JP3674401B2 - Heat exchanger tube for heat exchange - Google Patents

Heat exchanger tube for heat exchange Download PDF

Info

Publication number
JP3674401B2
JP3674401B2 JP22859099A JP22859099A JP3674401B2 JP 3674401 B2 JP3674401 B2 JP 3674401B2 JP 22859099 A JP22859099 A JP 22859099A JP 22859099 A JP22859099 A JP 22859099A JP 3674401 B2 JP3674401 B2 JP 3674401B2
Authority
JP
Japan
Prior art keywords
heat
tube
thermal expansion
ceramic
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22859099A
Other languages
Japanese (ja)
Other versions
JP2001056197A (en
Inventor
隆 能登
浩明 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP22859099A priority Critical patent/JP3674401B2/en
Priority to PCT/JP2000/005205 priority patent/WO2001013057A1/en
Priority to EP00949969A priority patent/EP1122506A1/en
Priority to KR1020017002406A priority patent/KR20010072966A/en
Priority to TW089116086A priority patent/TW546454B/en
Publication of JP2001056197A publication Critical patent/JP2001056197A/en
Application granted granted Critical
Publication of JP3674401B2 publication Critical patent/JP3674401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみ、石炭、下水処理、製紙スラッジ、その他産業廃棄物の高温燃焼排ガスから、蒸気や空気等の流体を介して熱エネルギを回収し発電を行う熱回収・利用システムにおける熱交換用電熱管に関する。
【0002】
【従来の技術】
都市ごみや産業廃棄物を焼却した時に発生する排ガスは、塩化水素ガスやナトリウム、カリウム等を含むNaCl,KClやNa2SO4他の塩基性塩を含んでいる。塩化水素や塩基性塩の腐食性は、その温度が高温になればなるほど大きくなる。そのため、都市ごみや産業廃棄物の燃焼排ガスから熱回収を行う廃熱ボイラにおいて、その熱交換チューブ内を流れる蒸気は、塩化水素や塩基性塩による腐食損傷の被害を少なく抑えるために、一般に、300℃以下に抑えられている。
【0003】
そこで、この腐食環境から、より高温の熱エネルギを回収するため、特開平10−274401号公報に開示されているように、耐熱金属からなるボイラチューブの外表面を、溶射法、物理的蒸着法または化学的蒸着法によるセラミックス皮膜で被覆して、熱交換チューブの耐高温腐食性を向上させた方法が考え出された。ボイラチューブは、金属を基体とするため、熱交換用チューブに必要な靭性を有し、そして、その表面に、一般に高温強度に優れ塩類との濡れ性も低くて卓抜した高温腐食性能を示すセラミックスを用いて、高温排ガス中における高度の腐食抵抗性を確保した。
【0004】
【発明が解決しようとする課題】
しかし、上記のような従来の熱交換チューブでは、セラミックスと金属が溶射法や蒸着法により接着されているため、長時間、高温腐食雰囲気下に曝されると、セラミックスと金属の熱膨張率差の影響により、セラミックスが金属表面から剥離しやすくなる。そして、セラミックスが剥がれたところの金属部が腐食し始める。そのため、この方法は、熱交換チューブの腐食を確実に防止する方法としては不十分であるという問題があった。
【0005】
そこで、本発明は、熱伝導率を低下させることなく熱膨張差によるセラミックスと金属の剥離問題を解決するためになされたものであり、高温腐食雰囲気下に長時間曝しても、金属面が腐食することなく、従来のものよりも高温の熱回収ができる熱交換用伝熱管を得ることを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る熱交換用伝熱管は、高温ガス雰囲気中に設けられ 前記高温ガスから伝熱管内の被加熱流体に熱交換をする熱交換用伝熱管において、被加熱流体が流れる管は耐熱合金からなり、該耐熱合金管の外側を熱膨張緩衝材を介してセラミックス合金複合材料からなるカバー材で覆い、前記熱膨張緩衝材は、前記セラミックス合金複合材料製のカバー材および/または前記耐熱合金管に対し非接着構造で、前記耐熱合金管と前記熱膨張緩衝材の少なくとも一部が接触し、さらに、前記熱膨張緩衝材と前記セラミックス合金複合材料製カバー材の少なくとも一部が接触する三層構造からなり、前記カバー材を構成するセラミックス合金複合材料はAlとAlNを含み、AlNを1 wt %以上90 wt %以下、(A1+AlN+AlON)の合計割合が50 wt %以上100 wt %以下であることを特徴としている(請求項1)。
【0007】
このように構成することにより、耐熱合金管とセラミックス合金複合材料製のカバー材は、高温雰囲気場に曝され、それぞれが管軸方向に熱膨張しても接着されていないため、耐熱合金管とセラミックス合金複合材料製のカバー材が相互の剪断力によって損傷することがない。また、耐熱合金管が半径方向に膨張しても、中間層の熱膨張緩衝材によって半径方向への伸びは吸収され、セラミックス合金複合材料製のカバー材が損傷することがない。さらに、熱膨張緩衝材とセラミックス合金複合材料製カバー材、あるいは、熱膨張緩衝材と耐熱合金管は接触していても接着していない構造となっているため、繰り返しあるいは長時間の熱膨張変形に関わる熱衝撃に強い構造となっている。よって、この三層構造によって、セラミックス合金複合材料製カバー材の外側に存在する高温流体の熱エネルギを、耐熱合金管の内部を流れる被加熱流体に、長時間安定して伝熱することができる。
【0008】
熱伝達率に関して、本発明の構造は、耐熱合金管と熱膨張緩衝材の少なくとも一部が接触し、さらに、熱膨張緩衝材とセラミックス合金複合材料製カバー材の少なくとも一部が接触する三層構造からなっているため、セラミックス合金複合材料製カバー材と耐熱合金管の間の熱伝導率が低下することを防ぐ。セラミックス合金複合材料製カバー材の内表面のほぼ全面、および、耐熱合金管の外表面のほぼ全面が中間層となる熱膨張緩衝材に接触することになれば、熱伝導率向上の点でより好ましい。もし、熱膨張緩衝材が無く、セラミックス合金複合材料製カバー材と耐熱合金管が接触することなく完全に離れていれば、すなわち間隙を有していれば、そこに気体の断熱層が形成され熱伝導率が急激に低下するので好ましくない。
【0009】
ここで、被加熱流体が流れる管体の材質である耐熱合金とは、例えば、ボイラ用炭素鋼・合金鋼、またはステンレス鋼、耐熱鋼、Ni系/Co系耐熱合金(インコネル、ハステロイ、ステライト等)などであり、このほか高融点金属であるクロム等も好適である。さらにまた、カバー材を構成するセラミック合金複合材料とは、酸化物、炭化物、窒化物、硼化物、珪化物、炭素等、およびそれらの混在物と、広範囲の選択が可能である。例としてあげれば、酸化物としてAl23やサイアロン(SiAlNO)、炭化物としてSiCやB4C,窒化物としてAlN,Si34,硼化物としてTiB2,珪化物としてMoSi等が適当である。
【0010】
また、本発明における前記熱膨張緩衝材は、硼素もしくは炭素またはアルミニウムを主成分とする繊維、粉体、フィルム、テープ等の材料を使用して、前記耐熱合金管の外表面または前記セラミックス合金複合材料製カバー材の内表面に形成された、空隙を有する熱膨張吸収層からなることを特徴としている(請求項2)。
【0011】
この構成により、耐熱合金管の管軸方向および半径方向の熱膨張に対して、吸収層の空隙の容積率が変化するため、熱膨張緩衝材が耐熱合金管とセラミックス合金複合材料製カバー材の熱膨張差を吸収することになり、熱衝撃によるセラミックス合金複合材料製カバー材の損傷を防ぐことができる。空隙を有する熱膨張吸収層は、耐熱合金管の外表面またはセラミックス合金複合材料製カバー材の内表面のいずれか一方側に形成されればよい。このような熱膨張吸収層は、硼素もしくは炭素またはアルミニウムを主成分とする繊維、粉体、フィルム、テープ等の材料を使用することによって形成することができる。
【0012】
また、本発明における前記カバー材を構成するセラミックス合金複合材料はAlとAlNを含み、AlNを1wt%以上90wt%以下、(Al+AlN+AlON)の合計割合が50wt%以上100wt%以下であることを特徴としている(請求項)。
【0013】
窒化アルミニウムであるAlNは、セラミックス材料の中でも、空気酸化に対する耐食性、溶鋼等の各種溶融金属に対する耐食性に優れた材料で、不活性雰囲気では、高炉スラグ等の各種溶融スラグに対する耐食性にも優れている。また、硬度が比較的高いので耐摩耗性にも優れ、さらに、極めて高い熱伝導度、低い熱膨張率、比較的低い弾性率を有するので熱衝撃に比較的強い特徴も持っている。このように、AlNは優れた耐食性と耐摩耗性、比較的優れた耐熱衝撃性を併せ持つ材料である。
【0014】
AlNと共に、金属アルミニウムであるAlも、熱伝導の極めてよい物質であり、熱衝撃の緩和に有利な金属であり、伝熱管の構成因子としては適している。セラミックス合金複合材料製カバー材の製造過程で、Alの多くは雰囲気のN2と反応してAlNに変わり、AlN中に未反応のAlが分散した構成になり、AlNが粒子間の結合力を強化する。
【0015】
この構成により、焼結体は熱衝撃を受けても、AlNが形状変形を防ぎ、AlNに囲まれたAlが熱衝撃を緩和する機能を持つ。そのため、この機能を維持するためには、AlNを少なくとも1wt%以上含有しなければならない。AlNの含有量が、1wt%未満では粒子間の結合力が小さくて不十分となり、また90wt%を超えるとセラミックス合金複合材料の特性がセラミックスに近づき、脆くなるため好ましくない。したがって、AlNの含有重量割合は1wt%以上90wt%以下とする。
【0016】
また、前記セラミックス合金複合材料には、AlやAlONがAlN中に分散している。(Al+AlN+AlON)の含有重量割合が、50wt%以上100wt%以下であれば、前記セラミックス合金複合材料製カバー材は熱変形特性を有しながら、高い熱衝撃性を維持することができる。また、アルミニウムを含む窒化物は、高温排ガス中に含まれている酸化物のダストに対する濡れ性が悪いので、相当量の濃度が含有されていればセラミックス合金複合材料製カバー材にダストが付き難くなるという特性を持っている。したがって、(Al+AlN+AlON)の含有重量割合が、50wt%以上有れば、そのダスト付着させない特性が有効に発揮することができる。また、本伝熱管の製造においてAlONを無くし、AlとAlNだけでその重量割合が50wt%以上100wt%以下であってもかまわない。
【0017】
なお、ここで、AlONとはAl,O,Nの固液体の総称で、例としては、Al1115N,AlON,Al1982884,Al2739N,Al1083,Al937,SiAl727,Si3Al34.55が挙げられる。
【0018】
また、本発明においては、前記耐熱合金管の外表面に硼素あるいは炭素を含む化合物からなる離型剤を塗布することを特徴としている(請求項)。
【0019】
離型剤を塗布することにより、耐熱合金管とセラミックス合金複合材料製カバー材間のすべりを良くし、両部材の熱膨張差による伸びがより滑らかになる。
【0020】
さらにまた、本発明においては、前記セラミックス合金複合材料の気孔率が2%以上60%以下であることを特徴としている(請求項)。
【0021】
セラミックス合金複合材料製カバー材の製造において、気孔率を2%未満にするためには、その製造過程において高温高圧雰囲気が必要になり、その製造コストが急激に上昇する。セラミックス合金複合材料中の気孔は、単純な円孔ではなくいびつな形をしている。そのサイズは、線間距離でサブミクロン以下のオーダーから中には数百ミクロンオーダーまである。
このような気孔を持つセラミックス合金複合材料において、気孔率が60%より大きいと塩基性塩を含むダストがセラミックス合金複合材料の中に浸透しやすくなり、耐熱合金管にまでその腐食影響が及ぶ。したがって、気孔率の下限は2%、上限は60%が好ましい。
【0022】
【発明の実施の形態】
図1は、本発明の実施の形態に係る熱交換用伝熱管の断面を示す(一部拡大断面図を併記してある)。耐熱合金からなる管体1の外側を熱膨張緩衝材2を介してセラミックス合金複合材料からなるカバー材3で覆い、これら3つの部材1、2、3で三層構造とするとともに、熱膨張緩衝材2はセラミックス合金複合材料製のカバー材3および/または耐熱合金管1に対して非接着構造とするものである。
【0023】
セラミックス合金複合材料からなるカバー材3の外表面外側を高温ガスが流れ、耐熱合金管1の内部を被加熱流体が通る。高温ガスの温度は400℃〜1200℃で、ガス雰囲気条件によって、カバー材3を構成するセラミックス合金複合材料が選択される。
【0024】
高温排ガス中には、HClおよび/またはSOxが含まれている。排ガス処理ラインに排ガス温度300℃以上の高温集塵装置が設置されているとき、除塵後の高温排ガスにも本発明の熱交換用伝熱管を用いることができる。本発明の熱交換用伝熱管内を流れる被加熱流体は、空気、水蒸気、CO2を2〜25vol%(湿ベース)含む燃焼排ガスを表し、本発明により、空気と前記燃焼排ガスは最高800℃、水蒸気は約550℃まで加熱することができる。また、被加熱流体は最高100ataまで加圧できることを確認した。耐熱合金管1の肉厚は3〜10mm,熱膨張緩衝材2の厚みは0.1〜8mmが好ましく、またセラミックス合金複合材料製カバー材3の厚みは、3〜20mmが好ましい。耐熱合金管1、熱膨張緩衝材2、セラミックス合金複合材料製カバー材3の厚みをそれぞれ上限値より大きくすると、熱交換器として実用上設計意義のある熱伝達率を得られなくなる。また、それぞれの下限値より小さくすると、伝熱管として熱衝撃に耐えられなくなり、破損しやすくなる。
【0025】
セラミックス合金複合材料製カバー材3は、図1に示すように、熱膨張緩衝材2に包まれた耐熱合金管1の外側を覆い、セラミックス合金複合材料製カバー材3と耐熱合金管1の間には熱膨張緩衝材2が介在した構造となっている。本発明の熱交換用伝熱管は、耐熱合金管1の外表面にセラミックスや耐食性合金を溶射や蒸着ほかの方法によって接着する方法は用いず、セラミックス合金複合材料製カバー材3をスリーブのように覆った形状を有しているので、高温に曝され耐熱合金管1が管軸方向および半径方向に膨張しても、熱膨張緩衝材2によってそれらが吸収され、セラミックス合金複合材料製カバー材3を損傷させることがない構造となっている。
なお、セラミックス合金複合材料製カバー材3および耐熱合金管1は、真円の必要はなく、偏心した円、楕円、角型、またはいびつな形状でも構わない。また、耐熱合金管1とセラミックス合金複合材料製カバー材3が、同心円である必要もない。さらに、耐熱合金管1の外側の表面粗さは、粗くても滑らかでも構わない。
【0026】
耐熱合金管1の外表面と熱膨張緩衝材2の内表面、および、セラミックス合金複合材料製カバー材3の内表面と熱膨張緩衝材2の外表面は、接触面積が多いほど、外部を流れる高温排ガスから耐熱合金管1内の被加熱流体への熱伝達は大きくなる。
【0027】
熱膨張緩衝材2には、硼素もしくは炭素またはアルミニウムを主成分とする材料を用いる。これらの材料を用いて、耐熱合金管1の外表面、あるいは、セラミックス合金複合材料製カバー材3の内表面に、空隙を有する熱膨張吸収層を形成する。この熱膨張吸収層を形成する材料としては、例えば炭素繊維や硼素、炭素を含むフィルム、あるいはアルミ箔などがよい。また、他に、プラスチックの微粉を耐熱合金管1に散布するか、あるいは炭素を含むテープの類を耐熱合金管1に巻きつけ、本発明の伝熱管を製造する熱工程でそれらの成分から低沸点媒体を揮発させ、炭素主体の材料を熱膨張緩衝材としても機能的には構わない。熱膨張緩衝材2は、耐熱合金管1とセラミックス合金複合材料製カバー材の間の熱膨張差を吸収するために用いるので、熱膨張緩衝材2には空隙があり、その容積率が変化することによってこの機能を果たす。
【0028】
セラミックス合金複合材料の中で、アルミニウム元素を主体とするAIN+Al+AlONから構成される材料は、性能面において本発明の伝熱管に最も好ましい。なぜなら、本発明では、セラミックス合金複合材料に、セラミックス特性の高温耐腐食性と合金特性の延性を望んでいるが、この点において、アルミニウム元素は他のセラミックス合金複合材料を成す主元素に比べ、延性の点で最適である。また、耐熱合金とセラミックス合金複合材料の接触面も、延性の優れたアルミニウム系セラミックス合金複合材料を使うことにより、膨張伸縮時に破損する割合が他のセラミックス合金複合材料より少なくなるというメリットを持っている。
【0029】
このアルミニウム元素を主体とするセラミックス合金複合材料は、例えば、低純度Al源粉末と高純度Al源粉末との混合粉末とを加圧成形し、この成形体を焼結することによって得られる。低純度Al源粉末は、例えば、金属AlまたはAl合金粉未で、Si、Mg等の合金元素を含むこともある。高純度Al源粉末は、例えば、Alを90wt%以上含む。これらの混合粉末を成形して得られた充填体を窒素雰囲気中で加熱する。粉末中のAlが溶融し(純粋のAlの融点は660℃であるが、Al−Mg合金は最大450℃まで融点が降下し、Al−Si合金では最大577℃まで融点が降下する)、680℃に達すると、ある量のAlは、雰囲気のN2と反応してAINに変わり、AIN中に少量の未反応のAlが分散した構成となる。セラミックス特性を有するAlNがAlの回りに皮膜を作るので、製品化されたAIN+Al+AlONのセラミックス合金複合材料製カバー材3は、Alの融点以上の高温に曝されても溶けてその形状を崩すことはない。また、成形時および加熱時の温度や圧力の設定により窒化の度合いを制御することができるので、高温排ガスと回収熱量の条件に応じて、セラミックス特性を強くするAIN濃度を調整することができる。もし、AINあるいはAlの濃度を成形、加熱時に設定値にすることができなければ、AINあるいはAlをセラミックス合金複合材料と耐熱合金の間に供給しても良い。
【0030】
アルミニウム元素を主体とするセラミックス合金複合材料には、AlN、Al以外にも耐熱性のよい物質であれば配合されてもよい。すなわち、TiO2,ZrO2,Cr23,Al23,SiO2,Y23,CeO2,Sc23の中から選択された1種または複数の酸化物、そしてまた、これらの酸化物中の少なくとも一つを含む複合酸化物が入ってもよい。また、BN,MgB2,CaB6,TiB2,ZrB2,AlB2の中から選択された1種または複数のホウ化物が入ってもよい。また、B4C,TiC,ZrC,Cr32,Al43,SiCの中から選択された1種または複数の炭化物が入ってもよい。また、TiN,ZrN,Cr2N,Si34の中から選択された1種または複数の窒化物が入ってもよい。Si22Oに代表される酸窒化物が入ってもよい。組成について、この発明ではいかなる組成であってもよい。また、AlONのAlの一部がSiで置換されてもよい。ただし、Si/Alのモル比で1.0以下であることが耐食性の観点から好ましい。
【0031】
高温に曝されたとき、耐熱合金管1の外表面とセラミックス合金複合材料製カバー材の内表面の相互のすべりを良くするために、耐熱合金管1の外表面に、BNあるいはB4C等の硼素あるいは炭素を含む化合物を塗布する。これは、セラミックス系材料と金属の接着をより効果的に防ぎ、それぞれのすべりを良好にする離型剤として機能する。塗布する厚みは、1〜60ミクロンが好ましい。
【0032】
高温排ガス中には、腐食性物質として、HClやSOxのガス体とNaClやKC1等の塩基性塩からなる凝縮体がある。この凝縮体は、小さいものでサブミクロンオーダー、大きいもので凝集体を形成する20ミクロン程度の大きさを持つ。本発明の熱交換用伝熱管を低コストに抑えるためには、セラミックス合金複合材料の気孔率を2%以上にすることが有効であるが、気孔率を大きくしすぎると、前記腐食性凝縮体がセラミックス合金複合材料の中に侵食し易くなり、経験的に60%より気孔率を大きくすると、本発明の効果を発揮することができないことが分かった。
【0033】
本発明による熱交換用伝熱管の側面形状およびその断面を、図2に示す。高温ガスが流れる雰囲気に熱交換用伝熱管はセットされ、被加熱流体は、耐熱合金管1の内部を一方端から入り他方端へ抜ける構造になっている。基本的には、高温ガスに曝される耐熱合金管1の外周は、熱膨張緩衝材2を介してセラミックス合金複合材料製カバー材3によって覆われている。熱膨張緩衝材2がセラミックス合金複合材料製カバー材3および/または耐熱合金管1に対して非接着構造となっていることは前述したとおりである。
【0034】
被加熱流体の管内流速は、これまでの廃棄物燃焼や石炭燃焼のボイラに準じるが、目的によっては、その流速を低速側や高速側に変化させることもある。熱交換用伝熱管の被加熱流体が流れる耐熱合金管1の管径は、被加熱流体が流れればいくらでもよいが、その中でも、排ガス中に管全周を曝すときは15Aから40Aにすることが製作上好ましい。熱交換用伝熱管の長さは、1mから6mが好ましい。熱交換用伝熱管が長くなると耐熱合金管1のたわみ量が大きくなり、カバー材3のセラミックス合金複合材料の割れが心配されるが、この場合、セラミックス合金禎合材料製カバー材3を外側から支える支柱を設け、耐熱合金管1のたわみ量を小さくすれば問題は解決される。また、図2からわかるように、短い伝熱管のセラミックス合金複合材料に覆われていない耐熱合金管1の両端を溶接で継ぎ足すことによって、長い伝熱管を作ることができる。
【0035】
また、本発明から得られる熱交換用伝熱管の別の構成例を図3、図4に示す。図3は、熱交換伝熱管の一端都を閉じ、被加熱流体を耐熱合金管1内に設けられた耐熱チューブ4を通じて流し、耐熱チューブ4と耐熱合金管1の間隙内を被加熱流体が折り返し流れるようにして加熱する構造で、被加熱流体に熱を与える高温ガスに曝される部分はすべてセラミックス合金複合材料製のカバー材3によって覆われている。この形式の場合、熱交換用伝熱管の外径は、φ30〜200mmが好ましい。
【0036】
図4は、被加熱流体が流れる耐熱合金管1をU字状に形成し、その曲がり部を含む外側部分をセラミックス合金複合材料製のカバー材3で覆った熱交換用伝熱管である。U字状の曲がり部は、直管形状の熱交換用伝熱管に比べ、耐熱合金とセラミックス合金複合材料の熱膨張変形が複雑なため、より多くの空隙5が必要になる。
【0037】
【実施例】
(1)都市ゴミや産業廃棄物を処理するゴミ焼却パイロットプラントにおいて、焼却炉を出た約950℃から約650℃の高温排ガス中に、以下の数種類の熱交換用伝熱管を挿入した。
▲1▼耐熱合金管:SUS304−15A
熱膨張緩衝材:Al箔の成分を主体とする層、厚み1〜2mm
セラミックス合金複合材料製カバー材:Al+AlN+AlON−90wt%以上、肉厚−4〜10mm、気孔率40%
▲2▼耐熱合金管:SUS304−20A
熱膨張緩衝材:炭素繊維相当、厚み0.2〜2mm
セラミックス合金複合材料製カバー材:Al+AlN+AlON−90wt%以上、肉厚−3〜8mm、気孔率20%
▲3▼耐熱合金管:SUS304−20A、外表面一BNコート
熱膨張緩衝材:炭素繊維相当、厚み0.2〜2mm
セラミックス合金複合材料製カバー材:Al十AlN+AlON−90wt%以上、肉厚−3〜8mm、気孔率20%
▲4▼耐熱合金管:SUS304−20A
熱膨張緩衝材:炭素繊維相当、厚み1〜2mm
セラミックス合金複合材料製カバー材:Al23−80wt%以上、肉厚−2〜4mm、気孔率30%
排ガスのN2以外の主成分は、O2:2〜16(vol,dry)%,HCl:200〜600(vol,dry)ppm,SOx:max300(vol,dry)ppm,CO2:4〜19(vol,dry)%で、都市ゴミや産業廃棄物を燃やしたときに生じる一般的な排ガス雰囲気である。
【0038】
暴露試験の結果、どの条件においても、セラミックス合金複合材料製カバー材には亀裂が発生しなかった。
また、1200時間の暴露試験後、各伝熱管を取り出しその断面を観測した結果、SUS外表面にBNを塗布した伝熱管▲3▼の断面は製作当初と変わりなく、BNコートとセラミックス合金複合材料製カバー材のすべりが、伝熱管▲1▼▲2▼に比べてより滑らかであることが分かった。
被加熱流体として入口温度280℃から400℃の水蒸気を用いたとき、▲1▼〜▲4▼のすべての条件において、熱交換用伝熱管群の出口で、540℃以上、100ataの可能性を見出した。
また、空気または廃棄物燃焼排ガスを被加熱流体としてしたとき、1000〜4000mmAqの空気および50〜400mmAqの廃棄物燃焼排ガスを最高800℃まで加熱可能なことを確認した。
但し、伝熱管▲4▼のセラミックス合金複合材料製カバー材は、熱伝導率が比較的低いAl23を主体としたため、伝熱管▲1▼〜▲3▼より熱伝達係数が低くなった。
【0039】
(2)都市ゴミを部分酸化し、約1000〜700℃の還元排ガス雰囲気に、
▲5▼耐熱合金管:ボイラ用耐熱管STBA28−20A
熱膨張緩衝材:炭素80wt%以上の繊維、厚み0.5〜3mm
セラミックス合金複合材料製カバー材:Al+AIN−86wt%、Al23−6wt%、肉厚−4〜5mm、気孔率25%
▲6▼耐熱合金管:ボイラ用耐熱管STBA28−20A
熱膨張緩衝材:炭素80wt%以上の繊維、厚み1〜3mm
セラミックス合金複合材料製カバー材:SiC−95wt%以上、肉厚−4〜5 mm、気孔率2%
の熱交換用伝熱管を挿入した。
被加熱流体は、水蒸気と空気である。
【0040】
CO濃度が5〜15(vol,dry)%存在する還元雰囲気で熱交換試験を行った結果、高温ガスが還元性ガスであったため、SiCやAINが酸化して劣化する現象がほとんど見られず、良好な熱交換を実施することができた。
【0041】
(3)石炭、下水汚泥脱水ケーキおよび乾操汚泥焼却炉の燃焼排ガス中に、
▲7▼耐熱合金管:ボイラ用耐熱管STBA28−40Aと65Aの2種類
熱膨張援衝材:炭素80wt%以上の微粉・繊維混在層、厚み0.2〜4mm
セラミックス合金複合材料製カバー材:SiC−95wt%以上、肉厚−約7mm、同軸管形状(図3相当)
▲8▼耐熱合金管:ボイラ用耐熱管STBA28−20Aと50Aの2種類、
熱膨張緩衝材:硼素80wt%以上の微粉層、厚み0.3〜2mm
セラミックス合金複合材料製カバー材:Al23−95wt%以上、肉厚−約4 mm、同軸管形状(図3相当),
▲9▼耐熱合金管:ボイラ用耐熱管STBA28−15Aと20Aの2種類、
熱膨張緩衝材:炭素80wt%以上の繊維、厚み0.4〜1mm
セラミックス合金複合材料製カバー材:Al+AIN−90%以上、肉厚−6〜8mm、U字管形状(図4相当)
の熱交換用伝熱管を挿入した。
【0042】
試験の結果、石炭、下水汚泥の燃焼排ガスには、数百(vol,dry)ppmのSOxが含まれるが、この条件においても伝熱管▲7▼〜▲9▼は腐食することなく、発電効率30%以上を達成する高温高圧水蒸気の回収、そしてまた、高温空気や高温燃焼排ガスの回収が可能なことを見出した。
【0043】
【発明の効果】
以上のように、本発明の熱交換用伝熱管は、耐熱合金からなるチューブの優れた靭性と、その外表面を覆うカバー材を構成する、セラミックスと金属の両方の性質を有するセラミックス合金複合材料の優れた耐高温腐食性を併せ持ち、しかも両部材の間に熱膨張差を吸収する熱膨張緩衝材を設け、該熱膨張緩衝材がセラミックス合金複合材料製カバー材および/または耐熱合金管に対して非接着構造としたものであるので、セラミックス合金複合材料製カバー材の熱衝撃による損傷を防ぐことができ、その結果、廃棄物燃焼排ガス、石炭燃焼排ガス、下水汚泥燃焼排ガス、その他産業廃棄物燃焼排ガス中の高温腐食環境から、これまで未利用であった高温の熱を回収することを可能にするものである。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る熱交換用伝熱管の断面図である。
【図2】本発明の熱交換用伝熱管の側面図と断面図である。
【図3】本発明の他の実施の形態を示す断面図である。
【図4】本発明のさらに他の実施の形態を示す断面図である。
【符号の説明】
1 耐熱合金管
2 熱膨張緩衝材
3 セラミックス合金複合材料製カバー材
4 耐熱チューブ
5 空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to heat exchange in a heat recovery / use system that recovers heat energy from high-temperature combustion exhaust gas of municipal waste, coal, sewage treatment, paper sludge, and other industrial wastes through a fluid such as steam or air to generate power. It relates to electric heating tubes.
[0002]
[Prior art]
Exhaust gas generated when incinerating municipal waste and industrial waste is composed of NaCl, KCl and Na containing hydrogen chloride gas, sodium, potassium, etc.2SOFourContains other basic salts. The corrosivity of hydrogen chloride and basic salts increases as the temperature increases. Therefore, in a waste heat boiler that recovers heat from the combustion exhaust gas of municipal waste and industrial waste, the steam flowing in the heat exchange tube is generally used to reduce the damage caused by corrosion caused by hydrogen chloride and basic salts. It is suppressed to 300 ° C. or lower.
[0003]
Therefore, in order to recover higher-temperature heat energy from this corrosive environment, as disclosed in Japanese Patent Laid-Open No. 10-274401, the outer surface of a boiler tube made of a heat-resistant metal is sprayed or physically vapor-deposited. Alternatively, a method has been devised in which the high temperature corrosion resistance of the heat exchange tube is improved by coating with a ceramic film by chemical vapor deposition. Since the boiler tube is based on metal, it has the toughness necessary for a heat exchange tube, and its surface generally has excellent high-temperature strength and low wettability with salts, and exhibits excellent high-temperature corrosion performance. To secure a high degree of corrosion resistance in high-temperature exhaust gas.
[0004]
[Problems to be solved by the invention]
However, in the conventional heat exchange tube as described above, ceramics and metal are bonded by thermal spraying or vapor deposition, so if exposed to high temperature corrosive atmosphere for a long time, the difference in thermal expansion coefficient between ceramic and metal Due to the influence of the ceramic, the ceramic is easily peeled from the metal surface. And the metal part from which the ceramic peeled begins to corrode. Therefore, this method has a problem that it is insufficient as a method for reliably preventing corrosion of the heat exchange tube.
[0005]
Therefore, the present invention has been made to solve the problem of peeling of ceramics and metal due to a difference in thermal expansion without reducing the thermal conductivity, and the metal surface is corroded even when exposed to a high temperature corrosive atmosphere for a long time. Therefore, an object of the present invention is to obtain a heat exchanger tube for heat exchange that can recover heat at a higher temperature than the conventional one.
[0006]
[Means for Solving the Problems]
  The heat transfer heat transfer tube according to the present invention is provided in a high-temperature gas atmosphere, and the heat-exchange heat transfer tube for exchanging heat from the high-temperature gas to the heated fluid in the heat-transfer tube is a heat-resistant alloy. And the outer surface of the heat-resistant alloy tube is covered with a cover material made of a ceramic alloy composite material via a thermal expansion buffer material, and the thermal expansion buffer material is made of the cover material made of the ceramic alloy composite material and / or the heat-resistant alloy. The heat resistant alloy tube and at least a part of the thermal expansion buffer material are in contact with each other, and further, the thermal expansion buffer material and at least a part of the ceramic alloy composite material cover material are in contact with each other. From the layer structureThe ceramic alloy composite material constituting the cover material contains Al and AlN, and AlN is 1 wt % Or more 90 wt % Or less, the total ratio of (A1 + AlN + AlON) is 50 wt % Or more 100 wt % Or less(Claim 1).
