WO2001090645A1 - Wastes treating method and device - Google Patents

Wastes treating method and device Download PDF

Info

Publication number
WO2001090645A1
WO2001090645A1 PCT/JP2000/003306 JP0003306W WO0190645A1 WO 2001090645 A1 WO2001090645 A1 WO 2001090645A1 JP 0003306 W JP0003306 W JP 0003306W WO 0190645 A1 WO0190645 A1 WO 0190645A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
gas
combustible gas
furnace
concentration
Prior art date
Application number
PCT/JP2000/003306
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Noto
Akira Nakamura
Seiji Kinoshita
Hajime Akiyama
Takuya Shinagawa
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to PCT/JP2000/003306 priority Critical patent/WO2001090645A1/en
Priority to KR10-2001-7016391A priority patent/KR100447009B1/en
Priority to EP00929845A priority patent/EP1284389A4/en
Publication of WO2001090645A1 publication Critical patent/WO2001090645A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07002Injecting inert gas, other than steam or evaporated water, into the combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07009Injection of steam into the combustion chamber

Definitions

  • the present invention relates to a method and an apparatus for treating waste.
  • BACKGROUND ART Japanese Unexamined Patent Publication No. Hei 7-35322 and Japanese Unexamined Patent Publication No. 9-159132 disclose a method for treating waste which is obtained by partially oxidizing municipal solid waste or industrial waste (hereinafter, simply referred to as waste), converting the waste into gas, and burning the waste. Has been proposed.
  • FIG. 10 schematically shows an example of a typical method disclosed in Japanese Patent Application Laid-Open No. 7-35322.
  • the waste is gasified in a partial combustion fluidized bed furnace 1 in a fluidized bed temperature of 450 to 650 ° (:, reducing atmosphere with an air ratio of about 0.15 to 0.5).
  • the gas is introduced into the secondary combustion furnace 3 via the dust collector 2.
  • the produced gas is mixed with the secondary air in the secondary combustion furnace 3 and is completely burned at a high temperature of 800 to 1000 ° C.
  • a salt recovery agent is supplied to suppress the generation of hydrogen chloride gas for heat recovery, and a dust recovery line 6 is installed below the dust collector 2, and some of the desalinating agent and the dust are collected. After a part or the whole amount is cooled by the cooler 7, it is returned to the partial oxidation fluidized bed furnace 1 again.
  • FIG. 11 schematically shows an example of a typical method disclosed in Japanese Patent Application Laid-Open No. 9-159132. ⁇
  • Combustion exhaust gas generated by burning refuse in the combustion furnace is cooled to 450 to 650 ° C by heated water 20 is introduced from the economizers 8 in the waste heat boiler 4, is dust removal by the filter 7 9 .
  • Part or all of the flue gas discharged from the filter 9 is supplied to the heating furnace 10 and is heated to a high temperature by reheating using the auxiliary fuel 21, and the waste heat is generated by the steam superheater 11. It is used to heat saturated steam 22 coming from boiler 4 to around 500 ° C.
  • a part of the flue gas is recovered from the waste heat by the economizer 8 and the air preheater 12 and then discharged from the chimney 14 via the induction blower 13.
  • An object of the present invention is to provide a waste treatment method and apparatus which can partially oxidize waste so that the dust concentration does not become high and can efficiently recover heat from combustion exhaust gas.
  • the above-mentioned object is a step of incompletely burning or partially oxidizing waste in a partial oxidation furnace with a combustion reaction to generate a combustible gas having an oxygen equivalent concentration of ⁇ 30 to 1% at the outlet of the partial oxidation furnace. It has a process of introducing this combustible gas to a dust remover at 250 to 800 ° C to reduce the dust concentration to 0.1 lg / Nm 3 or less, and a process of burning the combustible gas after dust removal at a high temperature in a combustion furnace. Achieved by waste disposal methods.
  • waste treatment method that includes a step of reducing the amount of combustible gas after wet gas treatment to 20 ppm or less and a step of burning the combustible gas after the wet gas treatment in a combustion furnace at a high temperature.
  • waste treatment methods include partial oxidation furnaces that incompletely burn or partially oxidize waste that produces combustible gas with an oxygen equivalent concentration of -30 to ⁇ at the furnace outlet, and 250 to 800 ° C.
  • Waste treatment equipment equipped with a dust remover that reduces the dust concentration of this combustible gas to 0.1 lg / Nm 3 or less, and a combustion furnace that burns combustible gas after dust removal at a high temperature, or the oxygen equivalent concentration at the furnace outlet a partial oxidation furnace but to incomplete combustion or partial oxidation of waste to produce a combustible gas, which is an 30 to 1%, the Das Bok concentration of the combustible gas 0.
  • FIG. 1 is a diagram schematically showing one embodiment of a waste disposal apparatus according to the present invention.
  • Fig. 2 shows the relationship between the dust concentration after dust removal and the service life of the boiler tubes installed downstream.
  • FIG. 3 is a view showing a shape of the ceramic filter 1.
  • FIG. 4 is a diagram schematically showing another embodiment of the waste treatment apparatus according to the present invention.
  • FIG. 5 is a diagram schematically showing another embodiment of the waste treatment apparatus according to the present invention.
  • FIG. 6 is a diagram schematically showing another embodiment of the waste disposal apparatus according to the present invention. — '. ⁇
  • FIG. 7A and 7B are diagrams schematically showing another embodiment of the waste treatment apparatus according to the present invention.
  • FIG. 8 is a diagram schematically showing another embodiment of the waste treatment apparatus according to the present invention.
  • 9A and 9B are diagrams schematically showing another embodiment of the waste treatment apparatus according to the present invention.
  • FIG. 10 is a diagram schematically showing an example of a conventional waste treatment method.
  • FIG. 11 is a diagram schematically showing another example of a conventional waste treatment method.
  • BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 schematically shows an embodiment of a waste treatment apparatus according to the present invention.
  • This system consists of a partial oxidation furnace 1 that incompletely burns or partially oxidizes waste, a dust removal device 2 that reduces the concentration of combustible gas dust, a combustion furnace 3 that burns combustible gas after dust removal at a high temperature, It consists of a collection of poilers 4 for recovery.
  • the waste put into the partial oxidation furnace 1 is partially oxidized by burning a gas mainly composed of air having a controlled oxygen concentration by the steam and the exhaust gas, thereby producing a combustible gas.
  • a gas mainly composed of air having a controlled oxygen concentration by the steam and the exhaust gas thereby producing a combustible gas.
  • the concentration of the combustible gas generated in terms of oxygen at the outlet of the furnace 1 is less than -30%, a problem such as adhesion of a strong reducing gas may occur, and if it exceeds 1, dioxin etc. can be sufficiently reduced. Since combustion cannot be performed, it is necessary to adjust the air ratio to 0.15 to 0.9, for example, so that it becomes -30 to ⁇ .
  • the oxygen equivalent concentration is a value defined by a difference between an oxygen concentration in an atmosphere and an oxygen concentration considered to be consumed by a gas that may be oxidized.
  • oxygen (0 2) is 2%
  • carbon monoxide (CO) 4% hydrogen (3 ⁇ 4) 3 ⁇ 4
  • methane (CH 4) is present 1%
  • 4% CO oxidizes C0
  • This value is an index indicating the degree of combustion of the partial oxidizing gas in the atmosphere and the degree of the air ratio in the combustion up to that time. The smaller the value, the higher the potential as a combustible gas.
  • the temperature in the furnace 1 is set to 400 to 800 ° C, which is such that the waste can self-combust and partially oxidize.
  • the temperature by residence time in the partial oxidation furnace 1 is controlled to 250 to 800 ° C, until the dust concentration is sent to the dust collector 2 is below 0. 1 g / Nm 3 Dust is removed.
  • the temperature of the flammable gas sent to the dust removal device 2 is 250 to 800 ° (and more preferable) because tar and the like adhere to the device at 250 ° C or less and molten salt in dust adheres to the device at 800 ° C or more. Needs to be controlled at 250-650 ° C.
  • Figure 2 shows the relationship between the dust concentration after dust removal and the service life of the boiler tubes installed downstream. It can be seen that the service life of the poiler tube is significantly improved if the dust concentration after the P residual dust is set to 0.1 lg / Nm 3 or less. This is because the amount of salt in the dust is reduced, and the corrosion of boiler tubes and the like is suppressed.
  • a bag filter Depending on the temperature of the combustible gas, a bag filter, a ceramic filter, a high-temperature electric precipitator, an inertial precipitator, a high-performance cyclone, a centrifugal precipitator, or the like is used as the dust removing device 2. Also, it is desirable to use a filter-type dust collector equipped with a candle-shaped ceramic filter and filter cloth, as shown in Fig. 3, and an 82-cam-shaped ceramic filter with a mesh size of 10 mm or less.
  • the dust adhering to the filter body is periodically removed, the dust is efficiently removed and the emission of harmful gas is further suppressed.
  • a gas with an oxygen concentration of 5% or less or nitrogen gas in order to suppress the oxidation of combustible gas and avoid the danger of unnecessary explosion or combustion.
  • the gas having an oxygen concentration of 5 or less can be obtained by recirculation of exhaust gas, pressure swing adsorption, or membrane separation.
  • the conditions of brushing method, a gas pressure LKG / cm 2 or more, a few seconds to several hours brushing intervals, to the the brushing time 0.02 seconds to several tens seconds Is desirable.
  • the temperature of the gas to be removed be equal to or higher than the temperature of the combustible gas in order to prevent the temperature of the combustible gas from lowering.
  • the coating layer on the surface of the dust collector may peel off due to the blowing of gas to blow off the gas, but if gas is blown when the differential pressure across the dust collector reaches a certain set value, It can be completely prevented.
  • the combustible gas that has been dust-removed by the dust-removing device 2 is burned in the combustion furnace 3 to reach a high temperature of about 1000 ° C.
  • the combustion is performed by mixing the oxidizing agent, so that the emission of unburned gas such as CO is almost completely suppressed.
  • the concentration of aromatic organic compounds due to soot is reduced, and as a result, the concentration of dioxins and furan, which are incomplete combustion products, is also reduced. You. If a combustible gas is continuously burned by arranging an ignition reducer in the combustion furnace 3, it is possible to avoid the danger of misfiring and mixing of combustible gas and air again to explode.
  • the boiler 4 is arranged downstream of the combustion furnace 3, heat can be efficiently recovered from the combustion gas, so that a high-temperature and high-pressure boiler of, for example, 300 or more and 20ata or more can be realized. In addition, recovery of high-temperature air is possible if necessary.
  • the poiler 4 is provided downstream of the combustion furnace 3, but the poiler 4 may be provided in the combustion furnace 3. Since dust has been removed in advance, corrosion of the boiler tube due to dust can be suppressed.
  • a boiler tube made of a corrosion-resistant ceramic to extend the life of the boiler tube .
  • FIG. 5 schematically shows another embodiment of the waste treatment apparatus according to the present invention.
  • a wet gas treatment device 5 is provided between a dust removal device 2 and a combustion furnace 3 of the device in FIG.
  • the combustible gas after dust removal is introduced into this wet gas treatment device 5, and the concentration of the neutralizing agent such as caustic soda is changed to reduce the hydrogen chloride concentration to 20 ppm or less. This will reduce the occurrence of corrosion and drastically reduce the corrosion of boiler tubes and other equipment downstream. Therefore, parts and the like that have conventionally been made of materials such as ceramics having high corrosion resistance can be replaced with inexpensive materials.
  • FIG. 6 schematically shows another embodiment of the waste treatment apparatus according to the present invention.
  • the configuration of this device is the same as that of Fig. 1 except that a fluidized bed furnace 1 is used as a partial oxidation furnace.
  • the combustible gas was supplied to the dust remover 2 at 250 to 800 ° C, and the dust was removed by a candle-shaped ceramic filter. Ceramic fill evening one candle-shaped, S i 0 2, A1 2 0 3, S i C, Kojiyuraito, made from the composite of these materials or inorganic materials similar to it, is a ceramic fiber-type or a porous type .
  • the dust concentration was 5 to 20 g / Nm 3 before flowing into the dust removing device 2, but was reduced to 0.1 lg / Nm 3 or less. After removal of the removed dust, it was detoxified in a melting furnace and an incinerator.
  • the combustible gas was burned in the combustion furnace 3 to a temperature of 900 to 1000 ° C.
  • Stainless steel, Inconel, and other alloy steels were used as the poiler tube. No remarkable corrosion was observed, and it was confirmed that the corrosion resistance could be used for several years depending on the material, and when high-temperature air was recovered, high-temperature air at 350 to 700 ° C could be recovered.
  • FIG. 7A and 7B schematically show another embodiment of the waste treatment apparatus according to the present invention.
  • FIG. 7A The configuration of the apparatus in FIG. 7A is the same as the apparatus in FIG. 1 except that a grate furnace 1 is used as a partial oxidation furnace. Further, in the apparatus shown in FIG. 7B, a boiler 3A is also provided in the combustion furnace 3 of the apparatus shown in FIG. 7A.
  • the combustible gas was supplied to the dust remover 2 at 250 to 800 ° C, and the dust was removed by the candle-shaped ceramic filter and the honeycomb-shaped ceramic filter.
  • Ceramic Phil evening one consists S i0 2, A1 2 0 3 , S i co one Jiyuraito composite of these materials or inorganic materials similar to it, is a ceramic fiber-type or multi-porous type.
  • Filtration apparatus 2 of the flicked uses nitrogen gas, 3 ⁇ 7kg / cm 2 pressure flicked, brushing 10 seconds to 20 minutes apart, was the brushing time from 0.05 to 15 seconds.
  • the dust concentration was reduced from i to 5 g / Nm 3 before flowing into the dust removing device 2 to 0.1 Ig / Nm 3 or less. After removal of the removed dust, the melting furnace and the firing It was detoxified in an incinerator.
  • the combustible gas after dust removal was brought to a temperature of 900 to 1100 which was burned in the combustion furnace 3.
  • Combustion Furnace 3 in order to avoid danger such as explosion, the combustible gas was continuously burned using a pilot wrench (not shown) with the ignition source always on.
  • the output of this parner is tens of thousands to hundreds of thousands of kcal / h, and natural gas or kerosene was used as fuel.
  • FIG. 8 schematically shows another embodiment of the waste disposal apparatus according to the present invention.
  • the configuration of this device is the same as the device in Fig. 5 except that a fluidized bed furnace 1 is used as a partial oxidation furnace.
  • Fluidized air temperature is 20 to 650 ° C
  • sand layer temperature is 400 to 70 (Waste municipal solid waste is supplied to the fluidized bed furnace 1 of TC at lt / h, and the air ratio is 0.2 to 0.8.
  • the partial oxidation was carried out to produce a combustible gas.
  • Combustible gas is supplied to the filtration apparatus 2 with two hundred and fifty to eighty (TC, are dust by ceramic filter one candle shape. Ceramic fill evening one candle shape, Si0 2, A1 2 0 3, Si Kojiyuraito, these It consists of a composite of the same material or an inorganic material similar to it, and is of the ceramic fiber type or porous type.
  • TC Combustible gas
  • To remove the dust removal device 2 use a gas with an oxygen concentration of 5% or less by recirculating the exhaust gas. Using nitrogen gas, the sweeping pressure was 3 to 7 kg / cm 2 , the sweeping interval was 5 seconds to 50 minutes, and the sweeping time was 0.1 to 20 seconds.
  • the combustible gas with reduced hydrogen chloride was brought to a temperature of 900 to 1000 ° C, which was burned in the combustion furnace 3. At this time, heat recovery could be performed using steam at 350 to 540 ° C and 50 to 100 ata in the downstream poirer 4. Although stainless steel was used for the boiler tube, no significant corrosion was observed, and it was confirmed that some materials could be used for several years. In addition, when high-temperature air was collected, high-temperature air could be collected in the range of 350 to 700.
  • FIGS. 9A and 9B schematically show another embodiment of the waste treatment apparatus according to the present invention.
  • FIG. 9A The configuration of the apparatus in FIG. 9A is the same as the apparatus in FIG. 5 except that a grate furnace 1 is used as a partial oxidation furnace.
  • a boiler 3A is also provided in the combustion furnace 3 of the apparatus shown in FIG. 9A.
  • the combustible gas was supplied to the dust removing device 2 at 250 to 800 ° C., and the dust was removed by the candle-shaped ceramic filter and the honeycomb-shaped ceramic filter.
  • Ceramic filters one may, S i0 2, A1 2 0 3, S i Kojiyuraito, an inorganic material similar composite, or that of these materials is a ceramic fiber-type or multi-porous type.
  • the combustible gas reduced in hydrogen chloride was heated to a temperature of 900 to 1100 ° C, which was burned in the combustion furnace 3.
  • a combustible gas was continuously burned by using a pilot burner (not shown) with a constant ignition source in order to avoid a danger such as an explosion.
  • the output of this parner is tens of thousands to hundreds of thousands of kcal / h, and natural gas or kerosene was used as fuel.
  • heat recovery using 540 ⁇ l OOata steam did it.
  • stainless steel, Inconel and other alloy steels were used as boiler tubes, no significant corrosion was observed, and stable operation for more than one year was possible.

Abstract

A wastes treating method comprising the steps of incompletely burning or partially oxidizing wastes in a partial oxidation furnace for causing a combustion reaction to generate a combustible gas having an oxygen-equivalent concentration of -30 to 1% at the outlet of the partial oxidation furnace, introducing the combustible gas into a dust separator at 250 to 800°C to reduce a dust concentration to up to 0.1g/Nm3, removing, as required, hydrogen chloride from the dedusted combustible gas by a wet type gas treating device down to up to 20 ppm, and then burning the gas at high temperatures in a combustion furnace, whereby wastes are partially oxidized to keep low a dust concentration otherwise causing the corrosion of boiler tubes, and an efficient heat recovery from a combustion exhaust gas is ensured.

Description

明細 書 廃棄物の処理方法及び装置 技術分野 本発明は、 廃棄物の処理方法及び装置に関する。 背景技術 都市ごみあるいは産業廃棄物 (以下、 単に廃棄物という) を部分酸化させて、 ガ 化させた後に燃焼させる廃棄物の処理方法が特開平 7- 35322号公報ゃ特開平 9 - 159132号公報に提案されている。  TECHNICAL FIELD The present invention relates to a method and an apparatus for treating waste. BACKGROUND ART Japanese Unexamined Patent Publication No. Hei 7-35322 and Japanese Unexamined Patent Publication No. 9-159132 disclose a method for treating waste which is obtained by partially oxidizing municipal solid waste or industrial waste (hereinafter, simply referred to as waste), converting the waste into gas, and burning the waste. Has been proposed.
図 10に、特開平 7- 35322号公報に開示されている代表的な方法の例を模式的に示す。 廃棄物は、 部分燃焼流動床炉 1にて、 流動層温度 450〜650° (:、 空気比 0. 15〜0. 5 程度の還元雰囲気でガス化され、サイクロン、衝突式集塵器等の集塵装置 2を介し て二次燃焼炉 3へ導入される。生成ガスは二次燃焼炉 3で二次空気と混合されて 800 〜1000°Cの高温で完全燃焼される。 このとき、 脱塩剤を供給して塩ィヒ水素ガスの 発生を抑制して熱回収が行われる。 集塵装置 2の下方にはダスト回収ライン 6が設 置されており、脱塩剤の一部とダストの一部または全量は、冷却器 7で冷却された 後、 再び部分酸化流動床炉 1に戻される。 FIG. 10 schematically shows an example of a typical method disclosed in Japanese Patent Application Laid-Open No. 7-35322. The waste is gasified in a partial combustion fluidized bed furnace 1 in a fluidized bed temperature of 450 to 650 ° (:, reducing atmosphere with an air ratio of about 0.15 to 0.5). The gas is introduced into the secondary combustion furnace 3 via the dust collector 2. The produced gas is mixed with the secondary air in the secondary combustion furnace 3 and is completely burned at a high temperature of 800 to 1000 ° C. A salt recovery agent is supplied to suppress the generation of hydrogen chloride gas for heat recovery, and a dust recovery line 6 is installed below the dust collector 2, and some of the desalinating agent and the dust are collected. After a part or the whole amount is cooled by the cooler 7, it is returned to the partial oxidation fluidized bed furnace 1 again.
図 11に、 特開平 9- 159132号公報に開示されている代表的な方法の例を模式的に示 す。 · FIG. 11 schematically shows an example of a typical method disclosed in Japanese Patent Application Laid-Open No. 9-159132. ·
燃焼炉でごみを燃焼させて発生した燃焼排ガスは、 廃熱ボイラ 4で節炭器 8から 導入される加熱された水 20により 450〜650°Cまで冷却され、フィルター 79により除 塵される。 フィルター 9を出た燃焼排ガスの一部または全量は、加熱炉 10に供給さ れ、 補助燃料 21を用いた追い焚きにより高温に加熱され、 蒸気過熱器 11にて廃熱 ボイラ 4から来る飽和蒸気 22を 500°C程度までに過熱するのに利用される。 また、 燃焼排ガスの一部は、節炭器 8と空気余熱器 12で廃熱回収された後、誘引送風機 13 を経て煙突 14から排出される。 しかしながら、 こうした廃棄物の処理方法では、 ダスト濃度が高くなり、 除塵 の点で不利になるとともに、 熱回収のために下流に配備されるポイラにおいてダ スト中の塩等によりポイラチューブの腐食が発生したり、 燃焼炉で発生した燃焼 排ガスの未燃分が少なくなつて、 加熱炉で効果的な廃熱回収ができなくなるとい つた問題がある。 発明の開示 本発明の目的は、 ダスト濃度が高くならないように廃棄物を部分酸化させ、 燃 焼排ガスから効率良く熱回収することのできる廃棄物の処理方法及び装置を提供 することにある。 上記目的は、 廃棄物を燃焼反応をともなう部分酸化炉にて不完全燃焼もしくは 部分酸化させて、部分酸化炉出口での酸素換算濃度が- 30〜1%である可燃ガスを生 成させる工程と、 この可燃ガスを 250〜800°Cで除塵装置に導入してダスト濃度を 0. lg/Nm3以下とする工程と、 除塵後の可燃ガスを燃焼炉にて高温で燃焼する工程 とを有する廃棄物の処理方法によって達成される。 また、 廃棄物を燃焼反応を伴 う部分酸化炉にて不完全燃焼もしくは部分酸化させて、 部分酸化炉出口での酸素 換算濃度が- 30〜^である可燃ガスを生成させる工程と、 この可燃ガスを 250〜 800°Cで除塵装置に導入してダスト濃度を 0. lg/Nm3以下とする工程と、 除塵後の可 燃ガスを湿式ガス処理装置に導入して塩ィ匕水素濃度を 20ppm以下にする工程と、湿 式ガス処理後の可燃ガスを燃焼炉にて高温で燃焼する工程とを有する廃棄物の処 理方法によっても可能である。 これらの廃棄物の処理方法は、炉出口での酸素換算濃度が- 30〜^である可燃ガ スを生成させる廃棄物を不完全燃焼もしくは部分酸化させる部分酸化炉と、 250 〜800°Cでこの可燃ガスのダスト濃度を 0. lg/Nm3以下にする除塵装置と、 除塵後の 可燃ガスを高温で燃焼する燃焼炉とを備えた廃棄物の処理装置、 あるいは炉出口 での酸素換算濃度が一 30〜1 %である可燃ガスを生成させる廃棄物を不完全燃焼 もしくは部分酸化させる部分酸化炉と、 250〜800°Cでこの可燃ガスのダス卜濃度 を 0. lg/Nm3以下にする除塵装置と、 除塵後の可燃ガスの塩化水素濃度を 20ppm以下 にする湿式ガス処理装置と、 湿式ガス処理後の可燃ガスを高温で燃焼する燃焼炉 とを備えた廃棄物の処理装置により実現される。 図面の簡単な説明 図 1は、本発明である廃棄物の処理装置の一実施の形態を模式的に示す図である。 図 2は、除塵後のダスト濃度と下流に配備したボイラチューブの耐用年数の関係 を示す図である。 Combustion exhaust gas generated by burning refuse in the combustion furnace is cooled to 450 to 650 ° C by heated water 20 is introduced from the economizers 8 in the waste heat boiler 4, is dust removal by the filter 7 9 . Part or all of the flue gas discharged from the filter 9 is supplied to the heating furnace 10 and is heated to a high temperature by reheating using the auxiliary fuel 21, and the waste heat is generated by the steam superheater 11. It is used to heat saturated steam 22 coming from boiler 4 to around 500 ° C. A part of the flue gas is recovered from the waste heat by the economizer 8 and the air preheater 12 and then discharged from the chimney 14 via the induction blower 13. However, such a waste disposal method has a high dust concentration and is disadvantageous in terms of dust removal, and also causes corrosion of the poiler tube due to salt in the dust and the like in a poiler installed downstream for heat recovery. However, there is a problem that the combustion furnace makes it impossible to recover waste heat effectively by reducing the amount of unburned gas in the combustion exhaust gas. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a waste treatment method and apparatus which can partially oxidize waste so that the dust concentration does not become high and can efficiently recover heat from combustion exhaust gas. The above-mentioned object is a step of incompletely burning or partially oxidizing waste in a partial oxidation furnace with a combustion reaction to generate a combustible gas having an oxygen equivalent concentration of −30 to 1% at the outlet of the partial oxidation furnace. It has a process of introducing this combustible gas to a dust remover at 250 to 800 ° C to reduce the dust concentration to 0.1 lg / Nm 3 or less, and a process of burning the combustible gas after dust removal at a high temperature in a combustion furnace. Achieved by waste disposal methods. A step of incompletely burning or partially oxidizing the waste in a partial oxidation furnace accompanied by a combustion reaction to produce a combustible gas having an oxygen equivalent concentration of −30 to ^ at the outlet of the partial oxidation furnace; A process of introducing gas into a dust remover at 250 to 800 ° C to reduce the dust concentration to 0.1 lg / Nm 3 or less; and introducing a combustible gas after dust removal to a wet gas treatment device to reduce a salt concentration of hydrogen. It is also possible to use a waste treatment method that includes a step of reducing the amount of combustible gas after wet gas treatment to 20 ppm or less and a step of burning the combustible gas after the wet gas treatment in a combustion furnace at a high temperature. These waste treatment methods include partial oxidation furnaces that incompletely burn or partially oxidize waste that produces combustible gas with an oxygen equivalent concentration of -30 to ^ at the furnace outlet, and 250 to 800 ° C. Waste treatment equipment equipped with a dust remover that reduces the dust concentration of this combustible gas to 0.1 lg / Nm 3 or less, and a combustion furnace that burns combustible gas after dust removal at a high temperature, or the oxygen equivalent concentration at the furnace outlet a partial oxidation furnace but to incomplete combustion or partial oxidation of waste to produce a combustible gas, which is an 30 to 1%, the Das Bok concentration of the combustible gas 0. lg / Nm 3 in the following 250 to 800 ° C Waste treatment equipment equipped with a dust removal device that reduces the concentration of hydrogen chloride in combustible gas after dust removal to 20 ppm or less, and a combustion furnace that burns combustible gas after wet gas treatment at high temperatures Is done. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing one embodiment of a waste disposal apparatus according to the present invention. Fig. 2 shows the relationship between the dust concentration after dust removal and the service life of the boiler tubes installed downstream.
図 3は、 セラミックフィルタ一の形状を示す図である。  FIG. 3 is a view showing a shape of the ceramic filter 1.
図 4は、本発明である廃棄物の処理装置の別の実施の形態を模式的に示す図であ る。  FIG. 4 is a diagram schematically showing another embodiment of the waste treatment apparatus according to the present invention.
図 5は、本発明である廃棄物の処理装置の別の実施の形態を模式的に示す図であ る。  FIG. 5 is a diagram schematically showing another embodiment of the waste treatment apparatus according to the present invention.
図 6は、本発明である廃棄物の処理装置の別の実施の形態を模式的に示す図であ る。 — ' .·  FIG. 6 is a diagram schematically showing another embodiment of the waste disposal apparatus according to the present invention. — '. ·
図 7A、 図 7Bは、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示 す図である。  7A and 7B are diagrams schematically showing another embodiment of the waste treatment apparatus according to the present invention.
図 8は、本発明である廃棄物の処理装置の別の実施の形態を模式的に示す図であ る。 図 9A、 図 9Bは、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示 す図である。 FIG. 8 is a diagram schematically showing another embodiment of the waste treatment apparatus according to the present invention. 9A and 9B are diagrams schematically showing another embodiment of the waste treatment apparatus according to the present invention.
図 10は、 従来の廃棄物の処理方法の一例を模式的に示す図である。  FIG. 10 is a diagram schematically showing an example of a conventional waste treatment method.
図 11は、 従来の廃棄物の処理方法の別の例を模式的に示す図である。 発明を実施するための最良の形態 図 1に、 本発明である廃棄物の処理装置の一実施の形態を模式的に示す。  FIG. 11 is a diagram schematically showing another example of a conventional waste treatment method. BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 schematically shows an embodiment of a waste treatment apparatus according to the present invention.
この装置は、 廃棄物を不完全燃焼もしくは部分酸化させる部分酸化炉 1と、可燃 ガスのダスト濃度を低減する除塵装置 2と、除塵後の可燃ガスを高温で燃焼する燃 焼炉 3と、 熱回収するためのポイラ 4から構成されている。  This system consists of a partial oxidation furnace 1 that incompletely burns or partially oxidizes waste, a dust removal device 2 that reduces the concentration of combustible gas dust, a combustion furnace 3 that burns combustible gas after dust removal at a high temperature, It consists of a collection of poilers 4 for recovery.
部分酸化炉 1内へ投入された廃棄物は、 蒸気ゃ排ガスによって酸素濃度の制御 された空気主体のガスを燃焼させて部分酸化され、 そのとき可燃ガスが生成され る。 このとき、 生成された可燃ガスの炉 1出口での酸素換算濃度を、 -30%未満では 強還元ガスとして夕一ル付着等の問題が発生し、 1 を超えるとダイォキシン等を 十分に低減できる燃焼を行えなくなるので、例えば空気比を 0. 15〜0. 9に調整する ことにより- 30〜^となるようにする必要がある。 また、酸素換算濃度をこの範囲 に制御することにより、可燃成分と酸素による爆発の危険が少なくなるとともに、 発生する可燃ガスのポテンシャルの変動が少なくなり安定した操業が可能になる。 ここで、 酸素換算濃度とは、 雰囲気における酸素濃度と酸化される可能性のあ るガスが消費すると考え.られる酸素濃度との差で定義される値である。 例えば、 酸素(02)が 2%、 一酸化炭素(CO)が 4%、 水素 (¾)が ¾、 メタン(CH4)が 1%存在する場 合、 COの 4%は酸化して C02になるために^の 02を消費し、 同様に H2の 2 は 1%の 02を 消費し、 メタン CH4の 1%は 2 の 02を消費するので、 酸素換算濃度は 2- (2+1 +2) =-3% となる。 この値は、 その雰囲気における部分酸化ガスの燃焼の程度とそれまでの 燃焼における空気比の程度を示す指標となり、 この値が小さければ小さいほど可 燃ガスとしてのポテンシャルが高いということになる。 なお、 炉 1内温度は、 廃棄物が自燃でき、 かつ部分酸化する程度の 400〜800°Cに 曰又疋 れ 。 The waste put into the partial oxidation furnace 1 is partially oxidized by burning a gas mainly composed of air having a controlled oxygen concentration by the steam and the exhaust gas, thereby producing a combustible gas. At this time, if the concentration of the combustible gas generated in terms of oxygen at the outlet of the furnace 1 is less than -30%, a problem such as adhesion of a strong reducing gas may occur, and if it exceeds 1, dioxin etc. can be sufficiently reduced. Since combustion cannot be performed, it is necessary to adjust the air ratio to 0.15 to 0.9, for example, so that it becomes -30 to ^. By controlling the oxygen equivalent concentration within this range, the risk of explosion due to combustible components and oxygen is reduced, and the fluctuation in the potential of the combustible gas generated is reduced, enabling stable operation. Here, the oxygen equivalent concentration is a value defined by a difference between an oxygen concentration in an atmosphere and an oxygen concentration considered to be consumed by a gas that may be oxidized. For example, oxygen (0 2) is 2%, carbon monoxide (CO) 4% hydrogen (¾) is ¾, if the methane (CH 4) is present 1%, 4% CO oxidizes C0 In order to become 2 , it consumes 0 2 of ^, and similarly, 2 of H 2 consumes 1% of 0 2, and 1% of methane CH 4 consumes 0 2 of 2 , so the oxygen equivalent concentration is 2 -(2 + 1 +2) = -3%. This value is an index indicating the degree of combustion of the partial oxidizing gas in the atmosphere and the degree of the air ratio in the combustion up to that time. The smaller the value, the higher the potential as a combustible gas. The temperature in the furnace 1 is set to 400 to 800 ° C, which is such that the waste can self-combust and partially oxidize.
生成された可燃ガスは、 部分酸化炉 1内での滞留時間によりその温度が 250〜 800°Cに制御され、 除塵装置 2へ送られそのダスト濃度が 0. 1 g/Nm3以下になるまで 除塵される。 Combustible gas produced, the temperature by residence time in the partial oxidation furnace 1 is controlled to 250 to 800 ° C, until the dust concentration is sent to the dust collector 2 is below 0. 1 g / Nm 3 Dust is removed.
除塵装置 2へ送られる可燃ガスの温度は、 250°C以下ではタール等が、また 800°C 以上ではダスト中の溶融した塩が装置内に付着するため、 250〜800° (、 より好ま しくは 250〜650°Cに制御される必要がある。  The temperature of the flammable gas sent to the dust removal device 2 is 250 to 800 ° (and more preferable) because tar and the like adhere to the device at 250 ° C or less and molten salt in dust adheres to the device at 800 ° C or more. Needs to be controlled at 250-650 ° C.
可燃ガスをこのように比較的低温にして除塵装置 2へ送ると、 減温塔などの設 備を介して過度の冷却することなく、 除塵を行うことができる。  When the combustible gas is sent to the dust removing device 2 at such a relatively low temperature, dust can be removed without excessive cooling via equipment such as a cooling tower.
図 2に、除塵後のダスト濃度と下流に配備したボイラチューブの耐用年数の関係 を示す。 P余塵後のダスト濃度を 0. lg/Nm3以下にすれば、 ポイラチューブの耐用年 数が著しく向上することがわかる。 これは、 ダスト中の塩の量が低減されて、 ボ イラチューブ等の腐食が抑えられることによる。 Figure 2 shows the relationship between the dust concentration after dust removal and the service life of the boiler tubes installed downstream. It can be seen that the service life of the poiler tube is significantly improved if the dust concentration after the P residual dust is set to 0.1 lg / Nm 3 or less. This is because the amount of salt in the dust is reduced, and the corrosion of boiler tubes and the like is suppressed.
除塵装置 2には、 可燃ガスの温度によって、 バグフィルタ一、 セラミックフィル 夕一、 高温電気集塵器、 慣性力集塵器、 高性能サイクロン、 遠心力集塵機等が用 いられる。 また、 図 3に示すようなキャンドル形状のセラミックフィル夕一やろ布、 目開き 10mm以下の八二カム状セラミックフィルターの濾過体を備えた濾過式の集 塵器を使うことが望ましい。  Depending on the temperature of the combustible gas, a bag filter, a ceramic filter, a high-temperature electric precipitator, an inertial precipitator, a high-performance cyclone, a centrifugal precipitator, or the like is used as the dust removing device 2. Also, it is desirable to use a filter-type dust collector equipped with a candle-shaped ceramic filter and filter cloth, as shown in Fig. 3, and an 82-cam-shaped ceramic filter with a mesh size of 10 mm or less.
この濾過体に付着したダストの払い落としを定期的に行うと、 除塵が効率的に 行われ、 有害ガスの排出がさらに抑制される。 この払い落しには、 可燃ガスの酸 化を抑制し不要な爆発や燃焼の危険を避けるために、 酸素濃度 5%以下のガスある いは窒素ガスを用いることが望ましい。 なお、 酸素濃度 5 以下のガスは、 排ガス 再循環、 あるいは圧力スイング吸着法や膜分離法を利用して得ることができる。 付着したダストの剥離効果を考えると、 払い落とし方法の条件は、 ガス圧力を lkg/cm2以上、 払い落とし間隔を数秒〜数時間、 払い落とし時間を 0. 02秒〜数十秒 にすることが望ましい。 また、 払い落とすためのガス温度は、 可燃ガスの温度低下を防ぐために、 可燃 ガスの温度以上にすることが望ましい。 If the dust adhering to the filter body is periodically removed, the dust is efficiently removed and the emission of harmful gas is further suppressed. For this removal, it is desirable to use a gas with an oxygen concentration of 5% or less or nitrogen gas in order to suppress the oxidation of combustible gas and avoid the danger of unnecessary explosion or combustion. The gas having an oxygen concentration of 5 or less can be obtained by recirculation of exhaust gas, pressure swing adsorption, or membrane separation. Considering the peeling effect of the deposited dust, the conditions of brushing method, a gas pressure LKG / cm 2 or more, a few seconds to several hours brushing intervals, to the the brushing time 0.02 seconds to several tens seconds Is desirable. It is desirable that the temperature of the gas to be removed be equal to or higher than the temperature of the combustible gas in order to prevent the temperature of the combustible gas from lowering.
さらに、 払い落とすためのガスの吹込みにより集塵器表面のコーティング層が 剥離することがあるが、 ガスを集塵器前後の差圧がある設定値に到達したときに 吹き込むようにすれば、 それを完全に防止できる。  Furthermore, the coating layer on the surface of the dust collector may peel off due to the blowing of gas to blow off the gas, but if gas is blown when the differential pressure across the dust collector reaches a certain set value, It can be completely prevented.
除塵装置 2にて除塵され可燃ガスは、 燃焼炉 3にて燃焼されて約 1000°Cの高温に なる。 ここでは酸化剤を混合して燃焼が行われるので完全燃焼が行われるため、 CO等の未燃ガス等の排出がほぼ完全に抑制される。 また、 可燃ガスは、 予め除塵 が行われているために、 すすに起因する芳香族系有機化合物濃度は低くなり、 そ の結果、 不完全燃焼生成物であるダイォキシン類やフランの濃度も低減される。 燃焼炉 3に点火減を配備し、可燃ガスを連続して燃焼させると、 失火して再び可 燃ガスと空気が混合して爆発する危険性を回避できる。  The combustible gas that has been dust-removed by the dust-removing device 2 is burned in the combustion furnace 3 to reach a high temperature of about 1000 ° C. Here, since the combustion is performed by mixing the oxidizing agent, the complete combustion is performed, so that the emission of unburned gas such as CO is almost completely suppressed. In addition, since combustible gas has been subjected to dust removal in advance, the concentration of aromatic organic compounds due to soot is reduced, and as a result, the concentration of dioxins and furan, which are incomplete combustion products, is also reduced. You. If a combustible gas is continuously burned by arranging an ignition reducer in the combustion furnace 3, it is possible to avoid the danger of misfiring and mixing of combustible gas and air again to explode.
この燃焼炉 3の下流にボイラ 4を配設すれば、 効率よく燃焼ガスから熱回収をす ることができるので、 例えば 300 以上、 20ata以上の高温高圧ボイラが可能にな る。 また、 必要に応じて高温空気の回収も可能になる。 図 1の例では燃焼炉 3の下 流にポイラ 4が配備されているが、ポイラ 4は燃焼炉 3内に配備することもできる。 予め除塵が行われているため、 ダス卜に起因するボイラチューブの腐食を抑え ることができる。塩化水素ガスによる腐食効果が増大する排ガス温度 600°C以上の 高温場から熱を回収する場合には、 ボイラチューブの寿命を長くするため耐腐食 性を有するセラミックを使ったボイラチューブを用いれば良い。 熱回収が終わつ た排ガスは下流の排ガス処理設備(図示せず) を経て、 煙突から排出される。 図 4に示すように、図 1の廃棄物の処理装置に除塵装置 2で払い落とされたダスト を燃焼するためのダスト燃焼炉 15を配備し、 払い落とされたダストを酸素を含む ガスで 400〜750°Cで燃焼すれば、 ダスト中に含まれる塩をそのまま固定しながら 未燃分をある濃度 (例えば 6wt )以下に低下できる。 また、 燃焼時に発生したガス は未燃分を含んでいるので、導管等により部分酸化炉 1へ導入すればエネルギーの 有効利用が図れる。 図 5に、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示す。 この装置では、 図 1の装置の除塵装置 2と燃焼炉 3の間に湿式ガス処理装置 5が配 備されている。 If the boiler 4 is arranged downstream of the combustion furnace 3, heat can be efficiently recovered from the combustion gas, so that a high-temperature and high-pressure boiler of, for example, 300 or more and 20ata or more can be realized. In addition, recovery of high-temperature air is possible if necessary. In the example of FIG. 1, the poiler 4 is provided downstream of the combustion furnace 3, but the poiler 4 may be provided in the combustion furnace 3. Since dust has been removed in advance, corrosion of the boiler tube due to dust can be suppressed. When recovering heat from a high-temperature field with an exhaust gas temperature of 600 ° C or higher, where the corrosion effect of hydrogen chloride gas increases, use a boiler tube made of a corrosion-resistant ceramic to extend the life of the boiler tube . The exhaust gas after heat recovery passes through a downstream exhaust gas treatment facility (not shown) and is discharged from the chimney. As shown in Fig. 4, a dust-burning furnace 15 for burning the dust removed by the dust remover 2 is installed in the waste treatment device of Fig. 1, and the removed dust is replaced with a gas containing oxygen by 400%. By burning at ~ 750 ° C, unburned components can be reduced to a certain concentration (for example, 6wt) or less while fixing the salts contained in the dust. In addition, since the gas generated during combustion contains unburned components, if it is introduced into the partial oxidation furnace 1 through conduits, etc. Effective use can be achieved. FIG. 5 schematically shows another embodiment of the waste treatment apparatus according to the present invention. In this device, a wet gas treatment device 5 is provided between a dust removal device 2 and a combustion furnace 3 of the device in FIG.
除塵後の可燃ガスをこの湿式ガス処理装置 5へ導入し、苛性ソーダ等の中和剤の 濃度を変えて、 塩化水素濃度を 20ppm以下にすると、 その後燃焼炉 3で高温燃焼さ せても塩素ガスの発生が低減し、 下流にあるボイラチューブ等の装置の腐食が激 減する。 したがって、 従来耐食性の高いセラミック等の材料が使われていた部品 等を安価な材料で置き換えることができる。  The combustible gas after dust removal is introduced into this wet gas treatment device 5, and the concentration of the neutralizing agent such as caustic soda is changed to reduce the hydrogen chloride concentration to 20 ppm or less. This will reduce the occurrence of corrosion and drastically reduce the corrosion of boiler tubes and other equipment downstream. Therefore, parts and the like that have conventionally been made of materials such as ceramics having high corrosion resistance can be replaced with inexpensive materials.
なお、除塵後の可燃ガスをこの湿式ガス処理装置 5へ導入して、塩化水素を 20ppm 以下にする以外の条件は、 すべて、 湿式ガス処理装置 5の配備されていない図 1の 場合の条件と同様である。 実施例 1  The conditions other than introducing the combustible gas after dust removal into the wet gas treatment device 5 and reducing the hydrogen chloride to 20 ppm or less were all the same as those in Fig. 1 where the wet gas treatment device 5 was not installed. The same is true. Example 1
図 6に、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示す。 この装置の構成は、 部分酸化炉として流動床炉 1が使用されている以外は、 図 1 の装置と同じである。  FIG. 6 schematically shows another embodiment of the waste treatment apparatus according to the present invention. The configuration of this device is the same as that of Fig. 1 except that a fluidized bed furnace 1 is used as a partial oxidation furnace.
流動化空気温度が 20〜650° (:、 砂層温度が 400〜700°Cの流動床炉 1に、 廃棄物た る都市ごみを l t/hで供給し、 空気比を 0. 2〜 8の間で操作して部分酸化させて、 可燃ガスを生成した。  Supply municipal solid waste at lt / h to fluidized bed furnace 1 with a fluidized air temperature of 20 to 650 ° (:, sand layer temperature of 400 to 700 ° C, and an air ratio of 0.2 to 8 A partial oxidization was performed to produce a combustible gas.
可燃ガスは、 250〜800°Cで除塵装置 2に供給され、 キャンドル形状のセラミック フィルタ一により除塵された。 キャンドル形状のセラミックフィル夕一は、 S i 02、 A1203、 S i C、 コージユライト、 これらの材料のコンポジット、 あるいはそれに類似 する無機材料からなり、 セラミックファイバー型あるいは多孔質体型である。 除 塵装置 2の払い落としには、排ガスを再循環して酸素濃度を 5%以下としたガスと窒 素ガスを用い、 払い落とし圧力を 3〜7kg/cm2、 払い落とし間隔を 5秒〜 50分、 払い 落とし時間を 0. 1〜20秒とした。 これによりダスト濃度は、 除塵装置 2への流入前 に 5〜20g/Nm3であったものが、 0. lg/Nm3以下まで低減された。 この除去されたダス ト等は回収後に溶融炉及び焼却炉で無害化処理された。 The combustible gas was supplied to the dust remover 2 at 250 to 800 ° C, and the dust was removed by a candle-shaped ceramic filter. Ceramic fill evening one candle-shaped, S i 0 2, A1 2 0 3, S i C, Kojiyuraito, made from the composite of these materials or inorganic materials similar to it, is a ceramic fiber-type or a porous type . To dislodge the dust removing apparatus 2, using a re-circulating oxygen concentration of 5% or less and the gas and the nitrogen gas exhaust, 3~7kg / cm 2 pressure flicked, brushing 5 seconds apart - 50 minutes, payment The drop time was 0.1 to 20 seconds. As a result, the dust concentration was 5 to 20 g / Nm 3 before flowing into the dust removing device 2, but was reduced to 0.1 lg / Nm 3 or less. After removal of the removed dust, it was detoxified in a melting furnace and an incinerator.
除塵後の可燃ガスは、 燃焼炉 3で燃焼された 900〜1000°Cの温度にされた。 この とき、下流のポイラ 4で 350〜540° (:、 50〜100ataの蒸気を用いて熱回収を行うこと ができた。 なお、 ポイラチューブとしてステンレス鋼、 インコネル他の合金鋼を 用いたが、 著しい腐食等は認められず、 材料によっては複数年使用可能な耐腐食 性を確認した。 また、 高温空気の回収も行ったところ、 350〜700°Cの高温空気の 回収が可能であった。 実施例 2  After the dust removal, the combustible gas was burned in the combustion furnace 3 to a temperature of 900 to 1000 ° C. At this time, it was possible to perform heat recovery using steam of 350 to 540 ° (: 50 to 100 ata) in the downstream poiler 4. Stainless steel, Inconel, and other alloy steels were used as the poiler tube. No remarkable corrosion was observed, and it was confirmed that the corrosion resistance could be used for several years depending on the material, and when high-temperature air was recovered, high-temperature air at 350 to 700 ° C could be recovered. Example 2
図 7A、 図 7Bに、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示 す。  7A and 7B schematically show another embodiment of the waste treatment apparatus according to the present invention.
図 7Aの装置の構成は、部分酸化炉として火格子式炉 1が使用されている以外は、 図 1の装置と同じである。 また、 図 7Bの装置には、 図 7Aの装置の燃焼炉 3内にもポ イラ 3Aが配備されている。  The configuration of the apparatus in FIG. 7A is the same as the apparatus in FIG. 1 except that a grate furnace 1 is used as a partial oxidation furnace. Further, in the apparatus shown in FIG. 7B, a boiler 3A is also provided in the combustion furnace 3 of the apparatus shown in FIG. 7A.
酸化用空気温度が 20〜250°C、 上部温度が 500〜800°Cの火格子式炉 1に、 廃棄物 たる都市ごみを供給し、 空気比を 0. 3〜0. 9の間で操作して部分酸化させて、 可燃 ガスを生成した。  Supply municipal solid waste to the grate furnace 1 with an oxidizing air temperature of 20 to 250 ° C and an upper temperature of 500 to 800 ° C, and operate with an air ratio of 0.3 to 0.9. And partial oxidation to produce combustible gas.
可燃ガスは、 250〜800°Cで除塵装置 2に供給され、 キャンドル形状のセラミック フィルター及びハニカム状セラミックフィル夕一により除塵された。 セラミック フィル夕一は、 S i02、 A1203、 S i コ一ジユライト、 これらの材料のコンポジット, あるいはそれに類似する無機材料からなり、 セラミックファイバー型あるいは多 孔質体型である。 除塵装置 2の払い落としには、 窒素ガスを用い、 払い落とし圧力 を 3〜7kg/cm2、 払い落とし間隔を 10秒〜 20分、 払い落とし時間を 0. 05〜15秒とし た。 これによりダスト濃度は、 除塵装置 2への流入前に i〜5g/Nm3であったものが、 0. Ig/Nm3以下まで低減された。 この除去されたダス卜等は回収後に溶融炉及び焼 却炉で無害化処理された。 The combustible gas was supplied to the dust remover 2 at 250 to 800 ° C, and the dust was removed by the candle-shaped ceramic filter and the honeycomb-shaped ceramic filter. Ceramic Phil evening one consists S i0 2, A1 2 0 3 , S i co one Jiyuraito composite of these materials or inorganic materials similar to it, is a ceramic fiber-type or multi-porous type. Filtration apparatus 2 of the flicked uses nitrogen gas, 3~7kg / cm 2 pressure flicked, brushing 10 seconds to 20 minutes apart, was the brushing time from 0.05 to 15 seconds. As a result, the dust concentration was reduced from i to 5 g / Nm 3 before flowing into the dust removing device 2 to 0.1 Ig / Nm 3 or less. After removal of the removed dust, the melting furnace and the firing It was detoxified in an incinerator.
除塵後の可燃ガスは、 燃焼炉 3で燃焼された 900〜1100での温度にされた。 燃焼 炉 3では、 爆発等の危険を回避すべくパイロットパーナ(図示せず) を用いて常時 点火源をおいて、 可燃ガスを連続的に燃焼した。 このパーナの出力は数万〜数十 万 kcal/hであり、 燃料としては天然ガスあるいは灯油を用いた。  The combustible gas after dust removal was brought to a temperature of 900 to 1100 which was burned in the combustion furnace 3. In Combustion Furnace 3, in order to avoid danger such as explosion, the combustible gas was continuously burned using a pilot wrench (not shown) with the ignition source always on. The output of this parner is tens of thousands to hundreds of thousands of kcal / h, and natural gas or kerosene was used as fuel.
このとき、 図 7Aの下流に配備したポイラ 4、 図 7Bの燃焼炉 3内に配備したポイラ 3A及び下流のポイラ 4、 いずれにおいても、 540° (:、 lOOataの蒸気を用いて熱回収 を行うことができた。 なお、 ポイラチューブとしてステンレス鋼、 インコネル他 の合金鋼を用いたが、著しい腐食等は認められず、 1年以上の安定稼働が可能であ つた。 実施例 3  At this time, heat recovery is performed using steam of 540 ° (:, lOOata) in both the poiler 4 installed downstream of Fig. 7A, the poiler 3A installed in the combustion furnace 3 in Fig. 7B, and the downstream poiler 4 Although stainless steel, Inconel, and other alloy steels were used as the poiler tube, no significant corrosion was observed, and stable operation was possible for one year or more.
図 8に、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示す。 この装置の構成は、 部分酸化炉として流動床炉 1が使用されている以外は、 図 5 の装置と同じである。  FIG. 8 schematically shows another embodiment of the waste disposal apparatus according to the present invention. The configuration of this device is the same as the device in Fig. 5 except that a fluidized bed furnace 1 is used as a partial oxidation furnace.
流動化空気温度が 20〜650°C、 砂層温度が 400〜70(TCの流動床炉 1に、 廃棄物た る都市ごみを l t/hで供給し、 空気比を 0. 2〜0. 8の間で操作して部分酸化させて、 可燃ガスを生成した。  Fluidized air temperature is 20 to 650 ° C, sand layer temperature is 400 to 70 (Waste municipal solid waste is supplied to the fluidized bed furnace 1 of TC at lt / h, and the air ratio is 0.2 to 0.8. The partial oxidation was carried out to produce a combustible gas.
可燃ガスは、 250〜80(TCで除塵装置 2に供給され、キャンドル形状のセラミック フィルタ一により除塵された。 キャンドル形状のセラミックフィル夕一は、 Si02、 A1203、 Si コージユライト、 これらの材料のコンポジット、 あるいはそれに類似 する無機材料からなり、 セラミックファイバ一型あるいは多孔質体型である。 除 塵装置 2の払い落としには、排ガスを再循環して酸素濃度を 5¾以下としたガスと窒 素ガスを用い、 払い落とし圧力を 3〜7kg/cm2、 払い落とし間隔を 5秒〜 50分、 払い 落とし時間を 0. 1〜20秒とした。 これによりダスト濃度は、 除塵装置 2への流入前 に 5〜20g/Nm3であったものが、 0. lg/Nm3以下まで低減された。 この除去されたダス ト等は回収後に溶融炉及び焼却炉で無害化処理された。 除塵後の可燃ガスは、湿式ガス処理装置 5へ導入され、 ガス中の塩化水素が処理 前の 400ppmから 20ppm以下に低減された。 Combustible gas is supplied to the filtration apparatus 2 with two hundred and fifty to eighty (TC, are dust by ceramic filter one candle shape. Ceramic fill evening one candle shape, Si0 2, A1 2 0 3, Si Kojiyuraito, these It consists of a composite of the same material or an inorganic material similar to it, and is of the ceramic fiber type or porous type.To remove the dust removal device 2, use a gas with an oxygen concentration of 5% or less by recirculating the exhaust gas. Using nitrogen gas, the sweeping pressure was 3 to 7 kg / cm 2 , the sweeping interval was 5 seconds to 50 minutes, and the sweeping time was 0.1 to 20 seconds. Although it was 5 to 20 g / Nm 3 before the inflow of ash, it was reduced to less than 0.1 lg / Nm 3. After removal of the removed dust, it was detoxified in a melting furnace and an incinerator. The combustible gas after dust removal was introduced into the wet gas treatment equipment 5, and the hydrogen chloride in the gas was reduced from 400 ppm before treatment to 20 ppm or less.
塩化水素の低減された可燃ガスは、 燃焼炉 3で燃焼された 900〜1000°Cの温度に された。 このとき.、 下流のポイラ 4で 350〜540°C、 50〜100at aの蒸気を用いて熱回 収を行うことができた。 なお、 ボイラチューブとしてステンレス鋼を用いたが、 著しい腐食等は認められず、 材料によっては複数年使用可能な耐腐食性を確認し た。 また、 高温空気の回収も行ったところ、 350〜700での高温空気の回収が可能 であった。 実施例 4  The combustible gas with reduced hydrogen chloride was brought to a temperature of 900 to 1000 ° C, which was burned in the combustion furnace 3. At this time, heat recovery could be performed using steam at 350 to 540 ° C and 50 to 100 ata in the downstream poirer 4. Although stainless steel was used for the boiler tube, no significant corrosion was observed, and it was confirmed that some materials could be used for several years. In addition, when high-temperature air was collected, high-temperature air could be collected in the range of 350 to 700. Example 4
図 9A、 図 9Bに、 本発明である廃棄物の処理装置の別の実施の形態を模式的に示 す。  9A and 9B schematically show another embodiment of the waste treatment apparatus according to the present invention.
図 9Aの装置の構成は、部分酸化炉として火格子式炉 1が使用されている以外は、 図 5の装置と同じである。 また、 図 9Bの装置には、 図 9Aの装置の燃焼炉 3内にもポ イラ 3Aが配備されている。  The configuration of the apparatus in FIG. 9A is the same as the apparatus in FIG. 5 except that a grate furnace 1 is used as a partial oxidation furnace. In the apparatus shown in FIG. 9B, a boiler 3A is also provided in the combustion furnace 3 of the apparatus shown in FIG. 9A.
酸化用空気温度が 20〜250°C、 上部温度が 500〜800°Cの火格子式炉 1に、 廃棄物 たる都市ごみを供給し、 空気比を 0. 3〜0. 9の間で操作して部分酸化させて、 可燃 ガスを生成した。  Supply municipal solid waste to the grate furnace 1 with an oxidizing air temperature of 20 to 250 ° C and an upper temperature of 500 to 800 ° C, and operate with an air ratio of 0.3 to 0.9. And partial oxidation to produce combustible gas.
可燃ガスは、 250〜800°Cで除塵装置 2に供給され、 キャンドル形状のセラミック フィルター及びハニカム状セラミックフィルタ一により除塵された。 セラミック フィルタ一は、 S i02、 A1203、 S i コージユライト、 これらの材料のコンポジット, あるいはそれに類似する無機材料からなり、 セラミックファイバー型あるいは多 孔質体型である。 除塵装置 2の払い落としには、 窒素ガスを用い、 払い落とし圧力 を 3〜7kg/cm'2、 払い落とし間隔を 10秒〜 20分、 払い落とし時間を 0. 05〜15秒とし た。 これによりダスト濃度は、 P余塵装置 2への流入前に l〜5g/Nm3であったものが、 0. lg/Nm3以下まで低減された。 この除去されたダスト等は回収後に溶融炉及び焼 却炉で無害化処理された。 除塵後の可燃ガスは、湿式ガス処理装置 5へ導入され、 ガス中の塩化水素が処理 前の 25 Oppmから 2 Oppm以下に低減された。 The combustible gas was supplied to the dust removing device 2 at 250 to 800 ° C., and the dust was removed by the candle-shaped ceramic filter and the honeycomb-shaped ceramic filter. Ceramic filters one may, S i0 2, A1 2 0 3, S i Kojiyuraito, an inorganic material similar composite, or that of these materials is a ceramic fiber-type or multi-porous type. To dislodge the dust removing apparatus 2, using nitrogen gas, 3~7kg / cm '2 pressure flicked, brushing 10 seconds to 20 minutes apart, was the brushing time from 0.05 to 15 seconds. This reduced the dust concentration from 1 to 5 g / Nm 3 before flowing into the P-remaining dust device 2 to 0.1 lg / Nm 3 or less. After removal of the removed dust, it was detoxified in a melting furnace and an incinerator. The combustible gas after dust removal was introduced into the wet gas treatment device 5, and the hydrogen chloride in the gas was reduced from 25 Oppm before treatment to 2 Oppm or less.
塩化水素の低減された可燃ガスは、 燃焼炉 3で燃焼された 900〜1100°Cの温度に された。 燃焼炉 3では、 爆発等の危険を回避すべくパイロットバ一ナ (図示せず) を用いて常時点火源をおいて、 可燃ガスを連続的に燃焼した。 このパーナの出力 は数万〜数十万 kcal/hであり、 燃料としては天然ガスあるいは灯油を用いた。 このとき、 図 9Aの下流に配備したボイラ 4、 図 9Bの燃焼炉 3内に配備したボイラ 3A及び下流のポイラ 4、 いずれにおいても、 540 λ l OOataの蒸気を用いて熱回収 を行うことができた。 なお、 ボイラチュ一ブとしてステンレス鋼、 インコネル他 の合金鋼を用いたが、著しい腐食等は認められず、 1年以上の安定稼働が可能であ つた。  The combustible gas reduced in hydrogen chloride was heated to a temperature of 900 to 1100 ° C, which was burned in the combustion furnace 3. In the combustion furnace 3, a combustible gas was continuously burned by using a pilot burner (not shown) with a constant ignition source in order to avoid a danger such as an explosion. The output of this parner is tens of thousands to hundreds of thousands of kcal / h, and natural gas or kerosene was used as fuel. At this time, in both the boiler 4 installed downstream of Fig. 9A, the boiler 3A installed in the combustion furnace 3 of Fig. 9B, and the downstream boiler 4, heat recovery using 540 λl OOata steam can be performed. did it. Although stainless steel, Inconel and other alloy steels were used as boiler tubes, no significant corrosion was observed, and stable operation for more than one year was possible.

Claims

請求 の 範 囲 The scope of the claims
1. 廃棄物を、 燃焼反応を伴う部分酸化炉にて不完全燃焼もしくは部分酸化さ せて、該部分酸化炉出口での酸素換算濃度が- 30〜^である可燃ガスを生成させる 工程と、 1. incompletely burning or partially oxidizing the waste in a partial oxidation furnace involving a combustion reaction to generate a combustible gas having an oxygen equivalent concentration of −30 to ^ at the outlet of the partial oxidation furnace;
該可燃ガスを、 250〜800°Cで除塵装置に導入してダスト濃度を O. lg/Nm3以 下とする工程と、 Introducing the combustible gas to a dust remover at 250 to 800 ° C. to reduce the dust concentration to O.lg / Nm 3 or less;
除塵された該可燃ガスを、 燃焼炉にて高温で燃焼する工程と、  Burning the combustible gas thus removed at a high temperature in a combustion furnace;
を有する廃棄物の処理方法。 Waste treatment method having the following.
2. 可燃ガスを、 250〜650°Cで除塵装置に導入してダスト濃度を 0. lg/Nm3以下 とする請求の範囲 1の方法。 2. The method according to claim 1, wherein the combustible gas is introduced into the dust remover at 250 to 650 ° C to reduce the dust concentration to 0.1 lg / Nm 3 or less.
3. 除塵装置として濾過式の集塵器を使用し、 該集塵器の濾過体に付着したダ ストを酸素濃度^以下のガスで定期的に払い落とす請求の範囲 1の方法。 3. The method according to claim 1, wherein a filter-type dust collector is used as a dust remover, and dust attached to a filter of the dust collector is periodically wiped off with a gas having an oxygen concentration of ^ or less.
4. 除塵装置として瀘過式の集塵器を使用し、 該集塵器の濾過体に付着したダ ストを窒素ガスで定期的に払い落とす請求の範囲 1の方法。 4. The method according to claim 1, wherein a filter-type dust collector is used as a dust removing device, and dust attached to a filter of the dust collector is periodically wiped off with nitrogen gas.
5. 払い落とすためのガス温度が可燃ガスの温度以上である請求の範囲 3の方法。 5. The method according to claim 3, wherein the temperature of the gas to be removed is equal to or higher than the temperature of the combustible gas.
6. 払い落とすためのガス温度^^可燃ガスの温度以上である請求の範囲 4の方法。 6. The method of claim 4 wherein the temperature of the gas to be removed is equal to or higher than the temperature of the combustible gas.
7. 払い落とすためのガスを、 集塵器前後の差圧が設定値に到達したときに吹 き込む請求の範囲 5の方法。 7. The method according to claim 5, wherein gas for blowing off is blown when a differential pressure across the dust collector reaches a set value.
8. 払い落とすためのガスを、 集塵器前後の差圧が設定値に到達したときに吹 き込む請求の範囲 6の方法。 8. The method according to claim 6, wherein the gas for blowing off is blown when the differential pressure across the dust collector reaches a set value.
9. 払い落と.されたダストを、 酸素を含むガスで 400〜750°Cで燃焼させ、 該燃 焼によって発生したガスを部分酸化炉へ導入する請求の範囲 7の方法。 9. The method according to claim 7, wherein the dusted-off dust is burned with a gas containing oxygen at 400 to 750 ° C, and the gas generated by the burning is introduced into a partial oxidation furnace.
10. 払い落とされたダストを、 酸素を含むガスで 400〜750°Cで燃焼させ、 該燃 焼によって発生したガスを部分酸化炉へ導入する請求の範囲 8の方法。 10. The method according to claim 8, wherein the removed dust is burned with a gas containing oxygen at 400 to 750 ° C, and the gas generated by the burning is introduced into a partial oxidation furnace.
1 1. 燃焼炉に点火源を配設し、 可燃ガスを連続して燃焼させる請求の範囲 1の 方法。 1 1. The method according to claim 1, wherein an ignition source is provided in the combustion furnace to burn combustible gas continuously.
12. 燃焼炉内あるいは燃焼炉の下流にポイラを配備し、 該ポイラにて熱回収を 行う請求の範囲 1の方法。 12. The method according to claim 1, wherein a poiler is provided in the combustion furnace or downstream of the combustion furnace, and heat is recovered by the poiler.
13. 廃棄物を、 燃焼反応を伴う部分酸化炉にて不完全燃焼もしくは部分酸化さ せて、該部分酸化炉出口での酸素換算濃度が- 30〜1%である可燃ガスを生成させる 工程と、 13. a process in which the waste is incompletely burned or partially oxidized in a partial oxidation furnace involving a combustion reaction to generate a combustible gas having an oxygen equivalent concentration of −30 to 1% at the partial oxidation furnace outlet; ,
該可燃ガスを、 250〜800°Cで除塵装置に導入してダスト濃度を 0. lg/Nm3以 下とする工程と、 Introducing the combustible gas into a dust remover at 250 to 800 ° C. to reduce the dust concentration to 0.1 lg / Nm 3 or less;
除塵された該可燃ガスを、 湿式ガス処理装置に導入して塩化水素濃度を 20ppm以下にする工程と、 '  Introducing the combustible gas from which dust has been removed to a wet gas treatment apparatus to reduce the concentration of hydrogen chloride to 20 ppm or less;
湿式ガス処理された該可燃ガスを、 燃焼炉にて高温で燃焼する工程と、 を有する廃棄物の処理方法。  Burning the combustible gas subjected to the wet gas treatment in a combustion furnace at a high temperature.
14. 可燃ガスを、 250〜650°Cで除塵装置に導入してダスト濃度を 0. lg/Nin3以下 とする請求の範囲 13の方法。 14. The method according to claim 13, wherein the combustible gas is introduced into the dust remover at 250 to 650 ° C to reduce the dust concentration to 0.1 lg / Nin 3 or less.
15. 除塵装置として濾過式の集塵器を使用し、 該集塵器の濾過体に付着したダ ストを酸素濃度 5%以下のガスで定期的に払い落とす請求の範囲 13の方法。 15. The method according to claim 13, wherein a filter-type dust collector is used as a dust remover, and dust attached to a filter of the dust collector is periodically wiped off with a gas having an oxygen concentration of 5% or less.
16. 除塵装置として濾過式の集塵器を使用し、 該集塵器の濾過体に付着したダ ストを窒素ガスで定期的に払い落とす請求の範囲 13の方法。 16. The method according to claim 13, wherein a filter-type dust collector is used as the dust remover, and dust attached to a filter of the dust collector is periodically wiped off with nitrogen gas.
17. 払い落とすためのガス温度が可燃ガスの温度以上である請求の範囲 15の方 法。 17. The method according to claim 15, wherein the temperature of the gas to be removed is equal to or higher than the temperature of the combustible gas.
18. 払い落とすためのガス温度が可燃ガスの温度以上である請求の範囲 16の方 法。 18. The method according to claim 16, wherein the temperature of the gas to be removed is equal to or higher than the temperature of the combustible gas.
19. 燃焼炉に点火源を配備し、 可燃ガスを連続して燃焼させる請求の範囲 13 の方法。 19. The method according to claim 13, wherein an ignition source is provided in the combustion furnace to continuously burn combustible gas.
20. 燃焼炉内あるいは燃焼炉の下流にボイラを配備し、 該ボイラにて熱回収を 行う請求の範囲 13の方法。 20. The method according to claim 13, wherein a boiler is provided in or downstream of the combustion furnace, and heat is recovered in the boiler.
21. 炉出口での酸素換算濃度が- 30〜^である可燃ガスを生成させる廃棄物を 不完全燃焼もしくは部分酸化させる部分酸化炉と、 21. a partial oxidation furnace that incompletely burns or partially oxidizes waste that produces combustible gas having an oxygen equivalent concentration of −30 to ^ at the furnace outlet;
250〜800°Cの該可燃ガスのダスト濃度を 0. lg/Nm3以下にする除塵装置と、 除塵された該可燃ガスを高温で燃焼する燃焼炉と、 A dust remover for reducing the dust concentration of the combustible gas at 250 to 800 ° C. to 0.1 lg / Nm 3 or less; a combustion furnace for burning the combustible gas removed at a high temperature;
を備えた廃棄物の処理装'置。 ' Waste treatment equipment equipped with. '
22. 除塵装置で払い落とされたダストを燃焼するためのダスト燃焼炉および該 燃焼時に発生したガスを部分酸化炉へ導く導管が配備されている請求の範囲 21の 22. A dust combustion furnace for burning dust blown off by the dust removing device and a conduit for guiding gas generated during the combustion to the partial oxidation furnace are provided.
23. 燃焼炉に点火源が配備されている請求の範囲 21の装置。 23. The apparatus of claim 21 wherein the combustion furnace is provided with an ignition source.
24. 炉出口での酸素換算濃度が一 30〜1 %である可燃ガスを生成させる廃棄物 を不完全燃焼もしくは部分酸化させる部分酸化炉と、 24. a partial oxidation furnace that incompletely burns or partially oxidizes waste that generates combustible gas with an oxygen equivalent concentration of 30 to 1% at the furnace outlet;
250〜800 の該可燃ガスのダスト濃度を 0. lg/Nm3以下にする除塵装置と、 除塵された該可燃ガスの塩化水素濃度を 20ppm以下にする湿式ガス処理装 置と、 A dust removing device for reducing the dust concentration of the combustible gas of 250 to 800 to 0.1 lg / Nm 3 or less; a wet gas treatment device for decreasing the concentration of hydrogen chloride of the combustible gas after the dust removal to 20 ppm or less;
湿式ガス処理された該可燃ガスを高温で燃焼する燃焼炉と、  A combustion furnace for burning the combustible gas subjected to the wet gas treatment at a high temperature;
を備えた廃棄物の処理装置。 Waste treatment equipment equipped with.
25. 燃焼炉に点火源が配備されている請求の範囲 24の装置。 25. The apparatus of claim 24, wherein the combustion furnace is provided with an ignition source.
PCT/JP2000/003306 2000-05-24 2000-05-24 Wastes treating method and device WO2001090645A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2000/003306 WO2001090645A1 (en) 2000-05-24 2000-05-24 Wastes treating method and device
KR10-2001-7016391A KR100447009B1 (en) 2000-05-24 2000-05-24 Treatment method of waste and apparatus thereof
EP00929845A EP1284389A4 (en) 2000-05-24 2000-05-24 Wastes treating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/003306 WO2001090645A1 (en) 2000-05-24 2000-05-24 Wastes treating method and device

Publications (1)

Publication Number Publication Date
WO2001090645A1 true WO2001090645A1 (en) 2001-11-29

Family

ID=11736062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003306 WO2001090645A1 (en) 2000-05-24 2000-05-24 Wastes treating method and device

Country Status (3)

Country Link
EP (1) EP1284389A4 (en)
KR (1) KR100447009B1 (en)
WO (1) WO2001090645A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044644A (en) * 2016-11-30 2017-08-15 刘剑 Straw environment protection processing unit
CN107044648A (en) * 2016-11-30 2017-08-15 刘剑 The quick environment-friendly treatment method of stalk and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542417B2 (en) * 2004-11-26 2010-09-15 新日鉄エンジニアリング株式会社 Method of treating combustible gas in waste melting furnace
FI20055237L (en) * 2005-05-18 2006-11-19 Foster Wheeler Energia Oy Method and apparatus for gasification of carbonaceous material
CN102200284B (en) * 2011-05-04 2012-10-10 绍兴市德华制氧技术研究所 Environment-friendly garbage combustion device and treatment process thereof
CN103104922B (en) * 2013-02-06 2015-09-02 西安宇清环境工程科技有限责任公司 A kind of waste incineration flue gas waste heat recovery device
KR101420167B1 (en) * 2014-03-18 2014-08-13 엔솔 주식회사 Eco-friendly Disposal Process and Method of Waste Munitions by Using Confined Detonation and Pollution Abatement System.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510514A (en) * 1991-07-05 1993-01-19 Ishikawajima Harima Heavy Ind Co Ltd Incineration method of refuse and apparatus therefor
JPH05223238A (en) * 1992-02-05 1993-08-31 Asahi Glass Co Ltd Boiler combustion gas dust catcher and operation method thereof
JPH0960847A (en) * 1995-08-21 1997-03-04 Kawasaki Heavy Ind Ltd Method and device for generating superheated steam by waste incineration
JPH11264525A (en) * 1998-03-18 1999-09-28 Kubota Corp Waste treating system and operating method of waste treating system
JPH11351528A (en) * 1998-06-08 1999-12-24 Babcock Hitachi Kk Method and device for power-generation with combustion of refuse
JP2000161622A (en) * 1998-12-01 2000-06-16 Nkk Corp Method and device for treating waste
JP2000161623A (en) * 1998-12-01 2000-06-16 Nkk Corp Method and apparatus for treating waste

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676177A (en) * 1985-10-09 1987-06-30 A. Ahlstrom Corporation Method of generating energy from low-grade alkaline fuels
US4848249A (en) * 1987-11-30 1989-07-18 Texas A&M University System and process for conversion of biomass into usable energy
US4917027A (en) * 1988-07-15 1990-04-17 Albertson Orris E Sludge incineration in single stage combustor with gas scrubbing followed by afterburning and heat recovery
JPH10253011A (en) * 1997-03-13 1998-09-25 Hitachi Zosen Corp Combustion apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510514A (en) * 1991-07-05 1993-01-19 Ishikawajima Harima Heavy Ind Co Ltd Incineration method of refuse and apparatus therefor
JPH05223238A (en) * 1992-02-05 1993-08-31 Asahi Glass Co Ltd Boiler combustion gas dust catcher and operation method thereof
JPH0960847A (en) * 1995-08-21 1997-03-04 Kawasaki Heavy Ind Ltd Method and device for generating superheated steam by waste incineration
JPH11264525A (en) * 1998-03-18 1999-09-28 Kubota Corp Waste treating system and operating method of waste treating system
JPH11351528A (en) * 1998-06-08 1999-12-24 Babcock Hitachi Kk Method and device for power-generation with combustion of refuse
JP2000161622A (en) * 1998-12-01 2000-06-16 Nkk Corp Method and device for treating waste
JP2000161623A (en) * 1998-12-01 2000-06-16 Nkk Corp Method and apparatus for treating waste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1284389A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044644A (en) * 2016-11-30 2017-08-15 刘剑 Straw environment protection processing unit
CN107044648A (en) * 2016-11-30 2017-08-15 刘剑 The quick environment-friendly treatment method of stalk and device

Also Published As

Publication number Publication date
KR100447009B1 (en) 2004-09-04
EP1284389A4 (en) 2005-03-16
KR20020025900A (en) 2002-04-04
EP1284389A1 (en) 2003-02-19

Similar Documents

Publication Publication Date Title
JP3773302B2 (en) Heat recovery system and power generation system
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
WO2001090645A1 (en) Wastes treating method and device
JPH0365211A (en) Combustion method of heterogeneous fuel
JP4420155B2 (en) Method and apparatus for recovering heat from waste
JP3799846B2 (en) Method and apparatus for recovering heat from waste
JPH0849822A (en) Device and method for treating waste
JP2000161623A (en) Method and apparatus for treating waste
US20020088235A1 (en) Heat recovery system and power generation system
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP4121645B2 (en) Method and apparatus for recovering heat from waste
JP2003254516A (en) Garbage burning power generation equipment
TW442633B (en) Method for disposing waste and apparatus thereof
JP5421567B2 (en) Waste treatment facilities and methods of using recovered heat in waste treatment facilities
JP2000161622A (en) Method and device for treating waste
JP2006200886A (en) Processing method and device for waste, and heat recovery method and device from waste
JPH109545A (en) Waste-burning boiler
US20020083698A1 (en) Heat recovery system and power generation system
JP3306849B2 (en) Waste incineration method
JPH0849821A (en) Device and method for treating waste
JPH0849820A (en) Device and method for treating waste
JP2003001233A (en) Gasification system of refuse
JP2005046815A (en) Method and apparatus for treating flue gas from melting furnace
JP2004309120A (en) Heat recovery method, combustible treating method, heat recovery apparatus, and combustible treating apparatus
JPH09196336A (en) Waste treating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020017016391

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000929845

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017016391

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000929845

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017016391

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000929845

Country of ref document: EP