JPH10185152A - High temperature air heater - Google Patents

High temperature air heater

Info

Publication number
JPH10185152A
JPH10185152A JP34514396A JP34514396A JPH10185152A JP H10185152 A JPH10185152 A JP H10185152A JP 34514396 A JP34514396 A JP 34514396A JP 34514396 A JP34514396 A JP 34514396A JP H10185152 A JPH10185152 A JP H10185152A
Authority
JP
Japan
Prior art keywords
heat transfer
exhaust gas
temperature
transfer tube
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34514396A
Other languages
Japanese (ja)
Inventor
Naoki Yokoo
直樹 横尾
Hidehiro Kiuchi
英洋 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP34514396A priority Critical patent/JPH10185152A/en
Publication of JPH10185152A publication Critical patent/JPH10185152A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature air heater in which a fear of high temperature corrosion of heat transfer pipes on an outer wall is completely eliminated and a durability is remarkably improved. SOLUTION: A high temperature air heater comprises an outer wall 36 forming a passage of high temperature exhaust gas generated by burning waste and heat transfer pipes arranged in the exhaust gas passage surround by the outer wall 36 to absorb and recover the heat of the high temperature exhaust gas to air flowing in the heat transfer pipes. The outer wall 36 is formed in a wall structure in which fireproof heat transfer pipes 35 whose inner surfaces facing the high temperature exhaust gas are made of a fireproof porous material are arranged. Air is supplied in parts 34 of the fireproof heat transfer pipes under pressure slightly higher than that of the high temperature exhaust gas passage. Further, air is discharged through the pores of porous fireproof material so as to prevent the penetration of the high temperature gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物(家庭やオ
フィスなどから出される都市ごみなどの一般廃棄物、廃
プラスチック、カーシュレッダー・ダスト、廃オフィス
機器、電子機器、化粧品などの産業廃棄物など、可燃物
を含むもの)を都市ごみ焼却炉や産業廃棄物焼却炉等で
燃焼して生じた高温排ガスの流路を形成する外壁と、該
外壁で囲われた前記排ガス流路に配設された伝熱管とを
備え、該伝熱管内を流れる空気に前記高温排ガスの熱を
吸収させて回収する高温空気加熱器及びそれを用いた廃
棄物処理装置に関する。
The present invention relates to industrial waste such as waste (general waste such as municipal waste from homes and offices, waste plastic, car shredder dust, waste office equipment, electronic equipment, cosmetics, etc.). Such as those containing combustible materials) in the municipal waste incinerator, industrial waste incinerator, etc., and the outer wall forming a flow path for high-temperature exhaust gas, and the exhaust gas flow path surrounded by the outer wall. The present invention relates to a high-temperature air heater that includes a heat transfer tube that has been provided, absorbs the heat of the high-temperature exhaust gas into the air flowing through the heat transfer tube, and recovers the waste heat.

【0002】[0002]

【従来の技術】都市ごみ等の一般廃棄物や廃プラスチッ
クなどの可燃物を含む廃棄物の処理装置の一つとして廃
棄物を熱分解反応器に入れて低酸素雰囲気中で加熱して
熱分解し、熱分解ガス(乾流ガス)と主として不揮発性
成分からなる熱分解残留物とを生成し、この熱分解ガス
と熱分解残留物とを排出装置において分離し、更に熱分
解残留物を冷却した後、分離装置に供給してカーボンを
主体とする燃焼性成分と、例えば金属や陶器、砂利、コ
ンクリート片等の瓦礫よりなる不燃焼性成分とに分離
し、燃焼性成分を粉砕し、この粉砕された燃焼性成分と
前記した熱分解ガスとを燃焼溶融炉に導いて燃焼させ、
生じた燃焼灰を該燃焼溶融炉の前記燃焼による燃焼熱に
より加熱して溶融スラグとなし、この溶融スラグを外部
に排出して冷却固化させるようにした廃棄物処理装置が
知られている(特公平6−56253号公報)。前記燃
焼溶融炉で発生した高温排ガス(約1200℃)は後段
に設けられている熱交換器である高温空気加熱器により
熱エネルギーを回収され、更に次の処理工程を経て最終
的にクリーンな排ガスとなって煙突から大気中に放出さ
れる。
2. Description of the Related Art As one of the treatment apparatuses for waste including general waste such as municipal solid waste and combustibles such as waste plastics, the waste is put into a thermal decomposition reactor and heated in a low oxygen atmosphere to perform thermal decomposition. Then, a pyrolysis gas (dry flow gas) and a pyrolysis residue mainly composed of non-volatile components are generated, the pyrolysis gas and the pyrolysis residue are separated in an exhaust device, and the pyrolysis residue is further cooled. After that, it is supplied to a separator to separate the combustible component mainly composed of carbon and the non-combustible component composed of rubble such as metal, pottery, gravel, concrete pieces, etc., and the combustible component is pulverized. The pulverized combustible component and the above-mentioned pyrolysis gas are led to a combustion melting furnace and burned,
There is known a waste treatment apparatus in which the generated combustion ash is heated by the combustion heat generated by the combustion of the combustion melting furnace to form molten slag, and the molten slag is discharged to the outside to be cooled and solidified. Japanese Patent Publication No. Hei 6-56253). The high-temperature exhaust gas (approximately 1200 ° C.) generated in the combustion-melting furnace is recovered heat energy by a high-temperature air heater, which is a heat exchanger provided at a subsequent stage, and finally passes through a next processing step to finally obtain a clean exhaust gas. And released into the atmosphere from the chimney.

【0003】高温空気加熱器は、廃棄物を燃焼して生じ
た高温排ガスの流路を形成する外壁と、この外壁で囲わ
れた前記排ガス流路に配設された伝熱管とを備えてい
る。そして、該伝熱管内を流れる空気に前記高温排ガス
の熱を吸収させて熱エネルギーを回収するものである。
また前記外壁にも伝熱管が配設され、その中を流れる空
気に前記高温排ガスの熱を吸収させて熱エネルギーを回
収するようになっている。ここで伝熱管は金属で形成さ
れている。このように高温空気加熱器は、高効率のエネ
ルギー資源システムであり、回収された熱エネルギー
は、ごみの熱分解、発電及びその他の施設に有効利用さ
れる。
A high-temperature air heater has an outer wall forming a flow path of high-temperature exhaust gas generated by burning waste, and a heat transfer tube provided in the exhaust gas flow path surrounded by the outer wall. . Then, the heat flowing through the heat transfer tube absorbs the heat of the high-temperature exhaust gas to recover thermal energy.
A heat transfer tube is also provided on the outer wall, and the heat flowing through the heat transfer tube is absorbed by the air flowing through the tube to recover heat energy. Here, the heat transfer tube is formed of metal. Thus, the high-temperature air heater is a highly efficient energy resource system, and the recovered thermal energy is effectively used for thermal decomposition of refuse, power generation, and other facilities.

【0004】ところで、都市ごみ焼却炉や産業廃棄物焼
却炉で発生した燃焼排ガスは、ごみや廃棄物に起因する
塩素や塩化水素などの著しく腐食性の高い腐食性物質を
含む高腐食性のガスである。従って、高温、高腐食性排
ガス雰囲気中に晒される高温空気加熱器の金属製伝熱管
(鋼管)は、高温の腐食性ガスに対して耐食性を持たせ
るため耐火材で覆われている。
By the way, the flue gas generated from municipal solid waste incinerators and industrial waste incinerators is highly corrosive gas containing extremely corrosive corrosive substances such as chlorine and hydrogen chloride caused by waste and waste. It is. Therefore, a metal heat transfer tube (steel tube) of a high-temperature air heater exposed to a high-temperature, highly corrosive exhaust gas atmosphere is covered with a refractory material so as to have corrosion resistance to a high-temperature corrosive gas.

【0005】従来の高温空気加熱器1においては、図6
の一部切欠斜視図に示すように、外壁36に囲われた高
温排ガス流路にセラミックス等の耐火材保護管5で覆わ
れた金属性伝熱管19が配設されている。更に、図6の
要部横断面である図7に示したように、外壁36にも金
属製伝熱管37が配設されている。この金属製伝熱管3
7は、排ガス流路側が耐火材35で覆われその反対側は
フレキシブル断熱材33を介して外側のケーシング38
に支持されている。
[0005] In the conventional high-temperature air heater 1, FIG.
As shown in the partially cutaway perspective view, a metal heat transfer tube 19 covered with a refractory material protection tube 5 made of ceramics or the like is provided in a high-temperature exhaust gas channel surrounded by an outer wall 36. Further, as shown in FIG. 7 which is a cross-sectional view of a main part in FIG. 6, a metal heat transfer tube 37 is also provided on the outer wall 36. This metal heat transfer tube 3
7, the exhaust gas passage side is covered with a refractory material 35, and the opposite side is covered with an outer casing 38 via a flexible heat insulating material 33.
It is supported by.

【0006】[0006]

【発明が解決しようとする課題】しかし、高温の腐食性
ガスの雰囲気では、金属製伝熱管を耐火材で覆っても長
い間に高温の腐食性ガスが耐火材の細孔を浸透し鋼管を
腐食する恐れがある。特に外壁は、構造的に腐食性ガス
の前記浸透を防ぎにくいという問題があった。またこの
外壁部分の伝熱管が一部でも腐食すると外壁全体を交換
しなければならないという問題があった。本発明の課題
は、外壁にある伝熱管の前記高温腐食の恐れを完全に解
消し、耐久性を著しく向上させた高温空気加熱器を提供
することにある。
However, in a high-temperature corrosive gas atmosphere, even if the metal heat transfer tube is covered with a refractory material, the high-temperature corrosive gas penetrates through the pores of the refractory material for a long time, and the steel tube is damaged. May corrode. In particular, the outer wall has a problem that it is difficult to structurally prevent the permeation of the corrosive gas. In addition, there is a problem that if the heat transfer tube on the outer wall part is partially corroded, the entire outer wall must be replaced. It is an object of the present invention to provide a high-temperature air heater in which the risk of high-temperature corrosion of a heat transfer tube on an outer wall is completely eliminated and durability is remarkably improved.

【0007】[0007]

【課題を解決するための手段】前記課題を達成するた
め、本発明に係る高温空気加熱器は、廃棄物を燃焼して
生じた高温排ガスの流路を形成する外壁と、該外壁で囲
われた前記排ガス流路に配設された伝熱管とを備え、該
伝熱管内を流れる空気に前記高温排ガスの熱を吸収させ
て回収する高温空気加熱器において、前記外壁は、前記
高温排ガスに面する内面がポーラスな耐火材で作られた
耐火伝熱管を並べて壁構造に形成され、該耐火伝熱管内
を高温排ガス流路より少し高圧状態で空気を流すように
したことを特徴とするものである。このように外壁にあ
る伝熱管を金属性のものではなく、炭化珪素等の耐火材
を用いて形成したので、前記高温排ガスに起因する腐食
の恐れが完全に解消し、その耐久性は著しく向上する。
更に、金属製伝熱管では内部を流れる空気の温度を50
0℃以上にはしにくかったが、本発明に係る耐火伝熱管
では1000℃以上でも問題ない。また耐火伝熱管内を
高温排ガス流路より少し高圧状態で空気を流すようにし
たので耐火伝熱管の外部から内部にその気孔を浸透して
高温排ガスが入り込むのを防止できる。更に、それぞれ
の耐火伝熱管は、高温ガスの浸透を防止するように前記
ポーラスな耐火材の気孔を通して空気を放出するように
したことを特徴とするものである。これにより高温排ガ
スが耐火伝熱管内に侵入することが一層確実に防止でき
るため、該耐火伝熱管内を流れて熱エネルギーを回収し
た空気は汚染されない。よって該空気の利用先でその空
気が腐食性ガスにより汚染されているかどうかの心配を
する必要が全くない。また、耐火伝熱管はフレキシブル
断熱材を介して外側のケーシングに支持されていること
を特徴とする。これにより構造的に強固となる。また、
耐火伝熱管は、台形断面形状であることを特徴とする。
これにより該耐火伝熱管を並べて壁構造を形成するのが
容易となる。
In order to achieve the above object, a high-temperature air heater according to the present invention includes an outer wall forming a flow path for high-temperature exhaust gas generated by burning waste, and an outer wall formed by the outer wall. A heat transfer tube disposed in the exhaust gas passage, wherein the outer wall faces the high-temperature exhaust gas by absorbing heat of the high-temperature exhaust gas and recovering the heat of the high-temperature exhaust gas with air flowing through the heat transfer tube. The inner surface of the refractory heat transfer tube made of a porous refractory material is formed in a wall structure by arranging the refractory heat transfer tube, and air is flowed in the refractory heat transfer tube at a slightly higher pressure than the high temperature exhaust gas flow path. is there. Since the heat transfer tube on the outer wall is not made of metal but made of a refractory material such as silicon carbide, the danger of corrosion caused by the high-temperature exhaust gas is completely eliminated, and the durability is significantly improved. I do.
Further, in the case of a metal heat transfer tube, the temperature of
Although it was difficult to raise the temperature to 0 ° C. or higher, there is no problem if the temperature is 1000 ° C. or higher in the refractory heat transfer tube according to the present invention. In addition, since the air is caused to flow in the refractory heat transfer tube at a slightly higher pressure than the high-temperature exhaust gas passage, it is possible to prevent the high-temperature exhaust gas from penetrating from the outside to the inside of the refractory heat transfer tube and entering. Further, each of the refractory heat transfer tubes is characterized in that air is discharged through pores of the porous refractory material so as to prevent penetration of high-temperature gas. This can more reliably prevent the high-temperature exhaust gas from entering the refractory heat transfer tube, so that the air flowing through the refractory heat transfer tube and collecting the heat energy is not polluted. Therefore, there is no need to worry about whether the air is contaminated by corrosive gas at the place where the air is used. Further, the refractory heat transfer tube is supported by an outer casing via a flexible heat insulating material. This makes it structurally strong. Also,
The refractory heat transfer tube has a trapezoidal cross section.
This facilitates forming the wall structure by arranging the refractory heat transfer tubes.

【0008】また本発明は、廃棄物を熱媒体によって熱
分解し、熱分解ガスと主として不揮発性成分からなる熱
分解残留物とを生成する熱分解反応器と、該熱分解反応
器で生成された熱分解ガスと熱分解残留物とを分離して
排出する排出装置と、該排出装置から排出された前記熱
分解残留物を燃焼性成分と不燃焼性成分とに分離する分
離装置と、前記熱分解ガス及び前記燃焼性成分を移送し
燃焼させる燃焼溶融炉と、燃焼溶融炉で生じた高温排ガ
スの熱を空気に吸収させて回収する高温空気加熱器とを
備えた廃棄物処理装置において、前記高温空気加熱器は
前記いずれかの高温空気加熱器を用いたものであること
を特徴とする。これにより、上記各作用を有すると共に
廃棄物処理装置の処理効率が向上する。
The present invention also provides a pyrolysis reactor which pyrolyzes waste with a heating medium to generate a pyrolysis gas and a pyrolysis residue mainly composed of non-volatile components, and a pyrolysis reactor produced by the pyrolysis reactor. A discharge device for separating and discharging the pyrolysis gas and the pyrolysis residue, a separation device for separating the pyrolysis residue discharged from the discharge device into a combustible component and a non-combustible component, In a waste treatment apparatus including a combustion melting furnace for transferring and burning the pyrolysis gas and the combustible component, and a high-temperature air heater for absorbing and recovering the heat of the high-temperature exhaust gas generated in the combustion melting furnace by air, The high-temperature air heater uses any one of the high-temperature air heaters. Thereby, while having each said operation | movement, the processing efficiency of a waste disposal apparatus improves.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を図1及び図
2を参照しながら説明する。図1及び図1のII−II線断
面図である図2に示すように、高温空気加熱器の外壁3
6は、前記高温排ガス20に面する内面がポーラスな耐
火材で作られた耐火伝熱管35を並べて壁構造に形成さ
れている。このように本発明では、耐火伝熱管35は従
来のものと異なり、金属ではなくいわゆるレンガのよう
な非金属の耐火材よりなる。具体的には耐火伝熱管35
の素材として炭化珪素、アルミナ、クロミアその他が挙
げられる。更に、この例では台形断面形状の耐火伝熱管
35が互いに強固に連結されて壁構造を成している。該
耐火伝熱管35の肉厚は伝熱効率と管強度の点から決め
られが、通常は30〜50mm程度である。更に耐火伝
熱管35はフレキシブル断熱材33を介して外側のケー
シング38に強固に支持されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1 and FIG. 2, which is a cross-sectional view taken along the line II-II of FIG.
Reference numeral 6 denotes a wall structure in which refractory heat transfer tubes 35 whose inner surface facing the high-temperature exhaust gas 20 is made of a porous refractory material are arranged. Thus, in the present invention, the refractory heat transfer tube 35 is made of a non-metallic refractory material such as a so-called brick, not a metal, unlike the conventional one. Specifically, the refractory heat transfer tube 35
Examples of the material include silicon carbide, alumina, chromia and the like. Furthermore, in this example, the refractory heat transfer tubes 35 having a trapezoidal cross section are firmly connected to each other to form a wall structure. The thickness of the refractory heat transfer tube 35 is determined in terms of heat transfer efficiency and tube strength, but is usually about 30 to 50 mm. Further, the refractory heat transfer tube 35 is firmly supported by an outer casing 38 via a flexible heat insulating material 33.

【0010】そして、耐火伝熱管35の管内34は高温
排ガス流路より少し高圧状態で空気が流れるようになっ
ており、これにより該管35の外部から高温排ガスが内
部に浸透しないように形成されている。通常は、耐火伝
熱管35は、高温排ガスの前記浸透を防止するようにポ
ーラスな耐火材の気孔(図示せず)を通して該管内34
の被加熱空気を該管35の外部に少し放出するように圧
力が設定されている。これにより高温排ガスが耐火伝熱
管内34に侵入することがなくなるため、該耐火伝熱管
内34を流れて熱エネルギーを回収した空気は汚染され
ない。
The inside 34 of the refractory heat transfer tube 35 is configured so that air flows at a slightly higher pressure than the high-temperature exhaust gas passage, so that the high-temperature exhaust gas does not penetrate from the outside of the tube 35 into the inside. ing. Normally, the refractory heat transfer tube 35 passes through the inside of the tube through pores (not shown) of a porous refractory material so as to prevent the high-temperature exhaust gas from penetrating.
The pressure is set so as to slightly discharge the heated air to the outside of the tube 35. As a result, the high-temperature exhaust gas does not enter the inside of the refractory heat transfer tube 34, so that the air that flows through the inside of the refractory heat transfer tube 34 and recovers the thermal energy is not polluted.

【0011】図3は耐火伝熱管35の拡大図であり、
(A)は水平断面図、(B)は縦断面図である。耐火伝
熱管35は各ユニットの上下両端に形成された勘合凹部
39と勘合凸部40の勘合により簡単に構築できるよう
になっている。図4は他の実施の形態例に係り、前記ユ
ニットが幅広に形成され、管内34となる部分が2個形
成されている。
FIG. 3 is an enlarged view of the refractory heat transfer tube 35,
(A) is a horizontal sectional view, (B) is a longitudinal sectional view. The refractory heat transfer tube 35 can be easily constructed by fitting a fitting concave portion 39 and a fitting convex portion 40 formed at both upper and lower ends of each unit. FIG. 4 relates to another embodiment, in which the unit is formed to be wide, and two portions which become the tube interior 34 are formed.

【0012】なお耐火伝熱管35は、円形断面形状など
の他の断面形状でもよく、並べて壁構造を形成できれる
形状であればよい。また、フレキシブル断熱材33は耐
火伝熱管35の壁の内周側に周設されていてもよい。
The refractory heat transfer tube 35 may have another cross-sectional shape such as a circular cross-sectional shape, and may have any shape as long as it can form a wall structure side by side. Further, the flexible heat insulating material 33 may be provided on the inner peripheral side of the wall of the refractory heat transfer tube 35.

【0013】図5は、本発明に係る高温空気加熱器を用
いた廃棄物処理装置の一実施の形態を示す系統図であ
る。本実施の形態の廃棄物処理装置において、都市ごみ
等の廃棄物aは、例えば二軸剪断式等の破砕機で、15
0mm角以下に破砕され、コンベア等により投入部50
内に投入される。投入部50に投入された廃棄物aはス
クリューフィーダ51を経て熱分解反応器52内に供給
される。熱分解反応器52のドラム本体部分は回転す
る。廃棄物aは熱分解反応器52内で、燃焼炉、例えば
熱分解残留物等を燃焼させ溶融させる燃焼溶融炉53の
後流側に配置された熱交換器である高温空気加熱器54
により加熱され加熱空気ラインL1を介して供給される
加熱空気g(熱媒体)により300〜600℃に、通常
は450℃程度に加熱される。
FIG. 5 is a system diagram showing an embodiment of a waste treatment apparatus using a high-temperature air heater according to the present invention. In the waste treatment apparatus of the present embodiment, waste a such as municipal waste is crushed by, for example, a twin-screw type crusher.
Crushed to less than 0 mm square
It is thrown in. The waste a charged into the charging section 50 is supplied into the pyrolysis reactor 52 via the screw feeder 51. The drum body of the pyrolysis reactor 52 rotates. In the pyrolysis reactor 52, the waste a is a high temperature air heater 54 which is a heat exchanger disposed downstream of a combustion furnace, for example, a combustion melting furnace 53 for burning and melting the pyrolysis residue and the like.
To 300 to 600 ° C. The heated air g supplied via a heated hot air line L 1 (heat medium) by, typically it is heated to about 450 ° C..

【0014】更に、加熱空気gにより加熱された廃棄物
aは、熱分解して熱分解ガスG1と、主として不揮発性
成分からなる熱分解残留物bとになり、排出装置55に
送られて分離される。排出装置55で分離された熱分解
ガスG1は、排出装置55の上部から熱分解ガスライン
2を経て燃焼溶融炉53のバーナ56に供給される。
排出装置55から排出された熱分解残留物bは、450
℃程度の比較的高温であるため、冷却装置57により8
0℃程度に冷却され、例えば磁選式、うず電流式、遠心
式又は風力選別式等の公知の単独又は組み合わされた分
離装置58に供給され、ここで細粒の燃焼性成分c(灰
分を含む)と粗粒の不燃焼性成分dとに分離され、不燃
焼性成分dはコンテナ59に回収され再利用される。
Further, the waste a heated by the heated air g is thermally decomposed into a pyrolysis gas G 1 and a pyrolysis residue b mainly composed of non-volatile components. Separated. The pyrolysis gas G 1 separated by the discharge device 55 is supplied from above the discharge device 55 to the burner 56 of the combustion melting furnace 53 via the pyrolysis gas line L 2 .
The pyrolysis residue b discharged from the discharge device 55 is 450
Since the temperature is relatively high at about 0 ° C.,
The mixture is cooled to about 0 ° C. and supplied to a known single or combined separation device 58 of, for example, a magnetic separation type, an eddy current type, a centrifugal type, or a wind separation type, where the combustible component c (including ash ) And coarse-grained non-combustible component d, which is recovered in container 59 and reused.

【0015】更に、燃焼性成分cは、粉砕機60によ
り、例えば1mm以下に微粉砕され、燃焼性成分ライン
3を経て燃焼溶融炉53のバーナ56に供給され、熱
分解ガスラインL2から供給された熱分解ガスG1と送風
機61により燃焼用空気ラインL4から供給された燃焼
用空気eと共に1,300℃程度の高温域で燃焼され、
このとき発生した灰分はその燃焼熱により溶融スラグf
となって、この燃焼溶融炉53の内壁に付着し、更に、
内壁を流下し底部排出口62から水槽63に落下し冷却
固化される。
Furthermore, combustible components c is the crusher 60, for example, 1mm milled below, is supplied to the burner 56 of the burning melting furnace 53 through the combustible component line L 3, from the pyrolysis gas line L 2 supplied with pyrolysis gas G 1 by the blower 61 is combusted in a high temperature range of about 1,300 ° C. with the supplied combustion air e from the combustion air line L 4,
The ash generated at this time is melted slag f by the heat of combustion.
And adheres to the inner wall of the combustion melting furnace 53,
It flows down the inner wall, falls from the bottom outlet 62 into the water tank 63, and is cooled and solidified.

【0016】燃焼溶融炉53で生じた高温排ガスG
2は、図1及び図2に示した上記本発明に係る高温空気
加熱器54を経て煙道ガスラインL5を介して廃熱ボイ
ラ64で熱回収され、集塵器65で除塵され、更に排ガ
ス浄化装置66で有害成分が除去された後、低温のクリ
ーンな排ガスG3となって誘引送風機67を介して煙突
68から大気へ放出される。廃熱ボイラ64で生成した
蒸気は、蒸気タービンを有する発電機69で発電に利用
される。クリーンな排ガスG3の一部はファン70を介
して冷却ガスラインL6により冷却装置57に供給され
る。
High temperature exhaust gas G generated in the combustion melting furnace 53
2 is the heat recovery in FIG 1 and the waste heat boiler 64 via a flue gas line L 5 through the hot air heater 54 according to the present invention shown in FIG. 2, is dust in the dust collector 65, further After the harmful components are removed by the exhaust gas purifying device 66, the exhaust gas G 3 is released to the atmosphere from the chimney 68 via the induction blower 67 as clean low-temperature exhaust gas G 3 . The steam generated by the waste heat boiler 64 is used for power generation by a generator 69 having a steam turbine. Some of the clean exhaust gas G 3 are supplied to the cooling device 57 by the cooling gas line L 6 via a fan 70.

【0017】[0017]

【発明の効果】本発明によれば、外壁にある伝熱管を金
属性のものではなく、炭化珪素等の耐火材を用いて形成
したので、前記高温排ガスに起因する腐食の恐れが完全
に解消し、その耐久性は著しく向上する。また耐火伝熱
管内を高温排ガス流路より少し高圧状態で空気を流すよ
うにしたので耐火伝熱管の外部から内部にその気孔を浸
透して高温排ガスが入り込むのを防止できる。高温ガス
の浸透を防止するように前記ポーラスな耐火材の気孔を
通して空気を放出すると、高温排ガスが耐火伝熱管内に
侵入することが一層確実に防止できる。この結果、該耐
火伝熱管内を流れて熱エネルギーを回収した空気は汚染
されない。よって該空気の利用先でその空気が腐食性ガ
スにより汚染されているかどうかの心配をする必要が全
くない。
According to the present invention, since the heat transfer tube on the outer wall is formed of a refractory material such as silicon carbide instead of a metallic material, the risk of corrosion caused by the high-temperature exhaust gas is completely eliminated. However, its durability is significantly improved. In addition, since the air is caused to flow in the refractory heat transfer tube at a slightly higher pressure than the high-temperature exhaust gas passage, it is possible to prevent the high-temperature exhaust gas from entering the pores from the outside to the inside of the refractory heat transfer tube. When the air is released through the pores of the porous refractory material so as to prevent the penetration of the high-temperature gas, it is possible to more reliably prevent the high-temperature exhaust gas from entering the refractory heat transfer tube. As a result, the air flowing through the refractory heat transfer tube and recovering the thermal energy is not contaminated. Therefore, there is no need to worry about whether the air is contaminated by corrosive gas at the place where the air is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す高温空気加熱器の要
部縦断面図である。
FIG. 1 is a longitudinal sectional view of a main part of a high-temperature air heater showing an embodiment of the present invention.

【図2】図1のII−I線の横断面図である。FIG. 2 is a cross-sectional view taken along line II-I of FIG.

【図3】耐火伝熱管の拡大図であり、(A)は水平断面
図、(B)は縦断面図である。
FIG. 3 is an enlarged view of the refractory heat transfer tube, in which (A) is a horizontal sectional view and (B) is a longitudinal sectional view.

【図4】耐火伝熱管の他の実施の形態例に係る水平断面
図である。
FIG. 4 is a horizontal cross-sectional view according to another embodiment of a refractory heat transfer tube.

【図5】本発明に係る高温空気加熱器を用いた廃棄物処
理装置の一実施の形態を示す系統図である。
FIG. 5 is a system diagram showing an embodiment of a waste treatment apparatus using a high-temperature air heater according to the present invention.

【図6】従来の技術を示す斜視図である。FIG. 6 is a perspective view showing a conventional technique.

【図7】図6の従来技術の要部拡大断面図である。FIG. 7 is an enlarged sectional view of a main part of the prior art of FIG. 6;

【符号の説明】[Explanation of symbols]

33 フレキシブル断熱材 34 耐火伝熱管の管内 35 耐火伝熱管 36 外壁 54 高温空気加熱器 33 Flexible Heat Insulation Material 34 Inside Fire-Resistant Heat Transfer Tube 35 Fire-Resistant Heat Transfer Tube 36 Outer Wall 54 High Temperature Air Heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23G 5/44 ZAB F23G 5/44 ZABD 5/46 ZAB 5/46 ZABZ F23J 1/00 F23J 1/00 B F23M 5/00 F23M 5/00 D B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F23G 5/44 ZAB F23G 5/44 ZABD 5/46 ZAB 5/46 ZABZ F23J 1/00 F23J 1/00 B F23M 5/00 F23M 5/00 DB

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を燃焼して生じた高温排ガスの流
路を形成する外壁と、該外壁で囲われた前記排ガス流路
に配設された伝熱管とを備え、該伝熱管内を流れる空気
に前記高温排ガスの熱を吸収させて回収する高温空気加
熱器において、 前記外壁は、前記高温排ガスに面する内面がポーラスな
耐火材で作られた耐火伝熱管を並べて壁構造に形成さ
れ、該耐火伝熱管内を高温排ガス流路より少し高圧状態
で空気を流すようにしたことを特徴とする高温空気加熱
器。
1. An external wall forming a flow path of a high-temperature exhaust gas generated by burning waste, and a heat transfer tube disposed in the exhaust gas flow path surrounded by the outer wall. In a high-temperature air heater that absorbs and recovers the heat of the high-temperature exhaust gas into flowing air, the outer wall is formed in a wall structure by arranging refractory heat transfer tubes whose inner surface facing the high-temperature exhaust gas is made of a porous refractory material. A high-temperature air heater characterized in that air flows through the refractory heat transfer tube at a slightly higher pressure than the high-temperature exhaust gas flow path.
【請求項2】 請求項1において、それぞれの耐火伝熱
管は、高温ガスの浸透を防止するように前記ポーラスな
耐火材の気孔を通して空気を放出するようにしたことを
特徴とする高温空気加熱器。
2. The high-temperature air heater according to claim 1, wherein each of the refractory heat transfer tubes discharges air through pores of the porous refractory material so as to prevent penetration of a high-temperature gas. .
【請求項3】 請求項1又は2において、耐火伝熱管は
フレキシブル断熱材を介して外側のケーシングに支持さ
れていることを特徴とする高温空気加熱器。
3. The high-temperature air heater according to claim 1, wherein the refractory heat transfer tube is supported by an outer casing via a flexible heat insulating material.
【請求項4】 請求項1〜3のいずれかにおいて、耐火
伝熱管は、台形断面形状であることを特徴とする高温空
気加熱器。
4. The high-temperature air heater according to claim 1, wherein the refractory heat transfer tube has a trapezoidal cross section.
【請求項5】 廃棄物を熱媒体によって熱分解し、熱分
解ガスと主として不揮発性成分からなる熱分解残留物と
を生成する熱分解反応器と、該熱分解反応器で生成され
た熱分解ガスと熱分解残留物とを分離して排出する排出
装置と、該排出装置から排出された前記熱分解残留物を
燃焼性成分と不燃焼性成分とに分離する分離装置と、前
記熱分解ガス及び前記燃焼性成分を移送し燃焼させる燃
焼溶融炉と、燃焼溶融炉で生じた高温排ガスの熱を空気
に吸収させて回収する高温空気加熱器とを備えた廃棄物
処理装置において、前記高温空気加熱器は請求項1〜4
のいずれかに記載のものであることを特徴とする廃棄物
処理装置。
5. A pyrolysis reactor that pyrolyzes waste with a heat medium to generate a pyrolysis gas and a pyrolysis residue mainly composed of a nonvolatile component, and a pyrolysis reactor generated by the pyrolysis reactor. A discharge device for separating and discharging a gas and a pyrolysis residue, a separation device for separating the pyrolysis residue discharged from the discharge device into a combustible component and a non-combustible component, and the pyrolysis gas And a combustion and melting furnace for transferring and combusting the combustible component, and a high-temperature air heater for absorbing heat of high-temperature exhaust gas generated in the combustion and melting furnace into air and recovering the same. The heater is described in claims 1 to 4.
A waste treatment apparatus characterized by the above-mentioned.
JP34514396A 1996-12-25 1996-12-25 High temperature air heater Withdrawn JPH10185152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34514396A JPH10185152A (en) 1996-12-25 1996-12-25 High temperature air heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34514396A JPH10185152A (en) 1996-12-25 1996-12-25 High temperature air heater

Publications (1)

Publication Number Publication Date
JPH10185152A true JPH10185152A (en) 1998-07-14

Family

ID=18374578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34514396A Withdrawn JPH10185152A (en) 1996-12-25 1996-12-25 High temperature air heater

Country Status (1)

Country Link
JP (1) JPH10185152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132927A (en) * 1999-08-26 2001-05-18 Mitsui Eng & Shipbuild Co Ltd Method and device for controlling temperature of heat exchanger
JP2010091219A (en) * 2008-10-10 2010-04-22 Hitachi Zosen Corp Heat exchanger for corrosive gas
JP2012037124A (en) * 2010-08-06 2012-02-23 Hitachi Zosen Corp Heat exchanger for corrosive high-temperature gas
CN102966959A (en) * 2012-11-29 2013-03-13 华南理工大学 Wall-attached air system for preventing high temperature corrosion of water cooled wall of garbage incinerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132927A (en) * 1999-08-26 2001-05-18 Mitsui Eng & Shipbuild Co Ltd Method and device for controlling temperature of heat exchanger
JP2010091219A (en) * 2008-10-10 2010-04-22 Hitachi Zosen Corp Heat exchanger for corrosive gas
JP2012037124A (en) * 2010-08-06 2012-02-23 Hitachi Zosen Corp Heat exchanger for corrosive high-temperature gas
CN102966959A (en) * 2012-11-29 2013-03-13 华南理工大学 Wall-attached air system for preventing high temperature corrosion of water cooled wall of garbage incinerator
CN102966959B (en) * 2012-11-29 2015-01-28 华南理工大学 Wall-attached air system for preventing high temperature corrosion of water cooled wall of garbage incinerator

Similar Documents

Publication Publication Date Title
EP0187442B1 (en) Apparatus and method for disposal of waste material
JP4323638B2 (en) High temperature air heater
JPH10185152A (en) High temperature air heater
JPH10311526A (en) Horizontal high temperature air heater and waste treating apparatus
JPH10325527A (en) Exhaust gas passage wall structure
JP3564040B2 (en) Exhaust heat recovery equipment in melting furnace
JPH102519A (en) Waste pyrolysis drum and method of pyrolysis
JP2005330370A (en) Indirectly heating-type fluidized bed gasification system
JP2000140796A (en) Method and device for pyrolytic melting of waste
JPH09196337A (en) Waste pylorysis drum and pyrocysis method
JPH1054529A (en) High temperature air heater
JP4005652B2 (en) High temperature air heater
JPH1054518A (en) Combustion melting furnace and waste treatment device
JPH11294737A (en) Heat exchanger
JP3461457B2 (en) Waste treatment equipment
JPH09217920A (en) Combustion melting furnace and waste disposing device
JPH1114031A (en) Cooler for residue of thermal decomposition
JPH10332125A (en) Wastes treatment equipment
JPH10196925A (en) High-temperature air heater and combustion melting furnace
JPH1073219A (en) Thermal decomposition drum and waste treating apparatus with the same
JPH09318027A (en) Pyrolytic reactor in waste material processing device
JPH09196336A (en) Waste treating device
JPH09170735A (en) Heating method of pyrolytic reactor in waste treatment equipment
JP2000015212A (en) Dry distillation thermal decomposition melting combustion apparatus for waste and heating method of dry distillation thermal decomposition reactor
JPH10205727A (en) Waste thermal decomposition method by mixture with collected dust ash

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302