JP3799846B2 - Method and apparatus for recovering heat from waste - Google Patents

Method and apparatus for recovering heat from waste Download PDF

Info

Publication number
JP3799846B2
JP3799846B2 JP34175998A JP34175998A JP3799846B2 JP 3799846 B2 JP3799846 B2 JP 3799846B2 JP 34175998 A JP34175998 A JP 34175998A JP 34175998 A JP34175998 A JP 34175998A JP 3799846 B2 JP3799846 B2 JP 3799846B2
Authority
JP
Japan
Prior art keywords
furnace
gas
dust
waste
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34175998A
Other languages
Japanese (ja)
Other versions
JP2000161638A (en
Inventor
隆 能登
章 中村
誠二 木ノ下
肇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP34175998A priority Critical patent/JP3799846B2/en
Priority to TW89110356A priority patent/TW442633B/en
Publication of JP2000161638A publication Critical patent/JP2000161638A/en
Application granted granted Critical
Publication of JP3799846B2 publication Critical patent/JP3799846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物から熱回収方法及び装置に関するものである。
【0002】
【従来の技術】
都市ごみあるいは産業廃棄物(以下「廃棄物」という)を部分酸化させて、ガス化せしめた後に燃焼させる方法が特開平7-35322に提案されている。その代表的な例の構成の概要を添付図面の図6に示す。
【0003】
図6にて、廃棄物は部分燃焼流動床炉51にて、流動層温度450〜650℃、空気比0.15〜0.5程度の還元雰囲気でガス化され、サイクロン、衝突式集塵器等の集塵装置52を介して二次燃焼炉53へ導入される。生成ガスは二次燃焼炉53で二次空気と混合して800〜1000℃の高温で完全燃焼する。このとき、脱塩剤を供給してHClガスの発生を抑制させ、熱回収を行う。集塵器52の下方にはダスト回収ライン54が設置されており、脱塩剤の一部とダストの全部又は一部は、冷却器55で冷却された後、再び部分酸化流動床炉に戻されるようになっている。
【0004】
【発明が解決しようとする課題】
このような燃焼方法において廃棄物を部分酸化させた後に燃焼させる場合、二次燃焼炉で脱塩剤を使用しなければならない。そのため、ダスト濃度が高くなり、除塵の点で不利になる。また、二次燃焼炉におけるダスト濃度を一定値以下に制御しなければ、熱回収のために後段に配されるボイラにおいてダスト中の塩などによるボイラチューブの腐食が間題となる。
【0005】
本発明は、このような問題点を解決するためになされたものであり、上記問題点を発生させることなく部分酸化させ、効率よく熱回収することができる廃棄物から熱回収方法及び装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決する第一の手段は、廃棄物を燃焼反応を伴う部分酸化炉にて、炉内温度を400〜800℃に、空気比を0.15〜0.9に制御して、還元雰囲気で不完全燃焼、もしくは部分酸化させて可燃ガスを生成し、該可燃ガスを250〜450℃でセラミックフィルタに導入してダスト濃度を0.1g/Nm以下に除塵し、除塵された該可然ガスを燃焼炉にて高温で燃焼させ、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラにて燃焼したガスから熱回収することを特徴とする廃棄物からの熱回収方法である。
【0007】
部分酸化炉内では廃棄物の部分酸化が行われ、除塵装置入口に250〜450℃と比較的温度の低い可燃ガスが送られる。ここで、上記除塵装置入口での温度を上記範囲に設定した理由は、250℃未満ではタール付着等の問題があり、450℃より上ではダイオキシン類生成の可能性及び塩による目づまりの可能性があるからである。このとき部分酸化炉での空気比0.150.9となるように空気比を調整をする。その理由は、空気比0.15未満では、強還元ガスとしてタール付着等の問題が発生し、0.9より上では二次燃焼炉に導入する前に可燃ガスの酸化が促進されてしまうためである。これにより、炉出口での酸素濃度を低く抑え、可燃成分と酸素による爆発の危険が少なくなる。このように除塵装置入口で温度が比較的低温であるため、減温塔などの設備を介して過度の冷却することなく、除塵を行うことができる。除塵装置においては、ダスト濃度を0.1g/Nm3以下としてから燃焼炉で可燃ガスを燃焼させ、効率よく高温化を実現することができる。このときの除塵装置は、該可燃ガスの温度によって、バグフィルター、セラミックフィルター、高温電気集塵器、慣性力集塵器、高性能サイクロン、遠心力集塵機等を用いれば良い。燃焼炉にあるいは燃焼炉の下流に配設された上記ボイラでは、効率よく燃焼ガスから熱回収でき、高温高圧ボイラが可能になる。
【0008】
本発明の方式の場合、除塵装置にてダスト濃度を0.1g/Nm3以下になるように除塵するため、ダスト中の塩の量が低減され、後段のボイラチューブ等の腐食の可能性が激減する。
【0009】
さらにまた、有害ガスの排出を抑制させることができる。部分酸化炉で部分酸化された後の可燃ガスを燃焼炉で酸化剤と混合させ高温で燃焼させるので、CO等の未燃分の排出がほぼ完全に抑制される。また、可燃ガスを除塵してから高温燃焼させるので、すすに起因する芳香族系有機化合物濃度は低くなり、結果として不完全燃焼生成物であるダイオキシン類物質濃度も低減される。
【0010】
上記課題を解決する第二の手段は、第一の手段において、セラミックフィルタへの付着物を酸素濃度5%以下のガスで定期的に払い落とすこととする廃棄物の処理方法である。これにより、効率的に除塵を行うことができ、有害ガスの排出はさらに抑制される。ここで酸素濃度を5%以下とするのは、酸素により可燃ガスの酸化を抑制し、不要な爆発、燃焼の危険性を低減させるためである。この酸素濃度5%以下のガスは排ガス再循環、あるいは圧力スイング吸着法や膜分離法を利用して得ることができる。
【0011】
上記課題を解決する第三の手段は、第一の手段において、セラミックフィルタへの付着物を窒素ガスで定期的に払い落とすこととする廃棄物の処理方法である。付着物の払い落としに窒素を用いることにより集塵器において可燃ガスは酸化することがない。また、この手段に起因する不要な爆発、燃焼等はなくなる。
【0012】
上記課題を解決する第四の手段は、上記の第一ないし第三の手段において、燃焼炉に点火源を配設し、可燃ガスを連続して燃焼させることとする廃棄物処理方法である。可燃ガスは、除塵された後に燃焼炉に送られて燃焼するが、ここに点火源をおくことにより、失火して再び可燃ガスと空気が混合して爆発する危性が回避される。
【0014】
上記課題を解決する第五の手段は、炉内温度を400〜800℃に、空気比を0.15〜0.9に制御して廃棄物を不完全燃焼もしくは部分酸化させ可燃ガスを生成する部分酸化炉と、その後流に設置され、250〜450℃で該可燃ガス中のダストの濃度を0.1g/Nm以下に除塵するセラミックフィルタと、さらにその後流に設置された燃焼炉と、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラを有することを特徴とする廃棄物からの熱回収装置である。
【0015】
上記課題を解決するする第の手段は、第の手段において、燃焼炉に点火源を配設することとする廃棄物の処理装置である。
【0016】
部分酸化炉内では、廃棄物は部分酸化が行われ、除塵装置入口で250〜450℃と比較的温度の低い可燃ガスが生成される。このとき部分酸化炉での空気比0・15〜0.9となるように空気比を調整する。これにより、酸素濃度が低く、爆発等の危険が少ない可燃ガスが生成される。また、この可燃ガスは、比較的低温であるので、減温塔などの設備による過度の冷却なしに、除塵される。部分酸化炉の炉出口からダクト等で接続されている後流の除塵装置においてダスト濃度を0.1g/Nm3以下とした後に、可燃ガスは後流の燃焼炉で燃焼され、効率よく高温化される。このときの除塵装置は、該可燃ガスの温度によって、バグフィルター、セラミツクフィルター、高温電気集塵器、慣性力集塵器、高性能サイクロン、遠心力集塵機等を用いれば良い。燃焼炉にあるいは燃焼炉の下流に配設された上記ボイラでは、効率よく燃焼ガスから熱回収でき、高温高圧ボイラが可能になる。本装置の場合、ダスト濃度を0.1g/Nm3以下になるように除塵するので、ダスト中の塩の量が低減され、後流のボイチューブ等の腐食が極めて少なくなる。
【0017】
さらにまた、有害ガスの排出を抑制させることができる。部分酸化炉にて部分酸化された後の可燃ガスを燃焼炉で酸化剤と混合させ高温で燃焼させるので、CO等の未燃分の排出がほぼ完全に抑制される。また、可燃ガスを除塵してから高温燃焼させるので、すすに起因する芳香族系有機化合物濃度は低くなり、結果として不完全燃焼生成物であるダイオキシン類物質濃度も低減される。
【0018】
【発明の実施の形態】
以下、添付図面の図1ないし図3にもとづき、本発明の実施の形態を説明する。
【0019】
図1は、本発明の一実施形態の概要構成を示す図である。図において、符号1は部分酸化炉であり、該部分酸化炉1には酸化のための空気あるいは、蒸気や排ガスによって酸素濃度を制御された空気主体のガスが供給されるようになっており、廃棄物が炉内へ投入されて着火し部分酸化し可燃ガスを生成する。上記部分酸化炉1には、該可燃ガスの除塵を行う除塵装置2、可燃ガスを燃焼する燃焼炉3、燃焼したガスの熱回収を行うボイラ4が順次接続されている。
【0020】
上記部分酸化炉1では、炉内温度は廃棄物が自燃でき、かつ部分酸化する程度であれば良く、400〜800℃であることが望ましい。また、この部分酸化での空気比が制御されこのときの空気比はおよそ0.15〜0.9程度とされる。その後、該可燃ガスは部分酸化炉1内での滞留時間によりその温度が制御され、250〜450℃で除塵装置2へ送られる。この温度範囲とする理由は、250℃以下ではタール等の付着物が問題となり、450℃以上ではダイオキシン類生成の問題及びNaClやKCl等の塩による目つまりの問題があるからである。
【0021】
次に、可燃ガスは除塵装置2へもたらされ、該除塵鼓置2では0.1g/Nm3以下の濃度まで除塵される。この濃度まで除塵すれば、ダスト中の塩の量が低減されるため、後段のボイラチューブ等の腐食が低減される。図2に除塵後のダスト濃度と後流のボイラチューブの耐用年数の関係を示す。この図から、除塵後のダスト濃度を0.1g/Nm3以下にすれば後流のボイラチューブの腐食を実用に耐え得る程度まで抑えられることがわかる。
【0022】
上記除塵装置2には図3に示すようなキャンドル型セラミックフィルターを使うことが望ましいが、ろ布や、目開き10mm以下のハニカム状セラミックフィルターの使用も考えられる。払い落としは、可燃ガスの酸化を抑制し、不要な爆発、燃焼の危険を低減させるために酸素濃度5%以下のガス、又は窒素で行うのが望ましい。また、付着物の剥離効果を考えると払い落とし方法の条件は、ガス圧力1kg/cm2以上、払い落とし間隔は数秒〜数十分、払い落とし時間は0.02秒〜数十秒程度であることが望ましい。
【0023】
可燃ガスは除塵装置2にて除塵された後に燃焼炉3に導入され ここで約1000℃程度まで温度上昇する。ここでは完全燃焼が行われるため、未燃ガス等の排出がほぼ完全に抑制される。また、可燃ガスは、予め除塵が行われているために、すすに起因する芳香族系有機化合物濃度は低くなり、結果として不完全燃焼生成物であるダイオキシン類物質濃度も低減される。
【0024】
本実施形態では、好ましい例として、この燃焼炉3の後段にボイラ、例えば300℃以上、20ata以上の高温高圧ボイラ4の水管が設置されており、効率よく燃焼ガスから熱回収をすることができる。必要に応じて高温空気の回収も可能になる。予め除塵が行われているため、ダストに起因するボイラチューブの腐食を抑えることができる。塩化水素ガスによる腐食効果が増大する排ガス温度600℃以上の高温場から熱を回収する場合には、ボイラチューブの寿命を長くするため耐腐食性を有するセラミック材質を使ったボイラチューブを用いれば良い。熱回収が終わった排ガスは下流の排ガス処理設備(図示せず)を経て、煙突から排出される。
【0025】
【実施例】
本発明の実施例を図4にもとづき説明する。本実施例装置では、図1装置の部分酸化炉として流動床炉1を採用している。他は、図1装置と同じであり、図4では図1と共通部分に同一符号を付してある。
【0026】
図4装置では、流動床炉1で流動化空気温度を20〜650℃、砂層温度400〜600℃とし、廃棄物たる都市ごみを1t/hで該流動床式炉1へ供給し、空気比を0.2〜0.8の間で操作して部分酸化させ可燃ガスを生成した。可燃ガスは250〜450℃で除塵装置2に供給し、キャンドル型セラミックフィルターにより除塵を行った。キャンドル型セラミックフィルターの材質は、SiO2、Al23、SiC、コージュライト、上記材料のコンポジット、あるいはそれに類似する無機材料のセラミックファイバー型か、多孔質体型である。払い落としには窒素ガスを用い、払い落とし圧力4kg/cm2、払い落とし間隔5秒〜50分、払い落とし時間0.1秒〜20秒の範囲とした。これにより、除塵装置2への流入前のダスト濃度が5〜20g/Nm3であったものが0.1g/Nm3以下まで除塵された。この除去されたダスト等は回収後に溶融炉及び焼却炉で無害化処理された。かかる除塵後の可燃ガスを燃焼炉3で燃焼させて900〜1000℃まで温度を上げた。このとき、後段のボイラ4で350〜540℃、50〜100ataの蒸気を用いて熱回収を行うことができた。なお、ボイラチューブとしてステンレス鋼、インコネル他の合金鋼を用いたが、著しい腐食等は認められず、材料によっては複数年使用可能な耐腐食性を確認した。また、高温空気の回収も行ったところ、350〜700℃の高温空気の回収が可能であることが判明した。
【0027】
また、図5に示される火格子式炉での適用性の確認も行った。図5装置では部分酸化炉として火格子式炉1を採用した。他は、図1装置と同じである。この火格子式炉1では酸化用空気温度を20〜250℃とし、火格子上部温度500〜800℃として廃棄物たる都市ごみを炉内へ供給し、空気比を0.3〜0.9の間で操作して部分酸化させた。可燃ガスは250〜450℃で除塵装置2に供給し、キャンドル型セラミックフィルター及びハニカム型セラミックフィルターにより除塵を行った。セラミックフィルターの材質は、SiO2、Al23、SiC、コージュライト、上記材料のコンポジット、あるいはそれに類似する無機材科のセラミックファイバー型か、多孔質体型である。払い落としには窒素ガスを用い、払い落とし圧力3kg/cm2、払い落とし間隔10秒〜20分、払い落とし時間0.05秒〜15秒の範囲とした。これにより、除塵装置2に流入する前のダスト濃度が1〜5g/Nm3であったものが0.1g/Nm3以下まで除塵された。この除去されたダスト等は回収後に溶融炉及び焼却炉で無害化処理を行った。除塵後の可燃ガスを燃焼炉3で燃焼させて900〜1100℃まで温度を上げた。燃焼炉3では、爆発等の危険を回避すべくパイロットバーナ(図示せず)を用いて常時点火源をおいて、可燃ガスを連続的に燃焼した.このバーナは燃料として天然ガスあるいは灯油を用い、出力数万kcal/h〜数十万kcal/hのバーナを配設した。このとき、後段のボイラ4で540℃、100ataの蒸気を用いて熱回収を行うことができた。なお、ボイラチューブとしてステンレス鋼、インコネル他の合金鋼を用いたが、著しい腐食等は認められず、1年以上の安定稼働を確認した。
【0028】
【発明の効果】
説明したように、本発明においては、部分酸化させたガスを比較的低温で除塵してから燃焼炉で燃焼させることにより高温を得ることとしたので、ガス化した廃棄物の処理が効率的に行えると同時に、高温高圧ボイラを設置することによる熱回収も効率よく行える。また、ダイオキシンやフラン等の有害ガスの排出を抑制することもできる。さらに、従来技術と比較してプラント全体を簡素化でき、必要設置面積も小さくてすむ。
【図面の簡単な説明】
【図1】 本発明の一実施形態装置の概要構成図である。
【図2】 ダスト濃度とボイラチューブの耐用年数との関係を示す図である。
【図3】 図1装置の除塵装置に採用可能なキャンドル型セラミックフィルターの概略図である。
【図4】 本発明の一実施形態装置の概要構成図である。
【図5】 図4装置の変形を示す装置の概要構成図である。
【図6】 従来の廃棄物処理装置の概要構成図である。
【符号の説明】
1 部分酸化炉
2 除塵装置
3 燃焼室
4 ボイラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for recovering heat from waste.
[0002]
[Prior art]
Japanese Laid-Open Patent Publication No. 7-35322 proposes a method in which municipal waste or industrial waste (hereinafter referred to as “waste”) is partially oxidized, gasified, and burned. An outline of the structure of a typical example is shown in FIG. 6 of the accompanying drawings.
[0003]
In FIG. 6, waste is gasified in a partial combustion fluidized bed furnace 51 in a reducing atmosphere with a fluidized bed temperature of 450 to 650 ° C. and an air ratio of about 0.15 to 0.5. The dust is introduced into the secondary combustion furnace 53 through a dust collector 52 such as the above. The produced gas is mixed with secondary air in the secondary combustion furnace 53 and completely burned at a high temperature of 800 to 1000 ° C. At this time, desalting agent is supplied to suppress generation of HCl gas, and heat recovery is performed. A dust recovery line 54 is installed below the dust collector 52. Part of the desalting agent and all or part of the dust are cooled by the cooler 55 and then returned to the partial oxidation fluidized bed furnace. It is supposed to be.
[0004]
[Problems to be solved by the invention]
In such a combustion method, when the waste is burned after being partially oxidized, a desalting agent must be used in the secondary combustion furnace. Therefore, the dust concentration becomes high, which is disadvantageous in terms of dust removal. If the dust concentration in the secondary combustion furnace is not controlled below a certain value, the corrosion of the boiler tube due to the salt in the dust becomes a problem in the boiler arranged in the subsequent stage for heat recovery.
[0005]
The present invention has been made to solve such problems, and a method and apparatus for recovering heat from waste that can be partially oxidized and efficiently recovered without causing the above problems. The issue is to provide.
[0006]
[Means for Solving the Problems]
The first means to solve the above problem is to reduce the waste in a partial oxidation furnace with a combustion reaction by controlling the furnace temperature to 400 to 800 ° C. and the air ratio to 0.15 to 0.9. incomplete combustion, or by partial oxidation to produce a combustible gas in an atmosphere, the combustible gas is introduced into the ceramic filter at 250 to 450 ° C. and dedusted dust concentration 0.1 g / Nm 3 or less, dust has been the A method for recovering heat from waste, characterized in that natural gas is burned at a high temperature in a combustion furnace, and heat is recovered from the gas burned in the combustion furnace or in a boiler disposed downstream of the combustion furnace. It is.
[0007]
In the partial oxidation furnace, partial oxidation of waste is performed, and a combustible gas having a relatively low temperature of 250 to 450 ° C. is sent to the inlet of the dust removing device. Here, the reason why the temperature at the dust removing device inlet is set in the above range is that there is a problem such as tar adhesion below 250 ° C, and there is a possibility of dioxins formation and clogging due to salt above 450 ° C. Because there is. In this case the air ratio in the partial oxidation furnace to adjust the air ratio to be 0.15 to 0.9. The reason is that if the air ratio is less than 0.15 , problems such as tar adhesion occur as a strong reducing gas, and if it is above 0.9 , oxidation of the combustible gas is promoted before being introduced into the secondary combustion furnace. Because. This keeps the oxygen concentration at the furnace outlet low and reduces the risk of explosion due to combustible components and oxygen. Since the temperature at the inlet of the dust removing device is relatively low in this way, dust can be removed without excessive cooling through equipment such as a temperature reducing tower. In the dust remover, the combustible gas is burned in the combustion furnace after the dust concentration is set to 0.1 g / Nm 3 or less, and the temperature can be efficiently increased. The dust removal device at this time may use a bag filter, a ceramic filter, a high-temperature electric dust collector, an inertial dust collector, a high-performance cyclone, a centrifugal dust collector, or the like depending on the temperature of the combustible gas. In the above boiler disposed in the combustion furnace or downstream of the combustion furnace, heat can be efficiently recovered from the combustion gas, and a high-temperature and high-pressure boiler becomes possible.
[0008]
In the case of the method of the present invention, the dust concentration is removed so that the dust concentration is 0.1 g / Nm 3 or less by the dust removing device, so that the amount of salt in the dust is reduced, and there is a possibility of corrosion of the boiler tube or the like in the subsequent stage. Decrease drastically.
[0009]
Furthermore, harmful gas emissions can be suppressed. Since the combustible gas after being partially oxidized in the partial oxidation furnace is mixed with an oxidant in the combustion furnace and burned at a high temperature, discharge of unburned components such as CO is almost completely suppressed. In addition, since the combustible gas is dedusted and then burned at a high temperature, the concentration of the aromatic organic compound resulting from soot is lowered, and as a result, the concentration of dioxins that are incomplete combustion products is also reduced.
[0010]
The second means for solving the above-mentioned problem is a waste processing method in which the deposit on the ceramic filter is periodically removed with a gas having an oxygen concentration of 5% or less in the first means . Thereby, dust can be efficiently removed and emission of harmful gas is further suppressed. Here, the oxygen concentration is set to 5% or less in order to suppress the oxidation of the combustible gas with oxygen and reduce the risk of unnecessary explosion and combustion. This gas having an oxygen concentration of 5% or less can be obtained by exhaust gas recirculation, pressure swing adsorption or membrane separation.
[0011]
A third means for solving the above-mentioned problem is a waste processing method in which, in the first means, deposits on the ceramic filter are periodically removed with nitrogen gas. By using nitrogen to remove deposits, the combustible gas does not oxidize in the dust collector. In addition, unnecessary explosions and combustion caused by this means are eliminated.
[0012]
A fourth means for solving the above problem is a waste treatment method according to any one of the first to third means described above, wherein an ignition source is disposed in a combustion furnace and combustible gas is continuously burned. Combustible gas is fed into the combustion furnace to burn after being dust, by placing the ignition source here, danger of explosion by mixing again combustible gas and air and misfire can be avoided.
[0014]
The fifth means for solving the above-mentioned problem is that the in- furnace temperature is controlled to 400 to 800 ° C. and the air ratio is controlled to 0.15 to 0.9 to generate inflammable gas by incompletely burning or partially oxidizing the waste. A partial oxidation furnace, a ceramic filter that is installed downstream and removes the dust concentration in the combustible gas at 250 to 450 ° C. to 0.1 g / Nm 3 or less , and a combustion furnace installed downstream An apparatus for recovering heat from waste, comprising a boiler disposed in the combustion furnace or downstream of the combustion furnace.
[0015]
A sixth means for solving the above problem is the waste processing apparatus according to the fifth means, wherein an ignition source is disposed in the combustion furnace.
[0016]
In the partial oxidation furnace, the waste is partially oxidized, and a combustible gas having a relatively low temperature of 250 to 450 ° C. is generated at the dust removing device inlet. In this case the air ratio in the partial oxidation furnace to adjust the air ratio so that the 0-from 15 to 0.9. Thereby, combustible gas with low oxygen concentration and few dangers, such as an explosion, is produced | generated. Moreover, since this combustible gas is comparatively low temperature, dust is removed without excessive cooling by facilities, such as a temperature reduction tower. After the dust concentration is reduced to 0.1 g / Nm 3 or less in the downstream dust removal system connected by a duct from the furnace outlet of the partial oxidation furnace, the combustible gas is burned in the downstream combustion furnace and efficiently heated. Is done. The dust removal device at this time may use a bag filter, a ceramic filter, a high-temperature electric dust collector, an inertial dust collector, a high-performance cyclone, a centrifugal dust collector, or the like depending on the temperature of the combustible gas. In the above boiler disposed in the combustion furnace or downstream of the combustion furnace, heat can be efficiently recovered from the combustion gas, and a high-temperature and high-pressure boiler becomes possible. In the case of this apparatus, since dust is removed so that the dust concentration is 0.1 g / Nm 3 or less, the amount of salt in the dust is reduced, and the corrosion of the downstream boiler tube and the like is extremely reduced.
[0017]
Furthermore, harmful gas emissions can be suppressed. Since the combustible gas after being partially oxidized in the partial oxidation furnace is mixed with an oxidant in the combustion furnace and burned at a high temperature, discharge of unburned components such as CO is almost completely suppressed. In addition, since the combustible gas is dedusted and then burned at a high temperature, the concentration of the aromatic organic compound resulting from soot is lowered, and as a result, the concentration of dioxins that are incomplete combustion products is also reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3 of the accompanying drawings.
[0019]
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. In the figure, reference numeral 1 denotes a partial oxidation furnace, and the partial oxidation furnace 1 is supplied with air for oxidation or air-based gas whose oxygen concentration is controlled by steam or exhaust gas. Waste is thrown into the furnace and ignited and partially oxidized to generate combustible gas. The partial oxidation furnace 1 is sequentially connected with a dust removing device 2 for removing dust from the combustible gas, a combustion furnace 3 for burning the combustible gas, and a boiler 4 for recovering the heat of the burned gas.
[0020]
In the partial oxidation furnace 1, the temperature in the furnace may be such that the waste can self-combust and can be partially oxidized, and is preferably 400 to 800 ° C. The air ratio in the partial oxidation is controlled, the air ratio at this time is Ru is approximately about 0.15 to 0.9. Thereafter, the temperature of the combustible gas is controlled by the residence time in the partial oxidation furnace 1, and the combustible gas is sent to the dust removing device 2 at 250 to 450 ° C. The reason for setting this temperature range is that deposits such as tar are problematic at 250 ° C. or lower, and there are problems of dioxins formation and eye clogging due to salts such as NaCl and KCl above 450 ° C.
[0021]
Next, the combustible gas is brought to the dust removing device 2, and the dust removing device 2 removes dust to a concentration of 0.1 g / Nm 3 or less. If dust is removed to this concentration, the amount of salt in the dust is reduced, so that corrosion of the boiler tube and the like in the subsequent stage is reduced. FIG. 2 shows the relationship between the dust concentration after dust removal and the service life of the wake boiler tube. From this figure, it can be seen that if the dust concentration after dust removal is 0.1 g / Nm 3 or less, the corrosion of the downstream boiler tube can be suppressed to a practical level.
[0022]
Although it is desirable to use a candle-type ceramic filter as shown in FIG. 3 for the dust removing device 2, it is also possible to use a filter cloth or a honeycomb-shaped ceramic filter having an opening of 10 mm or less. It is desirable to perform the removal with a gas having an oxygen concentration of 5% or less, or nitrogen in order to suppress oxidation of the combustible gas and reduce the risk of unnecessary explosion and combustion. Considering the effect of peeling off the deposits, the conditions for the removal method are a gas pressure of 1 kg / cm 2 or more, a removal interval of several seconds to several tens of minutes, and a removal time of about 0.02 seconds to several tens of seconds. It is desirable.
[0023]
The combustible gas is removed by the dust removing device 2 and then introduced into the combustion furnace 3 where the temperature rises to about 1000 ° C. Since complete combustion is performed here, discharge of unburned gas and the like is almost completely suppressed. In addition, since the dust is previously removed from the combustible gas, the concentration of the aromatic organic compound resulting from soot is lowered, and as a result, the concentration of the dioxin substance that is an incomplete combustion product is also reduced.
[0024]
In the present embodiment, as a preferable example, a boiler, for example, a water pipe of a high-temperature and high-pressure boiler 4 having a temperature of 300 ° C. or higher and 20 at or higher is installed at the subsequent stage of the combustion furnace 3, and heat can be efficiently recovered from the combustion gas. . High temperature air can be recovered as required. Since dust removal is performed in advance, corrosion of the boiler tube due to dust can be suppressed. When recovering heat from a high temperature field with an exhaust gas temperature of 600 ° C. or higher where the corrosion effect of hydrogen chloride gas increases, a boiler tube made of a ceramic material having corrosion resistance may be used to extend the life of the boiler tube. . The exhaust gas after heat recovery is discharged from the chimney through a downstream exhaust gas treatment facility (not shown).
[0025]
【Example】
An embodiment of the present invention will be described with reference to FIG. In this embodiment, a fluidized bed furnace 1 is employed as the partial oxidation furnace of the apparatus shown in FIG. Others are the same as the apparatus of FIG. 1, and in FIG. 4, the same code | symbol is attached | subjected to FIG. 1 and a common part.
[0026]
In the apparatus shown in FIG. 4, the fluidized air temperature is set to 20 to 650 ° C. and the sand layer temperature is set to 400 to 600 ° C. in the fluidized bed furnace 1, and municipal waste as waste is supplied to the fluidized bed furnace 1 at 1 t / h. Was partially oxidized by operating between 0.2 and 0.8 to produce a combustible gas. The combustible gas was supplied to the dust removing device 2 at 250 to 450 ° C., and dust was removed by a candle type ceramic filter. The material of the candle type ceramic filter is SiO 2 , Al 2 O 3 , SiC, cordierite, a composite of the above materials, or a ceramic fiber type of an inorganic material similar thereto, or a porous body type. Nitrogen gas was used for the drop-off, and the drop-off pressure was 4 kg / cm 2 , the drop-off interval was 5 to 50 minutes, and the drop-off time was in the range of 0.1 to 20 seconds. Accordingly, those dust concentration before flowing into the filtration apparatus 2 was 5 to 20 g / Nm 3 is dust to 0.1 g / Nm 3 or less. The removed dust and the like were detoxified in a melting furnace and an incinerator after collection. The combustible gas after such dust removal was burned in the combustion furnace 3 and the temperature was raised to 900 to 1000 ° C. At this time, it was possible to recover heat by using steam at 350 to 540 ° C. and 50 to 100 at the subsequent boiler 4. Although stainless steel, Inconel and other alloy steels were used as boiler tubes, no significant corrosion was observed, and depending on the material, corrosion resistance that could be used for multiple years was confirmed. Moreover, when high temperature air was also collected, it was found that high temperature air at 350 to 700 ° C. could be collected.
[0027]
Moreover, the applicability in the grate furnace shown in FIG. 5 was also confirmed. The apparatus shown in FIG. 5 employs a grate furnace 1 as a partial oxidation furnace. Others are the same as FIG. 1 apparatus. In this grate furnace 1, the oxidizing air temperature is set to 20 to 250 ° C., the grate upper temperature is set to 500 to 800 ° C., and municipal waste as waste is supplied into the furnace, and the air ratio is 0.3 to 0.9. Partial oxidation was performed by operating in between. The combustible gas was supplied to the dust removing device 2 at 250 to 450 ° C., and dust was removed using a candle type ceramic filter and a honeycomb type ceramic filter. The material of the ceramic filter is SiO 2 , Al 2 O 3 , SiC, cordierite, a composite of the above materials, or a ceramic fiber type of an inorganic material similar thereto, or a porous body type. Nitrogen gas was used for the removal, and the removal pressure was 3 kg / cm 2 , the removal interval was 10 to 20 minutes, and the removal time was in the range of 0.05 to 15 seconds. Thus, what is dust concentration before entering the dust collector 2 was 1 to 5 g / Nm 3 is dust to 0.1 g / Nm 3 or less. The removed dust and the like were detoxified in a melting furnace and an incinerator after collection. The combustible gas after dust removal was burned in the combustion furnace 3 and the temperature was raised to 900 to 1100 ° C. In the combustion furnace 3, a combustible gas was continuously burned with a constant ignition source using a pilot burner (not shown) to avoid dangers such as explosion. This burner uses natural gas or kerosene as a fuel, and a burner having an output of several tens of thousands kcal / h to several hundred thousand kcal / h is disposed. At this time, heat recovery could be performed using steam at 540 ° C. and 100 ata in the boiler 4 at the subsequent stage. Although stainless steel, Inconel and other alloy steels were used as boiler tubes, no significant corrosion was observed, confirming stable operation for over a year.
[0028]
【The invention's effect】
As described above, in the present invention, since the partially oxidized gas is dedusted at a relatively low temperature and then burned in a combustion furnace, a high temperature is obtained, so that the treatment of gasified waste is efficiently performed. At the same time, it can efficiently recover heat by installing a high-temperature and high-pressure boiler. Moreover, emission of harmful gases such as dioxin and furan can be suppressed. Furthermore, the entire plant can be simplified and the required installation area can be reduced as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the dust concentration and the useful life of a boiler tube.
3 is a schematic view of a candle-type ceramic filter that can be used in the dust removing device of FIG. 1; FIG.
FIG. 4 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.
FIG. 5 is a schematic configuration diagram of an apparatus showing a modification of the apparatus of FIG. 4;
FIG. 6 is a schematic configuration diagram of a conventional waste treatment apparatus.
[Explanation of symbols]
1 Partial oxidation furnace 2 Dust removal equipment 3 Combustion chamber 4 Boiler

Claims (6)

廃棄物を燃焼反応を伴う部分酸化炉にて、炉内温度を400〜800℃に、空気比を0.15〜0.9に制御して還元雰囲気で不完全燃焼、もしくは部分酸化させて可燃ガスを生成し、該可燃ガスを250〜450℃でセラミックフィルタに導入してダスト濃度を0.1g/Nm以下に除塵し、除塵された該可燃ガスを燃焼炉にて高温で燃焼させ、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラにて燃焼したガスから熱回収することを特徴とする廃棄物からの熱回収方法。Combustible waste by incomplete combustion or partial oxidation in a reducing atmosphere by controlling the furnace temperature to 400-800 ° C and the air ratio to 0.15-0.9 in a partial oxidation furnace with combustion reaction A gas is generated, the combustible gas is introduced into a ceramic filter at 250 to 450 ° C., dust is removed to a concentration of 0.1 g / Nm 3 or less , and the combusted gas removed is burned at a high temperature in a combustion furnace, A method for recovering heat from waste, comprising recovering heat from a gas combusted in a boiler disposed in the combustion furnace or downstream of the combustion furnace. セラミックフィルタへの付着物を酸素濃度5%以下のガスで定期的に払い落とすこととする請求項1に記載の廃棄物からの熱回収方法。 The method for recovering heat from waste according to claim 1, wherein deposits on the ceramic filter are periodically removed with a gas having an oxygen concentration of 5% or less. セラミックフィルタへの付着物を窒素ガスで定期的に払い落とすこととする請求項1に記載の廃棄物からの熱回収方法。 The method for recovering heat from waste according to claim 1, wherein deposits on the ceramic filter are periodically removed with nitrogen gas. 燃焼炉に点火源を配設し、可燃ガスを連続して燃焼させることとする請求項1ないし請求項3のうちのいずれか1つに記載の廃棄物から熱回収方法。The method for recovering heat from waste according to any one of claims 1 to 3, wherein an ignition source is provided in the combustion furnace, and the combustible gas is continuously burned. 炉内温度を400〜800℃に、空気比を0.15〜0.9に制御して廃棄物を不完全燃焼もしくは部分酸化させ可燃ガスを生成する部分酸化炉と、その後流に設置され、250〜450℃で該可燃ガス中のダストの濃度を0.1g/Nm以下に除塵するセラミックフィルタと、さらにその後流に設置された燃焼炉と、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラを有することを特徴とする廃棄物からの熱回収装置。A partial oxidation furnace that generates a combustible gas by incompletely burning or partially oxidizing waste by controlling the furnace temperature to 400 to 800 ° C. and the air ratio to 0.15 to 0.9, and installed downstream thereof. A ceramic filter that removes dust in the combustible gas at a temperature of 250 to 450 ° C. to a concentration of 0.1 g / Nm 3 or less , a combustion furnace installed downstream thereof, and in the combustion furnace or downstream of the combustion furnace An apparatus for recovering heat from waste, comprising a boiler disposed. 燃焼炉は点火源が配設されていることとする請求項に記載の廃棄物から熱回収装置。The apparatus for recovering heat from waste according to claim 5 , wherein the combustion furnace is provided with an ignition source.
JP34175998A 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste Expired - Fee Related JP3799846B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34175998A JP3799846B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste
TW89110356A TW442633B (en) 1998-12-01 2000-05-29 Method for disposing waste and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34175998A JP3799846B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006037888A Division JP2006200886A (en) 2006-02-15 2006-02-15 Processing method and device for waste, and heat recovery method and device from waste

Publications (2)

Publication Number Publication Date
JP2000161638A JP2000161638A (en) 2000-06-16
JP3799846B2 true JP3799846B2 (en) 2006-07-19

Family

ID=18348551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34175998A Expired - Fee Related JP3799846B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste

Country Status (1)

Country Link
JP (1) JP3799846B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185584A (en) * 2006-01-12 2007-07-26 Jfe Engineering Kk Dust collector and method of removing dust
JP2017120151A (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Combustion facility

Also Published As

Publication number Publication date
JP2000161638A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP3773302B2 (en) Heat recovery system and power generation system
JP2004532967A (en) Incineration process using high concentration of oxygen
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JP2001201271A (en) Exhaust gas treatment system of vertical blast furnace for copper
JP2904873B2 (en) Heterogeneous fuel combustion methods
JPH11128679A (en) Device for reducing dioxines of discontinuous combustion refuse incineration plant and reducing method therefor
JP4420155B2 (en) Method and apparatus for recovering heat from waste
JP3799846B2 (en) Method and apparatus for recovering heat from waste
KR100447009B1 (en) Treatment method of waste and apparatus thereof
JP4121645B2 (en) Method and apparatus for recovering heat from waste
JPH02501326A (en) Clean waste incineration method
JP2006200886A (en) Processing method and device for waste, and heat recovery method and device from waste
JPH0343608A (en) Composite power generation plant for coal gasification
JP2000161623A (en) Method and apparatus for treating waste
JP2000161622A (en) Method and device for treating waste
JP2003254516A (en) Garbage burning power generation equipment
TW442633B (en) Method for disposing waste and apparatus thereof
JP5421567B2 (en) Waste treatment facilities and methods of using recovered heat in waste treatment facilities
KR200199659Y1 (en) Improvement of boiler exhaust gas purifier
JP2018200150A (en) Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
JP2989351B2 (en) Waste incineration method
KR19990049357A (en) Incinerator Exhaust Purifier
JPH0849821A (en) Device and method for treating waste
JPH11351531A (en) Equipment and method of burning refuse
JP3525649B2 (en) Exhaust gas treatment method for waste gasifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees