with respect to a water level position displaced by the fall of fused slag to the water granulation tank 20, a bypass passage 10 communicated from the slag extraction chute 7 to the secondary combustion chamber 15 is formed, and at least a part of a water vapor-containing gas 13 including the water vapor evaporated from the water granulation tank 20 is led from the slag extraction chute 7 to the secondary combustion chamber 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムにおける溶融技術に関し、特に、溶融スラグを水砕する水砕槽から蒸発した水蒸気により溶融設備に不具合が発生することを防止し、円滑な運転を行うことを可能としたガス化溶融システムの溶融設備及び溶融方法に関する。   The present invention relates to a melting technique in a gasification melting system in which waste is pyrolyzed to generate pyrolysis gas and ash is melted by the combustion heat of the pyrolysis gas, and in particular, a granulation tank that granulates molten slag. The present invention relates to a melting facility and a melting method of a gasification and melting system that can prevent a malfunction from occurring in a melting facility due to water vapor evaporated from the gas and can perform a smooth operation.

従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。
ガス化溶融システムの概略を図3に示す。ガス化溶融システムは、廃棄物を熱分解してガス化するガス化炉33と、該ガス化炉33の下流側に設けられ、ガス化炉33にて生成された熱分解ガス53を高温燃焼し、ガス中の灰分を溶融スラグ化する溶融設備1とを備えており、廃棄物の資源化、減容化及び無害化を図るために、溶融設備1からスラグを取り出して路盤材等の土木資材として再利用したり、溶融設備1から排出される排ガスから廃熱を回収して発電を行うなどしている(特許文献1等参考)。
Conventionally, a gasification and melting system is known as a technology capable of processing a wide range of wastes such as municipal waste, non-combustible waste, incineration residue, sludge, landfill waste and the like.
An outline of the gasification melting system is shown in FIG. The gasification melting system includes a gasification furnace 33 that thermally decomposes and gasifies waste, and a pyrolysis gas 53 that is provided downstream of the gasification furnace 33 and is generated in the gasification furnace 33 at a high temperature. In addition, a melting facility 1 for melting ash in gas into slag is provided, and in order to make waste resources, reduce the volume and make it harmless, the slag is taken out from the melting facility 1 and civil engineering such as roadbed materials It is reused as a material, or waste heat is recovered from exhaust gas discharged from the melting facility 1 to generate power (see Patent Document 1).

溶融設備1の一つとして、竪型旋回溶融炉2を備えた装置がある。竪型旋回溶融炉2は、熱分解ガス53を溶融炉内に吹き込む熱分解ガスバーナと、燃焼空気54を導入する燃焼空気供給ノズルとが配設されており、熱分解ガスバーナから噴出された熱分解ガス53は炉内で旋回流を形成させながら可燃分を燃焼させ、無機成分を溶融する。旋回流によって生じた遠心力によって溶融スラグは炉の内壁に付着し、壁面を伝って流下してスラグ出滓口より排出され、抜出シュート6を通って水砕槽20へ落下する。水砕槽20には冷却水が貯留されており、該冷却水内に落下した溶融スラグは急冷されることにより水砕し、水砕スラグとして回収される。一方、燃焼により発生した排ガスは、絞り構造の連結部5を介して二次燃焼室15に送られ、該二次燃焼室15にて未燃分を燃焼させた後にボイラ17を経て排ガス処理設備へ送られる。   As one of the melting facilities 1, there is an apparatus provided with a vertical swirl melting furnace 2. The vertical swirl melting furnace 2 is provided with a pyrolysis gas burner for blowing the pyrolysis gas 53 into the melting furnace and a combustion air supply nozzle for introducing the combustion air 54, and the pyrolysis ejected from the pyrolysis gas burner. The gas 53 burns combustible components while forming a swirling flow in the furnace, and melts inorganic components. The molten slag adheres to the inner wall of the furnace due to the centrifugal force generated by the swirling flow, flows down along the wall surface, is discharged from the slag outlet, and falls to the granulation tank 20 through the extraction chute 6. Cooling water is stored in the water granulating tank 20, and the molten slag that has fallen into the cooling water is rapidly cooled to be granulated and recovered as granulated slag. On the other hand, the exhaust gas generated by the combustion is sent to the secondary combustion chamber 15 through the connecting portion 5 of the throttle structure, and after the unburned portion is combusted in the secondary combustion chamber 15, the exhaust gas treatment facility passes through the boiler 17. Sent to.

このような溶融設備では、炉内で発生した排ガスが上方の二次燃焼室へ導かれるため、下方に位置するスラグ出滓口に排ガスの顕熱が利用されず、スラグ出滓口が十分に加温されないため溶融スラグが炉壁に付着して閉塞する場合がある。従って、これを防ぐために種々の技術が提案されている。例えば、特許文献2(特開2000−205546号公報)では、スラグ排出管と二次燃焼室を直接接続するバイパス配管を設け、炉内の高温燃焼排ガスがスラグ排出管を経由して二次燃焼室に送られる構成とし、スラグ排出管が高温に維持されるようにしている。また、特許文献3(特開平11−63437号公報)でも同様に、溶融炉内の乾留ガスを、スラグ出滓口下流側から排ガス流路を介して二次燃焼室に導き、スラグ出滓口の冷却を防止する構成としている。   In such a melting facility, the exhaust gas generated in the furnace is guided to the upper secondary combustion chamber, so the slag outlet is not used for the slag outlet located below, and the slag outlet is sufficiently Since it is not heated, molten slag may adhere to the furnace wall and become blocked. Therefore, various techniques have been proposed to prevent this. For example, in Patent Document 2 (Japanese Patent Laid-Open No. 2000-205546), a bypass pipe that directly connects a slag discharge pipe and a secondary combustion chamber is provided, and high-temperature combustion exhaust gas in the furnace is subjected to secondary combustion via the slag discharge pipe. The slag discharge pipe is maintained at a high temperature. Similarly, in Patent Document 3 (Japanese Patent Laid-Open No. 11-63437), the dry distillation gas in the melting furnace is guided from the downstream side of the slag outlet to the secondary combustion chamber via the exhaust gas passage, and the slag outlet It is set as the structure which prevents the cooling of.

特開2004−144402号公報JP 2004-144402 A 特開2000−205546号公報JP 2000-205546 A 特開平11−63437号公報JP-A-11-63437

スラグ出滓口の冷却防止方法として、特許文献2乃至3に記載されるように、炉内の高温燃焼排ガスを出滓口側から抜き出してバイパスさせ、二次燃焼室に導く方法が提案されている。
しかし、スラグ出滓口が冷却される原因として、上記した高温燃焼排ガスの顕熱が利用できないという点の他に、水砕槽から蒸発する水蒸気によって冷却されることが考えられる。即ち、水砕スラグを回収する場合、スラグ抜出シュート下方に冷却水を貯留した水砕槽を設置するが、水砕槽内に高温の溶融スラグが落下する際に冷却水が蒸発して多量の水蒸気が発生する。特に、熱分解ガス化システムにおける溶融設備では、一般に炉内が負圧状態に維持されているため水蒸気が発生し易く、且つスラグ出滓口は密閉系であるため水蒸気が放散されずにスラグ出滓口や溶融炉内に残留し、この水蒸気がスラグ出滓口やスラグ抜出シュートを冷却し、溶融スラグが固化して閉塞してしまうことがある。
As a method for preventing cooling of the slag outlet, a method has been proposed in which high-temperature combustion exhaust gas in the furnace is extracted from the outlet side and bypassed and guided to the secondary combustion chamber, as described in Patent Documents 2 to 3. Yes.
However, as a cause of cooling the slag outlet, it can be considered that the slag outlet is cooled by steam evaporated from the granulation tank, in addition to the fact that the sensible heat of the high-temperature combustion exhaust gas cannot be used. That is, when recovering granulated slag, a granulating tank storing cooling water is installed below the slag extraction chute, but when hot molten slag falls into the granulating tank, the cooling water evaporates and a large amount Water vapor is generated. In particular, in a melting facility in a pyrolysis gasification system, generally, the inside of the furnace is maintained at a negative pressure, so that steam is likely to be generated, and since the slag outlet is a closed system, the slag is discharged without being diffused. The water vapor remains in the well and the melting furnace, and this water vapor cools the slag outlet and the slag extraction chute, and the molten slag may solidify and become blocked.

また、スラグ出滓口を加温するために設置された補助バーナが、この水蒸気によって結露して故障してしまうことがあり、スラグ抜出シュートに設置された機器に不具合が発生することも考えられる。
しかしながら、特許文献2及び3に記載される装置では、水蒸気により生じるスラグ抜出シュートの冷却や機器の不具合についての対策は講じられておらず、特に特許文献3についてはガス化溶融システムに適用した装置ではないため、ガス化溶融システムのように溶融設備を負圧状態にすることにより水蒸気が多く発生することを考慮していないものと考えられる。
従って、本発明は上記従来技術の問題点に鑑み、水砕槽より発生した水蒸気によるスラグ出滓口の冷却、補助バーナ等の機器への不具合を防止でき、溶融設備の円滑な運転を可能としたガス化溶融システムにおける溶融設備及び溶融方法を提案することを目的とする。
In addition, the auxiliary burner installed to heat the slag outlet may be condensed due to the water vapor, resulting in a malfunction, and a malfunction may occur in the equipment installed in the slag extraction chute. It is done.
However, in the apparatuses described in Patent Documents 2 and 3, no measures have been taken for cooling of the slag extraction chute caused by water vapor or for malfunctions of the equipment, and in particular, Patent Document 3 is applied to the gasification and melting system. Since it is not an apparatus, it is considered that it is not considered that a large amount of water vapor is generated by bringing the melting equipment into a negative pressure state as in the gasification melting system.
Therefore, in view of the above-mentioned problems of the prior art, the present invention can prevent problems with equipment such as cooling of slag outlets and auxiliary burners due to water vapor generated from the granulation tank, and enables smooth operation of the melting facility. An object is to propose a melting equipment and a melting method in the gasified melting system.

そこで、本発明はかかる課題を解決するために、
廃棄物を熱分解して発生させた熱分解ガスを導入する熱分解ガスバーナと、該熱分解ガスの燃焼熱により灰分を溶融させて生じた溶融スラグを排出するスラグ出滓口と、該スラグ出滓口から水砕槽まで延設されたスラグ抜出シュートとを備えた旋回溶融炉と、該旋回溶融炉の上方に連結部を介して配設された二次燃焼室と、からなる熱分解ガス化システムの溶融設備において、
前記スラグ抜出シュートの下端が前記水砕槽に浸漬されて水封を形成し、該スラグ抜出シュート下端が、前記水砕槽への溶融スラグの落下により変位する水面位置より下方まで延設され、
前記スラグ抜出シュートから前記二次燃焼室へ連通するバイパス通路を設け、前記水砕槽から蒸発した水蒸気を含む水蒸気含有ガスの少なくとも一部を前記スラグ抜出シュートから前記二次燃焼室へ導くことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
A pyrolysis gas burner for introducing a pyrolysis gas generated by pyrolyzing waste, a slag outlet for discharging molten slag generated by melting ash by the combustion heat of the pyrolysis gas, and the slag discharge A pyrolysis comprising a swirl melting furnace provided with a slag extraction chute extending from the shed to the water granulation tank, and a secondary combustion chamber disposed above the swirl melting furnace via a connecting portion In the melting equipment of the gasification system,
The lower end of the slag extraction chute is immersed in the water granulation tank to form a water seal, and the lower end of the slag extraction chute extends downward from the water surface position displaced by the fall of the molten slag into the granulation tank. And
A bypass passage communicating from the slag extraction chute to the secondary combustion chamber is provided, and at least a part of the steam-containing gas including water vapor evaporated from the granulation tank is guided from the slag extraction chute to the secondary combustion chamber. It is characterized by that.

本発明によれば、溶融スラグの落下により水砕槽から発生した水蒸気を、旋回溶融炉上方の二次燃焼室に逃がすことができるため、スラグ出滓口、スラグ抜出シュートや補助バーナが多量の水蒸気に晒されることがなく、スラグ出滓口及びスラグ抜出シュートの冷却による閉塞や、補助バーナの結露による故障等の機器の不具合を防止できる。また、水蒸気がスラグ抜出シュートを通ってその上方の旋回溶融炉に侵入することを防ぎ、旋回流の形成を妨げることなく円滑な運転が可能となる。
また、抜出シュート下端を従来よりも長く延設するようにしたため、溶融スラグの落下により水面が波立った場合であっても、確実に水封を維持することができる。
According to the present invention, the water vapor generated from the granulation tank due to the fall of the molten slag can be released to the secondary combustion chamber above the swirling melting furnace, so there are a large amount of slag outlet, slag extraction chute and auxiliary burner. Therefore, it is possible to prevent problems such as blockage due to cooling of the slag outlet and the slag extraction chute and failure due to condensation of the auxiliary burner. Further, it is possible to prevent water vapor from entering the swirl melting furnace above the slag extraction chute and to smoothly operate without hindering the formation of swirl flow.
Moreover, since the lower end of the extraction chute is extended longer than before, the water seal can be reliably maintained even when the water surface is rippled due to the fall of the molten slag.

また、前記スラグ抜出シュートに前記スラグ出滓口を加熱する補助バーナを設けたことを特徴とする。
このように、補助バーナにてスラグ出滓口を加熱することによりスラグ出滓口の冷却を防止し、且つ本発明によればバイパス通路を設けて水蒸気を逃がす構成としているため、補助バーナが水蒸気に晒されることがなく、補助バーナの結露による故障を防止できる。
Further, an auxiliary burner for heating the slag outlet is provided on the slag extraction chute.
In this way, the slag outlet is heated by the auxiliary burner to prevent cooling of the slag outlet, and according to the present invention, the bypass passage is provided to release the water vapor. Therefore, it is possible to prevent a failure due to condensation of the auxiliary burner.

さらに、前記スラグ抜出シュートを含む旋回溶融炉内が負圧状態に維持されることを特徴とする。
このように、炉内を負圧状態に維持することにより、旋回溶融炉にて旋回流の形成を促進し、燃焼状態を良好に保つことができる。また、炉内を負圧状態とすることにより水砕槽からの水蒸気の発生が増大するが、本発明のようにバイパス通路を設けることにより水蒸気による冷却、不具合を防止できる。
また本発明では、旋回溶融炉の上方に開放された連結部を介して二次燃焼室が設けられた構成であるため、スラグ抜出シュートよりも二次燃焼室の方が負圧が大きくなる。従って、水蒸気含有ガスがバイパス通路を通ってスラグ抜出シュートから二次燃焼室側へ搬送されやすくなり、水蒸気の除去効率を高くすることができる。
Furthermore, the inside of the swirl melting furnace including the slag extraction chute is maintained in a negative pressure state.
Thus, by maintaining the inside of the furnace in a negative pressure state, it is possible to promote the formation of a swirl flow in the swirl melting furnace and maintain a good combustion state. Moreover, although the generation | occurrence | production of the water vapor | steam from a granulation tank increases by making the inside of a furnace into a negative pressure state, the cooling by a water vapor | steam and a malfunction can be prevented by providing a bypass channel like this invention.
Further, in the present invention, since the secondary combustion chamber is provided via the connecting portion opened above the swirl melting furnace, the negative pressure is higher in the secondary combustion chamber than in the slag extraction chute. . Therefore, the steam-containing gas is easily conveyed from the slag extraction chute to the secondary combustion chamber through the bypass passage, and the steam removal efficiency can be increased.

さらにまた、前記バイパス通路が、前記スラグ抜出シュートの下方で且つ前記水砕槽の水面近傍に設けられることを特徴とする。
これにより、水蒸気の大部分を二次燃焼室側へ導くことができ、水蒸気による冷却、不具合をより一層防止することができる。
Furthermore, the bypass passage is provided below the slag extraction chute and in the vicinity of the water surface of the granulating tank.
Thereby, most of the water vapor can be led to the secondary combustion chamber side, and cooling and malfunction due to the water vapor can be further prevented.

また、廃棄物を熱分解して発生させた熱分解ガスの燃焼熱により旋回溶融炉にて灰分を溶融し、該溶融により生じた溶融スラグをスラグ出滓口よりスラグ抜出シュートを経て水砕槽に排出するとともに、前記旋回溶融炉にて発生した燃焼排ガスを該溶融炉上方の二次燃焼室に導くようにした熱分解ガス化システムの溶融方法において、
前記スラグ抜出シュートの下端が前記水砕槽へ浸漬されて水封を形成し、前記水砕槽から蒸発した水蒸気を含む水蒸気含有ガスの少なくとも一部を、バイパス通路を介して前記スラグ抜出シュートから前記二次燃焼室へ導くことを特徴とする。
さらに、前記スラグ抜出シュートを含む旋回溶融炉内が負圧状態に維持されるように、該旋回溶融炉の後段側に設置された誘引ファンを制御することを特徴とする。
Also, ash is melted in a swirling melting furnace by the combustion heat of pyrolysis gas generated by pyrolyzing waste, and the molten slag generated by the melting is granulated through a slag extraction chute and through a slag extraction chute. In the melting method of the pyrolysis gasification system, the exhaust gas generated in the swirling melting furnace is guided to the secondary combustion chamber above the melting furnace while being discharged into the tank.
The lower end of the slag extraction chute is immersed in the granulation tank to form a water seal, and at least a part of the steam-containing gas including water vapor evaporated from the granulation tank is extracted through the bypass passage. It leads to the secondary combustion chamber from a chute.
Furthermore, an induction fan installed on the rear stage side of the swirl melting furnace is controlled so that the inside of the swirl melting furnace including the slag extraction chute is maintained in a negative pressure state.

以上記載のごとく本発明によれば、溶融スラグの落下により水砕槽から発生した水蒸気を、旋回溶融炉上方の二次燃焼室に逃がすことができるため、スラグ出滓口、抜出シュートや補助バーナが多量の水蒸気に晒されることがなく、スラグ出滓口、抜出シュートの冷却による閉塞や、補助バーナの結露による故障等の機器の不具合を防止できる。従って、ガス化溶融システムの円滑な運転が可能となる。   As described above, according to the present invention, the water vapor generated from the granulation tank due to the fall of the molten slag can be released to the secondary combustion chamber above the swirl melting furnace. The burner is not exposed to a large amount of water vapor, and it is possible to prevent equipment malfunctions such as blockage due to cooling of the slag outlet and the extraction chute and failure due to condensation of the auxiliary burner. Therefore, smooth operation of the gasification melting system is possible.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係る溶融設備の側断面を示す構成図、図2は図1の水砕槽を示す拡大側面図、図3は本発明の実施例に係るガス化溶融システムの全体構成を示す概略図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a configuration diagram showing a side cross section of a melting facility according to an embodiment of the present invention, FIG. 2 is an enlarged side view showing a granulation tank of FIG. 1, and FIG. 3 is a diagram of a gasification and melting system according to an embodiment of the present invention. It is the schematic which shows the whole structure.

まず、図3を参照して、本実施例に係るガス化溶融システムの概略構成を説明する。
廃棄物投入ホッパ31から投入された廃棄物50は、必要に応じて破砕、乾燥された後に給じん機32を介して流動床式ガス化炉33へ定量供給される。流動床ガス化炉33では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気51が炉下部から風箱34を介して炉内に吹き込まれ、流動層温度が550〜650℃程度に維持されている。
廃棄物50は流動床ガス化炉33で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。ガス化炉33の不燃物52は不燃物排出口35より逐次排出される。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して溶融設備1の縦型旋回溶融炉2へ導入される。以下、旋回溶融炉1へ導入されるこれらの成分を総称して熱分解ガス53と呼ぶ。尚、溶融設備1は、旋回溶融炉2と、該旋回溶融炉2の上方に配設された二次燃焼室15と、該二次燃焼室15の下流側に配設されたボイラ部17と、からなる。
First, a schematic configuration of the gasification melting system according to the present embodiment will be described with reference to FIG.
The waste 50 input from the waste input hopper 31 is crushed and dried as necessary, and then quantitatively supplied to the fluidized bed gasifier 33 through the dust feeder 32. In the fluidized bed gasification furnace 33, combustion air 51 having a temperature of about 120 to 230 ° C. and an air ratio of about 0.2 to 0.7 is blown into the furnace through the wind box 34 from the lower part of the furnace, and the fluidized bed temperature is 550. It is maintained at about ˜650 ° C.
The waste 50 is pyrolyzed and gasified in the fluidized bed gasification furnace 33 and decomposed into gas, tar, and char (carbide). Tar is a component that becomes liquid at room temperature, but is present in a gaseous state in the gasification furnace. The incombustible material 52 of the gasification furnace 33 is sequentially discharged from the incombustible material discharge port 35.
The char is gradually pulverized in the fluidized bed, and is introduced into the vertical swirl melting furnace 2 of the melting facility 1 along with gas and tar. Hereinafter, these components introduced into the swirl melting furnace 1 are collectively referred to as a pyrolysis gas 53. The melting facility 1 includes a swirl melting furnace 2, a secondary combustion chamber 15 disposed above the swirl melting furnace 2, and a boiler unit 17 disposed on the downstream side of the secondary combustion chamber 15. It consists of.

