JP2001056197A - Heat transfer tube for heat exchange - Google Patents

Heat transfer tube for heat exchange

Info

Publication number
JP2001056197A
JP2001056197A JP22859099A JP22859099A JP2001056197A JP 2001056197 A JP2001056197 A JP 2001056197A JP 22859099 A JP22859099 A JP 22859099A JP 22859099 A JP22859099 A JP 22859099A JP 2001056197 A JP2001056197 A JP 2001056197A
Authority
JP
Japan
Prior art keywords
heat
tube
thermal expansion
heat exchange
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22859099A
Other languages
Japanese (ja)
Other versions
JP3674401B2 (en
Inventor
Takashi Noto
隆 能登
Hiroaki Nishio
浩明 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22859099A priority Critical patent/JP3674401B2/en
Priority to PCT/JP2000/005205 priority patent/WO2001013057A1/en
Priority to KR1020017002406A priority patent/KR20010072966A/en
Priority to EP00949969A priority patent/EP1122506A1/en
Priority to TW089116086A priority patent/TW546454B/en
Publication of JP2001056197A publication Critical patent/JP2001056197A/en
Application granted granted Critical
Publication of JP3674401B2 publication Critical patent/JP3674401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat transfer tube for heat exchange, whose metallic surface will not be corroded even when the tube is exposed to high-temperature corrosive environment for a long period of time and which is capable of recovering more high-temperature heat compared with a conventional heat transfer tube. SOLUTION: A tube 1, through which fluid to be heated flows, is constituted of a heat resistant alloy and the outside of the heat resistant alloy tube 1 is coated with a cover material 3, consisting of a ceramics alloy composite material, through a thermal expansion cushioning material 2 while the thermal expansion cushioning material 2 is provided with a non-adhesive structure with respect to the heat resistant alloy tube 1 or the cover material 3 made of the ceramics alloy composite material. Further, the heat transfer tube for heat exchange is provided with a three-layered structure, in which at least a part of the thermal expansion cushioning material 2 is contacted with the heat resistant alloy tube 1 and at least a part of the cover material 3, made of the ceramics alloy composite material, is contacted with the thermal expansion cushioning material 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、石炭、
下水処理、製紙スラッジ、その他産業廃棄物の高温燃焼
排ガスから、蒸気や空気等の流体を介して熱エネルギを
回収し発電を行う熱回収・利用システムにおける熱交換
用電熱管に関する。
The present invention relates to municipal solid waste, coal,
The present invention relates to an electric heat exchanger tube for heat exchange in a heat recovery / utilization system that recovers thermal energy from high temperature combustion exhaust gas of sewage treatment, papermaking sludge, and other industrial wastes through a fluid such as steam or air to generate power.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物を焼却した時に発
生する排ガスは、塩化水素ガスやナトリウム、カリウム
等を含むNaCl,KClやNa2SO4他の塩基性塩を
含んでいる。塩化水素や塩基性塩の腐食性は、その温度
が高温になればなるほど大きくなる。そのため、都市ご
みや産業廃棄物の燃焼排ガスから熱回収を行う廃熱ボイ
ラにおいて、その熱交換チューブ内を流れる蒸気は、塩
化水素や塩基性塩による腐食損傷の被害を少なく抑える
ために、一般に、300℃以下に抑えられている。
2. Description of the Related Art Exhaust gas generated when municipal solid waste or industrial waste is incinerated contains hydrogen chloride gas, NaCl containing sodium, potassium, etc., KCl, Na 2 SO 4 and other basic salts. The corrosiveness of hydrogen chloride and basic salts increases as the temperature increases. Therefore, in a waste heat boiler that recovers heat from the combustion exhaust gas of municipal solid waste and industrial waste, the steam flowing through the heat exchange tube is generally used to reduce the damage of corrosion damage due to hydrogen chloride and basic salts. It is kept below 300 ° C.

【0003】そこで、この腐食環境から、より高温の熱
エネルギを回収するため、特開平10−274401号
公報に開示されているように、耐熱金属からなるボイラ
チューブの外表面を、溶射法、物理的蒸着法または化学
的蒸着法によるセラミックス皮膜で被覆して、熱交換チ
ューブの耐高温腐食性を向上させた方法が考え出され
た。ボイラチューブは、金属を基体とするため、熱交換
用チューブに必要な靭性を有し、そして、その表面に、
一般に高温強度に優れ塩類との濡れ性も低くて卓抜した
高温腐食性能を示すセラミックスを用いて、高温排ガス
中における高度の腐食抵抗性を確保した。
Therefore, in order to recover higher-temperature heat energy from this corrosive environment, as disclosed in JP-A-10-274401, the outer surface of a boiler tube made of a heat-resistant metal is sprayed by a thermal spraying method. A method has been devised in which a heat exchange tube is coated with a ceramic film by a chemical vapor deposition method or a chemical vapor deposition method to improve the high-temperature corrosion resistance. Since the boiler tube is based on metal, it has the toughness necessary for the heat exchange tube, and the surface has
In general, high corrosion resistance in high-temperature exhaust gas was ensured by using ceramics that have excellent high-temperature strength and low wettability with salts and exhibit excellent high-temperature corrosion performance.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
従来の熱交換チューブでは、セラミックスと金属が溶射
法や蒸着法により接着されているため、長時間、高温腐
食雰囲気下に曝されると、セラミックスと金属の熱膨張
率差の影響により、セラミックスが金属表面から剥離し
やすくなる。そして、セラミックスが剥がれたところの
金属部が腐食し始める。そのため、この方法は、熱交換
チューブの腐食を確実に防止する方法としては不十分で
あるという問題があった。
However, in the above-described conventional heat exchange tubes, since the ceramics and the metal are bonded by a thermal spraying method or a vapor deposition method, if they are exposed to a high-temperature corrosive atmosphere for a long time. Under the influence of the difference in the coefficient of thermal expansion between the ceramic and the metal, the ceramic is easily separated from the metal surface. Then, the metal part where the ceramic has been peeled off starts to corrode. For this reason, there is a problem that this method is insufficient as a method for reliably preventing corrosion of the heat exchange tube.

【0005】そこで、本発明は、熱伝導率を低下させる
ことなく熱膨張差によるセラミックスと金属の剥離問題
を解決するためになされたものであり、高温腐食雰囲気
下に長時間曝しても、金属面が腐食することなく、従来
のものよりも高温の熱回収ができる熱交換用伝熱管を得
ることを目的とする。
Accordingly, the present invention has been made to solve the problem of the separation of ceramics and metal due to the difference in thermal expansion without lowering the thermal conductivity. An object of the present invention is to provide a heat exchanger tube for heat exchange that can recover heat at a higher temperature than conventional ones without corrosion of the surface.

【0006】[0006]

【課題を解決するための手段】本発明に係る熱交換用伝
熱管は、高温ガス雰囲気中に設けられ 前記高温ガスか
ら伝熱管内の被加熱流体に熱交換をする熱交換用伝熱管
において、被加熱流体が流れる管は耐熱合金からなり、
該耐熱合金管の外側を熱膨張緩衝材を介してセラミック
ス合金複合材料からなるカバー材で覆い、前記熱膨張緩
衝材は、前記セラミックス合金複合材料製のカバー材お
よび/または前記耐熱合金管に対し非接着構造で、前記
耐熱合金管と前記熱膨張緩衝材の少なくとも一部が接触
し、さらに、前記熱膨張緩衝材と前記セラミックス合金
複合材料製カバー材の少なくとも一部が接触する三層構
造からなることを特徴としている(請求項1)。
A heat exchange tube for heat exchange according to the present invention is provided in a high temperature gas atmosphere, and performs heat exchange from the high temperature gas to a fluid to be heated in the heat transfer tube. The pipe through which the fluid to be heated flows is made of a heat-resistant alloy,
The outside of the heat-resistant alloy pipe is covered with a cover material made of a ceramic alloy composite material via a thermal expansion buffer material, and the thermal expansion buffer material is provided on the cover material made of the ceramic alloy composite material and / or the heat-resistant alloy pipe. In a non-adhesive structure, at least a part of the heat-resistant alloy tube and the thermal expansion buffer material are in contact with each other, and further, from the three-layer structure in which the thermal expansion buffer material and at least a part of the ceramic alloy composite material cover material are in contact. (Claim 1).

【0007】このように構成することにより、耐熱合金
管とセラミックス合金複合材料製のカバー材は、高温雰
囲気場に曝され、それぞれが管軸方向に熱膨張しても接
着されていないため、耐熱合金管とセラミックス合金複
合材料製のカバー材が相互の剪断力によって損傷するこ
とがない。また、耐熱合金管が半径方向に膨張しても、
中間層の熱膨張緩衝材によって半径方向への伸びは吸収
され、セラミックス合金複合材料製のカバー材が損傷す
ることがない。さらに、熱膨張緩衝材とセラミックス合
金複合材料製カバー材、あるいは、熱膨張緩衝材と耐熱
合金管は接触していても接着していない構造となってい
るため、繰り返しあるいは長時間の熱膨張変形に関わる
熱衝撃に強い構造となっている。よって、この三層構造
によって、セラミックス合金複合材料製カバー材の外側
に存在する高温流体の熱エネルギを、耐熱合金管の内部
を流れる被加熱流体に、長時間安定して伝熱することが
できる。
[0007] With this configuration, the heat-resistant alloy pipe and the cover material made of the ceramic alloy composite material are exposed to a high-temperature atmosphere and are not adhered to each other even if they are thermally expanded in the pipe axis direction. The alloy pipe and the cover material made of the ceramic alloy composite material are not damaged by mutual shearing force. Also, even if the heat-resistant alloy tube expands in the radial direction,
The expansion in the radial direction is absorbed by the thermal expansion buffer material of the intermediate layer, and the cover material made of the ceramic alloy composite material is not damaged. In addition, the thermal expansion buffer and the cover material made of ceramic alloy composite material, or the thermal expansion buffer and the heat-resistant alloy tube are in contact but not adhered to each other. It has a structure that is strong against thermal shocks. Therefore, with this three-layer structure, the heat energy of the high-temperature fluid existing outside the ceramic alloy composite material cover material can be stably transferred to the heated fluid flowing inside the heat-resistant alloy tube for a long time. .

【0008】熱伝達率に関して、本発明の構造は、耐熱
合金管と熱膨張緩衝材の少なくとも一部が接触し、さら
に、熱膨張緩衝材とセラミックス合金複合材料製カバー
材の少なくとも一部が接触する三層構造からなっている
ため、セラミックス合金複合材料製カバー材と耐熱合金
管の間の熱伝導率が低下することを防ぐ。セラミックス
合金複合材料製カバー材の内表面のほぼ全面、および、
耐熱合金管の外表面のほぼ全面が中間層となる熱膨張緩
衝材に接触することになれば、熱伝導率向上の点でより
好ましい。もし、熱膨張緩衝材が無く、セラミックス合
金複合材料製カバー材と耐熱合金管が接触することなく
完全に離れていれば、すなわち間隙を有していれば、そ
こに気体の断熱層が形成され熱伝導率が急激に低下する
ので好ましくない。
With regard to the heat transfer coefficient, the structure of the present invention is such that at least a portion of the heat-resistant alloy tube and the thermal expansion buffer material come into contact with each other, and further, at least a portion of the ceramic alloy composite material cover material comes into contact with the thermal expansion buffer material. Because of the three-layer structure, the thermal conductivity between the ceramic alloy composite material cover material and the heat-resistant alloy tube is prevented from lowering. Almost the entire inner surface of the ceramic alloy composite cover material, and
It is more preferable that almost the entire outer surface of the heat-resistant alloy tube comes into contact with the thermal expansion buffer material serving as the intermediate layer in terms of improving the thermal conductivity. If there is no thermal expansion buffer and the cover material made of the ceramic alloy composite material and the heat-resistant alloy pipe are completely separated without contact, that is, if there is a gap, a gas heat insulating layer is formed there. This is not preferable because the thermal conductivity sharply decreases.

【0009】ここで、被加熱流体が流れる管体の材質で
ある耐熱合金とは、例えば、ボイラ用炭素鋼・合金鋼、
またはステンレス鋼、耐熱鋼、Ni系/Co系耐熱合金
(インコネル、ハステロイ、ステライト等)などであ
り、このほか高融点金属であるクロム等も好適である。
さらにまた、カバー材を構成するセラミック合金複合材
料とは、酸化物、炭化物、窒化物、硼化物、珪化物、炭
素等、およびそれらの混在物と、広範囲の選択が可能で
ある。例としてあげれば、酸化物としてAl23やサイ
アロン(SiAlNO)、炭化物としてSiCやB
4C,窒化物としてAlN,Si34,硼化物としてT
iB2,珪化物としてMoSi等が適当である。
Here, the heat-resistant alloy which is the material of the tube through which the fluid to be heated flows is, for example, carbon steel / alloy steel for boilers,
Alternatively, stainless steel, heat-resistant steel, Ni-based / Co-based heat-resistant alloys (Inconel, Hastelloy, stellite, etc.) and the like, and chromium, which is a high melting point metal, are also suitable.
Furthermore, the ceramic alloy composite material constituting the cover material can be selected from a wide range of oxides, carbides, nitrides, borides, silicides, carbon, and the like, and mixtures thereof. For example, Al 2 O 3 or Sialon (SiAlNO) is used as an oxide, and SiC or B is used as a carbide.
4 C, AlN as nitride, Si 3 N 4, T as borides
iB 2 and MoSi are suitable as silicide.

【0010】また、本発明における前記熱膨張緩衝材
は、硼素もしくは炭素またはアルミニウムを主成分とす
る繊維、粉体、フィルム、テープ等の材料を使用して、
前記耐熱合金管の外表面または前記セラミックス合金複
合材料製カバー材の内表面に形成された、空隙を有する
熱膨張吸収層からなることを特徴としている(請求項
2)。
In the present invention, the thermal expansion buffer is made of a material such as fibers, powders, films and tapes containing boron, carbon or aluminum as a main component.
It is characterized by comprising a thermal expansion absorption layer having voids formed on the outer surface of the heat-resistant alloy tube or the inner surface of the ceramic alloy composite material cover material (claim 2).

【0011】この構成により、耐熱合金管の管軸方向お
よび半径方向の熱膨張に対して、吸収層の空隙の容積率
が変化するため、熱膨張緩衝材が耐熱合金管とセラミッ
クス合金複合材料製カバー材の熱膨張差を吸収すること
になり、熱衝撃によるセラミックス合金複合材料製カバ
ー材の損傷を防ぐことができる。空隙を有する熱膨張吸
収層は、耐熱合金管の外表面またはセラミックス合金複
合材料製カバー材の内表面のいずれか一方側に形成され
ればよい。このような熱膨張吸収層は、硼素もしくは炭
素またはアルミニウムを主成分とする繊維、粉体、フィ
ルム、テープ等の材料を使用することによって形成する
ことができる。
According to this configuration, the volume ratio of the voids in the absorption layer changes with respect to the thermal expansion in the tube axis direction and the radial direction of the heat-resistant alloy tube, so that the thermal expansion buffer is made of the heat-resistant alloy tube and the ceramic alloy composite material. The difference in thermal expansion of the cover material is absorbed, and damage to the ceramic alloy composite material cover material due to thermal shock can be prevented. The thermal expansion absorbing layer having voids may be formed on either the outer surface of the heat-resistant alloy tube or the inner surface of the ceramic alloy composite material cover material. Such a thermal expansion absorbing layer can be formed by using a material such as a fiber, a powder, a film, and a tape mainly containing boron, carbon, or aluminum.

【0012】また、本発明における前記カバー材を構成
するセラミックス合金複合材料はAlとAlNを含み、
AlNを1wt%以上90wt%以下、(Al+AlN+A
lON)の合計割合が50wt%以上100wt%以下であ
ることを特徴としている(請求項3)。
Further, the ceramic alloy composite material constituting the cover material in the present invention contains Al and AlN,
AlN of 1 wt% or more and 90 wt% or less, (Al + AlN + A
(ON) is a total ratio of 50 wt% or more and 100 wt% or less (claim 3).

【0013】窒化アルミニウムであるAlNは、セラミ
ックス材料の中でも、空気酸化に対する耐食性、溶鋼等
の各種溶融金属に対する耐食性に優れた材料で、不活性
雰囲気では、高炉スラグ等の各種溶融スラグに対する耐
食性にも優れている。また、硬度が比較的高いので耐摩
耗性にも優れ、さらに、極めて高い熱伝導度、低い熱膨
張率、比較的低い弾性率を有するので熱衝撃に比較的強
い特徴も持っている。このように、AlNは優れた耐食
性と耐摩耗性、比較的優れた耐熱衝撃性を併せ持つ材料
である。
AlN, which is aluminum nitride, is a material having excellent corrosion resistance to air oxidation and corrosion resistance to various molten metals such as molten steel among ceramic materials. In an inert atmosphere, it is also excellent in corrosion resistance to various molten slags such as blast furnace slag. Are better. In addition, it has relatively high hardness, so that it has excellent wear resistance. Further, it has an extremely high thermal conductivity, a low coefficient of thermal expansion, and a relatively low elastic modulus, so that it has a feature that is relatively resistant to thermal shock. As described above, AlN is a material having both excellent corrosion resistance and wear resistance and relatively excellent thermal shock resistance.

【0014】AlNと共に、金属アルミニウムであるA
lも、熱伝導の極めてよい物質であり、熱衝撃の緩和に
有利な金属であり、伝熱管の構成因子としては適してい
る。セラミックス合金複合材料製カバー材の製造過程
で、Alの多くは雰囲気のN2と反応してAlNに変わ
り、AlN中に未反応のAlが分散した構成になり、A
lNが粒子間の結合力を強化する。
[0014] Along with AlN, metallic aluminum A
1 is also a material having extremely good heat conduction, is a metal that is advantageous for reducing thermal shock, and is suitable as a component of a heat transfer tube. In the manufacturing process of ceramic alloy composite material cover material, changes to AlN reacts with N 2 atmosphere Many Al, become configuration Al is dispersed unreacted during AlN, A
1N enhances the bonding force between the particles.

【0015】この構成により、焼結体は熱衝撃を受けて
も、AlNが形状変形を防ぎ、AlNに囲まれたAlが
熱衝撃を緩和する機能を持つ。そのため、この機能を維
持するためには、AlNを少なくとも1wt%以上含有し
なければならない。AlNの含有量が、1wt%未満では
粒子間の結合力が小さくて不十分となり、また90wt%
を超えるとセラミックス合金複合材料の特性がセラミッ
クスに近づき、脆くなるため好ましくない。したがっ
て、AlNの含有重量割合は1wt%以上90wt%以下と
する。
With this configuration, even if the sintered body receives a thermal shock, AlN has a function of preventing shape deformation, and Al surrounded by AlN has a function of reducing the thermal shock. Therefore, in order to maintain this function, AlN must be contained at least 1 wt% or more. If the content of AlN is less than 1 wt%, the bonding force between the particles is small and insufficient, and 90 wt%.
Exceeding the ratio is undesirable because the properties of the ceramic alloy composite material become closer to ceramics and become brittle. Therefore, the content ratio of AlN is set to 1 wt% or more and 90 wt% or less.

【0016】また、前記セラミックス合金複合材料に
は、AlやAlONがAlN中に分散している。(Al
+AlN+AlON)の含有重量割合が、50wt%以上
100wt%以下であれば、前記セラミックス合金複合材
料製カバー材は熱変形特性を有しながら、高い熱衝撃性
を維持することができる。また、アルミニウムを含む窒
化物は、高温排ガス中に含まれている酸化物のダストに
対する濡れ性が悪いので、相当量の濃度が含有されてい
ればセラミックス合金複合材料製カバー材にダストが付
き難くなるという特性を持っている。したがって、(A
l+AlN+AlON)の含有重量割合が、50wt%以
上有れば、そのダスト付着させない特性が有効に発揮す
ることができる。また、本伝熱管の製造においてAlO
Nを無くし、AlとAlNだけでその重量割合が50wt
%以上100wt%以下であってもかまわない。
In the ceramic alloy composite material, Al and AlON are dispersed in AlN. (Al
When the content weight ratio of (+ AlN + AlON) is 50 wt% or more and 100 wt% or less, the ceramic alloy composite material cover material can maintain high thermal shock resistance while having thermal deformation characteristics. In addition, since nitrides containing aluminum have poor wettability to oxide dust contained in high-temperature exhaust gas, dusts are unlikely to adhere to the ceramic alloy composite material cover material if contained in a considerable amount. It has the characteristic of becoming. Therefore, (A
If the content ratio of (l + AlN + AlON) is 50 wt% or more, the property of preventing dust adhesion can be effectively exhibited. In the production of the heat transfer tube, AlO
Eliminate N, and the weight ratio of Al and AlN alone is 50wt
% Or more and 100% by weight or less.

【0017】なお、ここで、AlONとはAl,O,N
の固液体の総称で、例としては、Al1115N,AlO
N,Al1982884,Al2739N,Al1083
Al937,SiAl727,Si3Al34.55
挙げられる。
Here, AlON means Al, O, N
Is a general term for solid liquids such as Al 11 O 15 N, AlO
N, Al 198 O 288 N 4 , Al 27 O 39 N, Al 10 N 8 O 3 ,
Al 9 O 3 N 7 , SiAl 7 O 2 N 7 and Si 3 Al 3 O 4.5 N 5 are mentioned.

【0018】また、本発明においては、前記耐熱合金管
の外表面に硼素あるいは炭素を含む化合物からなる離型
剤を塗布することを特徴としている(請求項4)。
Further, in the present invention, a release agent comprising a compound containing boron or carbon is applied to the outer surface of the heat-resistant alloy tube (claim 4).

【0019】離型剤を塗布することにより、耐熱合金管
とセラミックス合金複合材料製カバー材間のすべりを良
くし、両部材の熱膨張差による伸びがより滑らかにな
る。
By applying the release agent, the slip between the heat-resistant alloy tube and the cover material made of the ceramic alloy composite material is improved, and the elongation due to the difference in thermal expansion between the two members becomes smoother.

【0020】さらにまた、本発明においては、前記セラ
ミックス合金複合材料の気孔率が2%以上60%以下で
あることを特徴としている(請求項5)。
Further, the present invention is characterized in that the porosity of the ceramic alloy composite material is 2% or more and 60% or less (claim 5).

【0021】セラミックス合金複合材料製カバー材の製
造において、気孔率を2%未満にするためには、その製
造過程において高温高圧雰囲気が必要になり、その製造
コストが急激に上昇する。セラミックス合金複合材料中
の気孔は、単純な円孔ではなくいびつな形をしている。
そのサイズは、線間距離でサブミクロン以下のオーダー
から中には数百ミクロンオーダーまである。このような
気孔を持つセラミックス合金複合材料において、気孔率
が60%より大きいと塩基性塩を含むダストがセラミッ
クス合金複合材料の中に浸透しやすくなり、耐熱合金管
にまでその腐食影響が及ぶ。したがって、気孔率の下限
は2%、上限は60%が好ましい。
In the production of a cover material made of a ceramic alloy composite material, in order to reduce the porosity to less than 2%, a high-temperature and high-pressure atmosphere is required in the production process, and the production cost rises sharply. Pores in the ceramic alloy composite material are not simple circular holes but have irregular shapes.
Their sizes range from sub-micron or less to several hundred microns in line-to-line distance. In a ceramic alloy composite material having such pores, if the porosity is larger than 60%, dust containing a basic salt easily penetrates into the ceramic alloy composite material, and the corrosion effect reaches even the heat-resistant alloy pipe. Therefore, the lower limit of the porosity is preferably 2%, and the upper limit is preferably 60%.

【0022】[0022]

【発明の実施の形態】図1は、本発明の実施の形態に係
る熱交換用伝熱管の断面を示す(一部拡大断面図を併記
してある)。耐熱合金からなる管体1の外側を熱膨張緩
衝材2を介してセラミックス合金複合材料からなるカバ
ー材3で覆い、これら3つの部材1、2、3で三層構造
とするとともに、熱膨張緩衝材2はセラミックス合金複
合材料製のカバー材3および/または耐熱合金管1に対
して非接着構造とするものである。
FIG. 1 shows a cross section of a heat exchanger tube for heat exchange according to an embodiment of the present invention (a partially enlarged cross-sectional view is also shown). The outside of a tubular body 1 made of a heat-resistant alloy is covered with a cover material 3 made of a ceramic alloy composite material via a thermal expansion buffer material 2, and these three members 1, 2, and 3 form a three-layer structure. The material 2 has a non-adhesive structure to the cover material 3 made of a ceramic alloy composite material and / or the heat-resistant alloy tube 1.

【0023】セラミックス合金複合材料からなるカバー
材3の外表面外側を高温ガスが流れ、耐熱合金管1の内
部を被加熱流体が通る。高温ガスの温度は400℃〜1
200℃で、ガス雰囲気条件によって、カバー材3を構
成するセラミックス合金複合材料が選択される。
A high-temperature gas flows outside the outer surface of the cover material 3 made of a ceramic alloy composite material, and a fluid to be heated passes inside the heat-resistant alloy tube 1. The temperature of the hot gas is 400 ° C ~ 1
At 200 ° C., a ceramic alloy composite material forming the cover material 3 is selected depending on the gas atmosphere conditions.

【0024】高温排ガス中には、HClおよび/または
SOxが含まれている。排ガス処理ラインに排ガス温度
300℃以上の高温集塵装置が設置されているとき、除
塵後の高温排ガスにも本発明の熱交換用伝熱管を用いる
ことができる。本発明の熱交換用伝熱管内を流れる被加
熱流体は、空気、水蒸気、CO2を2〜25vol%(湿ベ
ース)含む燃焼排ガスを表し、本発明により、空気と前
記燃焼排ガスは最高800℃、水蒸気は約550℃まで
加熱することができる。また、被加熱流体は最高100
ataまで加圧できることを確認した。耐熱合金管1の肉
厚は3〜10mm,熱膨張緩衝材2の厚みは0.1〜8mm
が好ましく、またセラミックス合金複合材料製カバー材
3の厚みは、3〜20mmが好ましい。耐熱合金管1、熱
膨張緩衝材2、セラミックス合金複合材料製カバー材3
の厚みをそれぞれ上限値より大きくすると、熱交換器と
して実用上設計意義のある熱伝達率を得られなくなる。
また、それぞれの下限値より小さくすると、伝熱管とし
て熱衝撃に耐えられなくなり、破損しやすくなる。
The high-temperature exhaust gas contains HCl and / or SOx. When a high-temperature dust collecting device having an exhaust gas temperature of 300 ° C. or higher is installed in an exhaust gas treatment line, the heat exchange tube for heat exchange of the present invention can be used for high-temperature exhaust gas after dust removal. The fluid to be heated flowing in the heat exchange tube for heat exchange of the present invention represents a combustion exhaust gas containing air, water vapor, and 2 to 25 vol% (wet basis) of CO 2. The steam can be heated to about 550 ° C. Also, the fluid to be heated can be up to 100
It was confirmed that pressurization up to ata was possible. The thickness of the heat-resistant alloy tube 1 is 3 to 10 mm, and the thickness of the thermal expansion buffer 2 is 0.1 to 8 mm.
Preferably, the thickness of the ceramic alloy composite material cover material 3 is 3 to 20 mm. Heat-resistant alloy tube 1, thermal expansion buffer 2, cover material 3 made of ceramic alloy composite material
If the thickness of each of the heat exchangers is larger than the upper limit value, it becomes impossible to obtain a heat transfer coefficient having a practically significant design as a heat exchanger.
On the other hand, when the heat transfer tubes are smaller than the respective lower limit values, the heat transfer tubes cannot withstand thermal shock and are easily damaged.

【0025】セラミックス合金複合材料製カバー材3
は、図1に示すように、熱膨張緩衝材2に包まれた耐熱
合金管1の外側を覆い、セラミックス合金複合材料製カ
バー材3と耐熱合金管1の間には熱膨張緩衝材2が介在
した構造となっている。本発明の熱交換用伝熱管は、耐
熱合金管1の外表面にセラミックスや耐食性合金を溶射
や蒸着ほかの方法によって接着する方法は用いず、セラ
ミックス合金複合材料製カバー材3をスリーブのように
覆った形状を有しているので、高温に曝され耐熱合金管
1が管軸方向および半径方向に膨張しても、熱膨張緩衝
材2によってそれらが吸収され、セラミックス合金複合
材料製カバー材3を損傷させることがない構造となって
いる。なお、セラミックス合金複合材料製カバー材3お
よび耐熱合金管1は、真円の必要はなく、偏心した円、
楕円、角型、またはいびつな形状でも構わない。また、
耐熱合金管1とセラミックス合金複合材料製カバー材3
が、同心円である必要もない。さらに、耐熱合金管1の
外側の表面粗さは、粗くても滑らかでも構わない。
Cover material 3 made of ceramic alloy composite material
As shown in FIG. 1, the thermal expansion buffer 2 covers the outside of the heat-resistant alloy tube 1 wrapped in the thermal expansion buffer 2, and the thermal expansion buffer 2 is provided between the ceramic alloy composite cover material 3 and the heat-resistant alloy tube 1. It has an intervening structure. The heat exchange tube for heat exchange of the present invention does not use a method in which ceramics or a corrosion-resistant alloy is bonded to the outer surface of the heat-resistant alloy tube 1 by spraying or vapor deposition or other methods. Since it has a covered shape, even if it is exposed to a high temperature and the heat-resistant alloy pipe 1 expands in the pipe axis direction and the radial direction, it is absorbed by the thermal expansion buffer 2 and the ceramic alloy composite material cover 3 It does not damage the structure. The cover material 3 made of the ceramic alloy composite material and the heat-resistant alloy tube 1 do not need to be a perfect circle, but an eccentric circle,
It may be oval, square or distorted. Also,
Heat-resistant alloy tube 1 and ceramic alloy composite material cover material 3
However, they need not be concentric. Further, the outer surface roughness of the heat-resistant alloy tube 1 may be rough or smooth.

【0026】耐熱合金管1の外表面と熱膨張緩衝材2の
内表面、および、セラミックス合金複合材料製カバー材
3の内表面と熱膨張緩衝材2の外表面は、接触面積が多
いほど、外部を流れる高温排ガスから耐熱合金管1内の
被加熱流体への熱伝達は大きくなる。
The larger the contact area between the outer surface of the heat-resistant alloy tube 1 and the inner surface of the thermal expansion buffer 2 and the inner surface of the ceramic alloy composite cover material 3 and the outer surface of the thermal expansion buffer 2, Heat transfer from the high-temperature exhaust gas flowing outside to the fluid to be heated in the heat-resistant alloy tube 1 increases.

【0027】熱膨張緩衝材2には、硼素もしくは炭素ま
たはアルミニウムを主成分とする材料を用いる。これら
の材料を用いて、耐熱合金管1の外表面、あるいは、セ
ラミックス合金複合材料製カバー材3の内表面に、空隙
を有する熱膨張吸収層を形成する。この熱膨張吸収層を
形成する材料としては、例えば炭素繊維や硼素、炭素を
含むフィルム、あるいはアルミ箔などがよい。また、他
に、プラスチックの微粉を耐熱合金管1に散布するか、
あるいは炭素を含むテープの類を耐熱合金管1に巻きつ
け、本発明の伝熱管を製造する熱工程でそれらの成分か
ら低沸点媒体を揮発させ、炭素主体の材料を熱膨張緩衝
材としても機能的には構わない。熱膨張緩衝材2は、耐
熱合金管1とセラミックス合金複合材料製カバー材2の
間の熱膨張差を吸収するために用いるので、熱膨張緩衝
材2には空隙があり、その容積率が変化することによっ
てこの機能を果たす。
As the thermal expansion buffer 2, a material containing boron, carbon, or aluminum as a main component is used. Using these materials, a thermal expansion absorbing layer having a void is formed on the outer surface of the heat-resistant alloy tube 1 or the inner surface of the ceramic alloy composite material cover material 3. As a material for forming the thermal expansion absorbing layer, for example, a film containing carbon fiber, boron, or carbon, or an aluminum foil is preferable. In addition, a fine powder of plastic is sprayed on the heat-resistant alloy pipe 1 or
Alternatively, a tape containing carbon is wrapped around the heat-resistant alloy tube 1, and a low-boiling-point medium is volatilized from these components in a heat process for manufacturing the heat transfer tube of the present invention, and the carbon-based material also functions as a thermal expansion buffer. It doesn't matter. Since the thermal expansion buffer 2 is used to absorb the difference in thermal expansion between the heat-resistant alloy tube 1 and the cover material 2 made of the ceramic alloy composite material, the thermal expansion buffer 2 has voids, and the volume ratio changes. Performs this function.

【0028】セラミックス合金複合材料の中で、アルミ
ニウム元素を主体とするAIN+Al+AlONから構
成される材料は、性能面において本発明の伝熱管に最も
好ましい。なぜなら、本発明では、セラミックス合金複
合材料に、セラミックス特性の高温耐腐食性と合金特性
の延性を望んでいるが、この点において、アルミニウム
元素は他のセラミックス合金複合材料を成す主元素に比
べ、延性の点で最適である。また、耐熱合金とセラミッ
クス合金複合材料の接触面も、延性の優れたアルミニウ
ム系セラミックス合金複合材料を使うことにより、膨張
伸縮時に破損する割合が他のセラミックス合金複合材料
より少なくなるというメリットを持っている。
Among ceramic alloy composite materials, a material composed of AIN + Al + AlON mainly containing aluminum element is most preferable for the heat transfer tube of the present invention in terms of performance. Because, in the present invention, the ceramic alloy composite material is desired to have high-temperature corrosion resistance of ceramic properties and ductility of alloy properties, but in this regard, the aluminum element is compared with the main elements forming other ceramic alloy composite materials. Optimum in ductility. Also, the contact surface between the heat-resistant alloy and the ceramic alloy composite material has the advantage that the rate of damage during expansion and contraction is smaller than that of other ceramic alloy composite materials by using an aluminum-based ceramic alloy composite material with excellent ductility. I have.

【0029】このアルミニウム元素を主体とするセラミ
ックス合金複合材料は、例えば、低純度Al源粉末と高
純度Al源粉末との混合粉末とを加圧成形し、この成形
体を焼結することによって得られる。低純度Al源粉末
は、例えば、金属AlまたはAl合金粉未で、Si、M
g等の合金元素を含むこともある。高純度Al源粉末
は、例えば、Alを90wt%以上含む。これらの混合粉
末を成形して得られた充填体を窒素雰囲気中で加熱す
る。粉末中のAlが溶融し(純粋のAlの融点は660
℃であるが、Al−Mg合金は最大450℃まで融点が
降下し、Al−Si合金では最大577℃まで融点が降
下する)、680℃に達すると、ある量のAlは、雰囲
気のN2と反応してAINに変わり、AIN中に少量の
未反応のAlが分散した構成となる。セラミックス特性
を有するAlNがAlの回りに皮膜を作るので、製品化
されたAIN+Al+AlONのセラミックス合金複合
材料製カバー材3は、Alの融点以上の高温に曝されて
も溶けてその形状を崩すことはない。また、成形時およ
び加熱時の温度や圧力の設定により窒化の度合いを制御
することができるので、高温排ガスと回収熱量の条件に
応じて、セラミックス特性を強くするAIN濃度を調整
することができる。もし、AINあるいはAlの濃度を
成形、加熱時に設定値にすることができなければ、AI
NあるいはAlをセラミックス合金複合材料と耐熱合金
の間に供給しても良い。
The ceramic alloy composite material mainly containing aluminum element is obtained by, for example, pressing a mixed powder of a low-purity Al source powder and a high-purity Al source powder and sintering the compact. Can be The low-purity Al source powder includes, for example, Si, M without metal Al or Al alloy powder.
It may contain an alloying element such as g. The high-purity Al source powder contains, for example, 90 wt% or more of Al. The filling obtained by molding these mixed powders is heated in a nitrogen atmosphere. Al in the powder melts (pure Al has a melting point of 660
Is a ° C., Al-Mg alloy has a melting point lowered to a maximum 450 ° C., in the Al-Si alloy melting point is lowered to a maximum 577 ° C.), is reached 680 ° C., Al a certain amount of atmosphere of N 2 And AIN is converted to AIN, and a small amount of unreacted Al is dispersed in AIN. Since AlN having ceramic properties forms a film around Al, the commercialized AIN + Al + AlON ceramic alloy composite material cover material 3 does not melt and break its shape even when exposed to a high temperature higher than the melting point of Al. Absent. Further, since the degree of nitriding can be controlled by setting the temperature and pressure during molding and during heating, the AIN concentration that enhances the ceramic properties can be adjusted according to the conditions of the high-temperature exhaust gas and the amount of heat recovered. If the AIN or Al concentration cannot be set to the set value during molding and heating, AI
N or Al may be supplied between the ceramic alloy composite material and the heat-resistant alloy.

【0030】アルミニウム元素を主体とするセラミック
ス合金複合材料には、AlN、Al以外にも耐熱性のよ
い物質であれば配合されてもよい。すなわち、Ti
2,ZrO2,Cr23,Al23,SiO2,Y
23,CeO2,Sc23の中から選択された1種また
は複数の酸化物、そしてまた、これらの酸化物中の少な
くとも一つを含む複合酸化物が入ってもよい。また、B
N,MgB2,CaB6,TiB 2,ZrB2,AlB2
中から選択された1種または複数のホウ化物が入っても
よい。また、B4C,TiC,ZrC,Cr32,Al4
3,SiCの中から選択された1種または複数の炭化
物が入ってもよい。また、TiN,ZrN,Cr 2N,
Si34の中から選択された1種または複数の窒化物が
入ってもよい。Si22Oに代表される酸窒化物が入っ
てもよい。組成について、この発明ではいかなる組成で
あってもよい。また、AlONのAlの一部がSiで置
換されてもよい。ただし、Si/Alのモル比で1.0
以下であることが耐食性の観点から好ましい。
Ceramics mainly composed of aluminum element
In addition to AlN and Al, heat resistant alloys
May be blended as long as the substance is not suitable. That is, Ti
OTwo, ZrOTwo, CrTwoOThree, AlTwoOThree, SiOTwo, Y
TwoOThree, CeOTwo, ScTwoOThreeOne selected from
Is more than one oxide and also less of these oxides
A composite oxide containing at least one may be contained. Also, B
N, MgBTwo, CaB6, TiB Two, ZrBTwo, AlBTwoof
Even if one or more borides selected from among them enter
Good. Also, BFourC, TiC, ZrC, CrThreeCTwo, AlFour
CThreeOne or more carbonizations selected from, SiC
Things may enter. Also, TiN, ZrN, Cr TwoN,
SiThreeNFourOne or more nitrides selected from
You may enter. SiTwoNTwoContains oxynitride represented by O
You may. Regarding the composition, in this invention, any composition
There may be. Also, part of Al in AlON is replaced with Si.
It may be exchanged. However, the molar ratio of Si / Al is 1.0
The following is preferred from the viewpoint of corrosion resistance.

【0031】高温に曝されたとき,耐熱合金管1の外表
面とセラミックス合金複合材料製カバー材2の内表面の
相互のすべりを良くするために、耐熱合金管1の外表面
に、BNあるいはB4C等の硼素あるいは炭素を含む化
合物を塗布する。これは、セラミックス系材料と金属の
接着をより効果的に防ぎ、それぞれのすべりを良好にす
る離型剤として機能する。塗布する厚みは、1〜60ミ
クロンが好ましい。
When exposed to a high temperature, the outer surface of the heat-resistant alloy tube 1 is coated with BN or the like to improve the mutual slip between the outer surface of the heat-resistant alloy tube 1 and the inner surface of the ceramic alloy composite cover material 2. A compound containing boron or carbon such as B 4 C is applied. This functions as a release agent that more effectively prevents the adhesion between the ceramic material and the metal and improves the slip of each. The coating thickness is preferably 1 to 60 microns.

【0032】高温排ガス中には、腐食性物質として、H
ClやSOxのガス体とNaClやKC1等の塩基性塩
からなる凝縮体がある。この凝縮体は、小さいものでサ
ブミクロンオーダー、大きいもので凝集体を形成する2
0ミクロン程度の大きさを持つ。本発明の熱交換用伝熱
管を低コストに抑えるためには、セラミックス合金複合
材料の気孔率を2%以上にすることが有効であるが、気
孔率を大きくしすぎると、前記腐食性凝縮体がセラミッ
クス合金複合材料の中に侵食し易くなり、経験的に60
%より気孔率を大きくすると、本発明の効果を発揮する
ことができないことが分かった。
The high-temperature exhaust gas contains H as a corrosive substance.
There is a condensate composed of a gaseous substance such as Cl or SOx and a basic salt such as NaCl or KC1. This condensate forms submicrons on the small scale and forms aggregates on the large scale.
It has a size of about 0 microns. In order to reduce the cost of the heat exchange tube for heat exchange of the present invention, it is effective to increase the porosity of the ceramic alloy composite material to 2% or more. Is likely to erode into ceramic alloy composites, empirically 60
%, The effect of the present invention cannot be exhibited.

【0033】本発明による熱交換用伝熱管の側面形状お
よびその断面を、図2に示す。高温ガスが流れる雰囲気
に熱交換用伝熱管はセットされ、被加熱流体は、耐熱合
金管1の内部を一方端から入り他方端へ抜ける構造にな
っている。基本的には、高温ガスに曝される耐熱合金管
1の外周は、熱膨張緩衝材2を介してセラミックス合金
複合材料製カバー材3によって覆われている。熱膨張緩
衝材2がセラミックス合金複合材料製カバー材3および
/または耐熱合金管1に対して非接着構造となっている
ことは前述したとおりである。
FIG. 2 shows a side view and a cross section of the heat exchanger tube for heat exchange according to the present invention. A heat transfer tube for heat exchange is set in an atmosphere in which a high-temperature gas flows, and a fluid to be heated enters the inside of the heat-resistant alloy tube 1 from one end and escapes to the other end. Basically, the outer periphery of the heat-resistant alloy tube 1 exposed to the high-temperature gas is covered by a ceramic alloy composite material cover material 3 via a thermal expansion buffer material 2. As described above, the thermal expansion buffer 2 has a non-adhesive structure with respect to the ceramic alloy composite cover material 3 and / or the heat-resistant alloy tube 1.

【0034】被加熱流体の管内流速は、これまでの廃棄
物燃焼や石炭燃焼のボイラに準じるが、目的によって
は、その流速を低速側や高速側に変化させることもあ
る。熱交換用伝熱管の被加熱流体が流れる耐熱合金管1
の管径は、被加熱流体が流れればいくらでもよいが、そ
の中でも、排ガス中に管全周を曝すときは15Aから4
0Aにすることが製作上好ましい。熱交換用伝熱管の長
さは、1mから6mが好ましい。熱交換用伝熱管が長く
なると耐熱合金管1のたわみ量が大きくなり、カバー材
3のセラミックス合金複合材料の割れが心配されるが、
この場合、セラミックス合金禎合材料製カバー材3を外
側から支える支柱を設け、耐熱合金管1のたわみ量を小
さくすれば問題は解決される。また、図2からわかるよ
うに、短い伝熱管のセラミックス合金複合材料に覆われ
ていない耐熱合金管1の両端を溶接で継ぎ足すことによ
って、長い伝熱管を作ることができる。
The flow velocity of the fluid to be heated in the pipe is in accordance with the waste combustion or coal combustion boiler, but the flow velocity may be changed to a lower speed or a higher speed depending on the purpose. Heat-resistant alloy tube 1 through which the fluid to be heated of the heat transfer tube for heat exchange flows 1
The pipe diameter of the pipe may be any number as long as the fluid to be heated flows.
It is preferable to make it 0 A in terms of manufacturing. The length of the heat exchange tube is preferably 1 m to 6 m. When the heat exchange tube for heat exchange becomes long, the amount of deflection of the heat-resistant alloy tube 1 increases, and there is a fear that the ceramic alloy composite material of the cover material 3 is cracked.
In this case, the problem can be solved by providing a column for supporting the cover material 3 made of a ceramic alloy material from the outside and reducing the amount of deflection of the heat-resistant alloy tube 1. In addition, as can be seen from FIG. 2, a long heat transfer tube can be made by welding both ends of the heat-resistant alloy tube 1 that is not covered with the ceramic alloy composite material of the short heat transfer tube.

【0035】また、本発明から得られる熱交換用伝熱管
の別の構成例を図3、図4に示す。図3は、熱交換伝熱
管の一端都を閉じ、被加熱流体を耐熱合金管1内に設け
られた耐熱チューブ4を通じて流し、耐熱チューブ4と
耐熱合金管1の間隙内を被加熱流体が折り返し流れるよ
うにして加熱する構造で、被加熱流体に熱を与える高温
ガスに曝される部分はすべてセラミックス合金複合材料
製のカバー材3によって覆われている。この形式の場
合、熱交換用伝熱管の外径は、φ30〜200mmが好ま
しい。
FIGS. 3 and 4 show another example of the configuration of the heat exchanger tube for heat exchange obtained from the present invention. FIG. 3 shows a state in which one end of the heat exchange heat transfer tube is closed, and the fluid to be heated is caused to flow through the heat resistant tube 4 provided in the heat resistant alloy tube 1. In the structure in which the fluid to be heated is heated, all portions exposed to a high-temperature gas that applies heat to the fluid to be heated are covered with a cover material 3 made of a ceramic alloy composite material. In the case of this type, the outer diameter of the heat exchange tube for heat exchange is preferably φ30 to 200 mm.

【0036】図4は、被加熱流体が流れる耐熱合金管1
をU字状に形成し、その曲がり部を含む外側部分をセラ
ミックス合金複合材料製のカバー材3で覆った熱交換用
伝熱管である。U字状の曲がり部は、直管形状の熱交換
用伝熱管に比べ、耐熱合金とセラミックス合金複合材料
の熱膨張変形が複雑なため、より多くの空隙5が必要に
なる。
FIG. 4 shows a heat-resistant alloy tube 1 through which a fluid to be heated flows.
Is formed in a U-shape, and the outer portion including the bent portion is covered with a cover material 3 made of a ceramic alloy composite material. The U-shaped bent portion requires more voids 5 because the thermal expansion deformation of the heat-resistant alloy and the ceramic alloy composite material is more complicated than that of the heat exchange tube for heat exchange having a straight tube shape.

【0037】[0037]

【実施例】(1)都市ゴミや産業廃棄物を処理するゴミ
焼却パイロットプラントにおいて、焼却炉を出た約95
0℃から約650℃の高温排ガス中に、以下の数種類の
熱交換用伝熱管を挿入した。 耐熱合金管:SUS304−15A 熱膨張緩衝材:Al箔の成分を主体とする層、厚み1〜
2mm セラミックス合金複合材料製カバー材:Al+AlN+
AlON−90wt%以上、肉厚−4〜10mm、気孔率4
0% 耐熱合金管:SUS304−20A 熱膨張緩衝材:炭素繊維相当、厚み0.2〜2mm セラミックス合金複合材料製カバー材:Al+AlN+
AlON−90wt%以上、肉厚−3〜8mm、気孔率20
% 耐熱合金管:SUS304−20A、外表面一BNコ
ート 熱膨張緩衝材:炭素繊維相当、厚み0.2〜2mm セラミックス合金複合材料製カバー材:Al十AlN+
AlON−90wt%以上、肉厚−3〜8mm、気孔率20
% 耐熱合金管:SUS304−20A 熱膨張緩衝材:炭素繊維相当、厚み1〜2mm セラミックス合金複合材料製カバー材:Al23−80
wt%以上、肉厚−2〜4mm、気孔率30% 排ガスのN2以外の主成分は、O2:2〜16(vol,dr
y)%,HCl:200〜600(vol,dry)ppm,SO
x:max300(vol,dry)ppm,CO2:4〜19(vol,
dry)%で、都市ゴミや産業廃棄物を燃やしたときに生
じる一般的な排ガス雰囲気である。
[Examples] (1) In a garbage incineration pilot plant for treating municipal waste and industrial waste, about 95
The following several types of heat exchange tubes for heat exchange were inserted into a high-temperature exhaust gas at 0 ° C. to about 650 ° C. Heat-resistant alloy pipe: SUS304-15A Thermal expansion buffer: Layer mainly composed of Al foil, thickness 1 to 1
2mm ceramic alloy composite material cover material: Al + AlN +
AlON-90 wt% or more, wall thickness -4 to 10 mm, porosity 4
0% heat-resistant alloy tube: SUS304-20A Thermal expansion buffer: Carbon fiber equivalent, thickness 0.2 to 2 mm Ceramic alloy composite material cover material: Al + AlN +
AlON-90 wt% or more, wall thickness-3 to 8 mm, porosity 20
% Heat-resistant alloy tube: SUS304-20A, outer surface is coated with BN Thermal expansion buffer: Carbon fiber equivalent, 0.2 to 2 mm thick Cover material made of ceramic alloy composite material: Al10AlN +
AlON-90 wt% or more, wall thickness-3 to 8 mm, porosity 20
% Heat-resistant alloy tube: SUS304-20A Thermal expansion buffer material: Carbon fiber equivalent, thickness 1-2 mm Ceramic alloy composite material cover material: Al 2 O 3 -80
wt% or more, the thickness -2~4Mm, the main component of the non-N 2 of porosity 30% flue gas, O 2: 2~16 (vol, dr
y)%, HCl: 200 to 600 (vol, dry) ppm, SO
x: max 300 (vol, dry) ppm, CO 2 : 4 to 19 (vol, dry)
dry)%, which is a general exhaust gas atmosphere generated when municipal waste and industrial waste are burned.

【0038】暴露試験の結果、どの条件においても、セ
ラミックス合金複合材料製カバー材には亀裂が発生しな
かった。また、1200時間の暴露試験後、各伝熱管を
取り出しその断面を観測した結果、SUS外表面にBN
を塗布した伝熱管の断面は製作当初と変わりなく、B
Nコートとセラミックス合金複合材料製カバー材のすべ
りが、伝熱管に比べてより滑らかであることが分か
った。被加熱流体として入口温度280℃から400℃
の水蒸気を用いたとき、〜のすべての条件におい
て、熱交換用伝熱管群の出口で、540℃以上、100
ataの可能性を見出した。また、空気または廃棄物燃焼
排ガスを被加熱流体としてしたとき、1000〜400
0mmAqの空気および50〜400mmAqの廃棄物燃焼
排ガスを最高800℃まで加熱可能なことを確認した。
但し、伝熱管のセラミックス合金複合材料製カバー材
は、熱伝導率が比較的低いAl23を主体としたため、
伝熱管〜より熱伝達係数が低くなった。
As a result of the exposure test, no crack occurred in the ceramic alloy composite material cover material under any conditions. After the exposure test for 1200 hours, each heat transfer tube was taken out and its cross section was observed.
The cross section of the heat transfer tube coated with
It was found that the slip of the N-coat and the cover material made of the ceramic alloy composite material was smoother than that of the heat transfer tube. Inlet temperature 280 ° C to 400 ° C as fluid to be heated
When steam is used, at all the conditions (1) to (5), at the outlet of the heat exchange tube group, 540 ° C. or higher, 100
I found the possibility of ata. When air or waste combustion exhaust gas is used as the fluid to be heated, 1000 to 400
It was confirmed that 0 mmAq of air and 50 to 400 mmAq of waste flue gas could be heated up to 800 ° C.
However, since the cover material made of the ceramic alloy composite material of the heat transfer tube is mainly composed of Al 2 O 3 having relatively low thermal conductivity,
The heat transfer coefficient was lower than that of the heat transfer tube.

【0039】(2)都市ゴミを部分酸化し、約1000
〜700℃の還元排ガス雰囲気に、 耐熱合金管:ボイラ用耐熱管STBA28−20A 熱膨張緩衝材:炭素80wt%以上の繊維、厚み0.5〜
3mm セラミックス合金複合材料製カバー材:Al+AIN−
86wt%、Al23−6wt%、肉厚−4〜5mm、気孔率
25% 耐熱合金管:ボイラ用耐熱管STBA28−20A 熱膨張緩衝材:炭素80wt%以上の繊維、厚み1〜3mm セラミックス合金複合材料製カバー材:SiC−95wt
%以上、肉厚−4〜5mm、気孔率2% の熱交換用伝熱管を挿入した。被加熱流体は、水蒸気と
空気である。
(2) Municipal waste is partially oxidized to about 1000
Heat-resistant alloy tube: heat-resistant tube for boiler STBA28-20A Thermal expansion buffer: carbon fiber of 80 wt% or more, thickness 0.5 to
3mm ceramic alloy composite cover material: Al + AIN-
86 wt%, Al 2 O 3 -6 wt%, wall thickness -4 to 5 mm, porosity 25% Heat-resistant alloy tube: Heat-resistant tube for boiler STBA28-20A Thermal expansion buffer: 80% by weight or more carbon fiber, 1-3 mm thick ceramics Alloy composite cover material: SiC-95wt
%, A heat exchange tube having a wall thickness of -4 to 5 mm and a porosity of 2% was inserted. The fluid to be heated is steam and air.

【0040】CO濃度が5〜15(vol,dry)%存在す
る還元雰囲気で熱交換試験を行った結果、高温ガスが還
元性ガスであったため、SiCやAINが酸化して劣化
する現象がほとんど見られず、良好な熱交換を実施する
ことができた。
As a result of conducting a heat exchange test in a reducing atmosphere having a CO concentration of 5 to 15 (vol, dry)%, since the high-temperature gas was a reducing gas, SiC and AIN were almost oxidized and deteriorated. No good heat exchange could be performed.

【0041】(3)石炭、下水汚泥脱水ケーキおよび乾
操汚泥焼却炉の燃焼排ガス中に、 耐熱合金管:ボイラ用耐熱管STBA28−40Aと
65Aの2種類 熱膨張援衝材:炭素80wt%以上の微粉・繊維混在層、
厚み0.2〜4mmセラミックス合金複合材料製カバー
材:SiC−95wt%以上、肉厚−約7mm、同軸管形状
(図3相当) 耐熱合金管:ボイラ用耐熱管STBA28−20Aと
50Aの2種類、 熱膨張緩衝材:硼素80wt%以上の微粉層、厚み0.3
〜2mm セラミックス合金複合材料製カバー材:Al23−95
wt%以上、肉厚−約4mm、同軸管形状(図3相当), 耐熱合金管:ボイラ用耐熱管STBA28−15Aと
20Aの2種類、 熱膨張緩衝材:炭素80wt%以上の繊維、厚み0.4〜
1mm セラミックス合金複合材料製カバー材:Al+AIN−
90%以上、肉厚−6〜8mm、U字管形状(図4相当) の熱交換用伝熱管を挿入した。
(3) Two types of heat-resistant alloy tubes: heat-resistant tubes for boilers STBA28-40A and 65A in the flue gas of coal, sewage sludge dewatering cake, and dry sludge incinerator Thermal expansion support material: 80% by weight or more of carbon Fine powder / fiber mixed layer,
0.2-4mm thick ceramic alloy composite material cover material: SiC-95wt% or more, wall thickness-about 7mm, coaxial tube shape (equivalent to Fig. 3) Heat-resistant alloy tube: Two types of heat-resistant tubes for boilers STBA28-20A and 50A Thermal expansion buffer material: Fine powder layer of boron 80wt% or more, thickness 0.3
~ 2mm Ceramic alloy composite cover material: Al 2 O 3 -95
wt% or more, wall thickness-about 4mm, coaxial tube shape (equivalent to Fig. 3), heat-resistant alloy tube: heat-resistant tube for boiler STBA28-15A and 20A, thermal expansion buffer material: carbon fiber of 80wt% or more, thickness 0 .4 ~
1mm ceramic alloy composite material cover material: Al + AIN-
A U-tube (equivalent to FIG. 4) heat exchange tube for heat exchange having a thickness of -6 to 8 mm and 90% or more was inserted.

【0042】試験の結果、石炭、下水汚泥の燃焼排ガス
には、数百(vol,dry)ppmのSOxが含まれるが、この
条件においても伝熱管〜は腐食することなく、発電
効率30%以上を達成する高温高圧水蒸気の回収、そし
てまた、高温空気や高温燃焼排ガスの回収が可能なこと
を見出した。
As a result of the test, the combustion exhaust gas of coal and sewage sludge contains several hundred (vol, dry) ppm of SOx. Even under these conditions, the heat transfer tube is not corroded and the power generation efficiency is 30% or more. It has been found that it is possible to recover high-temperature and high-pressure steam and to recover high-temperature air and high-temperature combustion exhaust gas.

【0043】[0043]

【発明の効果】以上のように、本発明の熱交換用伝熱管
は、耐熱合金からなるチューブの優れた靭性と、その外
表面を覆うカバー材を構成する、セラミックスと金属の
両方の性質を有するセラミックス合金複合材料の優れた
耐高温腐食性を併せ持ち、しかも両部材の間に熱膨張差
を吸収する熱膨張緩衝材を設け、該熱膨張緩衝材がセラ
ミックス合金複合材料製カバー材および/または耐熱合
金管に対して非接着構造としたものであるので、セラミ
ックス合金複合材料製カバー材の熱衝撃による損傷を防
ぐことができ、その結果、廃棄物燃焼排ガス、石炭燃焼
排ガス、下水汚泥燃焼排ガス、その他産業廃棄物燃焼排
ガス中の高温腐食環境から、これまで未利用であった高
温の熱を回収することを可能にするものである。
As described above, the heat exchanger tube for heat exchange of the present invention has excellent toughness of a tube made of a heat-resistant alloy and the properties of both ceramics and metal constituting a cover material covering its outer surface. The ceramic alloy composite material has an excellent high-temperature corrosion resistance, and a thermal expansion buffer material is provided between both members to absorb a difference in thermal expansion, and the thermal expansion buffer material is a ceramic alloy composite material cover material and / or Since it has a non-adhesive structure to the heat-resistant alloy pipe, it is possible to prevent damage to the ceramic alloy composite material cover material due to thermal shock, and as a result, waste combustion exhaust gas, coal combustion exhaust gas, sewage sludge combustion exhaust gas Another object of the present invention is to recover high-temperature heat that has not been used before from a high-temperature corrosive environment in combustion exhaust gas from industrial waste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る熱交換用伝熱管の断
面図である。
FIG. 1 is a cross-sectional view of a heat exchanger tube for heat exchange according to an embodiment of the present invention.

【図2】本発明の熱交換用伝熱管の側面図と断面図であ
る。
FIG. 2 is a side view and a cross-sectional view of the heat exchange tube for heat exchange of the present invention.

【図3】本発明の他の実施の形態を示す断面図である。FIG. 3 is a cross-sectional view showing another embodiment of the present invention.

【図4】本発明のさらに他の実施の形態を示す断面図で
ある。
FIG. 4 is a sectional view showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱合金管 2 熱膨張緩衝材 3 セラミックス合金複合材料製カバー材 4 耐熱チューブ 5 空隙 DESCRIPTION OF SYMBOLS 1 Heat-resistant alloy pipe 2 Thermal expansion buffer 3 Ceramic alloy composite material cover material 4 Heat-resistant tube 5 Void

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高温ガス雰囲気中に設けられ 前記高温
ガスから伝熱管内の被加熱流体に熱交換をする熱交換用
伝熱管において、 被加熱流体が流れる管は耐熱合金からなり、該耐熱合金
管の外側を熱膨張緩衝材を介してセラミックス合金複合
材料からなるカバー材で覆い、 前記熱膨張緩衝材は、前記セラミックス合金複合材料製
のカバー材および/または前記耐熱合金管に対し非接着
構造で、前記耐熱合金管と前記熱膨張緩衝材の少なくと
も一部が接触し、さらに、前記熱膨張緩衝材と前記セラ
ミックス合金複合材料製カバー材の少なくとも一部が接
触する三層構造からなることを特徴とする熱交換用伝熱
管。
1. A heat exchange tube for heat exchange provided in a high temperature gas atmosphere and exchanging heat from the high temperature gas to a fluid to be heated in a heat transfer tube, wherein the tube through which the fluid to be heated flows is made of a heat resistant alloy, The outside of the pipe is covered with a cover material made of a ceramic alloy composite material via a thermal expansion buffer material, and the thermal expansion buffer material has a non-adhesive structure to the cover material made of the ceramic alloy composite material and / or the heat-resistant alloy pipe. The heat-resistant alloy pipe and at least a part of the thermal expansion buffer material are in contact with each other, and the thermal expansion buffer material and at least a part of the ceramic alloy composite material cover material have a three-layer structure. Heat transfer tubes for heat exchange.
【請求項2】 前記熱膨張緩衝材は、硼素もしくは炭素
またはアルミニウムを主成分とする繊維、粉体、フィル
ム、テープ等の材料を使用して、前記耐熱合金管の外表
面または前記セラミックス合金複合材料製カバー材の内
表面に形成された、空隙を有する熱膨張吸収層からなる
ことを特徴とする請求項1記載の熱交換用伝熱管。
2. The thermal expansion buffer material is made of a material such as a fiber, powder, film, or tape mainly containing boron, carbon, or aluminum, and is formed on the outer surface of the heat-resistant alloy tube or the ceramic alloy composite. The heat exchanger tube for heat exchange according to claim 1, comprising a thermal expansion absorbing layer having a void formed on an inner surface of the cover material made of a material.
【請求項3】 前記カバー材を構成するセラミックス合
金複合材料はAlとAlNを含み、AlNを1wt%以上
90wt%以下、(A1+AlN+AlON)の合計割合
が50wt%以上100wt%以下であることを特徴とする
請求項1または請求項2記載の熱交換用伝熱管。
3. The ceramic alloy composite material constituting the cover material includes Al and AlN, wherein AlN is 1 wt% or more and 90 wt% or less, and the total ratio of (A1 + AlN + AlON) is 50 wt% or more and 100 wt% or less. The heat exchanger tube for heat exchange according to claim 1 or 2, wherein
【請求項4】 前記耐熱合金管の外表面に硼素あるいは
炭素を含む化合物からなる離型剤を塗布することを特徴
とする請求項1から請求項3のいずれか一に記載の熱交
換用伝熱管。
4. The heat exchange transfer according to claim 1, wherein a release agent made of a compound containing boron or carbon is applied to an outer surface of the heat-resistant alloy tube. Heat tube.
【請求項5】 前記セラミックス合金複合材料の気孔率
が2%以上60%以下であることを特徴とする請求項1
から請求項4のいずれか一に記載の熱交換用伝熱管。
5. The porosity of the ceramic alloy composite material is 2% or more and 60% or less.
The heat exchange tube for heat exchange according to any one of claims 1 to 4.
JP22859099A 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange Expired - Fee Related JP3674401B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22859099A JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange
PCT/JP2000/005205 WO2001013057A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
KR1020017002406A KR20010072966A (en) 1999-08-12 2000-08-03 Heat exchanger tube and heat recovery method using the same
EP00949969A EP1122506A1 (en) 1999-08-12 2000-08-03 Heat exchange tube and heat recovery method using it
TW089116086A TW546454B (en) 1999-08-12 2000-08-10 Heat exchange tube and heat recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22859099A JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange

Publications (2)

Publication Number Publication Date
JP2001056197A true JP2001056197A (en) 2001-02-27
JP3674401B2 JP3674401B2 (en) 2005-07-20

Family

ID=16878755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22859099A Expired - Fee Related JP3674401B2 (en) 1999-08-12 1999-08-12 Heat exchanger tube for heat exchange

Country Status (1)

Country Link
JP (1) JP3674401B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025638A1 (en) * 2004-08-20 2006-03-09 Neo Energe & Technology Co., Ltd. Conducting under vacuum and heating type radiator for heating
JP2008249273A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Heating furnace
JP2011226738A (en) * 2010-04-22 2011-11-10 Toshiba Corp Heat transfer medium and method for manufacturing the same
CN106402914A (en) * 2016-10-20 2017-02-15 合肥海宝节能科技有限公司 Heat exchange forming material
JP2018044728A (en) * 2016-09-15 2018-03-22 日本山村硝子株式会社 System for recovering heat of exhaust gas
KR20180116114A (en) * 2016-06-27 2018-10-24 네오 가부시키가이샤 Heat exchanger
US10589249B2 (en) 2018-04-27 2020-03-17 Evonik Operations Gmbh Apparatus for controlling the temperature of a reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180047A1 (en) 2012-05-28 2013-12-05 四国計測工業株式会社 High-efficiency heat exchanger and high-efficiency heat exchange method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025638A1 (en) * 2004-08-20 2006-03-09 Neo Energe & Technology Co., Ltd. Conducting under vacuum and heating type radiator for heating
JP2008249273A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Heating furnace
JP2011226738A (en) * 2010-04-22 2011-11-10 Toshiba Corp Heat transfer medium and method for manufacturing the same
KR20180116114A (en) * 2016-06-27 2018-10-24 네오 가부시키가이샤 Heat exchanger
KR101974531B1 (en) * 2016-06-27 2019-05-02 네오 가부시키가이샤 Heat exchanger
US10859325B2 (en) 2016-06-27 2020-12-08 Neo Corporation Heat exchanger
JP2018044728A (en) * 2016-09-15 2018-03-22 日本山村硝子株式会社 System for recovering heat of exhaust gas
CN106402914A (en) * 2016-10-20 2017-02-15 合肥海宝节能科技有限公司 Heat exchange forming material
US10589249B2 (en) 2018-04-27 2020-03-17 Evonik Operations Gmbh Apparatus for controlling the temperature of a reactor

Also Published As

Publication number Publication date
JP3674401B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP2001056194A (en) High performance heat exchanger
WO1998037253A1 (en) Heating tube for boilers and method of manufacturing the samme
JP3674401B2 (en) Heat exchanger tube for heat exchange
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
WO1996036835A1 (en) Novel refractory shield design for superheater tubes
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP2001049379A (en) Heat transfer tube for heat exchanger
JP2001056195A (en) Heat transfer pipe for heat exchange
KR20010072966A (en) Heat exchanger tube and heat recovery method using the same
JP2002310594A (en) Heat exchanger with heat exchanger tube
JPH10274401A (en) High temperature resistant and corrosion resistant heat exchanger tube of waste incineration boiler and super heater
EP1413638A1 (en) MATERIAL BEING RESISTANT TO CHLORIDE−CONTAINING MOLTEN SALT CORROSION, STEEL PIPE FOR HEAT EXCHANGER COATED WITH THE SAME, AND METHOD FOR PRODUCTION THEREOF
JP2996128B2 (en) Air heater for high temperature corrosion resistance
JP4360047B2 (en) Heat transfer tube support structure
JP3548445B2 (en) Heat exchanger tubes for heat exchangers
JP2002317903A (en) Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JP2996129B2 (en) Air heater for high temperature corrosion resistance
JP4016311B2 (en) Heat recovery method from hot gas
JP4414578B2 (en) Air heater
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
JPH11211375A (en) Heat transfer pipe for heat-exchanger
JPS6354595A (en) High temperature heat exchanger
JP2002038277A (en) Steel tube coated with aluminum-matrix composite material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Ref document number: 3674401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees