JP2000161638A - Method and device for processing waste - Google Patents

Method and device for processing waste

Info

Publication number
JP2000161638A
JP2000161638A JP10341759A JP34175998A JP2000161638A JP 2000161638 A JP2000161638 A JP 2000161638A JP 10341759 A JP10341759 A JP 10341759A JP 34175998 A JP34175998 A JP 34175998A JP 2000161638 A JP2000161638 A JP 2000161638A
Authority
JP
Japan
Prior art keywords
dust
furnace
combustible gas
waste
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341759A
Other languages
Japanese (ja)
Other versions
JP3799846B2 (en
Inventor
Takashi Noto
隆 能登
Akira Nakamura
章 中村
Seiji Kinoshita
誠二 木ノ下
Hajime Akiyama
肇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP34175998A priority Critical patent/JP3799846B2/en
Priority to TW89110356A priority patent/TW442633B/en
Publication of JP2000161638A publication Critical patent/JP2000161638A/en
Application granted granted Critical
Publication of JP3799846B2 publication Critical patent/JP3799846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover the heat by solving a problem of corrosion of boiler tubes when the heat is recovered from waste combustion gas in a boiler. SOLUTION: In a waste processing device, a combustible gas of -20 to 1% in concentration expressed in terms of oxygen at furnace outlet is generated by incompletely burning or partially oxidizing wastes in a partial oxidizing furnace 1 associated with the combustion reaction. Then, the combustible gas is introduced in a dust separator 2 at 250-450 deg.C to keep the dust concentration at <=0.1 g/Nm3, and the dust-separated combustible gas is burned at high temperature in a combustion furnace 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物の処理方法
及び装置に関するものである。
The present invention relates to a method and an apparatus for treating waste.

【0002】[0002]

【従来の技術】都市ごみあるいは産業廃棄物(以下「廃棄
物」という)を部分酸化させて、ガス化せしめた後に燃
焼させる方法が特開平7-35322に提案されてい
る。その代表的な例の構成の概要を添付図面の図6に示
す。
2. Description of the Related Art A method of partially oxidizing municipal waste or industrial waste (hereinafter referred to as "waste"), gasifying the municipal waste, and then burning the waste is proposed in Japanese Patent Application Laid-Open No. Hei 7-35322. An outline of the configuration of a typical example is shown in FIG. 6 of the accompanying drawings.

【0003】図6にて、廃棄物は部分燃焼流動床炉51
にて、流動層温度450〜650℃、空気比0.15〜
0.5程度の還元雰囲気でガス化され、サイクロン、衝
突式集塵器等の集塵装置52を介して二次燃焼炉53へ
導入される。生成ガスは二次燃焼炉53で二次空気と混
合して800〜1000℃の高温で完全燃焼する。この
とき、脱塩剤を供給してHClガスの発生を抑制させ、
熱回収を行う。集塵器52の下方にはダスト回収ライン
54が設置されており、脱塩剤の一部とダストの全部又
は一部は、冷却器55で冷却された後、再び部分酸化流
動床炉に戻されるようになっている。
[0003] In FIG. 6, the waste is partially burned fluidized bed furnace 51.
At a fluidized bed temperature of 450 to 650 ° C and an air ratio of 0.15 to
It is gasified in a reducing atmosphere of about 0.5 and introduced into a secondary combustion furnace 53 via a dust collecting device 52 such as a cyclone or a collision type dust collector. The produced gas is mixed with the secondary air in the secondary combustion furnace 53 and completely burns at a high temperature of 800 to 1000 ° C. At this time, a desalting agent is supplied to suppress the generation of HCl gas,
Perform heat recovery. A dust collection line 54 is provided below the dust collector 52. After a part of the desalinating agent and all or a part of the dust are cooled by the cooler 55, they are returned to the partial oxidation fluidized bed furnace again. It is supposed to be.

【0004】[0004]

【発明が解決しようとする課題】このような燃焼方法に
おいて廃棄物を部分酸化させた後に燃焼させる場合、二
次燃焼炉で脱塩剤を使用しなければならない。そのた
め、ダスト濃度が高くなり、除塵の点で不利になる。ま
た、二次燃焼炉におけるダスト濃度を一定値以下に制御
しなければ、熱回収のために後段に配されるボイラにお
いてダスト中の塩などによるボイラチューブの腐食が間
題となる。
When waste is partially oxidized and burned in such a burning method, a desalinating agent must be used in a secondary combustion furnace. Therefore, the dust concentration becomes high, which is disadvantageous in dust removal. If the dust concentration in the secondary combustion furnace is not controlled below a certain value, corrosion of the boiler tube due to salts in the dust in the boiler disposed downstream for heat recovery is a problem.

【0005】本発明は、このような問題点を解決するた
めになされたものであり、上記問題点を発生させること
なく部分酸化させ、効率よく熱回収することができる廃
棄物の処理方法及び装置を提供することを課題とする。
The present invention has been made in order to solve such a problem, and a method and an apparatus for treating waste which can be partially oxidized without causing the above problem and can efficiently recover heat. The task is to provide

【0006】[0006]

【課題を解決するための手段】上記課題を解決する第一
の手段は、廃棄物を燃焼反応を伴う部分酸化炉にて、不
完全燃焼、もしくは部分酸化させて炉出口の酸素換算濃
度が−20〜1%であるような可燃ガスを生成し、該可
燃ガスを250〜450℃で除塵装置に導入してダスト
濃度を0.1g/Nm3以下とし、除塵された該可然ガス
を燃焼炉にて高温で燃焼させることを特徴とする廃棄物
の処理方法である。ここで「酸素換算濃度」とは、雰囲
気における酸素濃度と、酸化される可能性があるガスが
消費すると考えられる酸素濃度との差で定義される。例
えば、酸素(O2)が2%、一酸化炭素(CO)が4
%、水素(H2)が2%、メタン(CH4)が1%存在す
る場合、一酸化炭素(CO)4%は酸化して二酸化炭素
(CO2)になるために2%の酸素(O2)を消費し、同
様に水素(H2)2%は1%の酸素(O2)を消費し、メ
タン(CH4)1%は2%の酸素(O2)を消費する。よ
ってこの場合の「酸素換算濃度」は2−(2+1+2)
=−3%となる。この数字は、その雰囲気における部分
酸化ガスの燃焼の程度と、それまでの燃焼における空気
比の程度を示す指標となる。すなわち、この数値が小さ
ければ小さいほど可燃ガスとしてのポテンシャルの高さ
があるということになる。
The first means for solving the above-mentioned problem is that the waste is incompletely burned or partially oxidized in a partial oxidation furnace involving a combustion reaction to reduce the oxygen equivalent concentration at the furnace outlet. A combustible gas having a concentration of 20 to 1% is generated, and the combustible gas is introduced into a dust removing device at 250 to 450 ° C. to reduce the dust concentration to 0.1 g / Nm 3 or less. A waste treatment method characterized by burning at a high temperature in a furnace. Here, “oxygen concentration” is defined as the difference between the oxygen concentration in the atmosphere and the oxygen concentration considered to be consumed by the gas that may be oxidized. For example, oxygen (O 2 ) is 2% and carbon monoxide (CO) is 4%.
%, 2 % of hydrogen (H 2 ) and 1% of methane (CH 4 ), 4% of carbon monoxide (CO) is oxidized to carbon dioxide (CO 2 ). O 2 ), 2% of hydrogen (H 2 ) consumes 1% of oxygen (O 2 ), and 1% of methane (CH 4 ) consumes 2% of oxygen (O 2 ). Therefore, the “oxygen concentration” in this case is 2− (2 + 1 + 2).
= −3%. This number is an index indicating the degree of combustion of the partial oxidation gas in the atmosphere and the degree of the air ratio in the combustion up to that time. That is, the smaller the numerical value, the higher the potential as a combustible gas.

【0007】部分酸化炉内では廃棄物の部分酸化が行わ
れ、除塵装置入口に250〜450℃と比較的温度の低
い可燃ガスが送られる。ここで、上記除塵装置入口での
温度を上記範囲に設定した理由は、250℃未満ではタ
ール付着等の問題があり、450℃より上ではダイオキ
シン類生成の可能性及び塩による目づまりの可能性があ
るからである。このときの炉出口での「酸素換算濃度」
が−20〜1%となるように空気比を調整をする。その
理由は、「酸素換算濃度」が−20%未満では、強還元
ガスとしてタール付着等の問題が発生し、1%より上で
は二次燃焼炉に導入する前に可燃ガスの酸化が促進され
てしまうためである。これにより、炉出口での酸素濃度
を低く抑え、可燃成分と酸素による爆発の危険が少なく
なる。また、このように比較的低温であるため、減温塔
などの設備を介して過度の冷却することなく、除塵を行
うことができる。除塵装置においては、ダスト濃度を
0.1g/Nm3以下としてから燃焼炉で可燃ガスを燃焼
させ、効率よく高温化を実現することができる。このと
きの除塵装置は、該可燃ガスの温度によって、バグフィ
ルター、セラミックフィルター、高温電気集塵器、慣性
力集塵器、高性能サイクロン、遠心力集塵機等を用いれ
ば良い。
In the partial oxidation furnace, waste is partially oxidized, and a combustible gas having a relatively low temperature of 250 to 450 ° C. is sent to the inlet of the dust remover. Here, the reason why the temperature at the inlet of the dust removing device is set in the above range is that there is a problem such as tar adhesion below 250 ° C., and above 450 ° C. there is a possibility of dioxin generation and a possibility of clogging due to salt. Because there is. "Concentration in terms of oxygen" at the furnace outlet at this time
Is adjusted so as to be −20 to 1%. The reason is that if the "oxygen concentration" is less than -20%, a problem such as tar adhesion occurs as a strong reducing gas, and if it exceeds 1%, the oxidation of combustible gas is promoted before being introduced into the secondary combustion furnace. This is because This keeps the oxygen concentration at the furnace outlet low and reduces the risk of explosion due to combustible components and oxygen. In addition, since the temperature is relatively low, dust can be removed without excessive cooling via equipment such as a cooling tower. In the dust removing device, the combustible gas is burned in a combustion furnace after the dust concentration is set to 0.1 g / Nm 3 or less, and the temperature can be efficiently increased. The dust removing device at this time may use a bag filter, a ceramic filter, a high-temperature electric precipitator, an inertial precipitator, a high-performance cyclone, a centrifugal precipitator, or the like, depending on the temperature of the combustible gas.

【0008】本発明の方式の場合、除塵装置にてダスト
濃度を0.1g/Nm3以下になるように除塵するため、
ダスト中の塩の量が低減され、後段のボイラチューブ等
の腐食の可能性が激減する。
In the case of the method of the present invention, dust is removed by a dust remover so that the dust concentration becomes 0.1 g / Nm 3 or less.
The amount of salt in the dust is reduced, and the possibility of corrosion of the subsequent boiler tubes and the like is drastically reduced.

【0009】さらにまた、有害ガスの排出を抑制させる
ことができる。部分酸化炉で部分酸化された後の可燃ガ
スを燃焼炉で酸化剤と混合させ高温で燃焼させるので、
CO等の未燃分の排出がほぼ完全に抑制される。また、
可燃ガスを除塵してから高温燃焼させるので、すすに起
因する芳香族系有機化合物濃度は低くなり、結果として
不完全燃焼生成物であるダイオキシン類物質濃度も低減
される。
Further, the emission of harmful gas can be suppressed. Since the combustible gas after partial oxidation in the partial oxidation furnace is mixed with an oxidant in the combustion furnace and burned at a high temperature,
Emission of unburned components such as CO is almost completely suppressed. Also,
Since high-temperature combustion is performed after removing combustible gas, the concentration of aromatic organic compounds due to soot is reduced, and as a result, the concentration of dioxin-like substances, which are incomplete combustion products, is also reduced.

【0010】上記課題を解決する第二の手段は、除塵装
置として濾過式の集塵器を使用し、該集塵器の濾過体へ
の付着物を酸素濃度5%以下のガスで定期的に払い落と
すこととする廃棄物の処理方法である。これにより、効
率的に除塵を行うことができ、有害ガスの排出はさらに
抑制される。ここで酸素濃度を5%以下とするのは、酸
素により可燃ガスの酸化を抑制し、不要な爆発、燃焼の
危険性を低減させるためである。この酸素濃度5%以下
のガスは排ガス再循環、あるいは圧力スイング吸着法や
膜分離法を利用して得ることができる。
A second means for solving the above-mentioned problem is to use a filter-type dust collector as a dust removing device, and to periodically remove deposits on a filter of the dust collector with a gas having an oxygen concentration of 5% or less. This is the waste disposal method to be removed. Thereby, dust can be efficiently removed and emission of harmful gas is further suppressed. Here, the reason why the oxygen concentration is set to 5% or less is to suppress the oxidation of the combustible gas by oxygen and reduce the risk of unnecessary explosion and combustion. The gas having an oxygen concentration of 5% or less can be obtained by recirculation of exhaust gas, pressure swing adsorption, or membrane separation.

【0011】上記課題を解決する第三の手段は、除塵装
置として濾過式の集塵器を使用し、該集塵器の濾過体へ
の付着物を窒素ガスで定期的に払い落とすこととする廃
棄物の処理方法である。付着物の払い落としに窒素を用
いることにより集塵器において可燃ガスは酸化すること
がない。また、この手段に起因する不要な爆発、燃焼等
はなくなる。
A third means for solving the above-mentioned problem is to use a filtration type dust collector as a dust removing device and periodically remove nitrogen deposits on a filter of the dust collector. It is a waste disposal method. By using nitrogen for removing the deposits, the combustible gas is not oxidized in the dust collector. In addition, unnecessary explosion, combustion, and the like caused by this means are eliminated.

【0012】上記課題を解決する第四の手段は、上記の
第一ないし第三の手段において、燃焼炉に点火源を配設
し、可燃ガスを連続して燃焼させることとする廃棄物処
理方法である。可燃ガスは、除塵された後に燃焼炉に送
られて燃焼するが、ここに点火源をおくことにより、失
火して再び可燃ガスと空気が混合して爆発する危換性が
回避される。
A fourth means for solving the above-mentioned problems is a waste disposal method according to the first to third means, wherein an ignition source is provided in the combustion furnace and combustible gas is continuously burned. It is. The combustible gas is sent to the combustion furnace after being dusted and burned, but by placing an ignition source here, the danger of misfiring, mixing the combustible gas and air again, and exploding is avoided.

【0013】上記課題を解決する第五の手段は、第一な
いし第四の手段において、燃焼炉にあるいは燃焼炉の下
流にボイラを配設し、該ボイラにて熱回収を行うことと
する廃棄物処理方法である。効率よく高温を熱回収でき
るので、高温高圧ボイラが可能になる。
A fifth means for solving the above-mentioned problem is the first to fourth means, wherein a boiler is provided in or downstream of the combustion furnace, and heat recovery is performed by the boiler. It is a material processing method. Since high-temperature heat can be efficiently recovered, a high-temperature and high-pressure boiler is possible.

【0014】上記課題を解決する第六の手段は、炉出口
での酸素換算濃度が−20〜1%である可燃ガスが得ら
れるように廃棄物を不完全燃焼もしくは部分酸化させる
部分酸化炉と、その後流に設置され、250〜450℃
で該可燃ガス中のダストの濃度を0.1g/Nm3以下と
する除塵装置と、さらにその後流に設置された燃焼炉を
有するからなることを特徴とする廃棄物の処理装置であ
る。
A sixth means for solving the above problems is a partial oxidation furnace for incompletely burning or partially oxidizing waste so as to obtain a combustible gas having an oxygen equivalent concentration at the furnace outlet of -20 to 1%. , Installed in the downstream, 250-450 ° C
And a dust removing device for reducing the concentration of dust in the combustible gas to 0.1 g / Nm 3 or less, and a combustion furnace installed downstream of the combustible gas.

【0015】上記課題を解決するする第七の手段は、第
六の手段において、燃焼炉に点火源を配設することとす
る廃棄物の処理装置である。
A seventh means for solving the above-mentioned problems is a waste treatment apparatus according to the sixth means, wherein an ignition source is provided in the combustion furnace.

【0016】部分酸化炉内では、廃棄物は部分酸化が行
われ、除塵装置入口で250〜450℃と比較的温度の
低い可燃ガスが生成される。このときの炉出口での「酸
素換算濃度」が−20〜1%となるように空気比を調整
する。これにより、酸素濃度が低く、爆発等の危険が少
ない可燃ガスが生成される。また、この可燃ガスは、比
較的低温であるので、減温塔などの設備による過度の冷
却なしに、除塵される。部分酸化炉の炉出口からダクト
等で接続されている後流の除塵装置においてダスト濃度
を0.1g/Nm3以下とした後に、可燃ガスは後流の燃
焼炉で燃焼され、効率よく高温化される。このときの除
塵装置は、該可燃ガスの温度によって、バグフィルタ
ー、セラミツクフィルター、高温電気集塵器、慣性力集
塵器、高性能サイクロン、遠心力集塵機等を用いれば良
い。本装置の場合、ダスト濃度を0.1g/Nm3以下に
なるように除塵するので、ダスト中の塩の量が低減さ
れ、後流のボイチューブ等の腐食が極めて少なくなる。
In the partial oxidation furnace, the waste is partially oxidized, and combustible gas having a relatively low temperature of 250 to 450 ° C. is generated at the entrance of the dust remover. At this time, the air ratio is adjusted so that the “oxygen concentration” at the furnace outlet is −20 to 1%. As a result, a combustible gas having a low oxygen concentration and a low risk of explosion or the like is generated. Further, since this combustible gas has a relatively low temperature, dust is removed without excessive cooling by equipment such as a cooling tower. After reducing the dust concentration to 0.1 g / Nm 3 or less in the downstream dust remover connected by a duct or the like from the furnace outlet of the partial oxidation furnace, the combustible gas is burned in the downstream combustion furnace to efficiently raise the temperature. Is done. The dust removing device at this time may use a bag filter, a ceramic filter, a high-temperature electric dust collector, an inertial dust collector, a high-performance cyclone, a centrifugal dust collector, or the like, depending on the temperature of the combustible gas. In the case of this apparatus, dust is removed so that the dust concentration becomes 0.1 g / Nm 3 or less, so that the amount of salt in the dust is reduced, and the corrosion of the downstream boil tube and the like is extremely reduced.

【0017】さらにまた、有害ガスの排出を抑制させる
ことができる。部分酸化炉にて部分酸化された後の可燃
ガスを燃焼炉で酸化剤と混合させ高温で燃焼させるの
で、CO等の未燃分の排出がほぼ完全に抑制される。ま
た、可燃ガスを除塵してから高温燃焼させるので、すす
に起因する芳香族系有機化合物濃度は低くなり、結果と
して不完全燃焼生成物であるダイオキシン類物質濃度も
低減される。
Further, the emission of harmful gas can be suppressed. Since the combustible gas that has been partially oxidized in the partial oxidation furnace is mixed with an oxidant in the combustion furnace and burned at a high temperature, the emission of unburned components such as CO is almost completely suppressed. Further, since high-temperature combustion is performed after removing combustible gas, the concentration of aromatic organic compounds due to soot is reduced, and as a result, the concentration of dioxin-like substances, which are incomplete combustion products, is also reduced.

【0018】[0018]

【発明の実施の形態】以下、添付図面の図1ないし図3
にもとづき、本発明の実施の形態を説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG.
An embodiment of the present invention will be described based on the above.

【0019】図1は、本発明の一実施形態の概要構成を
示す図である。図において、符号1は部分酸化炉であ
り、該部分酸化炉1には酸化のための空気あるいは、蒸
気や排ガスによって酸素濃度を制御された空気主体のガ
スが供給されるようになっており、廃棄物が炉内へ投入
されて着火し部分酸化し可燃ガスを生成する。上記部分
酸化炉1には、該可燃ガスの除塵を行う除塵装置2、可
燃ガスを燃焼する燃焼炉3、燃焼したガスの熱回収を行
うボイラ4が順次接続されている。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. In the figure, reference numeral 1 denotes a partial oxidation furnace, to which air for oxidation or air-based gas whose oxygen concentration is controlled by steam or exhaust gas is supplied. Waste is injected into the furnace and ignites to partially oxidize to produce combustible gas. The partial oxidation furnace 1 is connected to a dust removing device 2 for removing dust from the combustible gas, a combustion furnace 3 for burning combustible gas, and a boiler 4 for recovering heat of the burned gas.

【0020】上記部分酸化炉1では、炉内温度は廃棄物
が自燃でき、かつ部分酸化する程度であれば良く、40
0〜800℃であることが望ましい。また、部分酸化に
より生成されたガスの「酸素換算濃度」が−20〜1%
となるように、空気比が制御される。このときの空気比
はおよそ0.15〜0.9程度となる。その後、該可燃ガ
スは部分酸化炉1内での滞留時間によりその温度が制御
され、250〜450℃で除塵装置2へ送られる。この
温度範囲とする理由は、250℃以下ではタール等の付
着物が問題となり、450℃以上ではダイオキシン類生
成の問題及びNaClやKCl等の塩による目つまりの
問題があるからである。
In the partial oxidation furnace 1, the temperature inside the furnace may be such that the waste can self-combust and partially oxidize.
Desirably, the temperature is 0 to 800 ° C. In addition, the “oxygen concentration” of the gas generated by the partial oxidation is -20 to 1%.
The air ratio is controlled so that The air ratio at this time is about 0.15 to 0.9. Thereafter, the temperature of the combustible gas is controlled by the residence time in the partial oxidation furnace 1, and is sent to the dust removing device 2 at 250 to 450 ° C. The reason for setting the temperature range is that if the temperature is 250 ° C. or lower, there is a problem of deposits such as tar, and if the temperature is 450 ° C. or higher, there is a problem of dioxin formation and a problem of clogging due to salts such as NaCl and KCl.

【0021】次に、可燃ガスは除塵装置2へもたらさ
れ、該除塵鼓置2では0.1g/Nm3以下の濃度まで除
塵される。この濃度まで除塵すれば、ダスト中の塩の量
が低減されるため、後段のボイラチューブ等の腐食が低
減される。図2に除塵後のダスト濃度と後流のボイラチ
ューブの耐用年数の関係を示す。この図から、除塵後の
ダスト濃度を0.1g/Nm3以下にすれば後流のボイラ
チューブの腐食を実用に耐え得る程度まで抑えられるこ
とがわかる。
Next, the combustible gas is introduced into the dust removing device 2, where the dust is removed to a concentration of 0.1 g / Nm 3 or less. If the dust is removed to this concentration, the amount of salt in the dust is reduced, so that corrosion of the subsequent boiler tube and the like is reduced. FIG. 2 shows the relationship between the dust concentration after dust removal and the service life of the downstream boiler tube. From this figure, it can be seen that if the dust concentration after dust removal is set to 0.1 g / Nm 3 or less, the corrosion of the downstream boiler tube can be suppressed to a level that can be practically used.

【0022】上記除塵装置2には図3に示すようなキャ
ンドル型セラミックフィルターを使うことが望ましい
が、ろ布や、目開き10mm以下のハニカム状セラミッ
クフィルターの使用も考えられる。払い落としは、可燃
ガスの酸化を抑制し、不要な爆発、燃焼の危険を低減さ
せるために酸素濃度5%以下のガス、又は窒素で行うの
が望ましい。また、付着物の剥離効果を考えると払い落
とし方法の条件は、ガス圧力1kg/cm2以上、払い
落とし間隔は数秒〜数十分、払い落とし時間は0.02
秒〜数十秒程度であることが望ましい。
It is desirable to use a candle-type ceramic filter as shown in FIG. 3 for the dust removing device 2, but it is also conceivable to use a filter cloth or a honeycomb-shaped ceramic filter having an aperture of 10 mm or less. It is desirable that the removal be performed using a gas having an oxygen concentration of 5% or less or nitrogen in order to suppress the oxidation of the combustible gas and reduce the risk of unnecessary explosion and combustion. Considering the effect of removing the deposits, the conditions of the wiping method are a gas pressure of 1 kg / cm 2 or more, a wiping interval of several seconds to several tens of minutes, and a wiping time of 0.02.
It is desirable that the time is about seconds to several tens of seconds.

【0023】可燃ガスは除塵装置2にて除塵された後に
燃焼炉3に導入され ここで約1000℃程度まで温度
上昇する。ここでは完全燃焼が行われるため、未燃ガス
等の排出がほぼ完全に抑制される。また、可燃ガスは、
予め除塵が行われているために、すすに起因する芳香族
系有機化合物濃度は低くなり、結果として不完全燃焼生
成物であるダイオキシン類物質濃度も低減される。
The combustible gas is introduced into the combustion furnace 3 after being dust-removed by the dust-removing device 2, where the temperature rises to about 1000 ° C. Here, since complete combustion is performed, emission of unburned gas and the like is almost completely suppressed. The combustible gas is
Since the dust has been removed in advance, the concentration of the aromatic organic compound due to soot decreases, and as a result, the concentration of dioxin-like substances, which are incomplete combustion products, also decreases.

【0024】本実施形態では、好ましい例として、この
燃焼炉3の後段にボイラ、例えば300℃以上、20a
ta以上の高温高圧ボイラ4の水管が設置されており、
効率よく燃焼ガスから熱回収をすることができる。必要
に応じて高温空気の回収も可能になる。予め除塵が行わ
れているため、ダストに起因するボイラチューブの腐食
を抑えることができる。塩化水素ガスによる腐食効果が
増大する排ガス温度600℃以上の高温場から熱を回収
する場合には、ボイラチューブの寿命を長くするため耐
腐食性を有するセラミック材質を使ったボイラチューブ
を用いれば良い。熱回収が終わった排ガスは下流の排ガ
ス処理設備(図示せず)を経て、煙突から排出される。
In the present embodiment, as a preferred example, a boiler, for example, at a temperature of 300 ° C. or more, 20 a
The water pipe of the high-temperature and high-pressure boiler 4 having a capacity of at least ta is installed.
Heat can be efficiently recovered from the combustion gas. Hot air can be recovered if necessary. Since the dust has been removed in advance, corrosion of the boiler tube due to dust can be suppressed. In the case of recovering heat from a high-temperature field of 600 ° C. or more where the corrosion effect of hydrogen chloride gas increases, a boiler tube using a ceramic material having corrosion resistance may be used to extend the life of the boiler tube. . The exhaust gas after heat recovery passes through a downstream exhaust gas treatment facility (not shown) and is discharged from the chimney.

【0025】[0025]

【実施例】本発明の実施例を図4にもとづき説明する。
本実施例装置では、図1装置の部分酸化炉として流動床
炉1を採用している。他は、図1装置と同じであり、図
4では図1と共通部分に同一符号を付してある。
An embodiment of the present invention will be described with reference to FIG.
In this embodiment, the fluidized bed furnace 1 is employed as the partial oxidation furnace of the apparatus shown in FIG. Other parts are the same as those of the apparatus shown in FIG. 1. In FIG. 4, the same parts as those of FIG.

【0026】図4装置では、流動床炉1で流動化空気温
度を20〜650℃、砂層温度400〜600℃とし、
廃棄物たる都市ごみを1t/hで該流動床式炉1へ供給
し、空気比を0.2〜0.8の間で操作して部分酸化させ
可燃ガスを生成した。可燃ガスは250〜450℃で除
塵装置2に供給し、キャンドル型セラミックフィルター
により除塵を行った。キャンドル型セラミックフィルタ
ーの材質は、SiO2、Al23、SiC、コージュラ
イト、上記材料のコンポジット、あるいはそれに類似す
る無機材料のセラミックファイバー型か、多孔質体型で
ある。払い落としには窒素ガスを用い、払い落とし圧力
4kg/cm2、払い落とし間隔5秒〜50分、払い落
とし時間0.1秒〜20秒の範囲とした。これにより、
除塵装置2への流入前のダスト濃度が5〜20g/Nm
3であったものが0.1g/Nm3以下まで除塵された。
この除去されたダスト等は回収後に溶融炉及び焼却炉で
無害化処理された。かかる除塵後の可燃ガスを燃焼炉3
で燃焼させて900〜1000℃まで温度を上げた。こ
のとき、後段のボイラ4で350〜540℃、50〜1
00ataの蒸気を用いて熱回収を行うことができた。
なお、ボイラチューブとしてステンレス鋼、インコネル
他の合金鋼を用いたが、著しい腐食等は認められず、材
料によっては複数年使用可能な耐腐食性を確認した。ま
た、高温空気の回収も行ったところ、350〜700℃
の高温空気の回収が可能であることが判明した。
In the apparatus shown in FIG. 4, the fluidized-bed furnace 1 has a fluidized air temperature of 20 to 650 ° C. and a sand bed temperature of 400 to 600 ° C.
Municipal solid waste as waste was supplied to the fluidized bed furnace 1 at 1 t / h, and the air ratio was controlled between 0.2 and 0.8 to partially oxidize to generate combustible gas. The combustible gas was supplied to the dust remover 2 at 250 to 450 ° C., and dust was removed by a candle type ceramic filter. The material of the candle type ceramic filter is SiO 2 , Al 2 O 3 , SiC, cordierite, a composite of the above materials, a ceramic fiber type of an inorganic material similar thereto, or a porous body type. Nitrogen gas was used for the wiping off, the wiping pressure was 4 kg / cm 2 , the wiping interval was 5 seconds to 50 minutes, and the wiping time was 0.1 seconds to 20 seconds. This allows
The dust concentration before flowing into the dust removing device 2 is 5 to 20 g / Nm
Those were 3 is dust to 0.1 g / Nm 3 or less.
After the removed dust and the like were collected, they were rendered harmless in a melting furnace and an incinerator. The combustible gas after the dust removal is transferred to the combustion furnace 3
And the temperature was increased to 900 to 1000 ° C. At this time, 350-540 ° C., 50-1
Heat recovery could be performed using the steam of 00 ata.
Although stainless steel, Inconel, and other alloy steels were used as the boiler tube, no significant corrosion was observed, and the corrosion resistance that could be used for several years was confirmed depending on the material. In addition, when hot air was collected, the temperature was 350 to 700 ° C.
It was found that high temperature air could be recovered.

【0027】また、図5に示される火格子式炉での適用
性の確認も行った。図5装置では部分酸化炉として火格
子式炉1を採用した。他は、図1装置と同じである。こ
の火格子式炉1では酸化用空気温度を20〜250℃と
し、火格子上部温度500〜800℃として廃棄物たる
都市ごみを炉内へ供給し、空気比を0.3〜0.9の間で
操作して部分酸化させた。可燃ガスは250〜450℃
で除塵装置2に供給し、キャンドル型セラミックフィル
ター及びハニカム型セラミックフィルターにより除塵を
行った。セラミックフィルターの材質は、SiO2、A
23、SiC、コージュライト、上記材料のコンポジ
ット、あるいはそれに類似する無機材科のセラミックフ
ァイバー型か、多孔質体型である。払い落としには窒素
ガスを用い、払い落とし圧力3kg/cm2、払い落と
し間隔10秒〜20分、払い落とし時間0.05秒〜1
5秒の範囲とした。これにより、除塵装置2に流入する
前のダスト濃度が1〜5g/Nm3であったものが0.1
g/Nm3以下まで除塵された。この除去されたダスト
等は回収後に溶融炉及び焼却炉で無害化処理を行った。
除塵後の可燃ガスを燃焼炉3で燃焼させて900〜11
00℃まで温度を上げた。燃焼炉3では、爆発等の危険
を回避すべくパイロットバーナ(図示せず)を用いて常
時点火源をおいて、可燃ガスを連続的に燃焼した.この
バーナは燃料として天然ガスあるいは灯油を用い、出力
数万kcal/h〜数十万kcal/hのバーナを配設し
た。このとき、後段のボイラ4で540℃、100at
aの蒸気を用いて熱回収を行うことができた。なお、ボ
イラチューブとしてステンレス鋼、インコネル他の合金
鋼を用いたが、著しい腐食等は認められず、1年以上の
安定稼働を確認した。
The applicability of the grate furnace shown in FIG. 5 was also confirmed. In the apparatus shown in FIG. 5, a grate furnace 1 was employed as a partial oxidation furnace. Others are the same as the apparatus of FIG. In the grate furnace 1, the temperature of the oxidizing air is set to 20 to 250 ° C., the temperature of the upper part of the grate is set to 500 to 800 ° C., and municipal solid waste is supplied into the furnace. Partial oxidation was performed by operating in between. Combustible gas is 250-450 ° C
And the dust was removed by a candle-type ceramic filter and a honeycomb-type ceramic filter. The material of the ceramic filter is SiO 2 , A
l 2 O 3 , SiC, cordierite, a composite of the above materials, or a ceramic fiber type or a porous type of inorganic materials similar thereto. Nitrogen gas was used for the cleaning, the cleaning pressure was 3 kg / cm 2 , the cleaning interval was 10 seconds to 20 minutes, and the cleaning time was 0.05 seconds to 1 minute.
The range was 5 seconds. As a result, the dust concentration before flowing into the dust removing device 2 was from 1 to 5 g / Nm 3 to 0.1 g / Nm 3.
g / Nm 3 or less. After the removed dust and the like were collected, they were subjected to detoxification treatment in a melting furnace and an incinerator.
The combustible gas after dust removal is burned in the combustion furnace 3 to 900 to 11
The temperature was raised to 00C. In the combustion furnace 3, a flammable gas was continuously burned by using a pilot burner (not shown) with an ignition source constantly in order to avoid a danger such as an explosion. This burner uses natural gas or kerosene as fuel, and has a burner with an output of tens of thousands kcal / h to hundreds of thousands of kcal / h. At this time, 540 ° C., 100 at
Heat recovery could be performed using the vapor of a. Although stainless steel, Inconel and other alloy steels were used as boiler tubes, no significant corrosion was observed, and stable operation was confirmed for one year or more.

【0028】[0028]

【発明の効果】説明したように、本発明においては、部
分酸化させたガスを比較的低温で除塵してから燃焼炉で
燃焼させることにより高温を得ることとしたので、ガス
化した廃棄物の処理が効率的に行えると同時に、高温高
圧ボイラを設置することによる熱回収も効率よく行え
る。また、ダイオキシンやフラン等の有害ガスの排出を
抑制することもできる。さらに、従来技術と比較してプ
ラント全体を簡素化でき、必要設置面積も小さくてす
む。
As described above, according to the present invention, since the partially oxidized gas is removed at a relatively low temperature and then burned in a combustion furnace to obtain a high temperature, the gasified waste can be obtained. Processing can be performed efficiently, and heat recovery by installing a high-temperature and high-pressure boiler can be performed efficiently. Further, emission of harmful gases such as dioxin and furan can be suppressed. Further, the entire plant can be simplified and the required installation area can be reduced as compared with the conventional technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態装置の概要構成図である。FIG. 1 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.

【図2】ダスト濃度とボイラチューブの耐用年数との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a dust concentration and a service life of a boiler tube.

【図3】図1装置の除塵装置に採用可能なキャンドル型
セラミックフィルターの概略図である。
FIG. 3 is a schematic view of a candle-type ceramic filter that can be employed in the dust removing apparatus of the apparatus in FIG. 1;

【図4】本発明の一実施形態装置の概要構成図である。FIG. 4 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.

【図5】図4装置の変形を示す装置の概要構成図であ
る。
FIG. 5 is a schematic configuration diagram of an apparatus showing a modification of the apparatus in FIG. 4;

【図6】従来の廃棄物処理装置の概要構成図である。FIG. 6 is a schematic configuration diagram of a conventional waste disposal apparatus.

【符号の説明】[Explanation of symbols]

1 部分酸化炉 2 除塵装置 3 燃焼室 4 ボイラ DESCRIPTION OF SYMBOLS 1 Partial oxidation furnace 2 Dust remover 3 Combustion chamber 4 Boiler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木ノ下 誠二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 秋山 肇 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K078 AA05 AA08 AA09 BA03 CA21 CA24  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Seiji Kinoshita 1-1-2 Marunouchi, Chiyoda-ku, Tokyo, Japan Inside the Nippon Kokan Co., Ltd. (72) Inventor Hajime Akiyama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan F-term in Honko Co., Ltd. (reference) 3K078 AA05 AA08 AA09 BA03 CA21 CA24

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を燃焼反応を伴う部分酸化炉に
て、不完全燃焼、もしくは部分酸化させて炉出口での酸
素換算濃度が−20〜1%である可燃ガスを生成し、該可
燃ガスを250〜450℃で除塵装置に導入してダスト
濃度を0.1g/Nm3以下とし、除塵された該可燃ガスを
燃焼炉にて高温で燃焼させることを特徴とする廃棄物の
処理方法。
The waste is incompletely burned or partially oxidized in a partial oxidation furnace involving a combustion reaction to produce a combustible gas having an oxygen equivalent concentration at the furnace outlet of -20 to 1%. A method for treating waste, comprising introducing a gas into a dust remover at 250 to 450 ° C. to reduce the dust concentration to 0.1 g / Nm 3 or less, and burning the combustible gas removed at a high temperature in a combustion furnace. .
【請求項2】 除塵装置として濾過式の集塵器を使用
し、該集塵器の濾過体への付着物を酸素濃度5%以下の
ガスで定期的に払い落とすこととする請求項1に記載の
廃棄物の処理方法。
2. The method according to claim 1, wherein a filter-type dust collector is used as the dust remover, and the deposits on the filter of the dust collector are periodically wiped off with a gas having an oxygen concentration of 5% or less. Waste treatment method as described.
【請求項3】 除塵装置として濾過式の集塵器を使用
し、該集塵器の濾過体への付着物を窒素ガスで定期的に
払い落とすこととする請求項1に記載の廃棄物の処理方
法。
3. A waste filter according to claim 1, wherein a filter-type dust collector is used as a dust-removing device, and deposits on a filter of the dust collector are periodically removed with nitrogen gas. Processing method.
【請求項4】 燃焼炉に点火源を配設し、可燃ガスを連
続して燃焼させることとする請求項1ないし請求項3の
うちのいずれか1つに記載の廃棄物の処理方法。
4. The method for treating waste according to claim 1, wherein an ignition source is provided in the combustion furnace to burn combustible gas continuously.
【請求項5】 燃焼炉にあるいは燃焼炉の下流にボイラ
を配役し、該ボイラにて熱回収を行うこととする請求項
1ないし請求項4のうちのいずれか1つに記載の廃棄物
処理方法。
5. The waste treatment according to claim 1, wherein a boiler is disposed in the combustion furnace or downstream of the combustion furnace, and heat recovery is performed in the boiler. Method.
【請求項6】 炉出口での酸素換算濃度が−20〜1%で
ある可燃ガスが得られるように廃棄物を不完全燃焼もし
くは部分酸化させる部分酸化炉と、その後流に設置さ
れ、250〜450℃で該可燃ガス中のダストの濃度を
0.1g/Nm3以下とする除塵装置と、さらにその後流
に設置された燃焼炉を有することを特徴とする廃棄物の
処理装置。
6. A partial oxidation furnace for incompletely burning or partially oxidizing waste so as to obtain a combustible gas having an oxygen equivalent concentration at a furnace outlet of -20 to 1%, and a partial oxidation furnace installed in the downstream thereof, An apparatus for treating waste, comprising: a dust remover for reducing the concentration of dust in the combustible gas at 450 ° C. to 0.1 g / Nm 3 or less; and a combustion furnace installed downstream of the dust remover.
【請求項7】 燃焼炉は点火源が配設されていることと
する請求項6に記載の廃棄物の処理装置。
7. An apparatus for treating waste according to claim 6, wherein the combustion furnace is provided with an ignition source.
JP34175998A 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste Expired - Fee Related JP3799846B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34175998A JP3799846B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste
TW89110356A TW442633B (en) 1998-12-01 2000-05-29 Method for disposing waste and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34175998A JP3799846B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006037888A Division JP2006200886A (en) 2006-02-15 2006-02-15 Processing method and device for waste, and heat recovery method and device from waste

Publications (2)

Publication Number Publication Date
JP2000161638A true JP2000161638A (en) 2000-06-16
JP3799846B2 JP3799846B2 (en) 2006-07-19

Family

ID=18348551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34175998A Expired - Fee Related JP3799846B2 (en) 1998-12-01 1998-12-01 Method and apparatus for recovering heat from waste

Country Status (1)

Country Link
JP (1) JP3799846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185584A (en) * 2006-01-12 2007-07-26 Jfe Engineering Kk Dust collector and method of removing dust
JP2017120151A (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Combustion facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185584A (en) * 2006-01-12 2007-07-26 Jfe Engineering Kk Dust collector and method of removing dust
JP2017120151A (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Combustion facility
WO2017115845A1 (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Combustion equipment

Also Published As

Publication number Publication date
JP3799846B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP3773302B2 (en) Heat recovery system and power generation system
KR20180132194A (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
JP4377292B2 (en) Waste treatment apparatus and exhaust gas treatment method
JP2904873B2 (en) Heterogeneous fuel combustion methods
KR100447009B1 (en) Treatment method of waste and apparatus thereof
JP4420155B2 (en) Method and apparatus for recovering heat from waste
JP2578210B2 (en) Integrated coal gasification combined cycle power plant
JP2000161638A (en) Method and device for processing waste
JP2000161623A (en) Method and apparatus for treating waste
JP4121645B2 (en) Method and apparatus for recovering heat from waste
JP2000161622A (en) Method and device for treating waste
JPH08110021A (en) Produced gas processing apparatus for waste melting furnace
JPH109545A (en) Waste-burning boiler
JP2006200886A (en) Processing method and device for waste, and heat recovery method and device from waste
KR200199659Y1 (en) Improvement of boiler exhaust gas purifier
JP2003254516A (en) Garbage burning power generation equipment
TW442633B (en) Method for disposing waste and apparatus thereof
JPH10103640A (en) Waste thermal decomposition disposal facility
JP3306849B2 (en) Waste incineration method
JP4245527B2 (en) Operation method of waste treatment equipment
KR19990049357A (en) Incinerator Exhaust Purifier
CN1310311A (en) Organic waste liquid and waste gas incinerating system
JP2001132922A (en) Incineration treatment method of slurried wastes
JP2005046815A (en) Method and apparatus for treating flue gas from melting furnace
JPH11351531A (en) Equipment and method of burning refuse

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees