JP4121645B2 - Method and apparatus for recovering heat from waste - Google Patents

Method and apparatus for recovering heat from waste Download PDF

Info

Publication number
JP4121645B2
JP4121645B2 JP34175598A JP34175598A JP4121645B2 JP 4121645 B2 JP4121645 B2 JP 4121645B2 JP 34175598 A JP34175598 A JP 34175598A JP 34175598 A JP34175598 A JP 34175598A JP 4121645 B2 JP4121645 B2 JP 4121645B2
Authority
JP
Japan
Prior art keywords
gas
furnace
combustible gas
waste
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34175598A
Other languages
Japanese (ja)
Other versions
JP2000161637A (en
Inventor
隆 能登
章 中村
誠二 木ノ下
肇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP34175598A priority Critical patent/JP4121645B2/en
Priority to TW89110356A priority patent/TW442633B/en
Publication of JP2000161637A publication Critical patent/JP2000161637A/en
Application granted granted Critical
Publication of JP4121645B2 publication Critical patent/JP4121645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物から熱回収方法及び装置に関するものである。
【0002】
【従来の技術】
都市ごみあるいは産業廃棄物(以下「廃棄物」という)を部分酸化させて、ガス化せしめた後に燃焼させる方法が特開平9-159132に提案されている。その代表的な例の構成の概要を添付図面の図5に示す。
【0003】
図5にて、燃焼炉でごみを燃焼させて発生した燃焼排ガスは、廃熱ボイラ12で節炭器16からの加熱された水20により450〜650℃まで冷却され、フィルター13により除塵される。該フィルター13を出た燃焼排ガスの一部または全量は加熱炉14に供給され、補助燃料21を用いた追い焚きによりこの加熱炉14にて高温化され、さらに蒸気過熱器15を廃熱ボイラ12からの飽和蒸気22で500℃程度までに過熱する。さらに燃焼排ガスは、節炭器15と空気予熱器17で、廃熱回収される。その後、燃焼排ガスは誘引送風機18を経て煙突19から排気される。
【0004】
【発明が解決しようとする課題】
このような燃焼方法において可燃物を処理する場合、フィルターにて除塵された後のダスト濃度が一定値以下に制御できないと、熱回収のために後段に配されるボイラにおいてダスト中の塩などによるボイラチューブの腐食が問題となる。また、燃焼炉で発生させた燃焼排ガスの未燃分が少なければ、その後流の加熱炉で効率的に廃熱回収ができなくなる。
【0005】
本発明は、このような問題点を解決するためになされたものであり、上記問題点を発生させることなく部分酸化させ、効率よく熱回収することができる廃棄物から熱回収方法及び装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決する第一の手段は、廃棄物を燃焼反応を伴う部分酸化炉にて、炉内温度を40〜800℃に、空気比を0.15〜0.9に制御して不完全燃焼、もしくは部分酸化させて可燃ガスを生成し、該可燃ガスを450〜650℃でセラミックフィルタに導入してダスト濃度を0.1g/Nm以下に除塵し、除塵された該可燃ガスを湿式ガス処理装置に導入して該可燃ガス中の塩化水素濃度を20ppm以下にし、処理された該可燃ガスを燃焼炉にて高温で燃焼させ、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラにて燃焼したガスから熱回収することを特徴とする廃棄物からの熱回収方法である。
【0007】
部分酸化炉内では廃棄物の部分酸化が行われ、セラミックフィルタ入口で450〜650℃と比較的温度の低い可燃ガスが送られる。ここで、上記セラミックフィルタ入口での温度を上記範囲に設定した理由は、450℃未満では後流の配管や燃焼炉で再着火による爆発の可能性があり、650℃より上ではダスト中の塩が溶融し、除塵装置の目つまりの問題があるからである。このとき部分酸化炉での空気比が0.15〜0.9となるように空気比を調整をする。その理由は、空気比が0.15未満では、強還元ガスとしてタール付着等の問題が発生し、0.9より上では燃焼炉に導入する前に可燃ガスの酸化が促進されてしまうためである。これにより、炉出口での酸素濃度を低く抑え、可燃成分と酸素による爆発の危険が少なくなる。このようにセラミックフィルタ入口で可燃ガスの温度が比較的低温であるため、減温塔などの設備を介して過度の冷却することなく、除塵を行うことができる。その後、該可燃ガスを湿式ガス処理装置へ導入する。ここで可燃ガス中の塩化水素分を除去し、該可燃ガス中の塩化水素濃度を20ppm以下としてから燃焼炉で可燃ガスを燃焼させ、効率よく高温化を実現することができる。該燃焼炉にあるいは該燃焼炉の下流に配設された上記ボイラでは効率よく燃焼ガスから熱回収でき、高温高圧ボイラが可能になる。
【0008】
本発明の方式の場合、セラミックフィルタにてダスト濃度を0.1g/Nm3以下になるように除塵するので、ダスト中の塩の量が低減される。その後、可燃ガスを湿式ガス処理装置へ導きガス中の塩化水素を除去するので、高温燃焼させても塩化水素ガスの発生が低減し、後流の設備、特に燃焼炉の後段のボイラチューブ等における腐食が激減する。耐腐食性の高い材料を使わなければならなかった部品等を安価な材料に切り替えることができる。
【0009】
さらにまた、有害ガスの排出を抑制させることができる。部分酸化炉で部分酸化された後の可燃ガスを燃焼炉で酸化剤と混合させ高温で燃焼させるので、CO等の未燃分の排出がほぼ完全に抑制される。また、可燃ガスを除塵してから高温燃焼させるので、すすに起因する芳香族系有機化合物濃度は低くなり、結果として不完全燃焼生成物であるダイオキシン類物質濃度も低減される。
【0010】
上記課題を解決する第二の手段は、第一の手段において、セラミックフィルタへの付着物を酸素濃度5%以下のガスで定期的に払い落とすこととする廃棄物から熱回収方法である。これにより、効率的に除塵を行うことができ、有害ガスの排出はさらに抑制される。ここで酸素濃度を5%以下とするのは、酸素により可燃ガスの酸化を抑制し、不要な爆発、燃焼の危険性を低減させるためである。この酸素濃度5%以下のガスは排ガス再循環、あるいは圧力スイング吸着法や膜分離法を利用して得ることができる。
【0011】
上記課題を解決する第三の手段は、第一の手段において、セラミックフィルタへの付着物を窒素ガスで定期的に払い落とすこととする廃棄物から熱回収方法である。付着物の払い落としに窒素を用いることにより集塵器において可燃ガスは酸化することがない。また、この手段に起因する不要な爆発、燃焼等はなくなる。
【0012】
上記課題を解決する第四の手段は、上記の第または第三の手段において、払い落としガスの温度を除塵装置における可燃ガスとほぼ同じ温度あるいはそれ以上とする廃棄物から熱回収方法である。部分酸化された排ガスを450℃〜650℃で処理するとき、その温度状態から少しでも冷やされると、凝縮し液状に成りやすいガス状成分が多く含まれている。もし、それらが液状になると、除塵装置内でそれらが付着し、目つまりなどのトラブルが発生することがある。そのため、払い落とし用ガス温度を制御することが好ましい。
【0013】
上記課題を解決する第五の手段は、第一ないし第四の手段において、燃焼炉に点火源を配設し、可燃ガスを連続して燃焼させる廃棄物から熱回収方法である。可燃ガスは、除塵された後に燃焼炉に送られて燃焼するが、ここに常時点火源をおくことにより、失火して再び可燃ガスと空気が混合して爆発する危換性が回避される。
【0015】
上記課題を解決する第六の手段は、炉内温度を40〜800℃に、空気比を0.15〜0.9に制御して廃棄物を不完全燃焼もしくは部分酸化させ可燃ガスを生成する部分酸化炉と、その後流に設置され、450〜650℃で該可燃ガス中のダストの濃度を0.1g/Nm以下に除塵するセラミックフィルタと、除塵後の可燃ガス中の塩化水素濃度を20ppm以下とする湿式ガス処理装置と、さらにその後流に設置された燃焼炉と、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラを有することを特徴とする廃棄物からの熱回収装置である。
【0016】
上記課題を解決する第の手段は、第の手段において、燃焼炉に点火源を配設することとする廃棄物から熱回収装置である。
【0017】
部分酸化炉内では、廃棄物は部分酸化が行われ、セラミックフィルタ入口で450〜650℃と比較的温度の低い可燃ガスが生成される。このとき部分酸化炉での空気比が0.15〜0.9となるように該空気比を調整する。これにより、酸素濃度が低く、爆発等の危険が少ない可燃ガスが生成される。また、この可燃ガスは、比較的低温であるので、減温塔などの設備による過度の冷却なしに、除塵される。部分酸化炉の炉出口からダクト等で接続されている後流のセラミックフィルタにおいてダスト濃度を0.1g/Nm3以下とした後に、該可燃ガスを後流の湿式ガス処理装置へ導入する。ここで可燃ガス中の塩化水素分を除去し、該可燃ガス中の塩化水素濃度を20ppm以下とした後、可燃ガスは後流の燃焼炉で燃焼され、効率よく高温化される。本装置の場合、ダスト濃度を0.1g/Nm3以下になるように除塵するので、ダスト中の塩の量が低減される。その後湿式ガス処理装置へ導きガス中の塩化水素を除去するので、高温燃焼させても塩化水素ガスを低濃度に抑えることができ、後流の設備、特に燃焼炉の後段のボイラチューブ等における腐食への配慮を減らすことができる。耐腐食性の高い材料を使わなければならなかった部品等を安価な材料に切り替えることができる。また、部分酸化炉での空気比を一定の範囲の値にすることにより、発生する可燃ガスのポテンシャルの変動が少なくなり、安定した操業が可能になる。
【0018】
さらにまた、有害ガスの排出を抑制させることができる。部分酸化炉にて部分酸化された後の可燃ガスを燃焼炉で酸化剤と混合させ高温で燃焼させるので、CO等の未燃分の排出がほぼ完全に抑制される。また、可燃ガスを除塵してから高温燃焼させるので、すすに起因する芳香族系有機化合物濃度は低くなり、結果として不完全燃焼生成物であるダイオキシン類物質濃度も低減される。
【0019】
【発明の実施の形態】
以下、添付図面の図1及び図2にもとづき、本発明の実施の形態を説明する。
【0020】
図1は、本発明の一実施形態の概要構成を示す図である。図において、符号1は部分酸化炉であり、該部分酸化炉1には酸化のための空気あるいは蒸気や排ガスによって酸素濃度を制御された空気主体のガスが供給されるようになっており、廃棄物が炉内へ投入されて着火し部分酸化し可燃ガスを生成する。上記部分酸化炉1には、該可燃ガスの除塵を行う除塵装置2、湿式ガス処理装置3、可燃ガスを燃焼する燃焼炉4、燃焼したガスの熱回収を行うボイラ5が順次接続されている。
【0021】
上記部分酸化炉1では、炉内温度は廃棄物が自燃でき、かつ部分酸化する程度であれば良く、40〜800℃であることが望ましい。また、この部分酸化での空気比が制御され、このときの空気比はおよそ0.15〜0.9程度とされる。その後、該可燃ガスは部分酸化炉1内での滞留時間によりその温度が制御され、450〜650℃で除塵装置2へ送られる。この温度範囲とする理由は、450℃以下では後流において再着火や爆発等の危険があり650℃以上ではダスト中の塩が溶融して除塵装置内で目つまりなどの問題があるからである。
【0022】
次に、可燃ガスは除塵装置2へもたらされ、該除塵鼓置2では0.1g/Nm3以下の濃度まで除塵される。この濃度まで除塵すれば、ダスト中の塩の量が低減されるため、後段のボイラチューブ等の腐食が低減される。除塵後のダスト濃度を0.1g/Nm3以下にすれば後流のボイラチューブの腐食を実用に耐え得る程度まで抑えられることがわかる。
【0023】
上記除塵装置2には図2に示すようなキャンドル型セラミックフィルターを使うことが望ましいが、ろ布や、目開き10mm以下のハニカム状セラミックフィルターの使用も考えられる。払い落としは、可燃ガスの酸化を抑制し、不要な爆発、燃焼の危険を低減させるために酸素濃度5%以下のガス、又は窒素で行うのが望ましい。また、付着物の剥離効果を考えると払い落とし方法の条件は、ガス圧力1kg/cm2以上、払い落とし間隔は数秒〜数十分、払い落とし時間は0.02秒〜数十秒程度であることが望ましい。
【0024】
可燃ガスは、除塵された後、湿式ガス処理装置3に導入され、必要に応じて苛性ソーダ等の中和剤の濃度を変え、塩化水素濃度が20ppm以下まで処理される。
【0025】
可燃ガスは湿式ガス処理装置3にて処理された後に燃焼炉4に導入され ここで約1000℃程度まで温度上昇する。ここでは完全燃焼が行われるため、未燃ガス等の排出がほぼ完全に抑制される。また、可燃ガスは、予め除塵が行われているために、すすに起因する芳香族系有機化合物濃度は低くなり、結果として不完全燃焼生成物であるダイオキシン類物質濃度も低減される。また、燃焼炉に点火源を配設することとすれば、可燃ガスは連続して燃焼するので、失火して再び可燃ガスと空気が混合して爆発する危険性が回避できる。
【0026】
本実施形態では、好ましい例として、この燃焼炉4の後段にボイラ、例えば300℃以上、20ata以上の高温高圧ボイラ5の水管が設置されており、効率よく燃焼ガスから熱回収をすることができる。必要に応じて高温空気の回収も可能になる。予め除塵が行われているため、ダストに起因するボイラチューブの腐食を抑えることができる。塩化水素ガスによる腐食効果が増大する排ガス温度600℃以上の高温場から熱を回収する場合には、ボイラチューブの寿命を長くするため耐腐食性を有するセラミック材質を使ったボイラチューブを用いれば良い。熱回収が終わった排ガスは下流の排ガス処理設備(図示せず)を経て、煙突から排出される。
【0027】
【実施例】
本発明の実施例を図3にもとづき説明する。本実施例装置では、図1装置の部分酸化炉として流動床炉1を採用している。他は、図1装置と同じであり、図3では図1と共通部分に同一符号を付してある。
【0028】
図3装置では、流動床炉1で流動化空気温度を20〜650℃、砂層温度400〜600℃とし、廃棄物たる都市ごみを1t/hで該流動床式炉1へ供給し、空気比を0.2〜0.8の間で操作して部分酸化させ可燃ガスを生成した。可燃ガスは450〜650℃で除塵装置2に供給し、キャンドル型セラミックフィルターにより除塵を行った。キャンドル型セラミックフィルターの材質は、SiO2、Al23、SiC、コージュライト、上記材料のコンポジット、あるいはそれに類似する無機材料のセラミックファイバー型か、多孔質体型である。払い落としには排ガスを再循環して酸素濃度を5%以下と抑えたガスと窒素ガスを用い、払い落とし圧力3〜7kg/cm2、払い落とし間隔5秒〜50分、払い落とし時間0.1秒〜20秒の範囲とした。これにより、除塵装置2への流入前のダスト濃度が5〜20g/Nm3であったものが0.1g/Nm3以下まで除塵された。この除去されたダスト等は回収後に溶融炉及び焼却炉で無害化処理された。除塵後の可燃ガスを湿式ガス処理装置3に導入して塩化水素の除去を行った。湿式ガス処理装置入口塩化水素濃度が400ppmであったものが20ppmまで除去された。その後、かかる処理後の可燃ガスを燃焼炉4で燃焼させて900〜1000℃まで温度を上げた。このとき、後段のボイラ5で350〜540℃、50〜100ataの蒸気を用いて熱回収を行うことができた。なお、ボイラチューブとして安価なステンレス鋼を用いたが、著しい腐食等は認められず、材料によっては複数年使用可能な耐腐食性を確認した。また、高温空気の回収も行ったところ、350〜700℃の高温空気の回収が可能であることが判明した。
【0029】
また、図4に示される火格子式炉での適用性の確認も行った。図4装置では部分酸化炉として火格子式炉1を採用した。他は、図1装置と同じである。この火格子式炉1では酸化用空気温度を20〜250℃とし、火格子上部温度500〜800℃として廃棄物たる都市ごみを炉内へ供給し、空気比を0.3〜0.9の間で操作して部分酸化させた。可燃ガスは450〜650℃で除塵装置2に供給し、キャンドル型セラミックフィルター及びハニカム型セラミックフィルターにより除塵を行った。セラミックフィルターの材質は、SiO2、Al23、SiC、コージュライト、上記材料のコンポジット、あるいはそれに類似する無機材科のセラミックファイバー型か、多孔質体型である。払い落としには窒素ガスを用い、払い落とし圧力3〜7kg/cm2、払い落とし間隔10秒〜20分、払い落とし時間0.05秒〜15秒の範囲とした。これにより、除塵装置2に流入する前のダスト濃度が1〜5g/Nm3であったものが0.1g/Nm3以下まで除塵された。この除去されたダスト等は回収後に溶融炉及び焼却炉で無害化処理を行った。除塵後の可燃ガスを湿式ガス処理装置3に導入して塩化水素の除去を行った。湿式ガス処理装置入口塩化水素濃度が250ppmであったものが20ppmまで除去された。その後この処理後の可燃ガスを燃焼炉4で燃流させて900〜1100℃まで温度を上げた。燃焼炉4では、爆発等の危険を回避すべくパイロットバーナ(図示せず)を用いて常時点火源をおいて、可燃ガスを連続的に燃焼した。このバーナは燃料として天然ガスあるいは灯油を用い、出力数万kcal/h〜数十万kcal/hのバーナを配設した。このとき、後段のボイラ5で540℃、100ataの蒸気を用いて熱回収を行うことができた。なお、ボイラチューブとして耐食性が然程ないステンレス鋼、インコネル他の合金鋼を用いたが、著しい腐食等は認められず、1年以上の安定稼働を確認した。
【0030】
【発明の効果】
以上、説明したように、本発明においては、部分酸化させたガスを比較的低温で除塵し、湿式ガス処理装置で塩化水素を低減してから燃焼炉で燃焼させることにより高温を得ることとしたので、ガス化した廃棄物から熱回収が効率的に行えると同時に、塩化水素による腐食が抑制されるため安価な鋼材等を用いたボイラチューブでも高温高圧ボイラとすることができ、また、かかる高温高圧ボイラを設置することによる熱回収も効率よく行える。さらに、ダイオキシンやフラン等の有害ガスの排出を抑制することもできる。また、部分酸化炉での空気比と除塵の際のダスト濃度を一定の範囲の値とすることにより、ボイラチューブ等の腐食の心配がなくなり、安定した操業が行える。
【図面の簡単な説明】
【図1】 本発明の一実施形態装置の概要構成図である。
【図2】 図1装置の除塵装置に採用可能なキャンドル型セラミックフィルターの概略図である。
【図3】 本発明の一実施形態装置の概要構成図である。
【図4】 図3装置の変形を示す装置の概要構成図である。
【図5】 従来の廃棄物処理装置の概要構成図である。
【符号の説明】
1 部分酸化炉
2 除塵装置
3 湿式ガス処理装置
4 燃焼室
5 ボイラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for recovering heat from waste.
[0002]
[Prior art]
Japanese Laid-Open Patent Publication No. 9-159132 proposes a method in which municipal waste or industrial waste (hereinafter referred to as “waste”) is partially oxidized, gasified, and burned. An outline of the structure of a typical example is shown in FIG. 5 of the accompanying drawings.
[0003]
In FIG. 5, the combustion exhaust gas generated by burning garbage in the combustion furnace is cooled to 450 to 650 ° C. by the heated water 20 from the economizer 16 in the waste heat boiler 12 and removed by the filter 13. . Part or all of the combustion exhaust gas that has exited the filter 13 is supplied to the heating furnace 14, and is heated in the heating furnace 14 by reheating using the auxiliary fuel 21, and the steam superheater 15 is further removed from the waste heat boiler 12. Overheated to about 500 ° C. with saturated steam 22 from. Furthermore, waste heat is recovered from the combustion exhaust gas by the economizer 15 and the air preheater 17. Thereafter, the combustion exhaust gas is exhausted from the chimney 19 through the induction fan 18.
[0004]
[Problems to be solved by the invention]
When treating combustible materials in such a combustion method, if the dust concentration after dust removal by the filter cannot be controlled below a certain value, it may be caused by salt in the dust in the boiler disposed at a later stage for heat recovery. Boiler tube corrosion becomes a problem. Further, if the amount of unburned flue gas generated in the combustion furnace is small, waste heat cannot be efficiently recovered in the subsequent heating furnace.
[0005]
The present invention has been made to solve such problems, and a method and apparatus for recovering heat from waste that can be partially oxidized and efficiently recovered without causing the above problems. The issue is to provide.
[0006]
[Means for Solving the Problems]
First means for solving the above-mentioned problems, by partial oxidation furnace with a combustion reaction waste, the furnace temperature to 4 5 0 to 800 ° C., by controlling the air ratio to 0.15 to 0.9 Combustible gas is generated by incomplete combustion or partial oxidation, the combustible gas is introduced into a ceramic filter at 450 to 650 ° C., and dust is removed to a dust concentration of 0.1 g / Nm 3 or less. Is introduced into a wet gas treatment device to reduce the hydrogen chloride concentration in the combustible gas to 20 ppm or less, and the treated combustible gas is burned at a high temperature in a combustion furnace, and is disposed in the combustion furnace or downstream of the combustion furnace. A method for recovering heat from waste, characterized in that heat is recovered from gas burned in an installed boiler.
[0007]
In the partial oxidation furnace, the waste is partially oxidized, and a combustible gas having a relatively low temperature of 450 to 650 ° C. is sent at the ceramic filter inlet. Here, the reason why the temperature at the ceramic filter inlet is set in the above range is that if it is less than 450 ° C., there is a possibility of explosion due to re-ignition in the downstream pipe or combustion furnace, and if it is above 650 ° C., salt in the dust This is because there is a problem of clogging of the dust removing device. Air ratio of the partial oxidation furnace at this time is to adjust the air ratio so that 0.15 to 0.9. The reason is that if the air ratio is less than 0.15 , problems such as tar adhesion occur as a strong reducing gas, and if it exceeds 0.9 , the oxidation of the combustible gas is promoted before being introduced into the combustion furnace. is there. This keeps the oxygen concentration at the furnace outlet low and reduces the risk of explosion due to combustible components and oxygen. As described above, since the temperature of the combustible gas is relatively low at the ceramic filter inlet, dust can be removed without excessive cooling through equipment such as a temperature reducing tower. Thereafter, the combustible gas is introduced into a wet gas processing apparatus. Here, the hydrogen chloride content in the combustible gas is removed, the hydrogen chloride concentration in the combustible gas is set to 20 ppm or less, and the combustible gas is burned in the combustion furnace, so that the temperature can be efficiently increased. The boiler disposed in the combustion furnace or downstream of the combustion furnace can efficiently recover heat from the combustion gas, and a high-temperature and high-pressure boiler becomes possible.
[0008]
In the case of the method of the present invention, dust is removed by the ceramic filter so that the dust concentration is 0.1 g / Nm 3 or less, so the amount of salt in the dust is reduced. After that, since the combustible gas is introduced to the wet gas treatment device and hydrogen chloride in the gas is removed, the generation of hydrogen chloride gas is reduced even if it is burned at a high temperature. Corrosion is drastically reduced. Parts that had to use materials with high corrosion resistance can be switched to inexpensive materials.
[0009]
Furthermore, harmful gas emissions can be suppressed. Since the combustible gas after being partially oxidized in the partial oxidation furnace is mixed with an oxidant in the combustion furnace and burned at a high temperature, discharge of unburned components such as CO is almost completely suppressed. In addition, since the combustible gas is dedusted and then burned at a high temperature, the concentration of the aromatic organic compound resulting from soot is lowered, and as a result, the concentration of dioxins that are incomplete combustion products is also reduced.
[0010]
The second means for solving the above problem is a heat recovery method from waste, in which the deposit on the ceramic filter is periodically removed with a gas having an oxygen concentration of 5% or less. Thereby, dust can be efficiently removed and emission of harmful gas is further suppressed. Here, the oxygen concentration is set to 5% or less in order to suppress the oxidation of the combustible gas with oxygen and reduce the risk of unnecessary explosion and combustion. This gas having an oxygen concentration of 5% or less can be obtained by exhaust gas recirculation, pressure swing adsorption or membrane separation.
[0011]
A third means for solving the above-mentioned problem is a heat recovery method from waste in which the deposit on the ceramic filter is periodically removed with nitrogen gas in the first means . By using nitrogen to remove deposits, the combustible gas does not oxidize in the dust collector. In addition, unnecessary explosions and combustion caused by this means are eliminated.
[0012]
A fourth means for solving the above-mentioned problem is a method for recovering heat from waste in the second or third means described above, wherein the temperature of the burned-out gas is substantially the same as or higher than the combustible gas in the dust removing device. is there. When the partially oxidized exhaust gas is treated at 450 ° C. to 650 ° C., it contains a large amount of gaseous components that tend to condense and become liquid when cooled from the temperature state. If they become liquid, they may adhere in the dust removing device, causing troubles such as eye clogging. Therefore, it is preferable to control the gas temperature for dropping off.
[0013]
A fifth means for solving the above problem is a method of recovering heat from waste in the first to fourth means by disposing an ignition source in the combustion furnace and continuously burning the combustible gas. The combustible gas is sent to the combustion furnace after being dedusted and combusted. By always providing an ignition source here, the danger of misfiring and the explosion of the combustible gas and air is avoided.
[0015]
Sixth means for solving the problems is the furnace temperature to 4 5 0 to 800 ° C., the combustible gas is incomplete combustion or partial oxidation of waste by controlling the air ratio to 0.15 to 0.9 A partial oxidation furnace to be generated, a ceramic filter installed downstream and removing dust in the combustible gas at 450 to 650 ° C. to 0.1 g / Nm 3 or less, and hydrogen chloride in the combustible gas after dust removal A waste gas treatment apparatus having a concentration of 20 ppm or less, a combustion furnace installed downstream thereof, and a boiler disposed in the combustion furnace or downstream of the combustion furnace. It is a heat recovery device.
[0016]
A seventh means for solving the above-mentioned problem is the heat recovery apparatus for waste from the sixth means, in which an ignition source is disposed in the combustion furnace.
[0017]
In the partial oxidation furnace, the waste is partially oxidized, and a combustible gas having a relatively low temperature of 450 to 650 ° C. is generated at the ceramic filter inlet. At this time, the air ratio is adjusted so that the air ratio in the partial oxidation furnace is 0.15 to 0.9 . Thereby, combustible gas with low oxygen concentration and few dangers, such as an explosion, is produced | generated. Moreover, since this combustible gas is comparatively low temperature, dust is removed without excessive cooling by facilities, such as a temperature reduction tower. After setting the dust concentration to 0.1 g / Nm 3 or less in the downstream ceramic filter connected from the furnace outlet of the partial oxidation furnace by a duct or the like, the combustible gas is introduced into the downstream wet gas processing apparatus. Here, after removing the hydrogen chloride content in the combustible gas and setting the hydrogen chloride concentration in the combustible gas to 20 ppm or less, the combustible gas is burned in the downstream combustion furnace and efficiently heated. In the case of this apparatus, dust is removed so that the dust concentration is 0.1 g / Nm 3 or less, so the amount of salt in the dust is reduced. After that, the hydrogen chloride in the gas is removed by introducing it to the wet gas treatment equipment, so that the hydrogen chloride gas can be kept at a low concentration even if it is burned at a high temperature. Corrosion in the downstream equipment, especially in the boiler tube after the combustion furnace Consideration can be reduced. Parts that had to use materials with high corrosion resistance can be switched to inexpensive materials. In addition, by setting the air ratio in the partial oxidation furnace to a value within a certain range, fluctuations in the potential of the generated combustible gas are reduced, and stable operation is possible.
[0018]
Furthermore, harmful gas emissions can be suppressed. Since the combustible gas after being partially oxidized in the partial oxidation furnace is mixed with an oxidant in the combustion furnace and burned at a high temperature, discharge of unburned components such as CO is almost completely suppressed. In addition, since the combustible gas is dedusted and then burned at a high temperature, the concentration of the aromatic organic compound resulting from soot is lowered, and as a result, the concentration of dioxins that are incomplete combustion products is also reduced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2 of the accompanying drawings.
[0020]
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. In the figure, reference numeral 1 denotes a partial oxidation furnace, and the partial oxidation furnace 1 is supplied with air for oxidation or air-based gas whose oxygen concentration is controlled by steam or exhaust gas. Things are thrown into the furnace, ignited and partially oxidized to produce combustible gas. The partial oxidation furnace 1 is sequentially connected with a dust removing device 2 for removing dust from the combustible gas, a wet gas processing device 3, a combustion furnace 4 for burning combustible gas, and a boiler 5 for recovering heat of the burned gas. .
[0021]
In the partial oxidation furnace 1, the furnace temperature can waste self combustion, and well as long as the partial oxidation is desirably 4 5 0 to 800 ° C.. In addition, the air ratio in the partial oxidation is controlled, and the air ratio at this time is set to about 0.15 to 0.9. Thereafter, the temperature of the combustible gas is controlled by the residence time in the partial oxidation furnace 1, and the combustible gas is sent to the dust removing device 2 at 450 to 650 ° C. The reason for setting this temperature range is that there is a risk of re-ignition or explosion in the downstream at 450 ° C. or lower, and there is a problem such as eye clogging in the dust removing device due to melting of salt in the dust at 650 ° C. or higher. .
[0022]
Next, the combustible gas is brought to the dust removing device 2, and the dust removing device 2 removes dust to a concentration of 0.1 g / Nm 3 or less. If dust is removed to this concentration, the amount of salt in the dust is reduced, so that corrosion of the boiler tube and the like in the subsequent stage is reduced. It can be seen that if the dust concentration after dust removal is 0.1 g / Nm 3 or less, the corrosion of the downstream boiler tube can be suppressed to a practical level.
[0023]
Although it is desirable to use a candle-type ceramic filter as shown in FIG. 2 for the dust removing device 2, it is also possible to use a filter cloth or a honeycomb-shaped ceramic filter having an opening of 10 mm or less. It is desirable to perform the removal with a gas having an oxygen concentration of 5% or less, or nitrogen in order to suppress oxidation of the combustible gas and reduce the risk of unnecessary explosion and combustion. Considering the effect of peeling off the deposits, the conditions for the removal method are a gas pressure of 1 kg / cm 2 or more, a removal interval of several seconds to several tens of minutes, and a removal time of about 0.02 seconds to several tens of seconds. It is desirable.
[0024]
After the dust is removed, the combustible gas is introduced into the wet gas processing device 3 and the concentration of a neutralizing agent such as caustic soda is changed as necessary to treat the hydrogen chloride concentration to 20 ppm or less.
[0025]
The combustible gas is processed by the wet gas processing apparatus 3 and then introduced into the combustion furnace 4 where the temperature rises to about 1000 ° C. Since complete combustion is performed here, discharge of unburned gas and the like is almost completely suppressed. In addition, since the dust is previously removed from the combustible gas, the concentration of the aromatic organic compound resulting from soot is lowered, and as a result, the concentration of the dioxin substance that is an incomplete combustion product is also reduced. Further, if the ignition source is provided in the combustion furnace, the combustible gas burns continuously, so that it is possible to avoid the risk that the combustible gas and air mix again and explode due to misfire.
[0026]
In the present embodiment, as a preferable example, a boiler, for example, a water pipe of a high-temperature and high-pressure boiler 5 having a temperature of 300 ° C. or higher and 20 at or higher is installed at the subsequent stage of the combustion furnace 4, and heat can be efficiently recovered from the combustion gas. . High temperature air can be recovered as required. Since dust removal is performed in advance, corrosion of the boiler tube due to dust can be suppressed. When recovering heat from a high temperature field with an exhaust gas temperature of 600 ° C. or more where the corrosion effect of hydrogen chloride gas increases, a boiler tube made of a ceramic material having corrosion resistance may be used to extend the life of the boiler tube. . The exhaust gas after heat recovery is discharged from the chimney through a downstream exhaust gas treatment facility (not shown).
[0027]
【Example】
An embodiment of the present invention will be described with reference to FIG. In this embodiment, a fluidized bed furnace 1 is employed as the partial oxidation furnace of the apparatus shown in FIG. Others are the same as the apparatus of FIG. 1, and in FIG. 3, the same code | symbol is attached | subjected to FIG. 1 and a common part.
[0028]
In the apparatus shown in FIG. 3, fluidized air temperature is set to 20 to 650 ° C. and sand layer temperature is set to 400 to 600 ° C. in the fluidized bed furnace 1, and municipal waste as waste is supplied to the fluidized bed furnace 1 at 1 t / h. Was partially oxidized by operating between 0.2 and 0.8 to produce a combustible gas. The combustible gas was supplied to the dust removing device 2 at 450 to 650 ° C., and dust was removed by a candle type ceramic filter. The material of the candle type ceramic filter is SiO 2 , Al 2 O 3 , SiC, cordierite, a composite of the above materials, or a ceramic fiber type of an inorganic material similar thereto, or a porous body type. Down using a re-circulating oxygen concentration of 5% or less and suppressing gas and nitrogen gas exhaust gas to pay, brushing pressure 3~7kg / cm 2, 5 seconds to 50 minutes brushing intervals, brushing time 0. The range was 1 second to 20 seconds. Accordingly, those dust concentration before flowing into the filtration apparatus 2 was 5 to 20 g / Nm 3 is dust to 0.1 g / Nm 3 or less. The removed dust and the like were detoxified in a melting furnace and an incinerator after collection. The combustible gas after dust removal was introduced into the wet gas treatment device 3 to remove hydrogen chloride. What was 400 ppm of hydrogen chloride concentration at the inlet of the wet gas treatment apparatus was removed up to 20 ppm. Thereafter, the combustible gas after the treatment was burned in the combustion furnace 4 to raise the temperature to 900 to 1000 ° C. At this time, it was possible to recover heat using steam at 350 to 540 ° C. and 50 to 100 at the subsequent boiler 5. In addition, although inexpensive stainless steel was used as the boiler tube, no significant corrosion was observed, and depending on the material, corrosion resistance that could be used for multiple years was confirmed. Moreover, when high temperature air was also collected, it was found that high temperature air at 350 to 700 ° C. could be collected.
[0029]
In addition, the applicability in the grate furnace shown in FIG. 4 was also confirmed. In the apparatus shown in FIG. 4, a grate furnace 1 is used as a partial oxidation furnace. Others are the same as FIG. 1 apparatus. In this grate furnace 1, the oxidizing air temperature is set to 20 to 250 ° C., the grate upper temperature is set to 500 to 800 ° C., and municipal waste as waste is supplied into the furnace, and the air ratio is 0.3 to 0.9. Partial oxidation was performed by operating in between. The combustible gas was supplied to the dust removing device 2 at 450 to 650 ° C., and dust was removed by a candle type ceramic filter and a honeycomb type ceramic filter. The material of the ceramic filter is SiO 2 , Al 2 O 3 , SiC, cordierite, a composite of the above materials, or a ceramic fiber type of an inorganic material similar to the above, or a porous body type. Nitrogen gas was used for the removal, and the removal pressure was in the range of 3 to 7 kg / cm 2 , the removal interval of 10 seconds to 20 minutes, and the removal time of 0.05 seconds to 15 seconds. Thus, what is dust concentration before entering the dust collector 2 was 1 to 5 g / Nm 3 is dust to 0.1 g / Nm 3 or less. The removed dust and the like were detoxified in a melting furnace and an incinerator after collection. The combustible gas after dust removal was introduced into the wet gas treatment device 3 to remove hydrogen chloride. What was the hydrogen chloride concentration of 250 ppm at the wet gas processing apparatus was removed up to 20 ppm. Thereafter, the combustible gas after the treatment was burned in the combustion furnace 4 to raise the temperature to 900 to 1100 ° C. In the combustion furnace 4, in order to avoid dangers such as explosion, a combustible gas was continuously burned with a constant ignition source using a pilot burner (not shown). This burner uses natural gas or kerosene as a fuel, and a burner having an output of several tens of thousands kcal / h to several hundred thousand kcal / h is disposed. At this time, heat recovery could be performed by using a steam of 540 ° C. and 100 ata in the subsequent boiler 5. As the boiler tube, stainless steel, Inconel and other alloy steels that are not very corrosion resistant were used, but no significant corrosion was observed, and stable operation for over a year was confirmed.
[0030]
【The invention's effect】
As described above, in the present invention, the partially oxidized gas is dedusted at a relatively low temperature, and hydrogen chloride is reduced by a wet gas processing apparatus and then burned in a combustion furnace to obtain a high temperature. Therefore, heat recovery from gasified waste can be performed efficiently, and at the same time, corrosion due to hydrogen chloride is suppressed, so even a boiler tube using inexpensive steel can be used as a high-temperature and high-pressure boiler. Heat recovery by installing a high-temperature and high-pressure boiler can also be performed efficiently. Furthermore, emission of harmful gases such as dioxin and furan can be suppressed. In addition, by setting the air ratio in the partial oxidation furnace and the dust concentration at the time of dust removal within a certain range, there is no concern about corrosion of the boiler tube or the like, and stable operation can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.
2 is a schematic view of a candle-type ceramic filter that can be used in the dust removing apparatus of FIG. 1; FIG.
FIG. 3 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.
4 is a schematic configuration diagram of an apparatus showing a modification of the apparatus in FIG. 3;
FIG. 5 is a schematic configuration diagram of a conventional waste treatment apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Partial oxidation furnace 2 Dust removal apparatus 3 Wet gas processing apparatus 4 Combustion chamber 5 Boiler

Claims (7)

廃棄物を燃焼反応を伴う部分酸化炉にて、炉内温度を40〜800℃に、空気比を0.15〜0.9に制御して不完全燃焼、もしくは部分酸化させて可燃ガスを生成し、該可燃ガスを450〜650℃でセラミックフィルタに導入してダスト濃度を0.1g/Nm以下に除塵し、除塵された該可燃ガスを湿式ガス処理装置に導入して該可燃ガス中の塩化水素濃度を20ppm以下にし、処理された該可燃ガスを燃焼炉にて高温で燃焼させ、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラにて燃焼したガスから熱回収することを特徴とする廃棄物からの熱回収方法。Waste in the partial oxidation furnace with combustion reaction, and the furnace temperature to 4 5 0 to 800 ° C., controlled and incomplete combustion air ratio from 0.15 to 0.9, or by partial oxidation combustible gas The combustible gas is introduced into a ceramic filter at 450 to 650 ° C. to remove dust to a concentration of 0.1 g / Nm 3 or less, and the combusted gas after dust removal is introduced into a wet gas treatment device. The concentration of hydrogen chloride in the gas is set to 20 ppm or less, the treated combustible gas is burned at a high temperature in a combustion furnace, and heat is generated from the gas burned in the combustion furnace or in a boiler disposed downstream of the combustion furnace. A method of recovering heat from waste, characterized in that it is recovered. セラミックフィルタへの付着物を酸素濃度5%以下のガスで定期的に払い落とすこととする請求項1に記載の廃棄物から熱回収方法。 The method for recovering heat from waste according to claim 1, wherein deposits on the ceramic filter are periodically removed with a gas having an oxygen concentration of 5% or less. セラミックフィルタへの付着物を窒素ガスで定期的に払い落とすこととする請求項1に記載の廃棄物から熱回収方法。 The method for recovering heat from waste according to claim 1, wherein deposits on the ceramic filter are periodically removed with nitrogen gas. 払い落としガスの温度がセラミックフィルタにおける可燃ガスとほぼ同じ温度あるいはそれ以上であることとする請求項2または請求項3に記載の廃棄物から熱回収方法。The method for recovering heat from waste according to claim 2 or 3, wherein the temperature of the burned-out gas is substantially the same as or higher than the combustible gas in the ceramic filter . 燃焼炉に点火源を配設し、可燃ガスを連続して燃焼させることとする請求項1ないし請求項4のうちのいずれか1つに記載の廃棄物からの熱回収方法。The method for recovering heat from waste according to any one of claims 1 to 4, wherein an ignition source is provided in the combustion furnace and the combustible gas is continuously burned. 炉内温度を40〜800℃に、空気比を0.15〜0.9に制御して廃棄物を不完全燃焼もしくは部分酸化させ可燃ガスを生成する部分酸化炉と、その後流に設置され、450〜650℃で該可燃ガス中のダストの濃度を0.1g/Nm以下に除塵するセラミックフィルタと、除塵後の可燃ガス中の塩化水素濃度を20ppm以下とする湿式ガス処理装置と、さらにその後流に設置された燃焼炉と、該燃焼炉にあるいは該燃焼炉の下流に配設されたボイラを有することを特徴とする廃棄物からの熱回収装置。Installing a furnace temperature to 4 5 0 to 800 ° C., and the partial oxidation furnace to produce a combustible gas to the air ratio is incomplete combustion or partial oxidation control to waste from 0.15 to 0.9, thereafter flow A ceramic filter that removes the dust concentration in the combustible gas at 450 to 650 ° C. to 0.1 g / Nm 3 or less, and a wet gas treatment device that reduces the hydrogen chloride concentration in the combustible gas after dust removal to 20 ppm or less, And a waste heat recovery apparatus, further comprising: a combustion furnace installed downstream thereof; and a boiler disposed in the combustion furnace or downstream of the combustion furnace. 燃焼炉は点火源が配設されていることとする請求項6に記載の廃棄物から熱回収装置。 The apparatus for recovering heat from waste according to claim 6, wherein the combustion furnace is provided with an ignition source .
JP34175598A 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste Expired - Lifetime JP4121645B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34175598A JP4121645B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste
TW89110356A TW442633B (en) 1998-12-01 2000-05-29 Method for disposing waste and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34175598A JP4121645B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste

Publications (2)

Publication Number Publication Date
JP2000161637A JP2000161637A (en) 2000-06-16
JP4121645B2 true JP4121645B2 (en) 2008-07-23

Family

ID=18348517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34175598A Expired - Lifetime JP4121645B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste

Country Status (1)

Country Link
JP (1) JP4121645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108758621A (en) * 2018-06-05 2018-11-06 贾永康 The well-mixed dust explosion boiler of chemically correct fuel is pressed under low-temp low-pressure

Also Published As

Publication number Publication date
JP2000161637A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP3773302B2 (en) Heat recovery system and power generation system
JP2004532967A (en) Incineration process using high concentration of oxygen
KR100529826B1 (en) Device and method for waste processing using Plasma pyrolysis
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JP3352927B2 (en) Dioxin reduction method for discontinuous combustion type waste incineration facility
JP2904873B2 (en) Heterogeneous fuel combustion methods
JP4420155B2 (en) Method and apparatus for recovering heat from waste
KR100447009B1 (en) Treatment method of waste and apparatus thereof
JP4121645B2 (en) Method and apparatus for recovering heat from waste
CN112062435A (en) Oil sludge pyrolysis treatment device and process thereof
JP3799846B2 (en) Method and apparatus for recovering heat from waste
JP2000161623A (en) Method and apparatus for treating waste
JP2006200886A (en) Processing method and device for waste, and heat recovery method and device from waste
JP2000161622A (en) Method and device for treating waste
JP5421567B2 (en) Waste treatment facilities and methods of using recovered heat in waste treatment facilities
TW442633B (en) Method for disposing waste and apparatus thereof
JP2003254516A (en) Garbage burning power generation equipment
KR200313803Y1 (en) Incinerator with heating device capable of saving energy
KR100484616B1 (en) Apparatus for combustion having heating storage type combustion mat for reducing dioxin for controlling the same
JPS61134519A (en) Sludge reduction reaction device
JP2001132922A (en) Incineration treatment method of slurried wastes
KR200301896Y1 (en) Device for lowering temperature of hot exhaust fumes for incinerator
CN1310311A (en) Organic waste liquid and waste gas incinerating system
JP2005164059A (en) Waste incinerating treatment method and its plant
JP3525649B2 (en) Exhaust gas treatment method for waste gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

EXPY Cancellation because of completion of term