前記流動床ガス化炉33の炉頂部より排出された熱分解ガス53は、ライニングダクトを経て旋回溶融炉2の熱分解ガスバーナへ導入される。該熱分解ガスバーナで、熱分解ガス53は燃焼空気54と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉2では、熱分解ガス53と燃焼空気54の混合ガスが燃焼することにより炉内温度が1300〜1500℃に維持され、熱分解ガス53中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉2の内壁面に付着、流下し、炉底部のスラグ出滓口6からスラグ抜出シュート7を経て排出される。旋回溶融炉2から排出されたスラグは、水砕槽20で急冷され、スラグコンベア21により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。
The pyrolysis gas 53 discharged from the top of the fluidized bed gasification furnace 33 is introduced into the pyrolysis gas burner of the swirling melting furnace 2 through a lining duct. In the pyrolysis gas burner, pyrolysis gas 53 is mixed with combustion air 54 and introduced into the furnace to form a swirling flow. At this time, the combustion air may have an air ratio of 0.9 to 1.1, preferably about 1.0.
In the swirling melting furnace 2, the mixed gas of the pyrolysis gas 53 and the combustion air 54 is combusted, so that the furnace temperature is maintained at 1300 to 1500 ° C., and the ash content in the pyrolysis gas 53 is melted and slagged. The molten slag adheres and flows down on the inner wall surface of the swirl melting furnace 2 and is discharged from the slag outlet 6 at the bottom of the furnace through the slag extraction chute 7. The slag discharged from the slewing melting furnace 2 is rapidly cooled in the granulation tank 20, carried out by the slag conveyor 21, and collected as granulated slag. The recovered granulated slag can be effectively used for roadbed materials and the like.

一方、旋回溶融炉2から排出された燃焼排ガスは連結部5を介して二次燃焼室15へ導入される。二次燃焼室15では、燃焼空気55が空気比1.2〜1.5となるように供給され、前記燃焼排ガス中の未燃分はここで完全燃焼される。
燃焼排ガスは、ボイラ部17で熱回収されて、250℃程度まで冷却される。ボイラ部17から排出された燃焼排ガスは、減温塔36へ導入され、直接水噴霧により150℃程度まで冷却される。減温塔36から排出された燃焼排ガスは、必要に応じて煙道で消石灰、活性炭が噴霧され、反応集塵装置37に導入される。反応集塵装置37では、燃焼排ガス中の煤塵、酸性ガス、DXN類等が除去される。反応集塵装置37から排出された集塵灰は薬剤処理して埋立処分され、燃焼排ガスは蒸気式加熱器38で再加熱され、触媒反応装置39でNOが除去された後、誘引ファン40を介して煙突41より大気放出される。
On the other hand, the combustion exhaust gas discharged from the swirl melting furnace 2 is introduced into the secondary combustion chamber 15 via the connecting portion 5. In the secondary combustion chamber 15, the combustion air 55 is supplied so as to have an air ratio of 1.2 to 1.5, and unburned components in the combustion exhaust gas are completely burned here.
The combustion exhaust gas is heat recovered by the boiler unit 17 and cooled to about 250 ° C. The combustion exhaust gas discharged from the boiler unit 17 is introduced into the temperature reducing tower 36 and is cooled to about 150 ° C. by direct water spray. The combustion exhaust gas discharged from the temperature reducing tower 36 is sprayed with slaked lime and activated carbon in the flue as necessary, and is introduced into the reaction dust collector 37. The reaction dust collector 37 removes soot, acid gas, DXNs and the like in the combustion exhaust gas. The dust ash discharged from the reaction dust collector 37 is treated with chemicals and disposed of in landfill. The combustion exhaust gas is reheated by the steam heater 38 and NO x is removed by the catalyst reactor 39. Through the chimney 41.

次に、図1を参照して本実施例における溶融設備1につき具体的に説明する。
同図に示されるように、溶融設備1は断面円形状の旋回溶融炉2を有しており、該旋回溶融炉2の側壁には、熱分解ガス53を吹き込む一又は複数の熱分解ガスバーナ3が配設され、該熱分解ガスバーナ3には燃焼空気(一次空気)54を導入する燃焼空気供給ノズル4が付設されている。また、熱分解ガスバーナ3の近傍には、助燃バーナ(図示略)が配設されている。さらに、炉本体2の上部は絞り構造の連結部5を介して二次燃焼室15に連通しており、旋回溶融炉2で発生した燃焼排ガスは二次燃焼室15に送られるようになっている。旋回溶融炉2の底部にはスラグ出滓口6が設けおり、該スラグ出滓口6から下方に延設されたスラグ抜出シュート7を通って溶融スラグが排出されるようになっている。スラグ抜出シュート7にはスラグ出滓口6へ向けて補助バーナ8が取り付けられており、スラグ出滓口6から排出される溶融スラグが固化して閉塞しないように保温する機能を有している。補助バーナ8に供給される補助燃料57としては、灯油、LPG、都市ガス等が挙げられ、燃焼空気の代わりに純度90%以上の酸素を使用することが望ましい。
Next, the melting equipment 1 in the present embodiment will be specifically described with reference to FIG.
As shown in the figure, the melting facility 1 has a swirl melting furnace 2 having a circular cross section, and one or a plurality of pyrolysis gas burners 3 for blowing a pyrolysis gas 53 into the side wall of the swirl melting furnace 2. The pyrolysis gas burner 3 is provided with a combustion air supply nozzle 4 for introducing combustion air (primary air) 54. An auxiliary combustion burner (not shown) is disposed in the vicinity of the pyrolysis gas burner 3. Further, the upper portion of the furnace body 2 communicates with the secondary combustion chamber 15 via the connecting portion 5 having a throttle structure, and the combustion exhaust gas generated in the swirling melting furnace 2 is sent to the secondary combustion chamber 15. Yes. A slag outlet 6 is provided at the bottom of the swirl melting furnace 2, and the molten slag is discharged through a slag extraction chute 7 extending downward from the slag outlet 6. An auxiliary burner 8 is attached to the slag outlet chute 7 toward the slag outlet 6 and has a function of keeping the molten slag discharged from the slag outlet 6 solidified and not blocked. Yes. Examples of the auxiliary fuel 57 supplied to the auxiliary burner 8 include kerosene, LPG, city gas and the like, and it is desirable to use oxygen having a purity of 90% or more instead of combustion air.

また、図2に示されるように、スラグ抜出シュート7の下方には水砕槽20が設置され、該水砕槽20内には冷却水24が貯留されている。該スラグ抜出シュート7の下端7aは冷却水24内に浸漬されており、スラグ抜出シュート7を水封している。また、水砕槽20内には、スラグコンベア21が浸漬配置され、スラグ抜出シュート7から落下してきた溶融スラグを受け止め、搬送する。溶融スラグは搬送される間に冷却水24により冷却、水砕された後に水砕スラグ排出口22より排出され、水砕スラグ56として回収される。水砕スラグ56はスラグ貯留部23に貯留される。   As shown in FIG. 2, a granulation tank 20 is installed below the slag extraction chute 7, and cooling water 24 is stored in the granulation tank 20. The lower end 7 a of the slag extraction chute 7 is immersed in the cooling water 24 and seals the slag extraction chute 7 with water. In addition, a slag conveyor 21 is immersed in the water granulating tank 20 to receive and transport the molten slag that has fallen from the slag extraction chute 7. The molten slag is cooled and crushed by the cooling water 24 while being transported, and then discharged from the pulverized slag discharge port 22 to be recovered as the granulated slag 56. The granulated slag 56 is stored in the slag storage unit 23.

本実施例の特徴的構成として、スラグ抜出シュート下端7aが水砕槽20に浸漬されて水封を形成するとともに、該下端7aが、水砕槽20への溶融スラグの落下により変位する水面位置より下方まで延設されるようにしている。さらに、スラグ抜出シュート7を含む溶融設備1内が負圧状態に維持されるように後段の誘引ファン40を制御するようにしている。尚、溶融設備1内は負圧状態であるため、スラグ抜出シュート7内の水面は周囲の水面より高い位置にあるが、この水面の高低差を含めた水面の変位よりも低い位置に到達するまでスラグ抜出シュート下端7aが延設されるようにする。このようにスラグ抜出シュート下端7aを従来よりも長くすることにより、溶融スラグの落下により水砕槽20の水面が波立った場合であっても、確実に水封を維持することができ、負圧状態を保つことができる。   As a characteristic configuration of the present embodiment, the lower surface 7a of the slag extraction chute is immersed in the granulation tank 20 to form a water seal, and the lower surface 7a is displaced by the fall of the molten slag into the granulation tank 20. It extends so as to extend downward from the position. Further, the induction fan 40 in the subsequent stage is controlled so that the inside of the melting facility 1 including the slag extraction chute 7 is maintained in a negative pressure state. Since the inside of the melting facility 1 is in a negative pressure state, the water surface in the slag extraction chute 7 is located higher than the surrounding water surface, but reaches a position lower than the displacement of the water surface including the height difference of the water surface. Until the slag extraction chute lower end 7a is extended. Thus, by making the slag extraction chute lower end 7a longer than before, even when the water surface of the granulation tank 20 is rippled due to the fall of the molten slag, the water seal can be reliably maintained, A negative pressure state can be maintained.

さらに本実施例では、スラグ抜出シュート7から二次燃焼室15に連通するバイパス通路10を設けた構成としている。バイパス通路の入口11は、水砕槽20から蒸発する水蒸気が抜き出される位置とし、該水蒸気を含む水蒸気含有ガス13の少なくとも一部を二次燃焼室15に導くようになっている。好適には、バイパス通路入口11は水砕槽20の水面近傍に位置させる。また、バイパス通路出口12は、絞り構造の連結部5より上部であって、二次燃焼室15の下部とする。   Furthermore, in this embodiment, a configuration is provided in which a bypass passage 10 communicating from the slag extraction chute 7 to the secondary combustion chamber 15 is provided. The inlet 11 of the bypass passage is set to a position where water vapor evaporating from the granulating tank 20 is extracted, and at least a part of the water vapor-containing gas 13 containing the water vapor is guided to the secondary combustion chamber 15. Preferably, the bypass passage inlet 11 is positioned in the vicinity of the water surface of the granulating tank 20. Further, the bypass passage outlet 12 is above the connecting portion 5 of the throttle structure and below the secondary combustion chamber 15.

本構成によれば、溶融スラグの落下により水砕槽から発生した水蒸気を、旋回溶融炉1上方の二次燃焼室15に逃がすことができるため、スラグ出滓口6、抜出シュート7や補助バーナ8が多量の水蒸気に晒されることがなく、スラグ出滓口6、抜出シュート7の冷却による閉塞や、補助バーナ8の結露による故障等の機器の不具合を防止できる。従って、ガス化溶融システムの円滑な運転が可能となる。   According to this configuration, the water vapor generated from the granulation tank due to the fall of the molten slag can be released to the secondary combustion chamber 15 above the swirl melting furnace 1, so that the slag tap port 6, the extraction chute 7 and the auxiliary The burner 8 is not exposed to a large amount of water vapor, and it is possible to prevent malfunctions of the device such as blockage due to cooling of the slag outlet 6 and the extraction chute 7 and failure due to condensation of the auxiliary burner 8. Therefore, smooth operation of the gasification melting system is possible.

本発明の実施例に係る溶融設備の側断面を示す構成図である。It is a block diagram which shows the side cross section of the fusion equipment which concerns on the Example of this invention. 図1の水砕槽を示す拡大側面図である。It is an enlarged side view which shows the granulation tank of FIG. ガス化溶融システムの全体構成を示す概略図である。It is the schematic which shows the whole structure of a gasification melting system.

符号の説明Explanation of symbols

1 溶融設備
2 竪型旋回溶融炉
3 熱分解ガスバーナ
5 連結部
6 スラグ出滓口
7 スラグ抜出シュート
7a スラグ抜出シュート下端
8 補助バーナ
10 バイパス通路
13 水蒸気含有ガス
15 二次燃焼室
20 水砕槽
21 スラグコンベア
DESCRIPTION OF SYMBOLS 1 Melting equipment 2 Vertical swirl melting furnace 3 Pyrolysis gas burner 5 Connection part 6 Slag outlet port 7 Slag extraction chute 7a Slag extraction chute lower end 8 Auxiliary burner 10 Bypass passage 13 Steam-containing gas 15 Secondary combustion chamber 20 Granulation Tank 21 Slag conveyor

Claims (6)

廃棄物を熱分解して発生させた熱分解ガスを導入する熱分解ガスバーナと、該熱分解ガスの燃焼熱により灰分を溶融させて生じた溶融スラグを排出するスラグ出滓口と、該スラグ出滓口から水砕槽まで延設されたスラグ抜出シュートとを備えた旋回溶融炉と、該旋回溶融炉の上方に連結部を介して配設された二次燃焼室と、からなる熱分解ガス化システムの溶融設備において、
前記スラグ抜出シュートの下端が前記水砕槽に浸漬されて水封を形成し、該スラグ抜出シュート下端が、前記水砕槽への溶融スラグの落下により変位する水面位置より下方まで延設され、
前記スラグ抜出シュートから前記二次燃焼室へ連通するバイパス通路を設け、前記水砕槽から蒸発した水蒸気を含む水蒸気含有ガスの少なくとも一部を前記スラグ抜出シュートから前記二次燃焼室へ導くことを特徴とするガス化溶融システムの溶融設備。
A pyrolysis gas burner for introducing a pyrolysis gas generated by pyrolyzing waste, a slag outlet for discharging molten slag generated by melting ash by the combustion heat of the pyrolysis gas, and the slag discharge A pyrolysis comprising a swirl melting furnace provided with a slag extraction chute extending from the shed to the water granulation tank, and a secondary combustion chamber disposed above the swirl melting furnace via a connecting portion In the melting equipment of the gasification system,
The lower end of the slag extraction chute is immersed in the water granulation tank to form a water seal, and the lower end of the slag extraction chute extends downward from the water surface position displaced by the fall of the molten slag into the granulation tank. And
A bypass passage communicating from the slag extraction chute to the secondary combustion chamber is provided, and at least a part of the steam-containing gas including water vapor evaporated from the granulation tank is guided from the slag extraction chute to the secondary combustion chamber. A melting facility for a gasification melting system.
前記スラグ抜出シュートに前記スラグ出滓口を加熱する補助バーナを設けたことを特徴とする請求項1記載のガス化溶融システムの溶融設備。   The melting equipment for a gasification melting system according to claim 1, wherein an auxiliary burner for heating the slag outlet is provided on the slag extraction chute. 前記スラグ抜出シュートを含む旋回溶融炉内が負圧状態に維持されることを特徴とする請求項1記載のガス化溶融システムの溶融設備。   The melting equipment for a gasification melting system according to claim 1, wherein the inside of the swirl melting furnace including the slag extraction chute is maintained in a negative pressure state. 前記バイパス通路が、前記スラグ抜出シュートの下方で且つ前記水砕槽の水面近傍に設けられることを特徴とする請求項1記載のガス化溶融システムの溶融設備。   The melting facility of the gasification melting system according to claim 1, wherein the bypass passage is provided below the slag extraction chute and in the vicinity of the water surface of the granulation tank. 廃棄物を熱分解して発生させた熱分解ガスの燃焼熱により旋回溶融炉にて灰分を溶融し、該溶融により生じた溶融スラグをスラグ出滓口よりスラグ抜出シュートを経て水砕槽に排出するとともに、前記旋回溶融炉にて発生した燃焼排ガスを該溶融炉上方の二次燃焼室に導くようにした熱分解ガス化システムの溶融方法において、
前記スラグ抜出シュートの下端が前記水砕槽へ浸漬されて水封を形成し、前記水砕槽から蒸発した水蒸気を含む水蒸気含有ガスの少なくとも一部を、バイパス通路を介して前記スラグ抜出シュートから前記二次燃焼室へ導くことを特徴とするガス化溶融システムの溶融方法。
Ashes are melted in a swirling melting furnace by the combustion heat of pyrolysis gas generated by pyrolyzing waste, and the molten slag generated by the melting is extracted from the slag outlet to the granulation tank through a slag extraction chute. In the melting method of the pyrolysis gasification system that discharges the combustion exhaust gas generated in the swirl melting furnace to the secondary combustion chamber above the melting furnace,
The lower end of the slag extraction chute is immersed in the granulation tank to form a water seal, and at least a part of the steam-containing gas including water vapor evaporated from the granulation tank is extracted through the bypass passage. A melting method of a gasification melting system, characterized in that the chute is led to the secondary combustion chamber.
前記スラグ抜出シュートを含む旋回溶融炉内が負圧状態に維持されるように、該旋回溶融炉の後段側に設置された誘引ファンを制御することを特徴とする請求項5記載の熱分解ガス化システムの溶融方法。
6. The thermal decomposition according to claim 5, wherein an induction fan installed on the rear stage side of the swirl melting furnace is controlled so that the inside of the swirl melting furnace including the slag extraction chute is maintained in a negative pressure state. Method of melting gasification system.
JP2006083640A 2006-03-24 2006-03-24 Fusing equipment and fusing method of gasification fusing system Pending JP2007255844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083640A JP2007255844A (en) 2006-03-24 2006-03-24 Fusing equipment and fusing method of gasification fusing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083640A JP2007255844A (en) 2006-03-24 2006-03-24 Fusing equipment and fusing method of gasification fusing system

Publications (1)

Publication Number Publication Date
JP2007255844A true JP2007255844A (en) 2007-10-04

Family

ID=38630262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083640A Pending JP2007255844A (en) 2006-03-24 2006-03-24 Fusing equipment and fusing method of gasification fusing system

Country Status (1)

Country Link
JP (1) JP2007255844A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454567B (en) * 2008-07-21 2014-10-01 Uhde Gmbh Cinder chute at burners to the protection of down-flowing cinder
JP2015137293A (en) * 2014-01-21 2015-07-30 三菱日立パワーシステムズ株式会社 gasification furnace equipment and slag heat recovery method
CN108488785A (en) * 2018-04-28 2018-09-04 东方电气集团东方锅炉股份有限公司 A kind of fractional combustion supercharged oxygen-enriched boiler system
CN113798307A (en) * 2021-09-15 2021-12-17 浙江伊诺环保科技股份有限公司 Fly ash high-temperature melting recycling treatment process
CN114505013A (en) * 2022-01-06 2022-05-17 湖南时代阳光药业股份有限公司 Drug manufacturing is with swaing formula granulation machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454567B (en) * 2008-07-21 2014-10-01 Uhde Gmbh Cinder chute at burners to the protection of down-flowing cinder
JP2015137293A (en) * 2014-01-21 2015-07-30 三菱日立パワーシステムズ株式会社 gasification furnace equipment and slag heat recovery method
CN108488785A (en) * 2018-04-28 2018-09-04 东方电气集团东方锅炉股份有限公司 A kind of fractional combustion supercharged oxygen-enriched boiler system
CN113798307A (en) * 2021-09-15 2021-12-17 浙江伊诺环保科技股份有限公司 Fly ash high-temperature melting recycling treatment process
CN113798307B (en) * 2021-09-15 2022-08-23 浙江伊诺环保科技股份有限公司 Treatment process for recycling fly ash through high-temperature melting
CN114505013A (en) * 2022-01-06 2022-05-17 湖南时代阳光药业股份有限公司 Drug manufacturing is with swaing formula granulation machine
CN114505013B (en) * 2022-01-06 2023-08-22 湖南时代阳光药业股份有限公司 Swinging type granulation machine for medicine production

Similar Documents

Publication Publication Date Title
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JPH07507113A (en) Circulating fluidized bed black liquor gasification method and equipment
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP3936824B2 (en) Waste heat recovery boiler and waste treatment facility
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
JP2010043840A (en) Method and apparatus for melting waste
JP2006275442A (en) Combustible incinerating, thermally decomposing, gasifying and treating method, and its treatment device
JP3964043B2 (en) Waste disposal method
JP4295286B2 (en) Boiler structure with swirl melting furnace
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP5490488B2 (en) Waste melting treatment method
JP4126317B2 (en) Operation control method of gasification and melting system and system
KR101033825B1 (en) A new and recycled fuel combustion system capable of complete combustion and indirect heat source transfer
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
EP1379613B1 (en) Gasification and slagging combustion system
JP5675149B2 (en) Boiler equipment
JP2006170609A (en) Gasification and gasification combustion method of solid waste
CN104949131A (en) Biomass garbage combustion system and method
JP2019190730A (en) Waste gasification melting device and waste gasification melting method
JP2007010309A (en) Recovery method of inflammable gas from sludge
JP2011052097A (en) Highly efficient dry distillation furnace and dry distillation method
JP4791157B2 (en) Waste gasification melting equipment melting furnace
JP3921765B2 (en) Waste pyrolysis gasification melting equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100928