[0007]
With this configuration, the heat-resistant alloy tube and the cover material made of the ceramic alloy composite material are exposed to a high-temperature atmosphere field and are not bonded even if they are thermally expanded in the tube axis direction. The cover material made of the ceramic alloy composite material is not damaged by the mutual shearing force. Even if the heat-resistant alloy tube expands in the radial direction, the expansion in the radial direction is absorbed by the thermal expansion buffer material of the intermediate layer, and the cover material made of the ceramic alloy composite material is not damaged. In addition, the thermal expansion buffer material and ceramic alloy composite cover material, or the thermal expansion buffer material and the heat-resistant alloy tube are in contact with each other but are not bonded. It has a strong structure against thermal shock related to Therefore, with this three-layer structure, the heat energy of the high-temperature fluid existing outside the cover material made of the ceramic alloy composite material can be stably transferred to the heated fluid flowing inside the heat-resistant alloy tube for a long time. .
[0008]
Regarding the heat transfer coefficient, the structure of the present invention has a three-layer structure in which at least a part of the heat-resistant alloy tube and the thermal expansion buffer material are in contact with each other, and at least a part of the thermal expansion buffer material and the cover material made of the ceramic alloy composite material are in contact with each other. Due to the structure, the thermal conductivity between the cover material made of the ceramic alloy composite material and the heat-resistant alloy tube is prevented from decreasing. If almost the entire inner surface of the cover material made of a ceramic alloy composite material and almost the entire outer surface of the heat-resistant alloy tube come into contact with the thermal expansion buffer material that is an intermediate layer, it is more effective in improving the thermal conductivity. preferable. If there is no thermal expansion cushioning material and the ceramic alloy composite cover material and the heat-resistant alloy tube are completely separated without contact, that is, if there is a gap, a gas insulation layer is formed there. This is not preferable because the thermal conductivity decreases rapidly.
[0009]
Here, the heat-resistant alloy that is the material of the tube through which the fluid to be heated flows is, for example, carbon steel / alloy steel for boilers, stainless steel, heat-resistant steel, Ni-based / Co-based heat resistant alloys (Inconel, Hastelloy, Stellite, etc. In addition, chromium, which is a refractory metal, is also suitable. Furthermore, the ceramic alloy composite material constituting the cover material can be selected from a wide range of oxides, carbides, nitrides, borides, silicides, carbons, and the like and mixtures thereof. As an example, Al as the oxide2OThreeAnd Sialon (SiAlNO), SiC and B as carbideFourC, nitride as AlN, SiThreeNFour, TiB as boride2As the silicide, MoSi or the like is suitable.
[0010]
In addition, the thermal expansion buffer material in the present invention is made of a material such as fiber, powder, film, tape, or the like mainly containing boron, carbon, or aluminum, and the outer surface of the heat-resistant alloy tube or the ceramic alloy composite. It consists of the thermal expansion absorption layer which has the space | gap formed in the inner surface of material-made cover materials, It is characterized by the above-mentioned (Claim 2).
[0011]
With this configuration, the volume ratio of the voids of the absorption layer changes with respect to the thermal expansion in the tube axis direction and the radial direction of the heat resistant alloy tube, so that the thermal expansion buffer material is made of the heat resistant alloy tube and the ceramic alloy composite cover material. The thermal expansion difference is absorbed, and damage to the ceramic alloy composite material cover material due to thermal shock can be prevented. The thermal expansion absorbing layer having voids may be formed on either the outer surface of the heat-resistant alloy tube or the inner surface of the ceramic alloy composite material cover material. Such a thermal expansion absorption layer can be formed by using materials such as fibers, powders, films, and tapes mainly composed of boron, carbon, or aluminum.
[0012]
  Further, the ceramic alloy composite material constituting the cover material in the present invention contains Al and AlN, wherein AlN is 1 wt% or more and 90 wt% or less, and the total ratio of (Al + AlN + AlON) is 50 wt% or more and 100 wt% or less. (Claims1).
[0013]
AlN, which is aluminum nitride, is a material with excellent corrosion resistance against air oxidation and various molten metals such as molten steel among ceramic materials. In an inert atmosphere, it is also excellent in corrosion resistance against various molten slag such as blast furnace slag. . In addition, since it has a relatively high hardness, it also has excellent wear resistance. Furthermore, since it has an extremely high thermal conductivity, a low thermal expansion coefficient, and a relatively low elastic modulus, it also has a relatively strong characteristic against thermal shock. Thus, AlN is a material having both excellent corrosion resistance and wear resistance, and relatively excellent thermal shock resistance.
[0014]
In addition to AlN, Al, which is metallic aluminum, is a material with extremely good thermal conductivity, is a metal advantageous for mitigating thermal shock, and is suitable as a constituent element of a heat transfer tube. In the process of manufacturing a ceramic alloy composite cover material, most of Al is N in the atmosphere.2It changes to AlN by reacting with, and becomes a structure in which unreacted Al is dispersed in AlN, and AlN strengthens the bonding force between the particles.
[0015]
With this configuration, even if the sintered body is subjected to a thermal shock, AlN has a function of preventing shape deformation and Al surrounded by AlN mitigating the thermal shock. Therefore, in order to maintain this function, AlN must be contained at least 1 wt% or more. If the AlN content is less than 1 wt%, the bonding force between the particles is small and insufficient, and if it exceeds 90 wt%, the characteristics of the ceramic alloy composite material are close to ceramics and become brittle. Therefore, the content weight ratio of AlN is 1 wt% or more and 90 wt% or less.
[0016]
In the ceramic alloy composite material, Al and AlON are dispersed in AlN. When the content weight ratio of (Al + AlN + AlON) is 50 wt% or more and 100 wt% or less, the ceramic alloy composite material cover material can maintain high thermal shock properties while having thermal deformation characteristics. In addition, since nitride containing aluminum has poor wettability to oxide dust contained in high-temperature exhaust gas, it is difficult for dust to adhere to the cover material made of the ceramic alloy composite material if it contains a considerable amount of concentration. It has the characteristic of becoming. Therefore, if the content weight ratio of (Al + AlN + AlON) is 50 wt% or more, the property of preventing dust adhesion can be effectively exhibited. Further, AlON may be eliminated in the manufacture of the heat transfer tube, and the weight ratio of Al and AlN alone may be 50 wt% or more and 100 wt% or less.
[0017]
Here, AlON is a general term for solid liquids of Al, O, and N. As an example, AlON11O15N, AlON, Al198O288NFour, Al27O39N, AlTenN8OThree, Al9OThreeN7, SiAl7O2N7, SiThreeAlThreeO4.5NFiveIs mentioned.
[0018]
  In the present invention, a release agent comprising a compound containing boron or carbon is applied to the outer surface of the heat-resistant alloy tube.3).
[0019]
By applying the release agent, the sliding between the heat-resistant alloy tube and the ceramic alloy composite material is improved, and the elongation due to the difference in thermal expansion between both members becomes smoother.
[0020]
  Furthermore, in the present invention, the ceramic alloy composite material has a porosity of 2% to 60% (claims).4).
[0021]
In manufacturing the cover material made of the ceramic alloy composite material, in order to reduce the porosity to less than 2%, a high temperature and high pressure atmosphere is required in the manufacturing process, and the manufacturing cost increases rapidly. The pores in the ceramic alloy composite material have a distorted shape rather than a simple circular hole. Its size is on the order of submicron or less to a few hundred microns in the distance between lines.
In such a ceramic alloy composite material having pores, when the porosity is larger than 60%, dust containing a basic salt easily penetrates into the ceramic alloy composite material, and the corrosion effect extends to the heat-resistant alloy tube. Therefore, the lower limit of the porosity is preferably 2%, and the upper limit is preferably 60%.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross section of a heat exchanger tube for heat exchange according to an embodiment of the present invention (partially enlarged sectional view is also shown). The outside of the tubular body 1 made of a heat-resistant alloy is covered with a cover material 3 made of a ceramic alloy composite material via a thermal expansion buffer material 2, and a three-layer structure is formed by these three members 1, 2, and 3, and the thermal expansion buffer is made. The material 2 has a non-adhesive structure with respect to the cover material 3 and / or the heat-resistant alloy tube 1 made of a ceramic alloy composite material.
[0023]
High-temperature gas flows outside the outer surface of the cover material 3 made of the ceramic alloy composite material, and the heated fluid passes inside the heat-resistant alloy tube 1. The temperature of the high-temperature gas is 400 ° C. to 1200 ° C., and the ceramic alloy composite material constituting the cover material 3 is selected depending on the gas atmosphere conditions.
[0024]
The high temperature exhaust gas contains HCl and / or SOx. When a high-temperature dust collector having an exhaust gas temperature of 300 ° C. or higher is installed in the exhaust gas treatment line, the heat transfer heat transfer tube of the present invention can also be used for high-temperature exhaust gas after dust removal. The heated fluid flowing in the heat transfer heat transfer tube of the present invention is air, water vapor, CO2Represents 2 to 25 vol% (wet base) of combustion exhaust gas, and according to the present invention, air and the combustion exhaust gas can be heated up to 800 ° C., and water vapor can be heated up to about 550 ° C. It was also confirmed that the heated fluid can be pressurized up to 100ata. The thickness of the heat-resistant alloy tube 1 is preferably 3 to 10 mm, the thickness of the thermal expansion buffer material 2 is preferably 0.1 to 8 mm, and the thickness of the ceramic alloy composite material cover material 3 is preferably 3 to 20 mm. If the thicknesses of the heat-resistant alloy tube 1, the thermal expansion buffer material 2, and the ceramic alloy composite material cover material 3 are made larger than the upper limit values, respectively, a heat transfer coefficient that is practically meaningful as a heat exchanger cannot be obtained. Moreover, if it makes smaller than each lower limit, it will become unable to endure a thermal shock as a heat exchanger tube, and will become easy to break.
[0025]
As shown in FIG. 1, the cover material 3 made of a ceramic alloy composite material covers the outside of the heat-resistant alloy tube 1 wrapped in the thermal expansion buffer material 2, and between the cover material 3 made of the ceramic alloy composite material and the heat-resistant alloy tube 1. Has a structure in which the thermal expansion buffer material 2 is interposed. The heat transfer heat transfer tube of the present invention does not use a method of adhering ceramics or corrosion resistant alloy to the outer surface of the heat resistant alloy tube 1 by thermal spraying, vapor deposition or other methods, and the cover material 3 made of a ceramic alloy composite material as a sleeve. Since it has a covered shape, even if the heat-resistant alloy tube 1 is exposed to a high temperature and expands in the tube axis direction and the radial direction, they are absorbed by the thermal expansion buffer material 2 and the cover material 3 made of a ceramic alloy composite material It has a structure that will not be damaged.
The cover material 3 made of the ceramic alloy composite material and the heat-resistant alloy tube 1 do not need to be perfect circles, and may be eccentric circles, ellipses, squares, or irregular shapes. Further, the heat-resistant alloy tube 1 and the ceramic alloy composite material cover material 3 do not have to be concentric. Further, the outer surface roughness of the heat-resistant alloy tube 1 may be rough or smooth.
[0026]
The outer surface of the heat-resistant alloy tube 1 and the inner surface of the thermal expansion buffer material 2, and the inner surface of the ceramic alloy composite material cover material 3 and the outer surface of the thermal expansion buffer material 2 flow outside as the contact area increases. Heat transfer from the high-temperature exhaust gas to the heated fluid in the heat-resistant alloy tube 1 is increased.
[0027]
  The thermal expansion buffer material 2 is made of a material mainly composed of boron, carbon, or aluminum. Using these materials, a thermal expansion absorption layer having voids is formed on the outer surface of the heat-resistant alloy tube 1 or the inner surface of the cover material 3 made of the ceramic alloy composite material. As a material for forming the thermal expansion absorption layer, for example, carbon fiber, boron, a film containing carbon, or aluminum foil is preferable. In addition, a plastic fine powder is sprayed on the heat-resistant alloy tube 1, or a tape containing carbon is wound around the heat-resistant alloy tube 1 to reduce the components from those components in the heat process for producing the heat transfer tube of the present invention. The boiling point medium may be volatilized, and the carbon-based material may be functionally used as a thermal expansion buffer material. Thermal expansion buffer material 2 is a heat-resistant alloy tube 1 and a cover material made of a ceramic alloy composite material.3Is used to absorb the difference in thermal expansion between the thermal expansion cushioning material 2 and the thermal expansion cushioning material 2 has a void, and fulfills this function by changing its volume ratio.
[0028]
Among the ceramic alloy composite materials, a material composed of AIN + Al + AlON mainly composed of an aluminum element is most preferable for the heat transfer tube of the present invention in terms of performance. This is because, in the present invention, the ceramic alloy composite material is desired to have high temperature corrosion resistance of ceramic properties and ductility of alloy properties, but in this respect, aluminum element is compared with the main element constituting other ceramic alloy composite materials. It is optimal in terms of ductility. The contact surface between the heat-resistant alloy and the ceramic alloy composite material also has the advantage that the rate of breakage during expansion and contraction is less than other ceramic alloy composite materials by using an aluminum-based ceramic alloy composite material with excellent ductility. Yes.
[0029]
The ceramic alloy composite material mainly composed of the aluminum element can be obtained, for example, by press-molding a mixed powder of a low-purity Al source powder and a high-purity Al source powder and sintering the compact. The low-purity Al source powder is, for example, not metal Al or Al alloy powder, and may contain alloy elements such as Si and Mg. The high-purity Al source powder contains, for example, 90 wt% or more of Al. The filler obtained by molding these mixed powders is heated in a nitrogen atmosphere. Al in the powder melts (the melting point of pure Al is 660 ° C., but the melting point of Al—Mg alloy drops to 450 ° C., and the melting point of Al—Si alloy drops to 577 ° C.), 680 When it reaches ° C., a certain amount of Al becomes N in the atmosphere.2To AIN, and a small amount of unreacted Al is dispersed in AIN. Since AlN having ceramic properties forms a film around Al, the manufactured cover material 3 made of a ceramic alloy composite material of AIN + Al + AlON will not melt and lose its shape even when exposed to a high temperature above the melting point of Al. Absent. In addition, since the degree of nitriding can be controlled by setting the temperature and pressure during molding and heating, the AIN concentration that enhances the ceramic characteristics can be adjusted according to the conditions of the high-temperature exhaust gas and the amount of recovered heat. If the concentration of AIN or Al cannot be set at the time of molding and heating, AIN or Al may be supplied between the ceramic alloy composite material and the heat-resistant alloy.
[0030]
The ceramic alloy composite material mainly composed of an aluminum element may be blended as long as it has a good heat resistance in addition to AlN and Al. That is, TiO2, ZrO2, Cr2OThree, Al2OThree, SiO2, Y2OThree, CeO2, Sc2OThreeOne or a plurality of oxides selected from the above, and a composite oxide containing at least one of these oxides may also be included. BN, MgB2, CaB6, TiB2, ZrB2, AlB2One or more borides selected from among the above may be contained. BFourC, TiC, ZrC, CrThreeC2, AlFourCThree, One or more carbides selected from SiC may be included. TiN, ZrN, Cr2N, SiThreeNFourOne or a plurality of nitrides selected from among them may be contained. Si2N2An oxynitride represented by O may be contained. Regarding the composition, any composition may be used in the present invention. A part of Al of AlON may be replaced with Si. However, the Si / Al molar ratio is preferably 1.0 or less from the viewpoint of corrosion resistance.
[0031]
  When exposed to high temperatures, the outer surface of the heat-resistant alloy tube 1 and a cover material made of a ceramic alloy composite material3In order to improve the mutual sliding of the inner surface of the heat resistant alloy tube 1, BN or BFourA compound containing boron or carbon such as C is applied. This functions as a mold release agent that more effectively prevents the adhesion between the ceramic material and the metal and makes each slip better. The applied thickness is preferably 1 to 60 microns.
[0032]
In the high temperature exhaust gas, there are a condensate composed of a gaseous body of HCl and SOx and a basic salt such as NaCl and KC1 as corrosive substances. This condensate has a size of the order of submicron with a small one and about 20 microns with a large one forming an aggregate. In order to keep the heat exchanger tube for heat exchange of the present invention at low cost, it is effective to set the porosity of the ceramic alloy composite material to 2% or more. However, if the porosity is too large, the corrosive condensate However, when the porosity is more than 60%, it is found that the effect of the present invention cannot be exhibited.
[0033]
FIG. 2 shows a side shape and a cross section of a heat transfer tube for heat exchange according to the present invention. The heat transfer heat transfer tube is set in an atmosphere in which a high-temperature gas flows, and the fluid to be heated enters the heat-resistant alloy tube 1 from one end to the other end. Basically, the outer periphery of the heat-resistant alloy tube 1 exposed to the high-temperature gas is covered with a cover material 3 made of a ceramic alloy composite material via a thermal expansion buffer material 2. As described above, the thermal expansion buffer 2 has a non-adhesive structure with respect to the cover material 3 made of the ceramic alloy composite material and / or the heat-resistant alloy tube 1.
[0034]
The flow velocity in the pipe of the fluid to be heated is in accordance with conventional waste combustion or coal combustion boilers, but depending on the purpose, the flow velocity may be changed to a low speed side or a high speed side. The heat-resistant alloy pipe 1 through which the fluid to be heated of the heat transfer pipe for heat exchange flows may have any diameter as long as the fluid to be heated flows, but among them, when the entire circumference of the pipe is exposed to exhaust gas, it should be 15A to 40A Is preferable for manufacturing. The length of the heat exchanger tube for heat exchange is preferably 1 to 6 m. If the heat transfer tube for heat exchange becomes longer, the amount of deflection of the heat-resistant alloy tube 1 increases, and there is a concern about cracking of the ceramic alloy composite material of the cover material 3. The problem can be solved by providing supporting columns and reducing the amount of deflection of the heat-resistant alloy tube 1. Further, as can be seen from FIG. 2, a long heat transfer tube can be made by welding both ends of the heat-resistant alloy tube 1 not covered with the ceramic alloy composite material of the short heat transfer tube.
[0035]
Moreover, another structural example of the heat exchanger tube for heat exchange obtained from the present invention is shown in FIGS. FIG. 3 shows a state where one end of the heat exchange heat transfer tube is closed and the fluid to be heated flows through the heat-resistant tube 4 provided in the heat-resistant alloy tube 1, and the fluid to be heated turns back in the gap between the heat-resistant tube 4 and the heat-resistant alloy tube 1 The portion that is heated to flow and is exposed to a high-temperature gas that heats the fluid to be heated is covered with a cover material 3 made of a ceramic alloy composite material. In the case of this type, the outer diameter of the heat exchanger tube for heat exchange is preferably 30 to 200 mm.
[0036]
FIG. 4 shows a heat exchanger tube for heat exchange in which a heat-resistant alloy tube 1 through which a fluid to be heated flows is formed in a U shape, and an outer portion including the bent portion is covered with a cover material 3 made of a ceramic alloy composite material. The U-shaped bent portion requires more voids 5 because the heat expansion deformation of the heat-resistant alloy and the ceramic alloy composite material is more complicated than the heat transfer tube for heat exchange in the shape of a straight tube.
[0037]
【Example】
(1) In a garbage incineration pilot plant for treating municipal waste and industrial waste, the following several types of heat exchange heat transfer tubes were inserted into a high-temperature exhaust gas at about 950 ° C. to about 650 ° C. from the incinerator.
(1) Heat-resistant alloy tube: SUS304-15A
Thermal expansion buffer material: Layer mainly composed of Al foil components, thickness of 1 to 2 mm
Ceramic alloy composite cover material: Al + AlN + AlON-90wt% or more, wall thickness -4-10mm, porosity 40%
(2) Heat-resistant alloy tube: SUS304-20A
Thermal expansion buffer: Carbon fiber equivalent, thickness 0.2-2mm
Ceramic alloy composite cover material: Al + AlN + AlON-90wt% or more, wall thickness -3-8mm, porosity 20%
(3) Heat-resistant alloy tube: SUS304-20A, outer surface with BN coating
Thermal expansion buffer: Carbon fiber equivalent, thickness 0.2-2mm
Ceramic alloy composite cover material: Al + AlN + AlON-90wt% or more, wall thickness-3-8mm, porosity 20%
(4) Heat-resistant alloy tube: SUS304-20A
Thermal expansion cushioning material: Carbon fiber equivalent, thickness 1-2mm
Ceramic alloy composite cover material: Al2OThree-80wt% or more, wall thickness -2-4mm, porosity 30%
N of exhaust gas2The main component other than is O2: 2 to 16 (vol, dry)%, HCl: 200 to 600 (vol, dry) ppm, SOx: max 300 (vol, dry) ppm, CO2: 4 to 19 (vol, dry)%, which is a general exhaust gas atmosphere generated when burning municipal waste and industrial waste.
[0038]
As a result of the exposure test, cracks did not occur in the cover material made of the ceramic alloy composite material under any conditions.
In addition, after the 1200 hour exposure test, each heat transfer tube was taken out and the cross section was observed. It was found that the slip of the cover material was smoother than that of the heat transfer tube (1) (2).
When steam with an inlet temperature of 280 ° C to 400 ° C is used as the fluid to be heated, the possibility of 100ata at 540 ° C or higher is possible at the outlet of the heat transfer tube group for all conditions (1) to (4). I found it.
Moreover, when air or waste combustion exhaust gas was used as the fluid to be heated, it was confirmed that 1000 to 4000 mmAq of air and 50 to 400 mmAq of waste combustion exhaust gas could be heated up to 800 ° C.
However, the cover material made of a ceramic alloy composite material for the heat transfer tube (4) is made of Al having a relatively low thermal conductivity.2OThreeThe heat transfer coefficient was lower than that of heat transfer tubes (1) to (3).
[0039]
(2) City waste is partially oxidized to a reduced exhaust gas atmosphere of about 1000 to 700 ° C.
(5) Heat-resistant alloy tube: Heat-resistant tube for boilers STBA28-20A
Thermal expansion buffer material: Carbon 80wt% or more fiber, thickness 0.5-3mm
Ceramic alloy composite cover material: Al + AIN-86wt%, Al2OThree-6wt%, wall thickness -4-5mm, porosity 25%
(6) Heat-resistant alloy pipe: Heat-resistant pipe for boilers STBA28-20A
Thermal expansion buffer material: Carbon 80wt% or more fiber, thickness 1-3mm
Ceramic alloy composite cover material: SiC-95wt% or more, wall thickness -4-5mm, porosity 2%
A heat exchanger tube for heat exchange was inserted.
The fluid to be heated is water vapor and air.
[0040]
As a result of conducting a heat exchange test in a reducing atmosphere with a CO concentration of 5 to 15 (vol, dry)%, the high temperature gas was a reducing gas, so that there was almost no phenomenon in which SiC or AIN was oxidized and deteriorated. A good heat exchange could be carried out.
[0041]
(3) In the combustion exhaust gas of coal, sewage sludge dewatering cake and dry operation sludge incinerator,
(7) Heat-resistant alloy tube: Two types of boiler heat-resistant tubes STBA28-40A and 65A
Thermal expansion support material: Fine powder / fiber mixed layer of carbon 80wt% or more, thickness 0.2-4mm
Ceramic alloy composite cover material: SiC-95wt% or more, wall thickness-approx. 7mm, coaxial tube shape (equivalent to Fig. 3)
(8) Heat-resistant alloy tube: Two types of boiler heat-resistant tubes STBA28-20A and 50A,
Thermal expansion buffer material: Fine powder layer of boron 80wt% or more, thickness 0.3-2mm
Ceramic alloy composite cover material: Al2OThree-95 wt% or more, wall thickness-about 4 mm, coaxial tube shape (equivalent to Fig. 3),
(9) Heat-resistant alloy tube: two types of boiler heat-resistant tubes STBA28-15A and 20A,
Thermal expansion buffer: Carbon 80wt% or more fiber, thickness 0.4-1mm
Ceramic alloy composite cover material: Al + AIN-90% or more, wall thickness -6-8mm, U-shape (corresponding to FIG. 4)
A heat exchanger tube for heat exchange was inserted.
[0042]
As a result of the test, the combustion exhaust gas of coal and sewage sludge contains several hundred (vol, dry) ppm of SOx. Even under these conditions, the heat transfer tubes (7) to (9) are not corroded, and the power generation efficiency It has been found that it is possible to recover high temperature and high pressure steam that achieves 30% or more, and also recover high temperature air and high temperature combustion exhaust gas.
[0043]
【The invention's effect】
As described above, the heat exchanger tube for heat exchange according to the present invention is a ceramic alloy composite material having both the properties of ceramics and metal, constituting the excellent toughness of a tube made of a heat-resistant alloy and the cover material covering the outer surface thereof. In addition, a thermal expansion cushioning material is provided between the two members to absorb the difference in thermal expansion, and the thermal expansion cushioning material is provided for the ceramic alloy composite cover material and / or heat resistant alloy tube. The non-adhesive structure prevents damage to the ceramic alloy composite cover material due to thermal shock. As a result, waste combustion exhaust gas, coal combustion exhaust gas, sewage sludge combustion exhaust gas, and other industrial waste This makes it possible to recover high-temperature heat that has been unused so far from the high-temperature corrosive environment in the combustion exhaust gas.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heat exchanger tube for heat exchange according to an embodiment of the present invention.
FIGS. 2A and 2B are a side view and a cross-sectional view of a heat exchanger tube for heat exchange according to the present invention. FIGS.
FIG. 3 is a cross-sectional view showing another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing still another embodiment of the present invention.
[Explanation of symbols]
1 Heat resistant alloy tube
2 Thermal expansion cushioning material
3 Ceramic alloy composite cover material
4 Heat-resistant tube
5 gap

Claims (4)

高温ガス雰囲気中に設けられ 前記高温ガスから伝熱管内の被加熱流体に熱交換をする熱交換用伝熱管において、
被加熱流体が流れる管は耐熱合金からなり、該耐熱合金管の外側を熱膨張緩衝材を介してセラミックス合金複合材料からなるカバー材で覆い、
前記熱膨張緩衝材は、前記セラミックス合金複合材料製のカバー材および/または前記耐熱合金管に対し非接着構造で、前記耐熱合金管と前記熱膨張緩衝材の少なくとも一部が接触し、さらに、前記熱膨張緩衝材と前記セラミックス合金複合材料製カバー材の少なくとも一部が接触する三層構造からなり、
前記カバー材を構成するセラミックス合金複合材料はAlとAlNを含み、AlNを1 wt %以上90 wt %以下、(A1+AlN+AlON)の合計割合が50 wt %以上100 wt %以下であることを特徴とする熱交換用伝熱管。
In a heat exchange tube for heat exchange that is provided in a high temperature gas atmosphere and performs heat exchange from the high temperature gas to a heated fluid in the heat transfer tube,
The pipe through which the fluid to be heated flows is made of a heat-resistant alloy, and the outside of the heat-resistant alloy pipe is covered with a cover material made of a ceramic alloy composite material through a thermal expansion buffer material,
The thermal expansion buffer material has a non-adhesive structure with respect to the cover material and / or the heat-resistant alloy tube made of the ceramic alloy composite material, and the heat-resistant alloy tube and at least a part of the thermal expansion buffer material are in contact with each other, Ri Do a three-layer structure in which at least part of the said thermal expansion buffer member ceramic alloy composite material cover material is in contact,
The ceramic alloy composite material constituting the cover material includes Al and AlN, wherein AlN is 1 wt % or more and 90 wt % or less, and a total ratio of (A1 + AlN + AlON) is 50 wt % or more and 100 wt % or less. Heat exchanger tube for heat exchange.
前記熱膨張緩衝材は、硼素もしくは炭素またはアルミニウムを主成分とする繊維、粉体、フィルム、テープ等の材料を使用して、前記耐熱合金管の外表面または前記セラミックス合金複合材料製カバー材の内表面に形成された、空隙を有する熱膨張吸収層からなることを特徴とする請求項1記載の熱交換用伝熱管。  The thermal expansion cushioning material is made of a material such as a fiber, powder, film, or tape whose main component is boron, carbon, or aluminum, and is used for the outer surface of the heat-resistant alloy tube or the cover material made of the ceramic alloy composite material. The heat exchanger tube for heat exchange according to claim 1, comprising a thermal expansion absorption layer having voids formed on the inner surface. 前記耐熱合金管の外表面に硼素あるいは炭素を含む化合物からなる離型剤を塗布することを特徴とする請求項1または請求項2に記載の熱交換用伝熱管。The heat transfer heat transfer tube according to claim 1 or 2 , wherein a release agent made of a compound containing boron or carbon is applied to an outer surface of the heat resistant alloy tube. 前記セラミックス合金複合材料の気孔率が2%以上60%以下であることを特徴とする請求項1から請求項3のいずれか一に記載の熱交換用伝熱管。The heat transfer heat transfer tube according to any one of claims 1 to 3 , wherein the ceramic alloy composite material has a porosity of 2% to 60%.
JP22859099A 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange Expired - Fee Related JP3674401B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22859099A JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange
PCT/JP2000/005205 WO2001013057A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
EP00949969A EP1122506A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
KR1020017002406A KR20010072966A (en) 1999-08-12 2000-08-03 Heat exchanger tube and heat recovery method using the same
TW089116086A TW546454B (en) 1999-08-12 2000-08-10 Heat exchange tube and heat recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22859099A JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange

Publications (2)

Publication Number Publication Date
JP2001056197A JP2001056197A (en) 2001-02-27
JP3674401B2 true JP3674401B2 (en) 2005-07-20

Family

ID=16878755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22859099A Expired - Fee Related JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange

Country Status (1)

Country Link
JP (1) JP3674401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020578A (en) 2012-05-28 2015-02-26 시코쿠 케이소쿠 코교 가부시키가이샤 High-efficiency heat exchanger and high-efficiency heat exchange method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025638A1 (en) * 2004-08-20 2006-03-09 Neo Energe & Technology Co., Ltd. Conducting under vacuum and heating type radiator for heating
JP2008249273A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Heating furnace
JP2011226738A (en) * 2010-04-22 2011-11-10 Toshiba Corp Heat transfer medium and method for manufacturing the same
US10859325B2 (en) 2016-06-27 2020-12-08 Neo Corporation Heat exchanger
JP6645938B2 (en) * 2016-09-15 2020-02-14 日本山村硝子株式会社 Exhaust gas heat recovery system
CN106402914A (en) * 2016-10-20 2017-02-15 合肥海宝节能科技有限公司 Heat exchange forming material
US10589249B2 (en) 2018-04-27 2020-03-17 Evonik Operations Gmbh Apparatus for controlling the temperature of a reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020578A (en) 2012-05-28 2015-02-26 시코쿠 케이소쿠 코교 가부시키가이샤 High-efficiency heat exchanger and high-efficiency heat exchange method

Also Published As

Publication number Publication date
JP2001056197A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP3674401B2 (en) Heat exchanger tube for heat exchange
US5724923A (en) Refractory shield design for superheater tubes
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP2001049379A (en) Heat transfer tube for heat exchanger
JP2001056195A (en) Heat transfer pipe for heat exchange
KR20010072966A (en) Heat exchanger tube and heat recovery method using the same
JPH10274401A (en) High temperature resistant and corrosion resistant heat exchanger tube of waste incineration boiler and super heater
EP1413638A1 (en) MATERIAL BEING RESISTANT TO CHLORIDE−CONTAINING MOLTEN SALT CORROSION, STEEL PIPE FOR HEAT EXCHANGER COATED WITH THE SAME, AND METHOD FOR PRODUCTION THEREOF
JP2002310594A (en) Heat exchanger with heat exchanger tube
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JP4016311B2 (en) Heat recovery method from hot gas
JP4360047B2 (en) Heat transfer tube support structure
JP2002317903A (en) Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP2996128B2 (en) Air heater for high temperature corrosion resistance
JP3548445B2 (en) Heat exchanger tubes for heat exchangers
JP2005272927A (en) High temperature corrosion resistant material
JP2002038277A (en) Steel tube coated with aluminum-matrix composite material
JP2003042688A (en) Heat exchanging coated steel pipe, its producing method and heat exchanger
JP2002038278A (en) Steel tube coated with aluminum-matrix composite material
JP2996129B2 (en) Air heater for high temperature corrosion resistance
JP3667088B2 (en) Exhaust gas purification device
JPH11211375A (en) Heat transfer pipe for heat-exchanger
JPH08313192A (en) Spray coating film for heat resistant member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Ref document number: 3674401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees