JP2001048650A - Heat transfer tube for heat exchanger - Google Patents

Heat transfer tube for heat exchanger

Info

Publication number
JP2001048650A
JP2001048650A JP11227956A JP22795699A JP2001048650A JP 2001048650 A JP2001048650 A JP 2001048650A JP 11227956 A JP11227956 A JP 11227956A JP 22795699 A JP22795699 A JP 22795699A JP 2001048650 A JP2001048650 A JP 2001048650A
Authority
JP
Japan
Prior art keywords
heat exchanger
particles
sic
heat
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11227956A
Other languages
Japanese (ja)
Inventor
Katsuto Hashimoto
勝人 橋本
Takayuki Kuwazuru
孝行 桑水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11227956A priority Critical patent/JP2001048650A/en
Publication of JP2001048650A publication Critical patent/JP2001048650A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a heat transfer tube for heat exchanger which can be stably used for a long period of time in a thermal decomposition gasification melting furnace used in a thermally heard environment by forming a tubular heat transfer tube being opened at least at one end and used for a heat exchanger by using a porous ceramic obtained by mixing various types of particles in which each particle is mainly constituted of the crystal phase of SiC and each type of the particles has a specified average particle size. SOLUTION: Particles having an average particle diameter of 5 to 10 μm and particles having an average particle diameter of 0.5 to 1 μm are mixed in the ratio of 1:9 to 3:7. The strength is improved by mixing two types of particles having different average particle sizes. Further, in the case that SiC mainly constituted of the crystal phase of SiC used, a thermal conductivity of >=50 W/m.K is realized and the obtained porous ceramic is excellent in the oxidation resistance under a high temp. oxidizing atmosphere, e.g. when the porous ceramic is heatd to 1,200 deg.C, the amount of the increase in the oxidation is as small as <=0.5%. Moreover, direct oxidation of SiC can be inhibited by forming a dense SiO2 protective coating film having a cristobalite-type crystal structure on the surface of the porous ceramic, because the SiO2 coating film contributes as an oxidation inhibiting film of the SiC being the base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焼却炉あるいは熱分
解炉の高温廃ガスからの熱を回収するのに適した熱交換
器用伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger tube for a heat exchanger suitable for recovering heat from high-temperature waste gas of an incinerator or a pyrolysis furnace.

【0002】[0002]

【従来の技術】家庭・会社から捨てられたゴミは地方自
治体の焼却炉で燃やされ、その未燃分の焼却灰及び排煙
に含まれる飛灰(含有元素:Si、Al、Fe、Ca、
Mg、K、Mn、Cl、Na、S)には、重金属成分や
ダイオキシン、フラン等の有毒汚染物質が含まれてい
る。
2. Description of the Related Art Garbage discarded from homes and companies is burned in incinerators of local governments, and the unburned incineration ash and fly ash contained in flue gas (containing elements: Si, Al, Fe, Ca,
Mg, K, Mn, Cl, Na, and S) contain heavy metal components and toxic contaminants such as dioxin and furan.

【0003】これまでは、地方自治体の焼却炉で燃やさ
れた後の未燃分の焼却灰は最終処分場にそのまま埋めら
れていたが、立地条件も厳しくなり、場所の確保が難し
くなっており、加えてダイオキシンやフラン等の有害汚
染物質の無害化は法律や条例で厳しく規制されつつある
ため、焼却灰、飛灰を回収しこれを再溶融することによ
り有害汚染物質を無害化する溶融炉の必要性は年々高ま
っている。
Until now, unburned incineration ash after being burned in local government incinerators has been buried as it is in the final disposal site. However, location conditions have become severe, making it difficult to secure a place. In addition, since detoxification of harmful pollutants such as dioxin and furan is being strictly regulated by laws and regulations, a melting furnace that detoxifies harmful pollutants by collecting incinerated ash and fly ash and remelting them. The need for is increasing year by year.

【0004】焼却炉で燃やされた後の未燃分の焼却灰
は、高温加熱処理でスラグ化すれば、焼却灰の1/2〜
1/4程度にその体積を小さくすることができ、ダイオ
キシン等の有害汚染物質を高熱により分解し無害化でき
る等の理由により、この溶融炉での高温加熱処理法が有
望視されている。
[0004] The incinerated ash after being burned in an incinerator, which is turned into slag by high-temperature heat treatment, can be reduced to 1/2 of the incinerated ash.
The high-temperature heat treatment method in this melting furnace is considered to be promising because its volume can be reduced to about 1/4 and harmful pollutants such as dioxin can be decomposed and detoxified by high heat.

【0005】一方、都市ゴミの焼却炉は、都市ゴミを焼
却して廃棄物の減容化を図ることを目的として設置され
てきたが、エネルギ−の有効利用の観点から焼却廃ガス
の持つ熱エネルギ−を最大限に回収するためには、熱交
換器により、高温廃ガスからその廃熱を回収利用する事
が重要である。
On the other hand, municipal waste incinerators have been installed for the purpose of incinerating municipal waste to reduce the volume of waste. However, from the viewpoint of effective utilization of energy, the heat generated by the incinerated waste gas is reduced. In order to recover energy to the maximum, it is important to recover and utilize the waste heat from the high-temperature waste gas using a heat exchanger.

【0006】これまでの熱交換器は、温度500〜60
0℃で使用されていたが、例えば近年商用化が進められ
つつある熱分解ガス化溶融炉では、1200〜1300
℃の温度で運転され、廃ガス温度が高い領域でその熱エ
ネルギ−を回収利用するため1200〜1300℃で熱
交換を行いつつある。
Conventional heat exchangers have a temperature of 500-60.
Although it was used at 0 ° C., for example, in a pyrolysis gasification and melting furnace that is being commercialized in recent years, it is 1200 to 1300
It is operated at a temperature of ℃, and heat exchange is being performed at 1200 to 1300 ℃ in order to recover and utilize the heat energy in a region where the temperature of the waste gas is high.

【0007】熱分解ガス化溶融炉は、ガス化炉と溶融炉
とが一体化されており、まずガス化炉で500〜600
℃の低温でゴミを熱処理し、可燃性のガスを発生させ溶
融炉へ送る。溶融炉では可燃性ガスと一緒に送られてき
た飛灰、タ−ルと一緒に1300℃程度の高温燃焼を行
い、飛灰のスラグ化を行うとともに、ダイオキシン等を
完全分解するというものである。この後、高温燃焼後の
廃ガスは廃熱ボイラへと導かれるが、熱交換器は、溶融
炉出口から廃熱ボイラにいたるまでの間に設置される場
合が多く、回収した熱は、空気予熱や発電用の蒸気発生
器等に有効利用される。
In the pyrolysis gasification and melting furnace, the gasification furnace and the melting furnace are integrated.
The waste is heat-treated at a low temperature of ℃ to generate flammable gas and send it to the melting furnace. In the melting furnace, fly ash sent together with combustible gas and tar are burned at a high temperature of about 1300 ° C to make fly ash into slag and completely decompose dioxin and the like. . After this, the waste gas after high-temperature combustion is led to the waste heat boiler, but the heat exchanger is often installed from the melting furnace outlet to the waste heat boiler, and the recovered heat is air It is effectively used for steam generators for preheating and power generation.

【0008】図1に熱交換器の例を示す。円筒体の片面
を封止した伝熱管1をガス化溶融炉の炉壁2から内部に
向かって突出するように配置し、この伝熱管1の内側に
パイプ3を配置したものである。そして、上記溶融炉の
稼働時に、伝熱管1の外部は1200℃以上の燃焼ガス
に曝され、この状態でパイプ3より250℃程度の加熱
流体(空気)を送れば、上記伝熱管1の内部で550℃
程度に加熱されて排出され、熱交換器として作用する。
FIG. 1 shows an example of a heat exchanger. A heat transfer tube 1 in which one side of a cylindrical body is sealed is arranged so as to protrude from a furnace wall 2 of a gasification and melting furnace toward the inside, and a pipe 3 is arranged inside the heat transfer tube 1. During the operation of the melting furnace, the outside of the heat transfer tube 1 is exposed to a combustion gas of 1200 ° C. or more, and if a heating fluid (air) of about 250 ° C. is sent from the pipe 3 in this state, the inside of the heat transfer tube 1 is At 550 ° C
Heated to a degree and discharged, it acts as a heat exchanger.

【0009】そして、上記廃ガス中には、H2 O、CO
2 、O2 の他、多量のダストと塩化水素(HCl)ガス
等が含まれており、塩化水素濃度は1500〜2000
ppmにも至る場合がある。また、ダスト中に多く含ま
れているCa成分や、ガス中のHCl成分は腐食性が高
いため、優れた耐食性が要求される。特公昭60−21
6192号公報では、普通鋼管体の表面にステンレス鋼
又はCr−Ni合金鋼の被覆層を形成して、上記熱交換
器用の伝熱管として使用することが示されている。
The waste gas contains H 2 O, CO
2 , O 2 , a large amount of dust and hydrogen chloride (HCl) gas, etc. are contained.
ppm. In addition, since the Ca component contained in the dust and the HCl component in the gas are highly corrosive, excellent corrosion resistance is required. Tokiko Sho 60-21
Japanese Patent No. 6192 discloses that a coating layer of stainless steel or Cr-Ni alloy steel is formed on the surface of a normal steel pipe to be used as a heat exchanger tube for the heat exchanger.

【0010】[0010]

【発明が解決しようとする課題】ところで、熱分解ガス
化溶融炉では、燃焼するゴミの種類や焼却炉の運転状況
により、炉内温度分布が500〜1400℃の範囲で上
下するため、熱交換の為に設置される伝熱管には、高い
耐熱衝撃性が要求される。そのためには伝熱管を多孔質
化することが有効であるが、この場合熱伝導率が低下し
て、伝熱管としての機能を十分果たせなくなる問題が発
生するばかりか、表面積が増大しゴミ焼却炉内の腐食ガ
スとの接触面積が増えるため耐食性も低下し、浸食によ
り伝熱管自体に穴があく等して、伝熱管内部の加熱空気
が管外へリ−クしてしまう問題や、熱衝撃の影響で強度
が低下するため取り扱い時に破損しやすいという問題が
発生していた。
However, in the pyrolysis gasification and melting furnace, the temperature distribution in the furnace fluctuates within the range of 500 to 1400 ° C. depending on the type of refuse to be burned and the operating condition of the incinerator. Heat transfer tubes installed for this purpose are required to have high thermal shock resistance. For this purpose, it is effective to make the heat transfer tube porous, but in this case, not only the problem that the heat conductivity is reduced and the function as the heat transfer tube cannot be sufficiently performed occurs, but also the surface area increases and the refuse incinerator The contact area with the corrosive gas inside increases, the corrosion resistance also decreases, the erosion causes holes in the heat transfer tube itself, and the heated air inside the heat transfer tube leaks out of the tube. Has caused a problem that the strength is reduced due to the influence of the material and the material is easily damaged during handling.

【0011】また、ゴミ焼却により発生した灰を加熱処
理する際、灰に含まれるCd、Pd、Zn等の金属元素
類やダイオキシン、フラン等の有害汚染物質を分解する
ため、1200℃以上で加熱・溶融処理を行い無害化す
るが、この溶融炉で使用する伝熱管は、焼却灰が溶けて
できる溶融塩、溶融スラグの蒸気、さらにHClガス等
に曝される。そのためこれら成分中のSi、Al、F
e、Ca、Na、Clは伝熱管を構成する材料中に除々
に侵入、浸食し、次第に伝熱管を構成する材料が変質し
て強度劣化を起こすことから、クラックを生じたり、破
損が生じたり、あるいは所要の熱交換が行われなくなる
ため、その長寿命化が望まれていた。
When ash generated by garbage incineration is subjected to heat treatment, the ash is heated at 1200 ° C. or more to decompose metal elements such as Cd, Pd and Zn and harmful pollutants such as dioxin and furan contained in the ash. Detoxification by melting treatment, but the heat transfer tube used in this melting furnace is exposed to molten salt, steam of molten slag, HCl gas, etc. formed by melting of incineration ash. Therefore, Si, Al, F in these components
e, Ca, Na, and Cl gradually penetrate and erode into the material constituting the heat transfer tube, and the material constituting the heat transfer tube gradually deteriorates in strength and deteriorates in strength. Or, since the required heat exchange is not performed, it has been desired to extend the service life.

【0012】また、一般的に、低温用の熱交換器用伝熱
管としては高熱伝導性を有する銅、銅合金等がそれぞれ
使用されているが、1200℃を越え、しかも耐食性が
必要となる塩化水素濃度が高い部分には適した材料がな
い。上述したように特公昭60−216192号では、
普通鋼管体表面にステンレス鋼又はCr−Ni合金鋼の
被覆層を形成し高温腐食を改善しているが、1200℃
の温度領域では使用できるものではなかった。
Generally, copper and copper alloys having high thermal conductivity are used as heat transfer tubes for heat exchangers for low temperatures, but hydrogen chloride exceeding 1200 ° C. and requiring corrosion resistance is required. There is no suitable material in the high concentration area. As mentioned above, in Japanese Patent Publication No. 60-216192,
A coating layer of stainless steel or Cr-Ni alloy steel is formed on the surface of ordinary steel pipes to improve high-temperature corrosion.
It could not be used in the temperature range.

【0013】そこで、1200℃程度の温度環境で、し
かも腐食性の高いダストやHClガスが1500〜20
00ppm程度存在する使用環境中で耐食性・耐熱性に
優れたセラミックス材料が種々考案されているが、殆ど
の材料は高温では熱膨張の影響で破損し易く、熱衝撃性
に乏しいものであった。
[0013] Therefore, in a temperature environment of about 1200 ° C, and in the presence of highly corrosive dust and HCl gas, 1500 to 20
Various ceramic materials having excellent corrosion resistance and heat resistance have been devised in a use environment having about 00 ppm. However, most of the materials are easily broken at high temperatures due to thermal expansion and have poor thermal shock resistance.

【0014】[0014]

【課題を解決するための手段】上記に鑑みて本発明は、
少なくとも一端が開口された筒状体から成り、その内部
に熱交換用の流体を流通させる熱交換器用伝熱管におい
て、SiCの結晶相を主体とし、平均径5〜10μmの
粒子と平均径0.5〜1μmの粒子を重量比1:9〜
3:7の割合で混合した多孔質セラミックスで形成した
ことを特徴とする。
In view of the above, the present invention provides
In a heat exchanger tube for a heat exchanger, which is formed of a cylindrical body having at least one end opened and through which a heat exchange fluid is circulated, a particle having an average diameter of 5 to 10 μm and an average diameter of 5 to 10 μm is mainly composed of a SiC crystal phase. 5-1 μm particles in a weight ratio of 1: 9 to
It is characterized by being formed of porous ceramics mixed at a ratio of 3: 7.

【0015】また、上記多孔質セラミックスは気孔率5
〜20%、熱伝導率50W/mK以上、JIS4点曲げ
強度100MPa以上、耐熱衝撃(水中投下)が△T=
800℃で室温強度の60%以上を維持できることを特
徴とする。
The above porous ceramic has a porosity of 5
2020%, thermal conductivity 50 W / mK or more, JIS 4-point bending strength 100 MPa or more, thermal shock (drop in water) ΔT =
It is characterized by being able to maintain 60% or more of room temperature strength at 800 ° C.

【0016】更に、上記多孔質セラミックスは、大気中
1200℃までの酸化による重量増加が0.5%以下の
特性を有することを特徴とする。
Further, the porous ceramics is characterized in that the weight increase due to oxidation up to 1200 ° C. in the atmosphere is 0.5% or less.

【0017】また、上記多孔質セラミックスは、表面に
クリストバライト型の結晶構造を有する緻密なSiO2
保護膜を形成したことを特徴とする。
The porous ceramics described above are made of dense SiO 2 having a cristobalite type crystal structure on the surface.
A protection film is formed.

【0018】[0018]

【作用】熱交換器用伝熱管をSiCの結晶相を主体と
し、平均径5〜10μmの粒子と平均径0.5〜1μm
の粒子を重量比1:9〜3:7の割合で混合した多孔質
セラミックスで形成したことによって、緻密な伝熱管と
比較して、著しく耐熱衝撃性を増すことができ、燃焼ゴ
ミの種類により、炉内温度が上下するような熱的に過酷
な環境下にある熱分解ガス化溶融炉において、熱交換器
用伝熱管として、長期に渡って安定して使用することが
できる。
The heat transfer tube for a heat exchanger is mainly composed of a crystal phase of SiC, and has an average diameter of 5 to 10 μm and an average diameter of 0.5 to 1 μm.
Is made of porous ceramics mixed at a weight ratio of 1: 9 to 3: 7, the heat shock resistance can be remarkably increased as compared with a dense heat transfer tube. In a pyrolysis gasification and melting furnace under a severe environment where the temperature in the furnace rises and falls, it can be stably used as a heat exchanger tube for a heat exchanger for a long period of time.

【0019】また、粒径の異なる2種類の粒子を混合す
ることで強度を向上できる。更に、SiCの結晶相を主
体とすることで熱伝導率を50W/mK以上と向上でき
るとともに、上記多孔質セラミックスの1200℃まで
の酸化増量は、0.5%以下と少なく高温酸化雰囲気下
での耐酸化性に優れる。
The strength can be improved by mixing two kinds of particles having different particle diameters. Furthermore, the thermal conductivity can be improved to 50 W / mK or more by using a crystalline phase of SiC as a main component, and the increase in oxidation of the porous ceramics up to 1200 ° C. is as small as 0.5% or less, in a high-temperature oxidizing atmosphere. Has excellent oxidation resistance.

【0020】また、上記多孔質セラミックスの表面にク
リストバライト型の結晶構造を有する緻密なSiO2
護膜を形成することによって、高温大気雰囲気下におい
ても、上記SiO2 膜が母材であるSiCの酸化防止膜
となり、直接酸化されることを防止する働きを担う。更
には、伝熱管内に熱交換用の流体を流通させた際に、伝
熱管をなす多孔質セラミックスの気孔から流体が漏れ出
すことを防止できる。
Further, by forming a dense SiO 2 protective film having a cristobalite-type crystal structure on the surface of the porous ceramics, the SiO 2 film can oxidize SiC as a base material even in a high-temperature atmosphere. It acts as a protective film and acts to prevent direct oxidation. Further, when a fluid for heat exchange is circulated in the heat transfer tube, the fluid can be prevented from leaking from the pores of the porous ceramics forming the heat transfer tube.

【0021】[0021]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0022】図1に示す熱交換器は、円筒体の片面を封
止した伝熱管1をガス化溶融炉の炉壁2から内部に向か
って突出するように配置し、この伝熱管1の内側にパイ
プ3を配置したものである。そして、上記溶融炉の稼働
時に、伝熱管1の外部は1200℃以上の燃焼ガスに曝
され、この状態でパイプ3より250℃程度の加熱流体
(空気)を送れば、上記伝熱管1の内部で550℃程度
に加熱されて排出され、熱交換器として作用する。
In the heat exchanger shown in FIG. 1, a heat transfer tube 1 in which one surface of a cylindrical body is sealed is arranged so as to protrude inward from a furnace wall 2 of a gasification and melting furnace. In which a pipe 3 is arranged. During the operation of the melting furnace, the outside of the heat transfer tube 1 is exposed to a combustion gas of 1200 ° C. or more, and if a heating fluid (air) of about 250 ° C. is sent from the pipe 3 in this state, the inside of the heat transfer tube 1 is At about 550 ° C. and discharged, and acts as a heat exchanger.

【0023】本発明ではこの伝熱管1をSiCの結晶相
を主体とし、平均径5〜10μmの粒子と平均径0.5
〜1μmの粒子を重量比1:9〜3:7の割合で混合し
た多孔質セラミックスで形成してある。
In the present invention, the heat transfer tube 1 is composed mainly of a crystal phase of SiC, and has a particle having an average diameter of 5 to 10 μm and an average diameter of 0.5 to 10 μm.
It is formed of a porous ceramic in which particles having a size of 11 μm are mixed at a weight ratio of 1: 9 to 3: 7.

【0024】この多孔質セラミックスは、表面にクリス
トバライト型の結晶構造を有する緻密なSiO2 保護膜
を形成し、大気中1200℃までの酸化による重量増加
が0.5%以下であり、気孔率5〜20%、熱伝導率5
0W/mK以上、JIS4点曲げ強度100MPa以
上、耐熱衝撃性が△T=800℃で室温強度の60%以
上を維持できるセラミックス材料で形成してある。
This porous ceramic has a dense SiO 2 protective film having a cristobalite-type crystal structure formed on the surface. The weight increase due to oxidation up to 1200 ° C. in the atmosphere is 0.5% or less, and the porosity is 5%. ~ 20%, thermal conductivity 5
It is formed of a ceramic material capable of maintaining 0 W / mK or more, JIS 4-point bending strength of 100 MPa or more, thermal shock resistance of ΔT = 800 ° C. and 60% or more of room temperature strength.

【0025】このため、耐熱衝撃性が良好で、大きな熱
衝撃がかかるガス化溶融炉で使用しても、伝熱管1がク
ラックを発生し、加熱流体が漏れ出す等の問題を起こす
ことはない。また、クリストバライト型の結晶構造を持
つSiO2 膜のみを伝熱管1表面に形成するので、多孔
質体の気孔から、加熱流体が漏れ出すこともなく、良好
に熱交換を行うことができる。
For this reason, even when used in a gasification and melting furnace having good thermal shock resistance and a large thermal shock, the heat transfer tube 1 does not crack and does not cause problems such as leakage of the heating fluid. . Further, since only the SiO 2 film having the cristobalite type crystal structure is formed on the surface of the heat transfer tube 1, the heat exchange can be performed well without the heating fluid leaking from the pores of the porous body.

【0026】ここで、特にSiCの結晶相を主体とし、
平均径5〜10μmの粒子と平均径0.5〜1μmの粒
子を重量比1:9〜3:7の割合で混合したのは、強固
な組織を形成し、強度の高い伝熱管を得るためである。
例えばN2 雰囲気、2000℃の温度下でSiCの平均
径5〜10μmの粒子のみで多孔質セラミックス体を形
成し焼成を行った場合、気孔率48%、強度13MPa
の多孔質セラミックスが得られるが、これでは気孔率が
大きすぎ、気孔から加熱流体が漏れだしてしまうばかり
か、セラミックス体としての強度自体が低すぎるため、
多孔質セラミックス体を炉壁に対し垂直方向に支持した
場合に、自重の影響で破損してしまう。
Here, in particular, mainly the crystal phase of SiC is used,
The reason that the particles having an average diameter of 5 to 10 μm and the particles having an average diameter of 0.5 to 1 μm are mixed at a weight ratio of 1: 9 to 3: 7 is to form a strong structure and obtain a heat transfer tube having high strength. It is.
For example, when a porous ceramics body is formed only of SiC particles having an average diameter of 5 to 10 μm in an N 2 atmosphere at a temperature of 2000 ° C. and baked, the porosity is 48% and the strength is 13 MPa.
Although porous ceramics can be obtained, the porosity is too large and not only the heating fluid leaks from the pores but also the strength itself as a ceramic body is too low.
When the porous ceramic body is supported in the vertical direction with respect to the furnace wall, the porous ceramic body is damaged by its own weight.

【0027】これと比較して、本発明の多孔質セラミッ
クスは高い活性エネルギ−をもって平均径0.5〜1μ
mの粒子が平均径5〜10μmの粒子の接触面の隙間に
入り込み粒子同士の接触面を増し焼結を促進させるの
で、気孔率5〜20%、強度100MPa以上と、加熱
流体の漏れのない範囲の気孔率が得られるばかりか、よ
り強固な組織を形成し炉壁にいかなる角度で支持した場
合でも自重の影響で破損することのない強度を得ること
ができる。
In comparison with this, the porous ceramic of the present invention has a high active energy and an average diameter of 0.5 to 1 μm.
m particles enter the gaps between the contact surfaces of the particles having an average diameter of 5 to 10 μm and increase the contact surface between the particles to promote sintering. Therefore, the porosity is 5 to 20%, the strength is 100 MPa or more, and there is no leakage of the heating fluid. Not only can a porosity in a range be obtained, but also a strength can be obtained that forms a stronger structure and does not break under the influence of its own weight even when supported on the furnace wall at any angle.

【0028】また、緻密なSiCセラミックス体を伝熱
管1の材料として用いた場合、耐熱衝撃性は△T=45
0℃程度でそれ以上の温度では強度が20〜30%程度
まで著しく減少してしまうが、これと比較して、本発明
の多孔質セラミックス体は、△T=800℃で室温強度
の60%以上を維持できる程、著しく耐熱衝撃性を増す
ことができ、燃焼ゴミの種類により、炉内温度が上下す
るような熱的に過酷な環境下にある熱分解ガス化溶融炉
において、熱交換器用伝熱管として、長期に渡って安定
して使用することができる。
When a dense SiC ceramic body is used as the material of the heat transfer tube 1, the thermal shock resistance is ΔT = 45.
At a temperature higher than about 0 ° C., the strength is remarkably reduced to about 20 to 30%. In comparison with this, the porous ceramic body of the present invention has ΔT = 800 ° C. and 60% of room temperature strength. As the above can be maintained, the thermal shock resistance can be significantly increased, and in a pyrolysis gasification and melting furnace under a severe environment where the furnace temperature rises and falls depending on the type of combustion refuse, It can be used stably for a long time as a heat transfer tube.

【0029】更に、熱交換器用伝熱管において、重要な
パラメ−タである熱伝導率においても、同様の気孔率を
有する市販の耐火物(Si3 4 とSiCの複合多孔質
セラミックス耐火物材料)の熱伝導率が20W/mK程
であるのに対して、SiCの結晶相を主体とする本発明
の多孔質セラミックス材料は50W/mK以上と向上で
きる。
Further, in a heat exchanger tube for a heat exchanger, a commercially available refractory (a composite porous ceramic refractory material of Si 3 N 4 and SiC) having a similar porosity in terms of thermal conductivity which is an important parameter. ) Is about 20 W / mK, whereas the porous ceramic material of the present invention mainly composed of a crystal phase of SiC can be improved to 50 W / mK or more.

【0030】なお、本発明で平均の粒子径及び混合重量
比を上記範囲としたのは、この範囲外では、気孔率が大
きくなりすぎ、伝熱管1の内部に流通させる加熱流体が
外部へ漏れ出してしまうばかりか、熱伝導率が著しく低
下するか、または緻密体となり耐熱衝撃性が低下し、ガ
ス化溶融炉内温度差に対して、その耐久性が著しく低下
するかのいづれかの現象を起こす恐れが生じるためであ
る。
The reason why the average particle diameter and the mixing weight ratio are set in the above ranges in the present invention is that if the average particle size and the mixing weight ratio are outside these ranges, the porosity becomes too large and the heating fluid flowing through the heat transfer tube 1 leaks to the outside. Not only does this cause a phenomenon in which either the thermal conductivity decreases significantly or the thermal shock resistance decreases due to a dense body, and the durability decreases significantly with respect to the temperature difference in the gasification melting furnace. This is because there is a danger that it will occur.

【0031】本発明において、上記粒子径は最終焼結体
での結晶粒子径のことであり、これは焼結体断面を電子
顕微鏡等で観察することによって測定することができ
る。ただし、多孔質セラミックスの場合粒成長が殆どな
いため、上記粒子径とするためには、この範囲内の2種
類の原料を混合すれば良い。
In the present invention, the above particle size refers to the crystal particle size in the final sintered body, which can be measured by observing the cross section of the sintered body with an electron microscope or the like. However, in the case of porous ceramics, there is almost no grain growth, so that two kinds of raw materials within this range may be mixed to obtain the above particle diameter.

【0032】また、本発明の多孔質セラミックスは、表
面にクリストバライト型のSiO2膜のみを有すること
により、1200℃までの酸化増量は0.5%以下と少
ない。例えば同様の気孔率を持つ市販の多孔質セラミッ
クス(SiC−Si3 4 複合耐火物)は酸化増量が
1.3%と耐食性が低い。これについては、双方のSi
2 膜の結晶形態をX線分析にて調査したところ、市販
の耐火物には、クリストバライト型(500℃で約2%
の伸び)の他に、熱膨張係数の異なるトリジマイト型
(500℃で約1.2%の伸び)が生成しており、この
2つの結晶型の熱膨張差により、高温に達する程緻密な
SiO2 膜に欠陥が生じ易い。そのため母材が大気雰囲
気に曝されると酸化が進行する。この繰り返しによって
本発明のクリストバライト型の結晶構造を有する材料と
比較して結果的に酸化増量が多くなると推察される。
Further, the porous ceramic of the present invention has only a cristobalite-type SiO 2 film on the surface, so that the oxidation increase up to 1200 ° C. is as small as 0.5% or less. Such as the commercially available porous ceramic (SiC-Si 3 N 4 composite refractory) with similar porosity oxidation weight gain is 1.3% and a low corrosion resistance. In this regard, both Si
When the crystal morphology of the O 2 film was examined by X-ray analysis, commercially available refractories were cristobalite type (about 2% at 500 ° C.).
In addition to the above, a tridymite type having a different coefficient of thermal expansion (elongation of about 1.2% at 500 ° C.) is generated. 2 Defects are likely to occur in the film. Therefore, when the base material is exposed to the air atmosphere, oxidation proceeds. It is presumed that the repetition of the above results in an increase in the amount of oxidation as a result as compared with the material having a cristobalite type crystal structure of the present invention.

【0033】なお市販の耐火物のSiO2 膜に2つの結
晶型が存在するのは、材料自体の酸化開始温度が830
℃と早く、酸化され易いため、SiO2 の結晶が石英→
トリジマイト→クリストバライトの変態を起こし易く、
上記トリジマイト→クリストバライト間の結晶変態が未
完了のまま次の酸化が進むためであり、結果的に2つの
結晶形態が残る。それと比較して、本発明材料は、酸化
開始温度が1090℃からと遅く、高温で生成するクリ
ストバライトの結晶のみが残ると考えられる。更には、
市販の耐火物はFe等の不純物を多く含んでおり(本発
明材料のFe量:0.02%、市販耐火物Fe量:0.
2%)、トリジマイト〜クリストバライト間の変態が起
こり易いことも、2つの結晶型が存在する要因と考えら
れる。
The two crystal types are present in the commercially available SiO 2 film of refractory because the oxidation start temperature of the material itself is 830.
Because it is easy to oxidize as fast as ° C., the crystal of SiO 2 is quartz →
Tridymite → easy to cause transformation of cristobalite,
This is because the next oxidation proceeds while the above-mentioned crystal transformation between tridymite and cristobalite is not completed, and as a result, two crystal forms remain. In comparison, the material of the present invention has an oxidation start temperature as low as 1090 ° C., and it is considered that only cristobalite crystals generated at a high temperature remain. Furthermore,
Commercially available refractories contain a large amount of impurities such as Fe (Fe content of the material of the present invention: 0.02%, Fe content of commercial refractory: 0.1%).
2%), and the susceptibility to transformation between tridymite and cristobalite is also considered to be a factor for the existence of two crystal forms.

【0034】更に、本発明において、表面にSiO2
結晶形態の中でも1730℃と高い融点を持つクリスト
バライト型の結晶構造を有する緻密なSiO2 保護膜を
形成する多孔質セラミックスを用いたことにより、熱分
解ガス化溶融炉内最高温度1400℃の環境下に曝され
た場合でも、上記SiO2 膜が母材であるSiCの酸化
防止膜となり、直接酸化されるのを防止する働きを担う
ためである。更には、伝熱管内に熱交換用の流体を流通
させた際に、伝熱管をなす多孔質セラミックスの気孔か
ら流体が漏れ出すことを防止する役目を果たす。このよ
うな特性が熱交換器自体の長寿命化に寄与する。
Further, in the present invention, by using a porous ceramic which forms a dense SiO 2 protective film having a cristobalite type crystal structure having a high melting point of 1730 ° C. among the crystal forms of SiO 2 on the surface, Even when exposed to an environment with a maximum temperature of 1400 ° C. in the pyrolysis gasification and melting furnace, the SiO 2 film serves as an antioxidant film for SiC as a base material, and serves to prevent direct oxidation. is there. Further, when a fluid for heat exchange is circulated in the heat transfer tube, it serves to prevent the fluid from leaking out of the pores of the porous ceramics forming the heat transfer tube. Such characteristics contribute to prolonging the life of the heat exchanger itself.

【0035】なお、クリストバライト型のSiO2
は、上記多孔質セラミックスの焼成後に既に形成されて
いるが、焼成後、寸法調整のために研削加工を施した場
合等には、1200℃を1時間以上維持する加熱処理を
施すことにより形成できる。
The cristobalite type SiO 2 film has already been formed after the firing of the porous ceramics. However, in the case where a grinding process is performed to adjust the dimensions after the firing, the temperature is set at 1200 ° C. for one hour. It can be formed by performing the heat treatment maintained as described above.

【0036】また、図1では、片面を封止した伝熱管1
を示したが、形状については、両端が解放された筒状体
も好適に用いることが可能である。
In FIG. 1, the heat transfer tube 1 having one side sealed is shown.
However, as for the shape, it is possible to suitably use a cylindrical body having both ends opened.

【0037】また、本発明の伝熱管1を製造する場合
は、上述した粒径の異なる2種類の原料を所定範囲で混
合した材料に市販のバインダーを加え、スーパーミキサ
−等の装置を用いて、攪拌混合する。しかる後に水を加
えニーダー等の装置で十分に微粒と粗粒の分散性を高
め、押出成形等の公知の方法にて所定形状に成形し、5
00〜800℃の温度で脱バインダーを行った後、真空
炉及び誘導加熱炉にてN2ガス等を注入しながら200
0℃程度の温度で焼成することによって得ることができ
る。また、バインダーを添加した後に湿式・乾式の両加
圧成形法によって成形を行い、上記方法によって焼成す
ることにより製作することも可能である。更には、スプ
レードライヤーにより造粒し、加圧成形法を用いて成形
した後、上記方法にて焼成することもできる。いずれの
場合も、組成や焼成条件を調整することによって、12
00℃以上における苛酷な条件下でも使用できるセラミ
ックス管が得られる。
When the heat transfer tube 1 of the present invention is manufactured, a commercially available binder is added to a material obtained by mixing the above-described two kinds of raw materials having different particle diameters in a predetermined range, and an apparatus such as a super mixer is used. Stir and mix. Thereafter, water is added and the dispersibility of the fine particles and coarse particles is sufficiently increased by a device such as a kneader, and the mixture is molded into a predetermined shape by a known method such as extrusion molding.
After the binder is removed at a temperature of 00 to 800 ° C., N 2 gas is injected in a vacuum furnace and an induction heating furnace for 200 hours.
It can be obtained by firing at a temperature of about 0 ° C. Further, it is also possible to manufacture by performing molding by both wet-type and dry-type pressure molding methods after adding the binder, and firing by the above method. Furthermore, after granulating with a spray drier and molding using a pressure molding method, it can also be fired by the above method. In any case, by adjusting the composition and firing conditions, 12
A ceramic tube that can be used under severe conditions at a temperature of 00 ° C. or higher is obtained.

【0038】また、熱交換効率を上げるために、セラミ
ックス管1の肉厚は極力薄い方が好ましいが、あまりに
薄いと強度不足となる場合があり、また製造上の難易度
も大きくなるため、5mm以上の肉厚が最適であるが、
肉厚を厚くすると熱交換効率を損なう恐れがあり、好適
には5〜15mm以内に抑えるのが良い。
In order to increase the heat exchange efficiency, the thickness of the ceramic tube 1 is preferably as thin as possible. However, if the thickness is too small, the strength may be insufficient. The above thickness is optimal,
If the thickness is increased, the heat exchange efficiency may be impaired, and it is preferable to keep the thickness within 5 to 15 mm.

【0039】[0039]

【実施例】実施例1 以下本発明の実施例を説明する。Embodiment 1 An embodiment of the present invention will be described below.

【0040】JIS4点曲げ試験片(厚さ3mm、幅4
mm、長さ45mm)を粒径の異なるSiC材料で形成
し、その気孔率、JIS4点曲げ強度、熱伝導率、耐熱
衝撃性を評価した。表1にその平均原料粒径と特性評価
結果を示す。
JIS 4-point bending test piece (thickness 3 mm, width 4
mm, length 45 mm) were formed from SiC materials having different particle sizes, and the porosity, JIS 4-point bending strength, thermal conductivity, and thermal shock resistance were evaluated. Table 1 shows the average raw material particle size and the results of characteristic evaluation.

【0041】試験片製作は、より現実的な特性評価を行
うために、次のような方法をとった。
The following method was used to produce a test piece in order to evaluate the characteristics more realistically.

【0042】まずそれぞれ表1に示す平均原料粒径を有
するものに、市販のバインダーを加え、スーパーミキサ
ーにてかき混ぜた後、水を加えてニーダーで混練し均一
分散させ、押出成形機にて外径80mm、内径72m
m、長さ50mmの円筒体を成形する。その後、成形し
た円筒体を100℃で1時間乾燥させ、600℃で10
時間の脱脂を行った後、2000℃×2時間キープの焼
成を行う。このようにしてできた円筒体から上記JIS
4点曲げ試験片を、試験片の長さ方向と円筒体の軸方向
が平行となる形で研削加工により切り出した。
First, a commercially available binder was added to each having the average raw material particle diameter shown in Table 1, and the mixture was stirred with a super mixer, then water was added and kneaded with a kneader to uniformly disperse the mixture. Diameter 80mm, inside diameter 72m
m, forming a cylindrical body having a length of 50 mm. Thereafter, the formed cylindrical body was dried at 100 ° C. for 1 hour, and dried at 600 ° C. for 10 hours.
After performing degreasing for a time, calcination is performed at 2000 ° C. for 2 hours. From the cylindrical body thus formed, the JIS
A four-point bending test piece was cut out by grinding so that the length direction of the test piece was parallel to the axial direction of the cylindrical body.

【0043】表1から、No.5、6については、2種
類の粒径の異なるSiC原料を混合した例である。N
o.5は重量比2:8で混合したものであるが、粒径は
本発明範囲外であり、またNo.6は粒径は10μmと
1μmであるが、2つの粒径の重量比は本発明範囲外で
あり、いずれも上記の特性を得ることはできなかった。
As shown in Table 1, Examples 5 and 6 are examples in which two types of SiC raw materials having different particle sizes are mixed. N
o. No. 5 was mixed at a weight ratio of 2: 8, but the particle size was out of the range of the present invention. In No. 6, the particle diameters were 10 μm and 1 μm, but the weight ratio of the two particle diameters was outside the range of the present invention, and none of the above properties could be obtained.

【0044】更に、No.8〜10についてもNo.5
と同様に2種類の粒径の異なるSiC原料を混合した例
であり、重量比が異なるために上記の範囲内の特性を得
ることはできなかった。
Further, No. Nos. 8 to 10 are also Nos. 5
This is an example in which two kinds of SiC raw materials having different particle diameters are mixed in the same manner as in the above, and the characteristics within the above range cannot be obtained due to the difference in weight ratio.

【0045】また、No.1〜4は1〜100μmのS
iC粒子のみを用いて試験片を製作し特性評価を実施し
た例であり、気孔率5〜20%、JIS4点曲げ強度1
00MPa以上、熱伝導率50W/mK以上、耐熱衝撃
△T=800℃で室温強度の60%以上を維持するこ
と、これらの特性を満たすことはできず、熱交換器用伝
熱管材料として実用的でないことが確認された。
In addition, No. 1-4 are S of 1-100 μm
This is an example in which a test piece was manufactured using only iC particles and the property was evaluated. The porosity was 5 to 20%, and the JIS 4-point bending strength was 1
100 MPa or more, thermal conductivity of 50 W / mK or more, thermal shock ΔT = 800 ° C., maintaining 60% or more of room temperature strength, cannot satisfy these characteristics, and is not practical as a heat exchanger tube material for heat exchangers It was confirmed that.

【0046】これに対して、No.7及びNo.11〜
14は本発明の範囲内であり、上記の特性を満足するこ
とができた。
On the other hand, no. 7 and No. 7 11-
14 was within the scope of the present invention, and was able to satisfy the above characteristics.

【0047】この例から、2種類の粒径の異なるSiC
原料を混合した場合、粒径、重量比が本発明範囲内でな
ければ、気孔率、強度、熱伝導率、耐熱衝撃性に関し
て、熱交換器用伝熱管として実用的な値が得られないこ
とが確認できる。
From this example, two types of SiC particles having different particle sizes are used.
When the raw materials are mixed, if the particle size and the weight ratio are not within the range of the present invention, porosity, strength, thermal conductivity, and thermal shock resistance may not provide a practical value as a heat exchanger tube for a heat exchanger. You can check.

【0048】[0048]

【表1】 [Table 1]

【0049】実施例2 次に本発明の他の実施例を説明する。Embodiment 2 Next, another embodiment of the present invention will be described.

【0050】図1に示す伝熱管1を、表2、3に示すよ
うな純度、原料粒径を有するNo.1(Al2 3 )、
No.2(ムライト)、No.3(ZrO2 )、No.
4{市販の耐火物セラミックス(材質:SiC−Si3
4 複合系)}、No.5{本発明の材料(表1中のN
o.12)}を主成分としたセラミックスで形成した。
A heat transfer tube 1 shown in FIG. 1 (Al 2 O 3 ),
No. No. 2 (Mullite), No. No. 3 (ZrO 2 ),
4 {commercial refractory ceramic (material: SiC-Si 3
N 4 composite systems)}, No. 5 {Material of the present invention (N in Table 1)
o. 12) It was formed of ceramics containing} as a main component.

【0051】セラミックス管の寸法は、外径80mm、
内径72mm、全長1500mmとした。セラミックス
管内部には、直径40mmのステンレス製パイプ3をセ
ラミックス管1と同軸状にセットし、300℃空気をセ
ラミックス管に導入できる構造とし、廃ガス処理装置の
熱回収部模擬装置に空気を加熱して熱交換できるように
設置して、更に耐熱試験を実施した。また、熱交換試験
も実施し、セラミックス管出口で500℃以上の加熱空
気が得られた場合をOKと判断した。
The dimensions of the ceramic tube are 80 mm in outer diameter,
The inner diameter was 72 mm and the total length was 1500 mm. Inside the ceramic tube, a stainless steel pipe 3 having a diameter of 40 mm is set coaxially with the ceramic tube 1 so that air at 300 ° C. can be introduced into the ceramic tube, and the air is heated by the heat recovery unit simulation device of the waste gas treatment device. Then, it was installed so that heat exchange was possible, and a heat resistance test was further performed. In addition, a heat exchange test was also performed, and a case where heated air of 500 ° C. or more was obtained at the outlet of the ceramic tube was determined to be OK.

【0052】また、これと同時に各伝熱管1と同材質の
3×4×45mmの試験片を作製し、熱衝撃試験機で耐
熱衝撃性の評価を実施した。評価はJISに習って水中
投下法を用い、耐久できる温度差(△T)を測定した。
At the same time, a 3 × 4 × 45 mm test piece of the same material as each heat transfer tube 1 was prepared, and the thermal shock resistance was evaluated using a thermal shock tester. For the evaluation, a temperature difference (ΔT) that can be durable was measured by using an underwater drop method according to JIS.

【0053】更に、熱伝導率はφ10×厚さ3mmの試
験片を用いて、レーザーフラッシュ法で測定した。
Further, the thermal conductivity was measured by a laser flash method using a test piece of φ10 × thickness 3 mm.

【0054】また、上記廃ガス処理装置の熱回収模擬装
置において、耐熱試験及び熱交換試験を終えた後、装置
内部を1250℃にキープしゴミ焼却により発生した灰
を投入、更にはHClガスを注入して、ゴミ焼却炉内雰
囲気に合わせた1500HRの曝露試験を各材質につい
て実施した。そして腐食による割れが発生した場合はN
G、そうでない場合はOKと判定することとした。
Further, in the heat recovery simulation device of the waste gas treatment device, after the heat resistance test and the heat exchange test are completed, the inside of the device is kept at 1250 ° C., and the ash generated by incineration of dust is added. Each of the materials was subjected to an exposure test of 1500 HR that was injected and adjusted to the atmosphere in the refuse incinerator. If cracks occur due to corrosion, N
G. Otherwise, it was determined to be OK.

【0055】上記の試験結果を表2、3に示す。Tables 2 and 3 show the test results.

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】No.1、2については、原料粒径1μm
で構成した緻密体で、耐熱衝撃性が△T=300℃以下
であり、クラックを生じNGとなった。また、熱交換試
験においても、緻密体でありながら、材料自体の熱伝導
率が低く7W/mK以下のため、500℃以上の空気が
得られずNGであった。更に、曝露試験については、5
00HR程で割れを生じ、NGであった。
No. For 1 and 2, the raw material particle size is 1 μm
The thermal shock resistance was ΔT = 300 ° C. or less, cracks occurred, and the compact was NG. Also, in the heat exchange test, the heat conductivity of the material itself was low and 7 W / mK or less even though it was a dense body. Furthermore, regarding the exposure test, 5
Cracks occurred at about 00 HR, and it was NG.

【0059】また、No.3については、原料粒径1μ
mの緻密体であるが、耐熱衝撃試験及び耐熱試験につい
ては、良好な結果を示した。しかし、材料自体の有する
熱伝導率が4W/mKと低く、熱交換試験において50
0℃以上の空気が得られずNGとなった。また、曝露試
験においては腐食の影響による割れ等は見られず、良好
な耐食性を示した。
In addition, No. For No. 3, the raw material particle size is 1 μm.
m, but showed good results in the thermal shock test and the thermal test. However, the thermal conductivity of the material itself is as low as 4 W / mK.
Air of 0 ° C. or higher was not obtained, and the result was NG. Further, in the exposure test, cracks and the like due to the influence of corrosion were not observed, and good corrosion resistance was exhibited.

【0060】また、No.4については、平均原料粒径
がSiC:75μm、Si3 4 :1μmを重量比3:
7で粒配混合し、15%程の気孔率を有する多孔質体で
あり、元来耐熱衝撃性の高い材料であるSiCとSi3
4 を複合しているため、耐熱衝撃試験及び耐熱試験に
ついてはOKであり問題なかった。熱伝導率についても
20W/mKとNo.1、2、3と比較して2倍以上の
特性を有しており、500℃以上の加熱空気を問題なく
得ることができた。しかし、曝露試験においては、10
00時間までは良好であったものの、気孔率が高く腐食
ガスとの接触面積が大きいため、その後表面腐食が進
み、除々に肉厚が減少していき、それが原因となって発
生した穴が数カ所に見られた。そしてその部分から加熱
空気の漏れが発生し、NGという結果となった。
In addition, No. As for No. 4, the average raw material particle diameter was 75 μm for SiC and 1 μm for Si 3 N 4, and the weight ratio was 3:
7, a porous material having a porosity of about 15%, which is originally a material having high thermal shock resistance, such as SiC and Si 3
Because the composite of N 4, was not an OK problem with thermal shock test and heat resistance test. The thermal conductivity was 20 W / mK and No. It has more than twice the characteristics as compared with 1, 2 and 3, and it was possible to obtain heated air of 500 ° C. or more without any problem. However, in the exposure test, 10
Although it was good up to 00 hours, the porosity was high and the contact area with the corrosive gas was large, so the surface corrosion proceeded and the wall thickness gradually decreased. It was found in several places. Heating air leaked from that portion, resulting in NG.

【0061】これについては、曝露試験500、100
0、1500時間後それぞれのテストピース断面の表層
付近のX線分析から、曝露時間が進む程、表面にSiO
2 膜が生成しているが、しかし、その結晶形態はクリス
トバライト型と、トリジマイト型の2種類があり、この
2つの結晶形態の熱膨張差から、SiO2 膜に欠陥が生
じるためその欠陥部分が腐食され、上記のような穴が発
生したと考えられる。また、この2種類の結晶相が現れ
る原因としては、酸化開始温度が830℃と本発明材料
の1090℃と比較して早く、しかも酸化増量が多く酸
化され易いため、トリジマイト→クリストバライト間の
転移が終了しきれず2つの結晶相が残ることや、トリジ
マイト−クリストバライト間の変態を活性化させるFe
等の不純物が多く含まれていることが考えられる。
In this regard, exposure tests 500, 100
0,1500 hours later, X-ray analysis of the surface layer near the cross section of each test piece revealed that the more the exposure time, the more the surface
Although 2 film is produced, however, the crystalline form and cristobalite type, there are two types of tridymite type, a thermal expansion difference between the two crystal forms, its defect portion for defects in the SiO 2 film It is considered that the holes were corroded and the holes as described above were generated. In addition, the two types of crystal phases appear because the oxidation initiation temperature is 830 ° C., which is faster than 1090 ° C. of the material of the present invention, and the amount of oxidation increase is so large that it is easily oxidized. Two crystal phases remain without being completed, and Fe which activates the transformation between tridymite and cristobalite
It is conceivable that many impurities such as are contained.

【0062】このような比較例に比べ、本発明のNo.
5については、平均径6μmの原料粒径と平均径1μm
の原料粒径を有する材料を重量比2:8で粒配混合して
セラミックス多孔質体として熱交換器用伝熱管に用いれ
ば、耐熱衝撃、耐熱、熱交換、曝露と全ての試験を問題
なくクリアできることが確認された。
As compared with such a comparative example, the No. 1 of the present invention was
For No. 5, the raw material particle diameter having an average diameter of 6 μm and the average diameter of 1 μm
If the material having the above particle size is mixed in a weight ratio of 2: 8 and used as a ceramic porous body for a heat exchanger tube, the heat shock, heat resistance, heat exchange, exposure and all tests are cleared without any problems. It was confirmed that it was possible.

【0063】[0063]

【発明の効果】以上のように少なくとも一端が開口され
た筒状体から成り、その内部に熱交換用の流体を流通さ
せる熱交換器用伝熱管において、SiCの結晶相を主体
とし、平均径5〜10μmの粒子と平均径0.5〜1μ
mの粒子を重量比1:9〜3:7の割合で混合した多孔
質セラミックスを用いたことによって、著しく耐熱衝撃
性を増すことができ、燃焼ゴミの種類により、炉内温度
が上下するような熱的に過酷な環境下にある熱分解ガス
化溶融炉において、熱交換器用伝熱管として、長期に渡
って安定して使用することができる。
As described above, the heat exchanger tube for a heat exchanger, which is formed of a cylindrical body having at least one end opened and through which a heat exchange fluid flows, has a crystal phase of SiC as a main component and an average diameter of 5 mm. Particles of 10 to 10 μm and average diameter of 0.5 to 1 μm
By using a porous ceramic in which particles of m are mixed at a weight ratio of 1: 9 to 3: 7, the thermal shock resistance can be remarkably increased, and the furnace temperature rises and falls depending on the kind of combustion dust. It can be used stably for a long time as a heat exchanger tube for a heat exchanger in a pyrolysis gasification and melting furnace under a severe environment.

【0064】また、粒径の異なる2種類の粒子を混合す
ることで強度を向上できる。更に、SiCの結晶相を主
体とすることで熱伝導率を50W/mK以上と向上でき
るとともに、上記多孔質セラミックスの1200℃まで
の酸化増量は、0.5%以下と少なく高温酸化雰囲気下
での耐酸化性に優れる。また、上記多孔質セラミックス
の表面にクリストバライト型の結晶構造を有する緻密な
SiO2 保護膜を形成することによって、高温大気雰囲
気下においても、上記SiO2 膜が母材であるSiCの
酸化防止膜となり、直接酸化されることを防止する働き
を担うとともに、伝熱管内に熱交換用の流体を流通させ
た際に、伝熱管をなす多孔質セラミックスの気孔から流
体が漏れ出すことを防止できる。
The strength can be improved by mixing two kinds of particles having different particle diameters. Furthermore, the thermal conductivity can be improved to 50 W / mK or more by using a crystalline phase of SiC as a main component, and the increase in oxidation of the porous ceramics up to 1200 ° C. is as small as 0.5% or less, in a high-temperature oxidizing atmosphere. Has excellent oxidation resistance. Further, by forming a dense SiO 2 protective film having a cristobalite-type crystal structure on the surface of the porous ceramic, the SiO 2 film becomes an antioxidant film of SiC as a base material even in a high-temperature air atmosphere. In addition to serving to prevent direct oxidation, the fluid can be prevented from leaking out of the pores of the porous ceramics forming the heat transfer tube when a heat exchange fluid is allowed to flow through the heat transfer tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器用伝熱管を示す断面図であ
る。
FIG. 1 is a sectional view showing a heat exchanger tube for a heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1:伝熱管 2:炉壁 3:パイプ 1: Heat transfer tube 2: Furnace wall 3: Pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一端が開口された筒状体から成
り、その内部に熱交換用の流体を流通させる熱交換器用
伝熱管において、SiCの結晶相を主体とし、平均径5
〜10μmの粒子と平均径0.5〜1μmの粒子を重量
比1:9〜3:7の割合で混合した多孔質セラミックス
で形成したことを特徴とする熱交換器用伝熱管。
1. A heat exchanger tube for a heat exchanger, comprising a tubular body having at least one end opened therein and through which a fluid for heat exchange is circulated.
A heat exchanger tube for a heat exchanger, comprising a porous ceramic in which particles having a particle size of 10 to 10 μm and particles having an average diameter of 0.5 to 1 μm are mixed at a weight ratio of 1: 9 to 3: 7.
【請求項2】上記多孔質セラミックスが、気孔率5〜2
0%、熱伝導率50W/mK以上、JIS4点曲げ強度
100MPa以上、耐熱衝撃性が△T=800℃で室温
強度の60%以上を維持できる特性を有することを特徴
とする請求項1記載の熱交換器用伝熱管。
2. The method according to claim 1, wherein the porous ceramic has a porosity of 5 to 2.
2. The material according to claim 1, wherein the material has a property of maintaining 0%, a thermal conductivity of 50 W / mK or more, a JIS four-point bending strength of 100 MPa or more, and a thermal shock resistance of ΔT = 800 ° C. of 60% or more of room temperature strength. Heat transfer tubes for heat exchangers.
【請求項3】上記多孔質セラミックスが、大気中120
0℃までの酸化による重量増加が0.5%以下であるこ
とを特徴とする請求項1、2記載の熱交換器用伝熱管。
3. The method according to claim 1, wherein the porous ceramic is made of 120
3. The heat exchanger tube for a heat exchanger according to claim 1, wherein an increase in weight due to oxidation up to 0 ° C. is 0.5% or less.
【請求項4】上記多孔質セラミックスが、表面にクリス
トバライト型の結晶構造を有する緻密なSiO2 保護膜
を有することを特徴とする請求項1乃至3のいずれかに
記載の熱交換器用伝熱管。
4. A heat exchanger tube for a heat exchanger according to claim 1, wherein said porous ceramics has a dense SiO 2 protective film having a cristobalite type crystal structure on the surface.
JP11227956A 1999-08-11 1999-08-11 Heat transfer tube for heat exchanger Pending JP2001048650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11227956A JP2001048650A (en) 1999-08-11 1999-08-11 Heat transfer tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11227956A JP2001048650A (en) 1999-08-11 1999-08-11 Heat transfer tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2001048650A true JP2001048650A (en) 2001-02-20

Family

ID=16868904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11227956A Pending JP2001048650A (en) 1999-08-11 1999-08-11 Heat transfer tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP2001048650A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008256A1 (en) 2007-07-10 2009-01-15 Kabushiki Kaisha Kobe Seiko Sho Apparatus and method for treating waste gas for rotary hearth furnace-type reducing furnace
CN102506429A (en) * 2011-11-07 2012-06-20 西安交通大学 Immersed gas ceramic inner heater sleeve and preparation method thereof
JP2016124761A (en) * 2015-01-06 2016-07-11 東京窯業株式会社 Silicon carbide ceramic sinter body
CN117419586A (en) * 2023-12-19 2024-01-19 中国核动力研究设计院 Unidirectional micro-channel heat exchange tube assembly and heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008256A1 (en) 2007-07-10 2009-01-15 Kabushiki Kaisha Kobe Seiko Sho Apparatus and method for treating waste gas for rotary hearth furnace-type reducing furnace
EP2172726A1 (en) * 2007-07-10 2010-04-07 Kabushiki Kaisha Kobe Seiko Sho Apparatus and method for treating waste gas for rotary hearth furnace-type reducing furnace
EP2172726A4 (en) * 2007-07-10 2013-10-30 Kobe Steel Ltd Apparatus and method for treating waste gas for rotary hearth furnace-type reducing furnace
CN102506429A (en) * 2011-11-07 2012-06-20 西安交通大学 Immersed gas ceramic inner heater sleeve and preparation method thereof
JP2016124761A (en) * 2015-01-06 2016-07-11 東京窯業株式会社 Silicon carbide ceramic sinter body
CN117419586A (en) * 2023-12-19 2024-01-19 中国核动力研究设计院 Unidirectional micro-channel heat exchange tube assembly and heat exchanger
CN117419586B (en) * 2023-12-19 2024-02-20 中国核动力研究设计院 Unidirectional micro-channel heat exchange tube assembly and heat exchanger

Similar Documents

Publication Publication Date Title
JP2001048650A (en) Heat transfer tube for heat exchanger
JP3814449B2 (en) Discharge port member for melting furnace and manufacturing method thereof
JP2774982B2 (en) Water pipe protection material and water pipe protection wall used for incinerators, etc.
JP3678937B2 (en) Ceramic tube for heat exchanger
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture
JPH11311498A (en) Heat transmitting tube for heat exchanger
JP2003227603A (en) Direct melting furnace
JP4285755B2 (en) Ferritic heat-resistant alloy for clinker adhesion prevention structure
JPH11190593A (en) Furnace material for high-temperature furnace
JP3389424B2 (en) Heat and corrosion resistant protective tube
JP2000233968A (en) Melting section member containing ceramic fiber
JP2002265283A (en) Material foe melting ash
JP2003161434A (en) Combustion furnace with a furnace wall lined with corrosion resistant heat resistant cast steel
JPH11211375A (en) Heat transfer pipe for heat-exchanger
JPWO2002035151A1 (en) Incineration or gasification equipment using high temperature corrosion resistant alloy
JP2005077068A (en) Refractory for molten slag, melting furnace member, reforming method of refractory for molten slag, and waste treatment device
JP3548445B2 (en) Heat exchanger tubes for heat exchangers
JP4016311B2 (en) Heat recovery method from hot gas
JP3336213B2 (en) Heat and corrosion resistant protective tube
JP2000346347A (en) Member for melting portion of waste combustion ash content
JP4257858B2 (en) Austenitic heat-resistant alloy for clinker adhesion prevention structure
JP3485430B2 (en) Heat and corrosion resistant protective tube
KR100338494B1 (en) Materials for melting ash accompanying waste incineration
JPH1183000A (en) Member for fusion zone of burned ash portion of waste