JPH06307791A - High performance heat transfer - Google Patents

High performance heat transfer

Info

Publication number
JPH06307791A
JPH06307791A JP9942393A JP9942393A JPH06307791A JP H06307791 A JPH06307791 A JP H06307791A JP 9942393 A JP9942393 A JP 9942393A JP 9942393 A JP9942393 A JP 9942393A JP H06307791 A JPH06307791 A JP H06307791A
Authority
JP
Japan
Prior art keywords
heat transfer
temperature difference
porous layer
layer
high performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9942393A
Other languages
Japanese (ja)
Inventor
Takeo Uehara
武雄 上原
Akihiro Uotani
明洋 魚谷
Takehiro Itou
猛宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Y K K KK
Original Assignee
Y K K KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Y K K KK filed Critical Y K K KK
Priority to JP9942393A priority Critical patent/JPH06307791A/en
Publication of JPH06307791A publication Critical patent/JPH06307791A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide a heat transfer surface in which nucleate boiling can be maintained even at the time of a large temperature difference and which has high performance in a wide temperature difference range by providing a porous layer made of a non-thermal conductive material on a surface of a heat transfer base made of metal or alloy. CONSTITUTION:A heat transfer for a heat exchanger to be used in a large temperature difference area such as a low temperature etching unit, an LPG vaporizer, etc., is formed by covering a surface of a heat transfer base made of metal or alloy with a porous layer of non-thermal conductive material. Thus, a temperature difference (TWa-TS) at the layer is increased, and since it is formed of the porous layer, generation of film boiling when a temperature difference between a heat transfer surface and liquid is large is suppressed, and nucleate boiling is allowed at the layer. The layer is formed of inorganic material such as glass wool, carbon fiber, ceramics, etc., or organic material such as gauze, etc., and set to a thickness of 1-5mm or preferably 1-2mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば低温エッチング
装置、LPGのベーパーライザーなどの大温度差領域で
使用される熱交換器に用いられる高性能伝熱体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance heat transfer body used in a heat exchanger used in a large temperature difference region such as a low temperature etching apparatus and a vaporizer for LPG.

【0002】[0002]

【従来の技術】熱交換器は温度の異なる2流体を熱伝達
させて、両者の温度差を狭めるものであり、2流体を分
ける熱交換器壁での表面熱伝達が課題となる。この場
合、一方の流体の沸点が伝熱面温度より低い場合にはそ
の流体が沸騰し、通常の伝熱形態とは異なり、核沸騰か
膜沸騰かで熱伝達が大きく変化する。核沸騰とは、伝熱
面に液が接しており、伝熱面から蒸気泡が出ることであ
り、膜沸騰とは、伝熱面上は蒸気層であり、液と伝熱面
は接触しておらず、蒸気泡は蒸気層に接する液面から出
ることをいう。
2. Description of the Related Art A heat exchanger transfers two fluids having different temperatures to narrow the temperature difference between the two fluids, and the surface heat transfer on the wall of the heat exchanger which separates the two fluids becomes a problem. In this case, when the boiling point of one of the fluids is lower than the heat transfer surface temperature, the fluid boils, and unlike the normal heat transfer mode, the heat transfer largely changes depending on the nucleate boiling or the film boiling. Nucleate boiling means that the liquid is in contact with the heat transfer surface, and vapor bubbles come out from the heat transfer surface.Film boiling is the vapor layer on the heat transfer surface, and the liquid and the heat transfer surface are in contact with each other. It means that vapor bubbles come out of the liquid surface in contact with the vapor layer.

【0003】沸騰する場合の熱伝達で、流体間の温度差
が20K以下と比較的小さい場合には、核沸騰促進型の
高性能伝熱面がいろいろ考案されている。例えば伝熱面
に微小孔を設けて核沸騰を促進し、結果的に同じ熱量を
伝えるときに、伝熱面温度と流体温度の差がより小さく
なるようにしたものである。
In heat transfer when boiling, when the temperature difference between fluids is relatively small, 20 K or less, various nucleate boiling promoting high performance heat transfer surfaces have been devised. For example, micropores are provided on the heat transfer surface to promote nucleate boiling so that the difference between the heat transfer surface temperature and the fluid temperature becomes smaller when the same amount of heat is transferred.

【0004】しかしながら、伝熱面と冷媒液沸点の温度
差(過熱度と呼ぶ)が10Kを超えるようになると、核
沸騰から膜沸騰へと変り易くなり、20Kを超えると膜
沸騰を起し、熱伝達は伝熱面→蒸気層→液面と伝わるの
で、伝熱面温度と液体温度は急増し、表面熱伝達率は低
下する。
However, when the temperature difference between the heat transfer surface and the boiling point of the refrigerant liquid (called superheat degree) exceeds 10K, nucleate boiling tends to change to film boiling, and when it exceeds 20K, film boiling occurs, Since the heat transfer is conducted from the heat transfer surface → the vapor layer → the liquid surface, the temperature of the heat transfer surface and the liquid temperature rapidly increase, and the surface heat transfer coefficient decreases.

【0005】従来、小温度差領域で高い伝熱性能を有
し、かつ、伝熱性能の安定した、信頼性のある高性能伝
熱体に関しては、さまざまな創意工夫がなされ、特許出
願もなされている。例えば、特公平2−53717号公
報に記載された多孔質伝熱面もその一つである。因に該
公報に記載されたものは、多孔質層により構成された伝
熱面において、多孔質層の表面の一部に多孔質層表面の
一空隙率を規則的に変化させた溝が複数配置され、溝部
分の空隙率が溝のない部分より小さく形成されているこ
とを特徴とするものである。
Conventionally, various creative ideas have been made and patent applications have been made for high-performance heat conductors having high heat transfer performance in a small temperature difference region, stable heat transfer performance, and reliability. ing. For example, the porous heat transfer surface described in Japanese Patent Publication No. 2-53717 is one of them. Incidentally, in the heat transfer surface constituted by the porous layer, the one described in the publication has a plurality of grooves in which a certain porosity of the surface of the porous layer is regularly changed in a part of the surface of the porous layer. It is characterized in that it is arranged so that the porosity of the groove portion is smaller than that of the portion without the groove.

【0006】大温度差領域すなわち膜沸騰状態での高性
能伝熱面については、さきに本出願人が提案した技術が
ある。(特開平4−371800号公報参照)これは伝
熱面に熱の良導体材料を用いるものである。
Regarding the high-performance heat transfer surface in the large temperature difference region, that is, in the film boiling state, there is a technique previously proposed by the present applicant. (See Japanese Patent Laid-Open No. 4-371800) This uses a material having good heat conductivity for the heat transfer surface.

【0007】[0007]

【発明が解決しようとする課題】本発明は、熱の不良導
体材料を用いて、伝熱面と液体との温度差が例えば40
〜400Kのような大温度差であっても、膜沸騰せず、
核沸騰が維持でき、温度差の小さい時にも核沸騰が促進
され、結果的に大温度差領域および小温度差領域の広い
温度差領域にわたって高性能な伝熱面を提供することを
目的とするものである。
SUMMARY OF THE INVENTION The present invention uses a poorly heat conductive material, and the temperature difference between the heat transfer surface and the liquid is, for example, 40.
Even at a large temperature difference of ~ 400K, film boiling does not occur,
Nucleate boiling can be maintained, nucleate boiling is promoted even when the temperature difference is small, and as a result it is intended to provide a high-performance heat transfer surface over a wide temperature difference region of a large temperature difference region and a small temperature difference region. It is a thing.

【0008】[0008]

【課題を解決するための手段】本発明は、金属又は合金
からなる伝熱基体表面に、熱の不良導体材料からなる多
孔質層を設けたことを特徴とする高性能伝熱体である。
上記多孔質層は、ガラスウール、カーボンファイバー、
セラミックス等の無機質材料、あるいはガーゼ等の有機
質材料よりなるものである。その他伝熱基体面に長繊維
を植毛したものでもよい。
The present invention is a high-performance heat conductor characterized in that a porous layer made of a poorly heat conductive material is provided on the surface of a heat transfer substrate made of a metal or an alloy.
The porous layer is glass wool, carbon fiber,
It is made of an inorganic material such as ceramics or an organic material such as gauze. In addition, long fibers may be planted on the surface of the heat transfer substrate.

【0009】多孔質層の厚さは1〜5mmがよい。1m
m未満の場合、多孔質層を設けた効果が得られず、本発
明の目的を達成することができない。又、5mmを超え
ると、これ以上多孔質層の厚さを大きくしても、伝熱性
能が向上しないためである。特に伝熱管として使用する
場合、多孔質層が2mmを超えると、伝熱管の径が大き
くなり、一定域に伝熱管を多数設けることができなくな
り、装置全体として温度の制御が容易に行えなくなる。
The thickness of the porous layer is preferably 1-5 mm. 1m
If it is less than m, the effect of providing the porous layer cannot be obtained, and the object of the present invention cannot be achieved. Also, if it exceeds 5 mm, the heat transfer performance is not improved even if the thickness of the porous layer is further increased. In particular, when used as a heat transfer tube, if the porous layer exceeds 2 mm, the diameter of the heat transfer tube becomes large, and it becomes impossible to provide a large number of heat transfer tubes in a certain area, and it becomes difficult to control the temperature of the entire device.

【0010】本発明の伝熱面構成は、図1に示す如く、
金属又は合金からなる伝熱基体表面に、熱の不良導体で
ある無機質又は有機質からなる多孔質層を被覆したもの
である。これにより、温度は被覆層部でTw2−Tsを
大きくとることができる。この結果、被覆外表面Ts−
Toが小さく、かつ多孔質層であるから、核沸騰が被覆
層で生じ、総合的にTw2−Toが小さくなる。因に従
来の熱良導体被覆では、Tw2−Tsが小さく、Ts−
Toが大きくなり、総合的にTw2−Toが大きくな
る。熱伝達係数は、α=Q/(Tw2−To)であるか
ら、Tw2−Toが小さくなれば、熱伝達性能が高いこ
ととなる。図2は多孔質層の具体例を示すもので、aは
網状積層、bは植毛層、cは綿状層、dは粒状層よりな
るものである。
The heat transfer surface structure of the present invention is as shown in FIG.
The surface of a heat transfer substrate made of a metal or an alloy is coated with a porous layer made of an inorganic or organic substance that is a poor heat conductor. Thus, the temperature can be increased to Tw 2 -Ts with a coating layer portion. As a result, the outer coating surface Ts-
Since To is small and it is a porous layer, nucleate boiling occurs in the coating layer, and Tw 2 -To becomes small overall. By the way, in the conventional thermal conductor coating, Tw 2 −Ts is small, and Ts−
To becomes large, and Tw 2 −To becomes large as a whole. Since the heat transfer coefficient is α = Q / (Tw 2 −To), the smaller Tw 2 −To, the higher the heat transfer performance. FIG. 2 shows a specific example of the porous layer, in which a is a net-like laminate, b is a flocked layer, c is a cotton-like layer, and d is a granular layer.

【0011】[0011]

【実施例】図3に示すように、直径12mm、長さ60
mmの銅棒よりなる伝熱基体に熱電対を付し、表面に多
孔質層を形成した。多孔質層としては、銅あるいは青銅
の焼結面(先行例に相当)、ガーゼ巻き面(巻き回数を
変えたもの、本発明例に相当)を適用した。これらの試
料を液体窒素中で加熱後、自然冷却する時の各伝熱面の
冷却速度を図5に示す。ガーゼ巻き面を有するものが極
めて早く温度が低下し、熱伝達性能が高いことを示して
いる。
EXAMPLE As shown in FIG. 3, diameter 12 mm, length 60
A thermocouple was attached to a heat transfer substrate composed of a mm copper rod to form a porous layer on the surface. As the porous layer, a sintered surface of copper or bronze (corresponding to the preceding example) and a gauze winding surface (those with different numbers of windings, corresponding to the example of the present invention) were applied. FIG. 5 shows the cooling rate of each heat transfer surface when these samples were naturally cooled after being heated in liquid nitrogen. The one having a gauze winding surface shows a very rapid temperature drop, indicating that the heat transfer performance is high.

【0012】又、図4に示すような図3と同様の試料の
銅棒内に熱電対の他にヒーターをつけたものを用い、こ
れを多孔質層のみが露出するようにして、液体窒素中で
ヒーター加熱し、銅棒の温度を計測し、これを図6にま
とめた。図6の横軸は銅棒の温度と液体窒素沸点との温
度差で縦軸はヒーターの熱流束(W/m2)である。熱
伝導率=熱流束/温度差であるから、図6では熱伝達性
能の高低が示される。図中、上部の方が熱伝達性能が高
く、下部の方が低い。例えば試料ロの銅焼結面を有する
ものは温度差10K以下で高性能(核沸騰促進)であ
り、試料ハの青銅焼結面を有するものは温度差10〜1
00Kで高性能である。本発明の試料ニ〜リは温度差1
00K以上で高性能である。温度差40〜400℃の範
囲で105以上の熱流束が得られている。ガーゼ(1巻
きで0.2mm)は12巻きで約2mmぐらいの厚さと
なる(重なり合うので)が、効果的には1〜5mm(5
〜50巻き、ただし、強く巻いたもので約10〜50巻
き緩く巻いたもので約5〜25巻きである)特に1〜2
mmがよい。試料ハ以外は温度差がほぼ10〜100K
の間で線が表示されていないが、これは100Kでの熱
流束値のまま、温度差が時間と共に低下し、10K以下
の線に移行するためである。すなわち102Kの熱流束
値のまま左に線を引くように変化するものであって、こ
れを遷移領域と呼ぶ。
As shown in FIG. 4, a copper rod of a sample similar to that shown in FIG. 3 having a heater in addition to a thermocouple is used so that only the porous layer is exposed. The temperature of the copper rod was measured by heating with a heater in it and summarized in FIG. The horizontal axis of FIG. 6 is the temperature difference between the temperature of the copper rod and the boiling point of liquid nitrogen, and the vertical axis is the heat flux (W / m 2 ) of the heater. Since thermal conductivity = heat flux / temperature difference, FIG. 6 shows high and low heat transfer performance. In the figure, the heat transfer performance is higher in the upper part and lower in the lower part. For example, the sample B having a copper sintered surface has high performance (nucleate boiling promotion) at a temperature difference of 10 K or less, and the sample C having a bronze sintered surface has a temperature difference of 10 to 1
High performance at 00K. The temperature difference of the sample Nos.
High performance above 00K. A heat flux of 10 5 or more is obtained in the temperature difference range of 40 to 400 ° C. Gauze (0.2 mm for 1 roll) has a thickness of about 2 mm for 12 rolls (because they overlap), but it is effectively 1-5 mm (5
~ 50, but about 10 to 50 for tightly wound and about 5 to 25 for loosely wound) Especially 1-2
mm is good. Except for the sample C, the temperature difference is about 10 to 100K
A line is not displayed between the two, but this is because the temperature difference decreases with time while the heat flux value at 100K remains unchanged, and the line shifts to a line of 10K or less. That is, it changes so as to draw a line to the left with the heat flux value of 10 2 K, and this is called a transition region.

【0013】次に本発明の応用例について述べる。超L
SIの加工に用いられる低温エッチング装置は、加工面
を−130℃程度に冷却するため、例えば図7に示すよ
うな構成がとられる。図7中、1はウェーハWを載置し
て加工する加工面で、その下部に液体窒素槽2を取付
け、加工面1から垂下する伝熱制御棒3を液体窒素4に
浸し冷却する。液体窒素4は液体窒素入口5より入り窒
素ガス出口6よりガスとなって排出される。伝熱制御
は、液体窒素の液レベルを調整し、伝熱制御棒3の液浸
漬深さを変えることによる冷却制御と加工面1に内蔵し
たヒーター7による加熱制御のバランスで行う。ウェー
ハWの加工は、加工時にプラズマ照射を受けるので、加
工時とウェーハW交換時のような非加工時との熱負荷差
が大きい。又、加工面1は−100℃、液体窒素の沸点
は−196℃と、両者の温度差も大きい。
Next, application examples of the present invention will be described. Super L
The low-temperature etching apparatus used for processing the SI cools the processing surface to about -130 ° C., and therefore has a configuration as shown in FIG. 7, for example. In FIG. 7, reference numeral 1 denotes a processing surface on which the wafer W is mounted and processed. A liquid nitrogen tank 2 is attached to the lower part of the processing surface, and a heat transfer control rod 3 hanging from the processing surface 1 is dipped in liquid nitrogen 4 for cooling. Liquid nitrogen 4 enters through liquid nitrogen inlet 5 and is discharged as a gas through nitrogen gas outlet 6. The heat transfer control is performed by adjusting the liquid level of liquid nitrogen and balancing the cooling control by changing the liquid immersion depth of the heat transfer control rod 3 and the heating control by the heater 7 built in the processing surface 1. Since the wafer W is subjected to plasma irradiation during the processing, the thermal load difference between the processing time and the non-processing time such as when the wafer W is exchanged is large. Further, the processed surface 1 has a temperature difference of -100 ° C and the boiling point of liquid nitrogen of -196 ° C.

【0014】この装置の伝熱制御はウェーハ加工面1の
温度を例えば−105℃に設定し、温度上昇時に液体窒
素液位を上昇させ、温度低下時に液体窒素液位を低下さ
せて行う。この温度制御を応答良く行うためには、伝熱
制御棒3の温度は−120℃にもなり、液体窒素沸点−
196℃との温度差が大きく、無処理面では膜沸騰を生
じるので、伝熱制御棒の長さや本数が大となり、装置が
大型化する。液体窒素を回収、液化する装置を組合せて
冷媒密閉回路を形成すると、耐圧性の問題その他でさら
に装置が大型化する。
The heat transfer control of this apparatus is performed by setting the temperature of the wafer processing surface 1 to, for example, −105 ° C., raising the liquid nitrogen liquid level when the temperature rises, and lowering the liquid nitrogen liquid level when the temperature falls. In order to perform this temperature control with good response, the temperature of the heat transfer control rod 3 becomes −120 ° C., and the liquid nitrogen boiling point −
Since the temperature difference from 196 ° C. is large and film boiling occurs on the untreated surface, the length and number of heat transfer control rods become large, and the device becomes large. When the refrigerant closed circuit is formed by combining the devices for collecting and liquefying liquid nitrogen, the device becomes larger due to the problem of pressure resistance and the like.

【0015】又、液体窒素の代りにフロンを用いて冷凍
機と組合せると、装置が大型化し、フロン液を大量に要
することとなり、非運転時にフロン液温が上り、圧力が
高くなるので、同じく装置の耐圧力のため、さらに装置
が大型化する。
When CFCs are used in place of liquid nitrogen in combination with a refrigerator, the size of the apparatus becomes large and a large amount of CFC liquid is required, and the CFC liquid temperature rises and the pressure rises when not in operation. Similarly, the pressure resistance of the device further increases the size of the device.

【0016】そこで、図7における伝熱制御棒3の表面
あるいはさらに液体窒素層2の内壁面に、本発明に係る
多孔質層8を施せば、熱伝達率は約10倍となるので装
置の小型化に寄与する。
Therefore, if the porous layer 8 according to the present invention is applied to the surface of the heat transfer control rod 3 or the inner wall surface of the liquid nitrogen layer 2 shown in FIG. Contributes to miniaturization.

【0017】[0017]

【発明の効果】本発明によれば、伝熱面と液体との温度
差が大きくても膜沸騰せず、核沸騰が維持でき、温度差
が小さい時にも核沸騰が促進され、結果的に大温度差領
域および小温度差領域の広い温度差領域にわたって高性
能な伝熱面を提供することができる。したがって、冷却
速度が早くなり、その分効率的となって装置を小型化す
ることができる。
According to the present invention, film boiling does not occur even if the temperature difference between the heat transfer surface and the liquid is large, nucleate boiling can be maintained, and nucleate boiling is promoted even when the temperature difference is small. A high-performance heat transfer surface can be provided over a wide temperature difference region such as a large temperature difference region and a small temperature difference region. Therefore, the cooling rate is increased, and the efficiency is correspondingly increased, and the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成の説明図である。FIG. 1 is an explanatory diagram of a configuration of the present invention.

【図2】本発明の具体的な構成例の説明図である。FIG. 2 is an explanatory diagram of a specific configuration example of the present invention.

【図3】本発明の試験例における試料の説明図である。FIG. 3 is an explanatory diagram of a sample in a test example of the present invention.

【図4】本発明の試験例における試料の説明図である。FIG. 4 is an explanatory diagram of a sample in a test example of the present invention.

【図5】各種伝熱面の冷却速度の試験結果を示すグラフ
である。
FIG. 5 is a graph showing test results of cooling rates of various heat transfer surfaces.

【図6】各種伝熱面の沸騰曲線を示すグラフである。FIG. 6 is a graph showing boiling curves of various heat transfer surfaces.

【図7】本発明を低温エッチング装置に応用した例の説
明図である。
FIG. 7 is an explanatory diagram of an example in which the present invention is applied to a low temperature etching apparatus.

【符号の説明】[Explanation of symbols]

1 加工面 2 液体窒素槽 3 伝熱制御棒 4 液体窒素 5 液体窒素入口 6 窒素ガス出口 7 ヒーター 8 多孔質体 1 Processing Surface 2 Liquid Nitrogen Tank 3 Heat Transfer Control Rod 4 Liquid Nitrogen 5 Liquid Nitrogen Inlet 6 Nitrogen Gas Outlet 7 Heater 8 Porous Body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金からなる伝熱基体表面に、
熱の不良導体材料からなる多孔質層を設けたことを特徴
とする高性能伝熱体。
1. A surface of a heat transfer substrate made of a metal or an alloy,
A high-performance heat transfer material, characterized in that a porous layer made of a poorly heat-conductive material is provided.
【請求項2】 多孔質層は、ガラスウール、カーボンフ
ァイバー、セラミックスの如き無機質材料あるいはガー
ゼの如き有機質材料よりなる請求項1記載の高性能伝熱
体。
2. The high performance heat transfer member according to claim 1, wherein the porous layer is made of an inorganic material such as glass wool, carbon fiber, ceramics or an organic material such as gauze.
【請求項3】 多孔質層の厚さが1ないし5mmである
請求項1又は2記載の高性能伝熱体。
3. The high performance heat transfer material according to claim 1, wherein the thickness of the porous layer is 1 to 5 mm.
【請求項4】 多孔質層の厚さが1ないし2mmである
請求項3記載の高性能伝熱体。
4. The high performance heat transfer member according to claim 3, wherein the thickness of the porous layer is 1 to 2 mm.
JP9942393A 1993-04-26 1993-04-26 High performance heat transfer Pending JPH06307791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9942393A JPH06307791A (en) 1993-04-26 1993-04-26 High performance heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9942393A JPH06307791A (en) 1993-04-26 1993-04-26 High performance heat transfer

Publications (1)

Publication Number Publication Date
JPH06307791A true JPH06307791A (en) 1994-11-01

Family

ID=14247060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9942393A Pending JPH06307791A (en) 1993-04-26 1993-04-26 High performance heat transfer

Country Status (1)

Country Link
JP (1) JPH06307791A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013057A1 (en) * 1999-08-12 2001-02-22 Nkk Corporation Heat exchange tube and heat recovery method using it
JP2008229510A (en) * 2007-03-20 2008-10-02 National Institute Of Advanced Industrial & Technology Heater, evaporator, and method for micronizing bubble
JP2010528207A (en) * 2007-05-22 2010-08-19 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Apparatus and method for evaporating fluids
JP2010249501A (en) * 2009-04-17 2010-11-04 General Electric Co <Ge> Heat exchanger including surface-treated substrate
KR101370720B1 (en) * 2013-02-27 2014-03-10 포항공과대학교 산학협력단 The nucleate boiling heat transfer system which removes the generation of the critical heat flux and uses the graphene in which the effeciency is improved
CN114206640A (en) * 2019-10-23 2022-03-18 株式会社Uacj Heat transfer double-layer pipe, inner pipe for heat transfer double-layer pipe, and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169089A (en) * 1984-02-10 1985-09-02 Agency Of Ind Science & Technol Boiling heat transfer surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169089A (en) * 1984-02-10 1985-09-02 Agency Of Ind Science & Technol Boiling heat transfer surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013057A1 (en) * 1999-08-12 2001-02-22 Nkk Corporation Heat exchange tube and heat recovery method using it
JP2008229510A (en) * 2007-03-20 2008-10-02 National Institute Of Advanced Industrial & Technology Heater, evaporator, and method for micronizing bubble
JP2010528207A (en) * 2007-05-22 2010-08-19 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Apparatus and method for evaporating fluids
JP2010249501A (en) * 2009-04-17 2010-11-04 General Electric Co <Ge> Heat exchanger including surface-treated substrate
KR101370720B1 (en) * 2013-02-27 2014-03-10 포항공과대학교 산학협력단 The nucleate boiling heat transfer system which removes the generation of the critical heat flux and uses the graphene in which the effeciency is improved
CN114206640A (en) * 2019-10-23 2022-03-18 株式会社Uacj Heat transfer double-layer pipe, inner pipe for heat transfer double-layer pipe, and method for manufacturing same
CN114206640B (en) * 2019-10-23 2024-03-08 株式会社Uacj Heat transfer double pipe, inner pipe for heat transfer double pipe, and method for manufacturing same

Similar Documents

Publication Publication Date Title
Semenic et al. Use of biporous wicks to remove high heat fluxes
Liu et al. Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon
Kim et al. The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3 nanofluids
Greywall Heat capacity and the commensurate-incommensurate transition of He 4 adsorbed on graphite
Naphon et al. Pool boiling heat transfer characteristics of refrigerant-nanoparticle mixtures
Tang et al. Experimental study on thermal performances of ultra-thin flattened heat pipes
Jun et al. Pool boiling heat transfer enhancement of water using brazed copper microporous coatings
Qu et al. Heat transfer characteristics of micro-grooved oscillating heat pipes
US20130020059A1 (en) Device having nano-coated porous integral fins
JP2004537026A (en) Apparatus for recondensing low-boiling gas of liquefied gas-gas evaporating from vessel using cryo-generator
Liu et al. Enhanced boiling heat transfer in restricted spaces of a compact tube bundle with enhanced tubes
Qu et al. Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves
Wang et al. Experimental determination of the role of roughness and wettability on pool-boiling heat transfer of refrigerant
CN101871902A (en) Test device and test method for limit heat-flow density of porous material for heat pipe
Li Design and preliminary experiments of a novel heat pipe using a spiral coil as capillary wick
JPH06307791A (en) High performance heat transfer
Kim et al. Pool boiling enhancement with surface treatments
Lou et al. Superhydrophobic/superhydrophilic hybrid copper surface enhanced micro heat pipe by using laser selective texturing
Zhang et al. Effect of inventory on the heat performance of copper–water loop heat pipe
Tsai et al. Experimental study of evaporative heat transfer in sintered powder structures at low superheat levels
Liang et al. Cooldown characteristics of a neon cryogenic pulsating heat pipe
Tsai et al. Effects of sintered structural parameters on reducing the superheat level in heat pipe evaporators
JP2001267261A (en) Electric heater in heat treatment equipment for semiconductor
Vasiliev et al. Intensification of heat transfer at propane pool boiling on single horizontal tubes
JPH04371800A (en) High-performance heat transfer body