WO2017115845A1 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
WO2017115845A1
WO2017115845A1 PCT/JP2016/089104 JP2016089104W WO2017115845A1 WO 2017115845 A1 WO2017115845 A1 WO 2017115845A1 JP 2016089104 W JP2016089104 W JP 2016089104W WO 2017115845 A1 WO2017115845 A1 WO 2017115845A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
exhaust gas
boiler
combustion
combustion furnace
Prior art date
Application number
PCT/JP2016/089104
Other languages
French (fr)
Japanese (ja)
Inventor
竹田 航哉
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201680076322.1A priority Critical patent/CN108369005A/en
Publication of WO2017115845A1 publication Critical patent/WO2017115845A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The combustion equipment according to one aspect of the present invention is equipped with: a combustion furnace which burns fuel; a boiler which is supplied with the exhaust gas generated in the combustion furnace and has an interior having a superheater piping; an adsorbent supply unit which supplies a solid adsorbent, which is capable of adsorbing gaseous corrosive substances, to the interior of an exhaust gas flow path that connects the combustion furnace and the boiler; and a collection unit which is provided in the exhaust gas flow path or upstream of the superheater pipe in the boiler so as to collect the gaseous corrosive substances adsorbed by the adsorbent together with the adsorbent.

Description

燃焼設備Combustion equipment
 本発明は、燃焼設備に関する。 The present invention relates to a combustion facility.
 燃焼設備には熱回収を行うためのボイラを備えたものがある。燃焼設備において、例えば建築廃材系の木質バイオマス、廃タイヤ及び廃プラスチック等の廃棄物を燃焼させると、塩化物や硫化物などの腐食性物質が排ガスに含まれることがある。この腐食性物質がボイラの金属部材に付着すると、その金属部材の腐食が進行するおそれがある。これを防ぐために、ボイラよりも上流又はボイラの上流部分に腐食性物質を捕集する捕集部を設けることが考えられる。しかしながら、ボイラよりも上流又はボイラの上流部分では排気ガスの温度が高いことから、腐食性物質の多くは気体状となり、捕集部のフィルタをすり抜けてしまう。 Some combustion equipment is equipped with a boiler for heat recovery. In a combustion facility, for example, when wastes such as woody biomass, waste tires, and plastics are burned, corrosive substances such as chlorides and sulfides may be included in the exhaust gas. If this corrosive substance adheres to the metal member of the boiler, the metal member may be corroded. In order to prevent this, it is conceivable to provide a collecting part for collecting a corrosive substance upstream of the boiler or in an upstream part of the boiler. However, since the temperature of the exhaust gas is higher in the upstream than the boiler or in the upstream portion of the boiler, most of the corrosive substances are in a gaseous state and pass through the filter of the collecting unit.
 これに対し、第1の燃焼炉で燃料を燃焼させて腐食性物質が気化しないような温度の可燃ガスを生成し、生成した可燃ガスに含まれる腐食性物質を捕集部で捕集した後、その可燃ガスを第2の燃焼炉で燃焼させることにより、ボイラに腐食性物質が流入するのを抑制した燃焼設備が提案されている(例えば、特許文献1参照)。 On the other hand, after burning the fuel in the first combustion furnace to generate a combustible gas at a temperature that does not vaporize the corrosive substance, and collecting the corrosive substance contained in the generated combustible gas in the collection unit Combustion equipment has been proposed in which the combustible gas is burned in a second combustion furnace to suppress the inflow of corrosive substances into the boiler (see, for example, Patent Document 1).
特開2000-161638号公報JP 2000-161638 A
 しかしながら、上記のような燃焼設備は、2つの燃焼炉を設ける必要があるため、全体の構造が複雑になるという問題がある。 However, the combustion equipment as described above has a problem that the entire structure becomes complicated because it is necessary to provide two combustion furnaces.
 本発明は、このような事情に鑑みてなされたものであり、ボイラよりも上流又はボイラの上流部分で腐食性物質を捕集でき、かつ、構造が単純な燃焼設備を提供することを目的としている。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a combustion facility that can collect a corrosive substance upstream of a boiler or in an upstream portion of the boiler and has a simple structure. Yes.
 本発明の一態様に係る燃焼設備は、燃料を燃焼させる燃焼炉と、前記燃焼炉で発生した排ガスが供給され、内部に過熱器管を有するボイラと、気体状の腐食性物質を吸着可能な固形の吸着材を前記燃焼炉と前記ボイラをつなぐ排ガス流路内に供給する吸着材供給部と、前記排ガス流路に又は前記ボイラ内の前記過熱器管よりも上流に設けられ、前記吸着材とともに前記吸着材に吸着した気体状の腐食性物質を捕集する捕集部と、を備える。 A combustion facility according to an aspect of the present invention is capable of adsorbing a gaseous corrosive substance, a combustion furnace for burning fuel, an exhaust gas generated in the combustion furnace, a boiler having a superheater tube inside, and the like. An adsorbent supply section for supplying a solid adsorbent into an exhaust gas flow path connecting the combustion furnace and the boiler; and provided in the exhaust gas flow path or upstream of the superheater pipe in the boiler; And a collection unit for collecting a gaseous corrosive substance adsorbed on the adsorbent.
 この構成によれば、ボイラよりも上流又はボイラ内の過熱器管よりも上流を流れる気体状の腐食性物質を吸着材が吸着することにより、吸着材とともに吸着材に吸着した腐食性物質を捕集部で捕集することができる。そのため、腐食性物質をボイラよりも上流又はボイラ内の過熱器管よりも上流で捕集することができ、ボイラ又はボイラの過熱器管に腐食性物質が流入するのを抑制することができる。また、上記の構成によれば、燃焼炉を複数設ける必要もないため、燃焼設備全体の構造が複雑になることもない。 According to this configuration, the adsorbent adsorbs the gaseous corrosive substance flowing upstream from the boiler or upstream from the superheater pipe in the boiler, thereby capturing the corrosive substance adsorbed on the adsorbent together with the adsorbent. It can be collected at the collecting section. Therefore, the corrosive substance can be collected upstream of the boiler or upstream of the superheater pipe in the boiler, and the corrosive substance can be prevented from flowing into the boiler or the superheater pipe of the boiler. Moreover, according to said structure, since it is not necessary to provide several combustion furnaces, the structure of the whole combustion equipment does not become complicated.
 また、上記の燃焼設備において、前記腐食性物質は、NaCl、KCl、PbCl、ZnCl、NaS、KS、PbS、及びZnSのうち少なくとも1つを含むものであってもよい。 In the combustion facility, the corrosive substance may include at least one of NaCl, KCl, PbCl 2 , ZnCl 2 , Na 2 S, K 2 S, PbS, and ZnS.
 腐食性物質が上記のような低融点の塩化物又は硫化物であっても、捕集部において捕集することができる。 Even if the corrosive substance is a low melting point chloride or sulfide as described above, it can be collected in the collection part.
 また、上記の燃焼設備において、前記吸着材は、ゼオライト、ドロマイト、カオリナイト、又はこれらを主成分とする化合物であってもよい。 Further, in the above combustion facility, the adsorbent may be zeolite, dolomite, kaolinite, or a compound containing these as a main component.
 この構成によれば、腐食性物質を吸着材に吸着させることができ、ひいては捕集部において腐食性物質を捕集することができる。 According to this configuration, the corrosive substance can be adsorbed to the adsorbent, and the corrosive substance can be collected in the collecting portion.
 また、上記の燃焼設備において、前記吸着材供給部は、前記燃焼炉で発生した排ガス中の腐食性物質の量が多くなるに従って、前記排ガス流路に供給する吸着材の量を増加させてもよい。 In the above combustion facility, the adsorbent supply unit may increase the amount of adsorbent supplied to the exhaust gas passage as the amount of corrosive substances in the exhaust gas generated in the combustion furnace increases. Good.
 この構成によれば、排ガス中の腐食性物質の量に応じて、適切な量の吸着材を排ガス流路に供給することができる。そのため、排ガス流路に供給する吸着材が足りずに腐食性物質がボイラに流入するような事態を防ぐことができ、また必要以上に吸着材を供給することもないため吸着材の使用量を抑えることができる。 According to this configuration, an appropriate amount of adsorbent can be supplied to the exhaust gas flow path in accordance with the amount of corrosive substances in the exhaust gas. Therefore, it is possible to prevent a situation where a corrosive substance flows into the boiler due to insufficient adsorbent to be supplied to the exhaust gas flow path, and the adsorbent is not supplied more than necessary. Can be suppressed.
 また、上記の燃焼設備において、前記捕集部が捕集した捕集物を粒径に応じて振り分ける分級装置をさらに備え、前記吸着材供給部は、前記分級装置が振り分けた粒径が一定以下である細粒捕集物を回収し、回収した当該細粒捕集物を前記排ガス流路内に供給してもよい。 Further, in the above combustion facility, the combustion equipment further includes a classification device that distributes the collected material collected by the collection unit according to a particle size, and the adsorbent supply unit has a particle size distributed by the classification device of a certain value or less. It is also possible to collect the collected fine particles and supply the collected collected fine particles into the exhaust gas flow channel.
 この構成によれば、腐食性物質を吸着しなかった吸着材は捕集部で捕集され、分級装置において細粒捕集物として振り分けられる。そのため、この細粒捕集物には腐食性物質に吸着しなかった吸着材が含まれることから、これを回収して再利用すれば、吸着材を無駄なく使用することができる。 According to this configuration, the adsorbent that has not adsorbed the corrosive substance is collected by the collection unit and distributed as a fine-grained collection product in the classifier. Therefore, since this fine-grained collection contains an adsorbent that has not been adsorbed to corrosive substances, the adsorbent can be used without waste if it is recovered and reused.
 上記の構成によれば、ボイラよりも上流又はボイラの上流部分で腐食性物質を捕集でき、かつ、構造が単純な燃焼設備を提供することができる。 According to the above configuration, it is possible to provide a combustion facility that can collect corrosive substances upstream of the boiler or in an upstream portion of the boiler and has a simple structure.
図1は、第1実施形態に係る燃焼設備のブロック図である。FIG. 1 is a block diagram of a combustion facility according to the first embodiment. 図2は、第2実施形態に係る燃焼設備のブロック図である。FIG. 2 is a block diagram of the combustion facility according to the second embodiment. 図3は、第3実施形態に係る燃焼設備のブロック図である。FIG. 3 is a block diagram of the combustion facility according to the third embodiment.
 (第1実施形態)
 はじめに、本発明の第1実施形態に係る燃焼設備100について説明する。図1は、本実施形態に係る燃焼設備100のブロック図である。なお、本実施形態の燃焼設備100は、ごみを燃料とするごみ焼却設備であるが、それ以外の燃焼設備であってもよい。図1に示すように、燃焼設備100は、燃焼炉10と、ボイラ20と、吸着材供給部30と、捕集部40と、腐食センサ50と、を備えている。以下、これらの各構成要素について順に説明する。
(First embodiment)
First, the combustion facility 100 according to the first embodiment of the present invention will be described. FIG. 1 is a block diagram of a combustion facility 100 according to the present embodiment. In addition, although the combustion equipment 100 of this embodiment is a waste incineration equipment which uses garbage as a fuel, other combustion equipment may be used. As shown in FIG. 1, the combustion facility 100 includes a combustion furnace 10, a boiler 20, an adsorbent supply unit 30, a collection unit 40, and a corrosion sensor 50. Hereinafter, each of these components will be described in order.
 燃焼炉10では、燃料(ごみ)を燃焼させ、これにより排ガスが発生する。燃焼炉10で燃焼させる燃料によっては、排気ガスに腐食性物質が含まれる。腐食性物質は、例えば、NaCl(塩化ナトリウム)、KCl(塩化カリウム)、PbCl(塩化鉛)、及びZnCl(塩化亜鉛)などの低融点の塩化物、及び、NaS(硫化ナトリウム)、KS(硫化カリウム)、PbS(硫化鉛)、又はZnS(硫化亜鉛)などの低融点の硫化物のうち少なくとも1つを含むものである。これらの腐食性物質は、捕集部40を通過した場合にはボイラ20内でガス温度の低下に伴い粒子状となるが、排ガスの温度が高いボイラ20よりも上流では気体状である。 In the combustion furnace 10, fuel (garbage) is burned, thereby generating exhaust gas. Depending on the fuel burned in the combustion furnace 10, the exhaust gas contains a corrosive substance. Corrosive substances include, for example, low melting point chlorides such as NaCl (sodium chloride), KCl (potassium chloride), PbCl 2 (lead chloride), and ZnCl 2 (zinc chloride), and Na 2 S (sodium sulfide). , K 2 S (potassium sulfide), PbS (lead sulfide), or ZnS (zinc sulfide). When these corrosive substances pass through the collection part 40, they become particulate as the gas temperature decreases in the boiler 20, but they are gaseous upstream of the boiler 20 where the temperature of the exhaust gas is high.
 ボイラ20は、燃焼炉10で発生した排ガスが供給され、排ガスの熱エネルギを利用して高温高圧の蒸気を生成し、生成した高温高圧の蒸気を図外の蒸気タービン発電機に供給する。また、ボイラ20内を通過した排ガスは、図外の排ガス処理設備で無害化の処理が行われた後に外部へ排出される。仮に、排ガスに含まれる腐食性物質がボイラ20に流入し、過熱器管や放射伝面(図3参照)などの金属部材に付着すると、その金属部材の腐食が進行する。 The boiler 20 is supplied with exhaust gas generated in the combustion furnace 10, generates high-temperature and high-pressure steam using the thermal energy of the exhaust gas, and supplies the generated high-temperature and high-pressure steam to a steam turbine generator (not shown). Further, the exhaust gas that has passed through the boiler 20 is discharged to the outside after being detoxified by an exhaust gas treatment facility (not shown). If a corrosive substance contained in the exhaust gas flows into the boiler 20 and adheres to a metal member such as a superheater tube or a radiation transmission surface (see FIG. 3), the corrosion of the metal member proceeds.
 吸着材供給部30は、燃焼炉10とボイラ20をつなぐ排ガス流路60に吸着材を噴射等により供給する部分である。吸着材は、気体状の腐食性物質を吸着可能な固形の物質であり、例えば、ゼオライト、ドロマイト、カオリナイト、又はこれらを主成分とする化合物である。前述のとおり、NaCl、KCl、PbCl、ZnCl、NaS、KS、PbS、及びZnSなどの腐食性物質は、ボイラ20よりも上流では気体状であるが、吸着材はこれらを吸着することができる。なお、吸着材の粒径は特に限定されないが、本実施形態では粒径が10μm以上であって100μmよりも小さい吸着材を排ガス流路60に供給する。 The adsorbent supply unit 30 is a part that supplies the adsorbent to the exhaust gas flow path 60 that connects the combustion furnace 10 and the boiler 20 by injection or the like. The adsorbent is a solid substance that can adsorb gaseous corrosive substances, and is, for example, zeolite, dolomite, kaolinite, or a compound containing these as a main component. As described above, corrosive substances such as NaCl, KCl, PbCl 2 , ZnCl 2 , Na 2 S, K 2 S, PbS, and ZnS are gaseous upstream of the boiler 20, but the adsorbents are Can be adsorbed. Although the particle size of the adsorbent is not particularly limited, in the present embodiment, an adsorbent having a particle size of 10 μm or more and smaller than 100 μm is supplied to the exhaust gas flow channel 60.
 捕集部40は、排ガス流路60の吸着材が供給される部分よりも下流に設けられている。捕集部40は、内部に捕集フィルタを有しており、この捕集フィルタにより、粒子状の物質(固形物)を捕集することができる。本実施形態の捕集部40では、粒径が10μm以上の粒子を捕集することができる。腐食性物質を吸着した吸着材の粒径は変化しないため、捕集部40ではこの腐食性物質を吸着した吸着材を捕集することができる。 The collection unit 40 is provided downstream of the portion of the exhaust gas flow channel 60 to which the adsorbent is supplied. The collection part 40 has a collection filter inside, and can collect particulate matter (solid matter) with this collection filter. In the collection unit 40 of the present embodiment, particles having a particle size of 10 μm or more can be collected. Since the particle size of the adsorbent adsorbing the corrosive substance does not change, the collection unit 40 can collect the adsorbent adsorbing the corrosive substance.
 ここで、本来であれば、排ガス流路60に捕集部40を設けたとしても、捕集部40よりも上流ではNaCl、KCl、PbCl、ZnCl、NaS、KS、PbS、及びZnSなどの腐食性物質は、気体状であるため、捕集部40の捕集フィルタをすり抜けることから、捕集部40で捕集することができない。しかしながら、本実施形態のように、気体状の腐食性物質を吸着可能な固形の吸着材を排ガス流路60における捕集部40よりも上流に供給することにより、捕集部40よりも上流で腐食性物質を吸着材が吸着し、これらが一体となった結合体を捕集部40で捕集することができる。よって、腐食性物質がボイラ20に流入するのを抑制することができ、ひいてはボイラ20の金属材料における腐食の進行を抑制することができる。 Here, even if the collection part 40 is originally provided in the exhaust gas flow path 60, NaCl, KCl, PbCl 2 , ZnCl 2 , Na 2 S, K 2 S, PbS is provided upstream from the collection part 40. Since corrosive substances such as ZnS and the like are gaseous, they pass through the collection filter of the collection unit 40 and cannot be collected by the collection unit 40. However, as in the present embodiment, by supplying a solid adsorbent capable of adsorbing a gaseous corrosive substance upstream of the collection unit 40 in the exhaust gas flow channel 60, upstream of the collection unit 40. The adsorbent adsorbs the corrosive substance, and the combined body in which these are integrated can be collected by the collection unit 40. Therefore, it can suppress that a corrosive substance flows in into the boiler 20, and can suppress the progress of the corrosion in the metal material of the boiler 20 as a result.
 腐食センサ50は、排ガス中における腐食性物質の量を測定するセンサである。本実施形態の腐食センサ50は、一対の電極を備えており、それらの電極に付着する燃焼灰により生じる電極の腐食量に応じて両電極間の抵抗が変化することから、その抵抗の変化に基づいて排ガス中における腐食性物質の量を測定することができる。なお、本実施形態では、腐食センサ50は捕集部40における捕集フィルタよりも上流に配置されているが、排ガス流路60における吸着材供給部30よりも上流に配置してもよい。 The corrosion sensor 50 is a sensor that measures the amount of corrosive substances in the exhaust gas. The corrosion sensor 50 of the present embodiment includes a pair of electrodes, and the resistance between the electrodes changes according to the amount of corrosion of the electrodes caused by the combustion ash adhering to the electrodes. Based on this, the amount of corrosive substance in the exhaust gas can be measured. In the present embodiment, the corrosion sensor 50 is disposed upstream of the collection filter in the collection unit 40, but may be disposed upstream of the adsorbent supply unit 30 in the exhaust gas flow channel 60.
 腐食センサ50は、吸着材供給部30と電気的に接続されており、吸着材供給部30へと測定信号を送信する。吸着材供給部30は、腐食センサ50から受信した測定信号に基づいて排ガス中における腐食性物質の量を取得し、その量に応じて排ガス流路60に供給する吸着材の量を調整する。具体的には、排ガス中の腐食性物質の量が多くなるに従って、排ガスに供給する吸着材の量を増加させる。これにより、排ガス流路60に供給する吸着材が足りずに腐食性物質がボイラ20に流入するような事態を防ぐことができ、また必要以上に吸着材を供給することもないため吸着材の使用量を抑えることができる。 The corrosion sensor 50 is electrically connected to the adsorbent supply unit 30 and transmits a measurement signal to the adsorbent supply unit 30. The adsorbent supply unit 30 acquires the amount of the corrosive substance in the exhaust gas based on the measurement signal received from the corrosion sensor 50, and adjusts the amount of the adsorbent supplied to the exhaust gas passage 60 according to the amount. Specifically, the amount of adsorbent supplied to the exhaust gas is increased as the amount of the corrosive substance in the exhaust gas increases. As a result, it is possible to prevent a situation in which a corrosive substance flows into the boiler 20 due to insufficient adsorbent supplied to the exhaust gas flow path 60, and since the adsorbent is not supplied more than necessary, The amount used can be reduced.
 (第2実施形態)
 次に、本発明の第2実施形態に係る燃焼設備200について説明する。図2は、本実施形態に係る燃焼設備200のブロック図である。本実施形態に係る燃焼設備200は、分級装置70等を備えていることを除き、基本的には第1実施形態に係る燃焼設備100と同じ構成を備えている。以下では、本実施形態の分級装置70を中心に説明し、図2において図1と同一又は相当する要素には同じ符号を付して、第1実施形態と重複する説明は省略する。
(Second Embodiment)
Next, the combustion facility 200 according to the second embodiment of the present invention will be described. FIG. 2 is a block diagram of the combustion facility 200 according to the present embodiment. The combustion facility 200 according to the present embodiment basically has the same configuration as the combustion facility 100 according to the first embodiment, except that the classification device 70 and the like are provided. Below, it demonstrates centering on the classification apparatus 70 of this embodiment, in FIG. 2, the same code | symbol is attached | subjected to the element which is the same as that of FIG. 1, or equivalent, and the description which overlaps with 1st Embodiment is abbreviate | omitted.
 分級装置70は、捕集部40が捕集した捕集物を粒径に応じて振り分ける(分級する)装置である。本実施形態の分級装置70では、粒径が100μmよりも大きい粗粒捕集物と、粒径が100μm以下の細粒捕集物の少なくとも2種類に振り分ける。捕集部40が捕集した捕集物のうち、100μmを超える粒子は、ばいじんがほとんどのため、この粒子は「粗粒捕集物」に振り分けられる。また、腐食性物質を吸着しなかった吸着材は、粒径が100μmよりも小さいため、「細粒捕集物」に振り分けられる。 The classifying device 70 is a device that sorts (classifies) the collected matter collected by the collecting unit 40 according to the particle size. In the classification device 70 of the present embodiment, the classification is made into at least two types: a coarse particle collection having a particle size larger than 100 μm and a fine particle collection having a particle size of 100 μm or less. Of the collected material collected by the collection unit 40, particles having a particle size exceeding 100 μm are mostly soot, and thus these particles are distributed to “coarse particles”. Further, since the adsorbent that has not adsorbed the corrosive substance has a particle size smaller than 100 μm, it is distributed to “fine-grained collection”.
 また、捕集部40が捕集した捕集物のうち、分級装置70で振り分けられた粗粒捕集物は廃棄される。一方、分級装置70で振り分けられた細粒捕集物は、搬送路80を介して吸着材供給部30に搬送される。このように、本実施形態の吸着材供給部30は、細粒捕集物に振り分けられた捕集物、つまり腐食性物質を吸着しなかった吸着材(腐食性物質を吸着する能力を有する吸着材)の一部を回収する。そして、吸着材供給部30は、回収した吸着材を排ガス流路60へ供給する。 Also, of the collected material collected by the collection unit 40, the coarse-grained material distributed by the classification device 70 is discarded. On the other hand, the fine particles collected by the classification device 70 are conveyed to the adsorbent supply unit 30 via the conveyance path 80. As described above, the adsorbent supply unit 30 according to the present embodiment is configured to collect the collected substances distributed into the fine-grained collection articles, that is, adsorbents that have not adsorbed the corrosive substances (adsorption having the ability to adsorb corrosive substances) Part of the material is collected. Then, the adsorbent supply unit 30 supplies the collected adsorbent to the exhaust gas passage 60.
 このように、本実施形態に係る燃焼設備200は、腐食性物質を吸着しなかった吸着材を再利用するように構成されている。よって、本実施形態によれば、吸着材を無駄なく使用することができ、吸着材の使用量を抑えることができる。 Thus, the combustion facility 200 according to the present embodiment is configured to reuse the adsorbent that has not adsorbed corrosive substances. Therefore, according to this embodiment, the adsorbent can be used without waste, and the amount of adsorbent used can be suppressed.
 (第3実施形態)
 次に、本発明の第3実施形態に係る燃焼設備300について説明する。図3は、本実施形態に係る燃焼設備300のブロック図である。本実施形態に係る燃焼設備300は、捕集部40の設置位置を除き、基本的には第1実施形態に係る燃焼設備100と同じ構成を備えている。以下では、本実施形態の捕集部40の設置位置を中心に説明し、図3において図1と同一又は相当する要素には同じ符号を付して、第1実施形態と重複する説明は省略する。
(Third embodiment)
Next, a combustion facility 300 according to a third embodiment of the present invention will be described. FIG. 3 is a block diagram of the combustion facility 300 according to the present embodiment. The combustion facility 300 according to the present embodiment basically has the same configuration as the combustion facility 100 according to the first embodiment, except for the installation position of the collection unit 40. Below, it demonstrates centering on the installation position of the collection part 40 of this embodiment, the same code | symbol is attached | subjected to the element which is the same as that of FIG. 1, or is equivalent in FIG. 3, and 1st Embodiment and the description which overlaps are abbreviate | omitted. To do.
 本実施形態のボイラ20は、燃焼炉10で生成された排ガスが流れる排ガス流路21と、排ガス流路21の内壁に設けられた放射伝面22と、排ガス流路21内に設けられた過熱器管23と、を有している。排ガス流路21を通過した排ガスは、図外の節炭器を経て排ガス処理設備へと排出される。ボイラ20の放射伝面22には、内部に複数の水管が設けられており、水管に供給された水は水管を通過する間に蒸気となる。過熱器管23では、放射伝面22の水管で生成された蒸気を過熱して過熱蒸気とし、図外のタービン発電機に供給する。 The boiler 20 of this embodiment includes an exhaust gas passage 21 through which exhaust gas generated in the combustion furnace 10 flows, a radiation transmission surface 22 provided on the inner wall of the exhaust gas passage 21, and an overheat provided in the exhaust gas passage 21. Instrument tube 23. Exhaust gas that has passed through the exhaust gas passage 21 is discharged to an exhaust gas treatment facility through a economizer (not shown). The radiation transmission surface 22 of the boiler 20 is provided with a plurality of water pipes therein, and the water supplied to the water pipe becomes steam while passing through the water pipe. In the superheater pipe 23, the steam generated in the water pipe of the radiation transmission surface 22 is superheated to be superheated steam, which is supplied to a turbine generator (not shown).
 図3に示すように、本実施形態に係る燃焼設備300では、捕集部40はボイラ20内の過熱器管23よりも上流(ボイラ20の上流部分)に設けられている。このような構成によれば、捕集部40は過熱器管23よりも上流で吸着材とともに吸着材に吸着した腐食性物質を捕集することができる。そのため、少なくとも過熱器管23に腐食性物質が流入するのを抑制することができ、ひいては過熱器管23における腐食の進行を抑制することができる。 As shown in FIG. 3, in the combustion facility 300 according to this embodiment, the collection unit 40 is provided upstream of the superheater pipe 23 in the boiler 20 (upstream portion of the boiler 20). According to such a structure, the collection part 40 can collect the corrosive substance adsorb | sucked by the adsorbent with the adsorbent upstream from the superheater pipe | tube 23. FIG. Therefore, at least the corrosive substance can be prevented from flowing into the superheater tube 23, and thus the progress of corrosion in the superheater tube 23 can be suppressed.
10 燃焼炉
20 ボイラ
22 過熱器管
30 吸着材供給部
40 捕集部
50 腐食センサ
60 排ガス流路
70 分級装置
80 搬送路
100、200、300 燃焼設備
DESCRIPTION OF SYMBOLS 10 Combustion furnace 20 Boiler 22 Superheater pipe 30 Adsorbent supply part 40 Collection part 50 Corrosion sensor 60 Exhaust gas flow path 70 Classifier 80 Conveyance path 100, 200, 300 Combustion equipment

Claims (5)

  1.  燃料を燃焼させる燃焼炉と、
     前記燃焼炉で発生した排ガスが供給され、内部に過熱器管を有するボイラと、
     気体状の腐食性物質を吸着可能な固形の吸着材を前記燃焼炉と前記ボイラをつなぐ排ガス流路内に供給する吸着材供給部と、
     前記排ガス流路に又は前記ボイラ内の前記過熱器管よりも上流に設けられ、前記吸着材とともに前記吸着材に吸着した気体状の腐食性物質を捕集する捕集部と、を備えた燃焼設備。
    A combustion furnace for burning fuel;
    Exhaust gas generated in the combustion furnace is supplied, a boiler having a superheater tube inside,
    An adsorbent supply section for supplying a solid adsorbent capable of adsorbing a gaseous corrosive substance into an exhaust gas flow path connecting the combustion furnace and the boiler;
    Combustion provided with a collecting part that is provided upstream of the superheater tube in the boiler or in the boiler and collects gaseous corrosive substances adsorbed on the adsorbent together with the adsorbent. Facility.
  2.  前記腐食性物質は、NaCl、KCl、PbCl、ZnCl、NaS、KS、PbS、及びZnSのうち少なくとも1つを含むものである、請求項1に記載の燃焼設備。 The combustion equipment according to claim 1, wherein the corrosive substance includes at least one of NaCl, KCl, PbCl 2 , ZnCl 2 , Na 2 S, K 2 S, PbS, and ZnS.
  3.  前記吸着材は、ゼオライト、ドロマイト、カオリナイト、又はこれらを主成分とする化合物である、請求項1又は2に記載の燃焼設備。 The combustion facility according to claim 1 or 2, wherein the adsorbent is zeolite, dolomite, kaolinite, or a compound containing these as a main component.
  4.  前記吸着材供給部は、前記燃焼炉で発生した排ガス中の腐食性物質の量が多くなるに従って、前記排ガス流路に供給する吸着材の量を増加させる、請求項1乃至3のうちいずれか一の項に記載の燃焼設備。 The adsorbent supply unit increases the amount of adsorbent supplied to the exhaust gas passage as the amount of corrosive substances in the exhaust gas generated in the combustion furnace increases. The combustion equipment according to one item.
  5.  前記捕集部が捕集した捕集物を粒径に応じて振り分ける分級装置をさらに備え、
     前記吸着材供給部は、前記分級装置が振り分けた粒径が一定以下である細粒捕集物を回収し、回収した当該細粒捕集部を前記排ガス流路内に供給する、請求項1乃至4のうちいずれか一の項に記載の燃焼設備。
    Further comprising a classification device that sorts the collected matter collected by the collecting unit according to the particle size;
    The adsorbent supply unit collects a fine particle collection product having a particle size of a certain value or less distributed by the classifier, and supplies the collected fine particle collection unit into the exhaust gas passage. 5. The combustion facility according to any one of items 4 to 4.
PCT/JP2016/089104 2015-12-28 2016-12-28 Combustion equipment WO2017115845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680076322.1A CN108369005A (en) 2015-12-28 2016-12-28 Combustion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-256546 2015-12-28
JP2015256546A JP2017120151A (en) 2015-12-28 2015-12-28 Combustion facility

Publications (1)

Publication Number Publication Date
WO2017115845A1 true WO2017115845A1 (en) 2017-07-06

Family

ID=59227374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089104 WO2017115845A1 (en) 2015-12-28 2016-12-28 Combustion equipment

Country Status (3)

Country Link
JP (1) JP2017120151A (en)
CN (1) CN108369005A (en)
WO (1) WO2017115845A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678452B2 (en) * 2015-12-28 2020-04-08 川崎重工業株式会社 Boiler and corrosion control method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471981U (en) * 1971-01-19 1972-08-22
JPS5645744B2 (en) * 1978-07-20 1981-10-28
JPS58227B2 (en) * 1973-12-18 1983-01-05 富士通株式会社 Kotai Satsuzou Sochi
JPH04110017A (en) * 1990-08-30 1992-04-10 Babcock Hitachi Kk Stack gas desulfurization method
JPH06165914A (en) * 1992-11-30 1994-06-14 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas for waste combustion
JP2000161638A (en) * 1998-12-01 2000-06-16 Nkk Corp Method and device for processing waste
JP2001212427A (en) * 1999-11-26 2001-08-07 Ngk Insulators Ltd Method for treating combustion waste gas
JP2003222303A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method of preventing stain of surface of heat transfer tube
JP2006105578A (en) * 2004-09-07 2006-04-20 Kurita Water Ind Ltd Treatment method of exhaust gas
JP2006308179A (en) * 2005-04-27 2006-11-09 Sumitomo Heavy Ind Ltd Corrosion prevention device and corrosion prevention method for boiler
JP2012220064A (en) * 2011-04-06 2012-11-12 Nippon Steel Engineering Co Ltd Low temperature corrosion prevention method for waste heat boiler of waste treatment facility, and the waste heat boiler
JP2014129914A (en) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd Boiler with corrosion suppression device and corrosion suppression method of boiler
JP2015158496A (en) * 2015-02-25 2015-09-03 Jfeエンジニアリング株式会社 Device for manufacturing cement solidified material of radioactive cesium-containing fly ash

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645744A (en) * 1979-09-20 1981-04-25 Hitachi Ltd Exhaust gas desulfurization process for coal boiler
JPS56169147U (en) * 1980-05-16 1981-12-14
IN188644B (en) * 1995-08-21 2002-10-26 Abb Research Ltd
JP2012220264A (en) * 2011-04-06 2012-11-12 National Institute For Materials Science Method for manufacturing evaluation sample piece, method for manufacturing inclusion body evaluation sample piece, and method for evaluating cell invasive properties into madreporic body
CN202724972U (en) * 2012-06-04 2013-02-13 中国华能集团清洁能源技术研究院有限公司 Device capable of removing volatile trace element of coal-fired flue gas

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471981U (en) * 1971-01-19 1972-08-22
JPS58227B2 (en) * 1973-12-18 1983-01-05 富士通株式会社 Kotai Satsuzou Sochi
JPS5645744B2 (en) * 1978-07-20 1981-10-28
JPH04110017A (en) * 1990-08-30 1992-04-10 Babcock Hitachi Kk Stack gas desulfurization method
JPH06165914A (en) * 1992-11-30 1994-06-14 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas for waste combustion
JP2000161638A (en) * 1998-12-01 2000-06-16 Nkk Corp Method and device for processing waste
JP2001212427A (en) * 1999-11-26 2001-08-07 Ngk Insulators Ltd Method for treating combustion waste gas
JP2003222303A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method of preventing stain of surface of heat transfer tube
JP2006105578A (en) * 2004-09-07 2006-04-20 Kurita Water Ind Ltd Treatment method of exhaust gas
JP2006308179A (en) * 2005-04-27 2006-11-09 Sumitomo Heavy Ind Ltd Corrosion prevention device and corrosion prevention method for boiler
JP2012220064A (en) * 2011-04-06 2012-11-12 Nippon Steel Engineering Co Ltd Low temperature corrosion prevention method for waste heat boiler of waste treatment facility, and the waste heat boiler
JP2014129914A (en) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd Boiler with corrosion suppression device and corrosion suppression method of boiler
JP2015158496A (en) * 2015-02-25 2015-09-03 Jfeエンジニアリング株式会社 Device for manufacturing cement solidified material of radioactive cesium-containing fly ash

Also Published As

Publication number Publication date
CN108369005A (en) 2018-08-03
JP2017120151A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
Elled et al. The fate of trace elements in fluidised bed combustion of sewage sludge and wood
JP2006000847A5 (en)
MXPA00002999A (en) Use of sulfide-containing gases and liquors for removing mercury from flue gases.
Poškas et al. Investigation of warm gas clean-up of biofuel flue and producer gas using electrostatic precipitator
Cheng et al. Comparison of sewage sludge mono-incinerators: Mass balance and distribution of heavy metals in step grate and fluidized bed incinerators
WO2017115845A1 (en) Combustion equipment
WO2008144122A1 (en) Oil shale based method and apparatus for emission reduction in gas streams
JP6808711B2 (en) Injection of adsorbent into the piping that supplies the wet scrubber to control mercury release
Dziok et al. Assessment of mercury emissions into the atmosphere from the combustion of hard coal in a home heating boiler
Mukhopadhyay et al. Control of industrial air pollution through sustainable development
JP6046886B2 (en) BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD
AU2016200890A1 (en) Method and apparatus for removing mercury from a flue gas stream
JP6078149B2 (en) Boiler corrosion inhibitor, boiler and method for inhibiting corrosion of boiler
JP4448053B2 (en) Boiler corrosion prevention apparatus and corrosion prevention method
JP6305196B2 (en) Cement kiln exhaust gas treatment equipment
Hoffmann et al. Thermal treatment of harzardous waste for heavy metal recovery
TW202124029A (en) Exhaust gas treatment device and exhaust gas treatment method
JP2007325989A (en) Treatment method and system of exhaust combustion gas
Somoano Minimization of Hg and trace elements during coal combustion and gasification processes
JP5113788B2 (en) Exhaust gas treatment system
CN108368998B (en) Boiler and corrosion-resistant method
Benson et al. Large-scale mercury control technology testing for lignite-fired utilities-oxidation systems for wet FGD
JP6339360B2 (en) BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD
US10471386B2 (en) Method and apparatus for removing mercury from a flue gas stream
JP5974126B1 (en) Energy recovery equipment and waste incineration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881819

Country of ref document: EP

Kind code of ref document: A1