JP3970213B2 - Air heater - Google Patents

Air heater Download PDF

Info

Publication number
JP3970213B2
JP3970213B2 JP2003184652A JP2003184652A JP3970213B2 JP 3970213 B2 JP3970213 B2 JP 3970213B2 JP 2003184652 A JP2003184652 A JP 2003184652A JP 2003184652 A JP2003184652 A JP 2003184652A JP 3970213 B2 JP3970213 B2 JP 3970213B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
exhaust gas
air heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184652A
Other languages
Japanese (ja)
Other versions
JP2005016888A (en
Inventor
修二 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003184652A priority Critical patent/JP3970213B2/en
Publication of JP2005016888A publication Critical patent/JP2005016888A/en
Application granted granted Critical
Publication of JP3970213B2 publication Critical patent/JP3970213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気加熱器に関し、例えば、廃棄物を処理した燃焼排ガスにより空気を加熱する空気加熱器に関する。
【0002】
【従来の技術】
廃棄物処理装置は、廃棄物(例えば、家庭やオフィスなどから出される都市ごみなどの一般廃棄物や、廃プラスチック、カーシュレッダーダスト、廃オフィス機器、電子機器、化粧品などの産業廃棄物)を熱分解した後に燃焼処理したり、廃棄物を直接に燃焼処理したりするものが知られている。そして、燃焼処理で発生する燃焼排ガスの熱エネルギを回収して有効利用を図る1つの方法として、燃焼排ガスが通流する煙道に空気加熱器を設けて高温の空気を得ることが行われている。
【0003】
この空気加熱器は、燃焼排ガス中に空気を通流させる伝熱管を配置して、空気を加熱するようにしたものが知られている。これにより、加熱された空気は、廃棄物の熱分解等の熱源として利用される。
【0004】
このような空気加熱器において、鉛直方向上向きに通流する燃焼排ガスの雰囲気中に、先端を自由端として片持ち式に伝熱管を配設するものが提案されている(特許文献1参照)。
【0005】
【特許文献1】
特開2003−21349号
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1のように、伝熱管が片持ち式に配設される場合、鉛直方向上向きの燃焼排ガスに対し伝熱管は水平方向に延在されるから、燃焼排ガス中に含まれる飛灰等が、伝熱管の外表面の燃焼排ガスの下流側、すなわち伝熱管の上面側に堆積しやすい。伝熱管の上面側に飛灰等が堆積すると、その部分における伝熱性が阻害される。したがって、伝熱管の上面側と下面側との間といった周方向において温度差が生じ、その温度差に起因して伝熱管の上面側に熱応力、例えば引張応力が加わることから、伝熱管が損傷を受けるおそれがある。特に、伝熱管を薄肉化するために、セラミックスを用いて伝熱管を形成した場合には、セラミックスは引張応力に比較的弱いことから、伝熱管は損傷を受け易くなる。
【0007】
本発明の課題は、伝熱管の外表面に生じる温度差を低減して伝熱管の損傷を回避することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明の空気加熱器は、先端が封止された伝熱外管と伝熱外管の内部に装着され先端が開口された伝熱内管とを有し、その伝熱外管の内表面と伝熱内管の外表面との間に形成された隙間に被加熱空気が通流する2重管構造の伝熱管を備え、その伝熱管は、鉛直方向上向きに通流する燃焼排ガスの雰囲気中に先端を自由端として片持ち式に配設されるものとし、伝熱管の外表面の燃焼排ガスの上流側に断熱性を有するコーティング材が塗布されてなることを特徴とする。
【0009】
このようにすれば、伝熱管の外表面の燃焼排ガスの上流側(伝熱管の下面側)への熱伝導量が抑制されることから、伝熱管の外表面の燃焼排ガスの下流側(伝熱管の上面側)に飛灰が堆積して伝熱性が阻害されても、伝熱管の上面側と下面側との間といった周方向に生じる温度差を低減することができる。したがって、伝熱管の損傷を回避することができる。
【0010】
また、伝熱管を薄肉化するために、セラミックスを用いて伝熱管を形成した場合でも、伝熱管の外表面に生じる温度差が低減されることになるから、伝熱管の上面側に加わる引張応力を抑制することができ、伝熱管の損傷を回避することができる。
【0011】
また、伝熱管の材質として炭化ケイ素(SiC)を用いることにより熱伝導性や耐食性を向上させているが、伝熱管の腐食をより一層防止するために、アルミナ、ジルコニア、ムライトのいずれか1つを含んでなるコーティング材を用いてもよい。すなわち、アルミナ、ジルコニア、ムライトなどの酸化物は、塩素等の腐食性物質を含む燃焼排ガスに対し耐食性を有することから、伝熱管の腐食を防止することができる。
【0012】
【発明の実施の形態】
本発明を適用してなる空気加熱器の一実施形態について図面を参照して説明する。本実施形態は、片持ち式に配設された伝熱管を有する空気加熱器の外表面にコーティング材を塗布して伝熱管の損傷を回避する例を説明するものである。図1は、本実施形態における空気加熱器の断面図である。図2は、空気加熱器の伝熱管の上面側に飛灰が堆積した様子を示す外観図であり、図2aは飛灰が堆積した伝熱管を側面から見た外観図を示すとともに、図2bは伝熱管を図2aの矢印3の方から見た外観図を示している。
【0013】
図1に示すように、空気加熱器1は、廃棄物を処理した燃焼排ガスが鉛直方向上向きに通流する煙道の側壁11に貫通され、先端を自由端として片持ち式に取り付けられた伝熱管10を複数有して形成されている。伝熱管10は、伝熱外管12と、伝熱外管12の内部に挿入された伝熱内管14を有した2重管構造に構成されている。
【0014】
伝熱外管12は、セラミックスなどから形成されており、先端が半球状に封止され、後端が開口して形成されている。後端の開口縁にはフランジ16が取り付けられている。フランジ16は、半径方向につば状に出っ張った状態で取り付けられている。また、伝熱外管12の後端は、被加熱空気が流入する被加熱空気入口管24に連結されている。
【0015】
伝熱外管12内に伝熱内管14が同軸状に挿入されている。伝熱内管14は、開口された先端が、伝熱外管12の半球状内面と間隔を有して位置されている。また、伝熱内管14の後端は、加熱空気が通流する加熱空気出口管34に連結されている。
【0016】
このような2重管構造の伝熱管10は、ステンレス製のスリーブ18を介して側壁11に支持されている。スリーブ18は、側壁11に形成された貫通穴に設けられたものであり、煙道の外に位置する開口端の縁にフランジ19が取り付けられている。また、スリーブ18と伝熱管10との間には、断熱材20が介装されている。断熱材20は、セラミックスモールド、例えば熱伝導性が比較的低いセラミックスなどから形成したものである。なお、伝熱管10の材質として、熱伝導性及び耐食性に優れる炭化ケイ素(SiC)を使用することが好ましい。
【0017】
そして、伝熱管10の外表面の燃焼排ガスの上流側、すなわち伝熱管10の下面側にコーティング材22が塗布され、塗布されたコーティング材22は乾燥した後に焼成されている。コーティング材22は、熱伝導性が相対的に低いセラミックス粉末であるアルミナ、ジルコニア、ムライトなどのほか、焼成によりガラス化された無機バインダー、溶媒である水などから形成されたものである。
【0018】
なお、被加熱空気入口管24は、一端が被加熱空気の流路に連結されるとともに、他端が伝熱外管12の開口に対応して連結されている。連結する開口端の縁には、フランジ26が取り付けられている。フランジ26は、半径方向につば状に出っ張った状態で取り付けられ、フランジ19に対峙している。そして、フランジ26とフランジ19との間に伝熱外管12のフランジ16を挟持させ、フランジ26とフランジ19をボルト28により固定することで、被加熱空気入口管24が伝熱外管12に連結されるようになっている。なお、フランジ26とフランジ16との間、及びフランジ16とフランジ19との間にパッキン材であるガスケット30を挟むようにしている。これにより、炉壁11と伝熱管10とのシール性、及び伝熱管10と被加熱空気入口管24のシール性を確保できる。
【0019】
また、加熱空気出口管34は、被加熱空気入口管24に設けられた貫通穴32に挿入して支持されており、一端が伝熱内管14の後端の開口に対応して連結されるとともに、他端が加熱空気の流路に連結されている。
【0020】
このように構成される空気加熱器1において被加熱空気が加熱される動作について説明する。被加熱空気は、被加熱空気入口管24から伝熱外管12の内表面と伝熱内管14の外表面との間に形成された隙間に流入され、流入した被加熱空気は半球状の先端に向かって通流する。通流する被加熱空気は、伝熱外管12周囲の燃焼排ガスの熱により加熱され、加熱された空気は、伝熱外管12の半球状の先端近傍で折り返して伝熱内管14内に流入し、流入した加熱空気は伝熱内管14内を後端に向かって通流する。そして、伝熱内管14内の加熱空気は、加熱空気出口管34を通って、例えば廃棄物を熱分解する設備等に取り込まれる。
【0021】
ところで、図2に示すように、伝熱管10が片持ち式に側壁11に配設される場合、伝熱管10の外表面の燃焼排ガスの下流側、すなわち伝熱管10の上面側には燃焼排ガスに含まれる飛灰が堆積するのに対し、下面側には飛灰が多少付着する程度である。したがって、伝熱管10の上面側と下面側との間といった周方向で温度差が生じ、その温度差に起因して熱応力が発生するため伝熱管10が損傷を受けるおそれがある。
【0022】
この点、本実施形態によれば、伝熱管10の下面側は、コーティング材22により覆われているから、伝熱管10の下面側への熱伝導量が抑制されるため、伝熱管10の上面側と下面側との間といった周方向に生じる温度差を低減することができる。したがって、伝熱管10の損傷を回避することができ、廃棄物処理装置などのプラント全体の信頼性を向上することができる。
【0023】
また、アルミナ、ジルコニア、ムライトなどの酸化物は、塩素などの腐食性物質を含む燃焼排ガスに対して耐食性も有していることから、その酸化物をコーティング材22に含めるようにすれば、温度差に起因する伝熱管10の損傷を回避するばかりでなく、伝熱管10の腐食を防止することができる。
【0024】
以上、本実施形態に基づいて本発明の空気加熱器1を説明したが、本発明の空気加熱器1は、廃棄物処理装置に適用することができる。例えば、廃棄物処理装置は、廃棄物を熱分解して熱分解ガスおよび熱分解残留物を生成する熱分解反応器、熱分解残留物を燃焼溶融して溶融スラグおよび燃焼排ガスを生成する燃焼溶融炉、生成された燃焼排ガスが通流する煙道などを備えて構成することができる。
【0025】
【発明の効果】
本発明によれば、伝熱管の外表面に生じる温度差を低減して伝熱管の損傷を回避することができる。
【図面の簡単な説明】
【図1】本実施形態における空気加熱器の断面図を示している。
【図2】空気加熱器の伝熱管の上面側に飛灰が堆積した様子を示す外観図である。
【符号の説明】
1 空気加熱器
10 伝熱管
11 側壁
12 伝熱外管
14 伝熱内管
22 コーティング材
24 被加熱空気入口管
26 加熱空気出口管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air heater, for example, an air heater that heats air using combustion exhaust gas that has been processed from waste.
[0002]
[Prior art]
Waste treatment equipment heats waste (eg, general waste such as municipal waste from homes and offices, and industrial waste such as waste plastic, car shredder dust, waste office equipment, electronic equipment, and cosmetics). Some are known to be burned after being decomposed or to directly burn the waste. As one method for recovering the thermal energy of the combustion exhaust gas generated in the combustion process and effectively using it, an air heater is provided in the flue through which the combustion exhaust gas flows to obtain high-temperature air. Yes.
[0003]
As this air heater, a heat transfer tube that allows air to flow in combustion exhaust gas is arranged to heat the air. Thereby, the heated air is utilized as a heat source for waste pyrolysis or the like.
[0004]
In such an air heater, there has been proposed one in which a heat transfer tube is disposed in a cantilever manner with the tip as a free end in an atmosphere of combustion exhaust gas flowing upward in the vertical direction (see Patent Document 1).
[0005]
[Patent Document 1]
JP 2003-21349 A
[Problems to be solved by the invention]
However, as in Patent Document 1, when the heat transfer tube is disposed in a cantilever manner, the heat transfer tube extends in the horizontal direction with respect to the combustion exhaust gas vertically upward, and thus fly ash contained in the combustion exhaust gas. Are likely to accumulate on the downstream side of the combustion exhaust gas on the outer surface of the heat transfer tube, that is, on the upper surface side of the heat transfer tube. When fly ash or the like accumulates on the upper surface side of the heat transfer tube, the heat transfer performance in that portion is hindered. Therefore, a temperature difference occurs in the circumferential direction between the upper surface side and the lower surface side of the heat transfer tube, and thermal stress, for example, tensile stress, is applied to the upper surface side of the heat transfer tube due to the temperature difference, so that the heat transfer tube is damaged. There is a risk of receiving. In particular, when a heat transfer tube is formed using ceramics in order to reduce the thickness of the heat transfer tube, the heat transfer tube is easily damaged because ceramics is relatively weak against tensile stress.
[0007]
The subject of this invention is reducing the temperature difference which arises on the outer surface of a heat exchanger tube, and avoiding damage to a heat exchanger tube.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, an air heater of the present invention has a heat transfer outer tube whose tip is sealed, and a heat transfer inner tube that is attached to the inside of the heat transfer outer tube and whose tip is opened. A heat transfer tube having a double-pipe structure through which heated air flows is provided in a gap formed between the inner surface of the heat transfer outer tube and the outer surface of the heat transfer inner tube, and the heat transfer tube is directed upward in the vertical direction. It shall be disposed in a cantilevered manner with the tip at the free end in the flowing flue gas atmosphere, and a coating material having heat insulation is applied on the upstream side of the flue gas on the outer surface of the heat transfer tube. Features.
[0009]
In this way, since the amount of heat conduction to the upstream side of the combustion exhaust gas on the outer surface of the heat transfer tube (the lower surface side of the heat transfer tube) is suppressed, the downstream side of the combustion exhaust gas on the outer surface of the heat transfer tube (heat transfer tube) Even if fly ash accumulates on the upper surface side) and heat transfer is hindered, a temperature difference generated in the circumferential direction such as between the upper surface side and the lower surface side of the heat transfer tube can be reduced. Therefore, damage to the heat transfer tube can be avoided.
[0010]
In addition, even when a heat transfer tube is formed using ceramics in order to reduce the thickness of the heat transfer tube, the temperature difference generated on the outer surface of the heat transfer tube is reduced, so the tensile stress applied to the upper surface side of the heat transfer tube Can be suppressed, and damage to the heat transfer tube can be avoided.
[0011]
Moreover, although heat conductivity and corrosion resistance are improved by using silicon carbide (SiC) as the material of the heat transfer tube, any one of alumina, zirconia, and mullite is used to further prevent corrosion of the heat transfer tube. You may use the coating material which comprises. That is, oxides such as alumina, zirconia, and mullite have corrosion resistance against combustion exhaust gas containing corrosive substances such as chlorine, so that corrosion of heat transfer tubes can be prevented.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an air heater to which the present invention is applied will be described with reference to the drawings. This embodiment explains the example which avoids damage to a heat exchanger tube by apply | coating a coating material to the outer surface of the air heater which has the heat exchanger tube arrange | positioned by the cantilever type. FIG. 1 is a cross-sectional view of an air heater in the present embodiment. FIG. 2 is an external view showing a state in which fly ash is deposited on the upper surface side of the heat transfer tube of the air heater, and FIG. 2a is an external view of the heat transfer tube in which fly ash is deposited as viewed from the side, and FIG. Shows an external view of the heat transfer tube as viewed from the direction of arrow 3 in FIG. 2a.
[0013]
As shown in FIG. 1, the air heater 1 has a cantilever side wall 11 through which flue gas that has treated waste flows vertically upward and is attached in a cantilever manner with the tip as a free end. A plurality of heat tubes 10 are provided. The heat transfer tube 10 is configured in a double tube structure having a heat transfer outer tube 12 and a heat transfer inner tube 14 inserted into the heat transfer outer tube 12.
[0014]
The heat transfer outer tube 12 is made of ceramics or the like, and has a tip sealed in a hemispherical shape and an open rear end. A flange 16 is attached to the opening edge at the rear end. The flange 16 is attached in a state of protruding in a flange shape in the radial direction. The rear end of the heat transfer outer tube 12 is connected to a heated air inlet tube 24 into which heated air flows.
[0015]
A heat transfer inner tube 14 is coaxially inserted into the heat transfer outer tube 12. The open end of the heat transfer inner tube 14 is located at a distance from the hemispherical inner surface of the heat transfer outer tube 12. The rear end of the heat transfer inner tube 14 is connected to a heated air outlet tube 34 through which heated air flows.
[0016]
The heat transfer tube 10 having such a double tube structure is supported on the side wall 11 via a sleeve 18 made of stainless steel. The sleeve 18 is provided in a through-hole formed in the side wall 11, and a flange 19 is attached to the edge of the open end located outside the flue. A heat insulating material 20 is interposed between the sleeve 18 and the heat transfer tube 10. The heat insulating material 20 is formed from a ceramic mold, for example, ceramic having relatively low thermal conductivity. In addition, it is preferable to use silicon carbide (SiC) which is excellent in thermal conductivity and corrosion resistance as the material of the heat transfer tube 10.
[0017]
And the coating material 22 is apply | coated to the upstream of the combustion exhaust gas of the outer surface of the heat exchanger tube 10, ie, the lower surface side of the heat exchanger tube 10, and the apply | coated coating material 22 is baked after drying. The coating material 22 is formed from alumina, zirconia, mullite, etc., which are ceramic powders having relatively low thermal conductivity, an inorganic binder vitrified by firing, water, etc., as a solvent.
[0018]
The heated air inlet pipe 24 has one end connected to the flow path of the heated air and the other end connected to the opening of the heat transfer outer pipe 12. A flange 26 is attached to the edge of the open end to be connected. The flange 26 is attached in a state of protruding in the shape of a collar in the radial direction, and faces the flange 19. Then, the flange 16 of the heat transfer outer tube 12 is sandwiched between the flange 26 and the flange 19, and the flange 26 and the flange 19 are fixed with bolts 28, so that the heated air inlet tube 24 is connected to the heat transfer outer tube 12. It is designed to be connected. A gasket 30 that is a packing material is sandwiched between the flange 26 and the flange 16 and between the flange 16 and the flange 19. Thereby, the sealing performance between the furnace wall 11 and the heat transfer tube 10 and the sealing performance between the heat transfer tube 10 and the heated air inlet tube 24 can be ensured.
[0019]
The heated air outlet pipe 34 is supported by being inserted into a through hole 32 provided in the heated air inlet pipe 24, and one end of the heated air outlet pipe 34 is connected to the rear end opening of the heat transfer inner pipe 14. At the same time, the other end is connected to the flow path of the heated air.
[0020]
An operation of heating the air to be heated in the air heater 1 configured as described above will be described. The heated air is introduced from a heated air inlet pipe 24 into a gap formed between the inner surface of the heat transfer outer tube 12 and the outer surface of the heat transfer inner tube 14, and the heated heated air is hemispherical. It flows toward the tip. The heated air that flows is heated by the heat of the combustion exhaust gas around the heat transfer outer tube 12, and the heated air is folded near the hemispherical tip of the heat transfer outer tube 12 to enter the heat transfer inner tube 14. The inflowing heated air flows through the heat transfer inner tube 14 toward the rear end. Then, the heated air in the heat transfer inner tube 14 passes through the heated air outlet tube 34 and is taken into, for example, equipment for thermally decomposing waste.
[0021]
As shown in FIG. 2, when the heat transfer tube 10 is disposed on the side wall 11 in a cantilever manner, the combustion exhaust gas is disposed downstream of the combustion exhaust gas on the outer surface of the heat transfer tube 10, that is, on the upper surface side of the heat transfer tube 10. While the fly ash contained in the ash is deposited, the fly ash is slightly adhered to the lower surface side. Therefore, a temperature difference is generated in the circumferential direction between the upper surface side and the lower surface side of the heat transfer tube 10, and thermal stress is generated due to the temperature difference, so that the heat transfer tube 10 may be damaged.
[0022]
In this regard, according to the present embodiment, since the lower surface side of the heat transfer tube 10 is covered with the coating material 22, the amount of heat conduction to the lower surface side of the heat transfer tube 10 is suppressed, and thus the upper surface of the heat transfer tube 10. The temperature difference produced in the circumferential direction such as between the side and the lower surface side can be reduced. Therefore, damage to the heat transfer tube 10 can be avoided, and the reliability of the entire plant such as the waste treatment apparatus can be improved.
[0023]
In addition, since oxides such as alumina, zirconia, and mullite have corrosion resistance against combustion exhaust gas containing corrosive substances such as chlorine, if the oxide is included in the coating material 22, the temperature can be increased. In addition to avoiding damage to the heat transfer tube 10 due to the difference, corrosion of the heat transfer tube 10 can be prevented.
[0024]
As mentioned above, although the air heater 1 of this invention was demonstrated based on this embodiment, the air heater 1 of this invention can be applied to a waste disposal apparatus. For example, waste treatment equipment is a pyrolysis reactor that pyrolyzes waste to produce pyrolysis gas and pyrolysis residue, combustion melting that burns and melts pyrolysis residue to produce molten slag and combustion exhaust gas A furnace, a flue through which the generated combustion exhaust gas flows can be provided.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the temperature difference which arises on the outer surface of a heat exchanger tube can be reduced, and damage to a heat exchanger tube can be avoided.
[Brief description of the drawings]
FIG. 1 shows a cross-sectional view of an air heater in the present embodiment.
FIG. 2 is an external view showing a state in which fly ash is accumulated on the upper surface side of a heat transfer tube of an air heater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air heater 10 Heat transfer tube 11 Side wall 12 Heat transfer outer tube 14 Heat transfer inner tube 22 Coating material 24 Heated air inlet tube 26 Heated air outlet tube

Claims (2)

先端が封止された伝熱外管と該伝熱外管の内部に装着され先端が開口された伝熱内管とを有し、前記伝熱外管の内表面と前記伝熱内管の外表面との間に形成された隙間に被加熱空気が通流する2重管構造の伝熱管を備え、前記伝熱管は、鉛直方向上向きに通流する燃焼排ガスの雰囲気中に前記先端を自由端として片持ち式に配設されるものとし、前記伝熱管の外表面の前記燃焼排ガスの上流側に断熱性を有するコーティング材が塗布されてなる空気加熱器。A heat transfer outer tube having a sealed tip, and a heat transfer inner tube mounted inside the heat transfer outer tube and having a tip opened, the inner surface of the heat transfer outer tube and the heat transfer inner tube A heat transfer tube having a double-pipe structure that allows heated air to flow through a gap formed between the outer surface and the heat transfer tube allows the tip to freely move in an atmosphere of combustion exhaust gas that flows vertically upward. An air heater which is disposed in a cantilever manner as an end, and is coated with a coating material having a heat insulating property on the upstream side of the combustion exhaust gas on the outer surface of the heat transfer tube. 前記コーティング材は、アルミナ、ジルコニア、ムライトのいずれか1つを含んでなることを特徴とする請求項1に記載の空気加熱器。The air heater according to claim 1, wherein the coating material includes any one of alumina, zirconia, and mullite.
JP2003184652A 2003-06-27 2003-06-27 Air heater Expired - Fee Related JP3970213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184652A JP3970213B2 (en) 2003-06-27 2003-06-27 Air heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184652A JP3970213B2 (en) 2003-06-27 2003-06-27 Air heater

Publications (2)

Publication Number Publication Date
JP2005016888A JP2005016888A (en) 2005-01-20
JP3970213B2 true JP3970213B2 (en) 2007-09-05

Family

ID=34184350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184652A Expired - Fee Related JP3970213B2 (en) 2003-06-27 2003-06-27 Air heater

Country Status (1)

Country Link
JP (1) JP3970213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003718B (en) * 2010-11-02 2011-11-30 杨本洛 Compound phase change heat exchanger for heating furnace working in second safe area

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311498A (en) * 1998-04-28 1999-11-09 Kyocera Corp Heat transmitting tube for heat exchanger
JP2000297613A (en) * 1999-04-14 2000-10-24 Ebara Corp Method and device of power generation by waste combustion
JP4323638B2 (en) * 1999-10-08 2009-09-02 三井造船株式会社 High temperature air heater

Also Published As

Publication number Publication date
JP2005016888A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4323638B2 (en) High temperature air heater
JP3970213B2 (en) Air heater
JP2003021479A (en) High temperature air heater
JP2005016880A (en) Air heater
JPH10311526A (en) Horizontal high temperature air heater and waste treating apparatus
CN1018196B (en) Thermocouple for use in unfavourable environment
JP3754478B2 (en) Waste pyrolysis drum
JP2001041681A (en) Heat exchanger
JP2001317722A (en) Method and device for preventing adhesion of dust
JP5366851B2 (en) Heat exchanger
JP3667088B2 (en) Exhaust gas purification device
JP2002081871A (en) Air heater
JP4414578B2 (en) Air heater
JP2005224734A (en) High-temperature dust collector
JP4141337B2 (en) Air heater
JPH1054530A (en) Path wall structure of heat exchanger and manufacture of path wall
JP3015845B2 (en) Off-gas treatment equipment for degreased sintering furnace for uranium-plutonium mixed oxide fuel
JPH0894051A (en) High-temperature corrosion resistant air heater
JP3810149B2 (en) Operation method of pyrolysis reactor
JP3373828B2 (en) High temperature heat exchanger
JPH10185152A (en) High temperature air heater
JP2001324289A (en) High temperature heat exchanger
JP2005274109A (en) Air heater
JP4016311B2 (en) Heat recovery method from hot gas
JP4005652B2 (en) High temperature air heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees