JPH04371800A - High-performance heat transfer body - Google Patents

High-performance heat transfer body

Info

Publication number
JPH04371800A
JPH04371800A JP14746391A JP14746391A JPH04371800A JP H04371800 A JPH04371800 A JP H04371800A JP 14746391 A JP14746391 A JP 14746391A JP 14746391 A JP14746391 A JP 14746391A JP H04371800 A JPH04371800 A JP H04371800A
Authority
JP
Japan
Prior art keywords
heat transfer
temperature difference
boiling
temperature
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14746391A
Other languages
Japanese (ja)
Other versions
JP2636980B2 (en
Inventor
Takeo Uehara
上原 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP14746391A priority Critical patent/JP2636980B2/en
Publication of JPH04371800A publication Critical patent/JPH04371800A/en
Application granted granted Critical
Publication of JP2636980B2 publication Critical patent/JP2636980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide a high-performance heat transfer body for a heat exchanger employed in a large temperature difference area. CONSTITUTION:A high-performance heat transfer body is characterized by providing the fine particles connecting layer 4 of a heat conductive material and the rough particles connecting layer 5 of the same material sequentially. According to this method, film boiling will never be caused even when a temperature difference between a heat transfer surface and fluid is large and nuclear boiling can be maintained while the nuclear boiling is promoted even when the temperature difference is small whereby a high-performance heat transfer surface can be obtained in either case.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば低温エッチング
装置、LPGのベーパーライザーなどの大温度差領域で
使用される熱交換器用高性能伝熱体に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance heat transfer body for a heat exchanger used in areas with large temperature differences, such as low-temperature etching equipment and LPG vapor risers.

【0002】0002

【従来の技術】熱交換器は温度の異なる2流体を熱伝達
させて、両者の温度差を狭めるものであり、2流体を分
ける熱交換器壁での表面熱伝達が課題となる。この場合
、一方の流体の沸点が伝熱面温度より低い場合には、そ
の流体が沸騰し、通常の伝熱形態とは異なり、核沸騰か
膜沸騰かで熱伝達が大きく変化する。核沸騰とは、伝熱
面に液が接しており、伝熱面上から蒸気泡が出ることで
あり、膜沸騰とは、伝熱面上は蒸気層であり、液と伝熱
面は接触しておらず、蒸気泡は蒸気層に接する液面から
出ることをいう。
2. Description of the Related Art A heat exchanger transfers heat between two fluids having different temperatures to narrow the temperature difference between the two fluids, and the problem is surface heat transfer at the heat exchanger wall that separates the two fluids. In this case, if the boiling point of one of the fluids is lower than the heat transfer surface temperature, that fluid will boil, and unlike the normal heat transfer mode, heat transfer changes greatly depending on whether it is nucleate boiling or film boiling. Nucleate boiling is when a liquid is in contact with the heat transfer surface and steam bubbles come out from the heat transfer surface, and film boiling is when there is a vapor layer on the heat transfer surface and the liquid and the heat transfer surface are in contact. This means that vapor bubbles emerge from the liquid surface that is in contact with the vapor layer.

【0003】沸騰する場合の熱伝達で、流体間の温度差
の比較的小さいものには核沸騰促進型高性能伝熱面があ
り、これは伝熱面に微小孔を設けて核沸騰を促進し、結
果的に同じ熱量を伝えるときに、これは伝熱面温度と流
体温度の差がより小さくなるようにしたものである。
[0003] For heat transfer during boiling, where the temperature difference between fluids is relatively small, there is a nucleate boiling promoting high-performance heat transfer surface, which promotes nucleate boiling by providing micropores on the heat transfer surface. However, as a result, when transmitting the same amount of heat, the difference between the heat transfer surface temperature and the fluid temperature becomes smaller.

【0004】流体間の温度差が比較的大きい場合には、
一方の液体は膜沸騰を起こし、熱伝達は伝熱面→蒸気層
→液面と伝わるので、伝熱面温度と液体温度は急増し、
表面熱伝達率は低下する。
[0004] When the temperature difference between fluids is relatively large,
On the other hand, the liquid undergoes film boiling, and heat transfer occurs from the heat transfer surface to the vapor layer to the liquid surface, so the heat transfer surface temperature and liquid temperature rapidly increase.
The surface heat transfer coefficient decreases.

【0005】従来、小温度差領域で高い伝熱性能を有し
、かつ、伝熱性能の安定した、信頼性のある高性能伝熱
体に関しては、さまざまな創意工夫がなされ、特許出願
もされている。例えば、特公平2−53717号公報に
記載された多孔質伝熱面もその一つである。因に該公報
に記載されたものは、多孔質層により構成された伝熱面
において、多孔質層の表面の一部に多孔質層表面の一空
隙率を規則的に変化させた溝が複数配置され、溝部分の
空隙率が溝のない部分より小さく形成されていることを
特徴とするものである。
[0005] Conventionally, various creative efforts have been made and patent applications have been made regarding reliable high-performance heat transfer bodies that have high heat transfer performance in a small temperature difference region and have stable heat transfer performance. ing. For example, the porous heat transfer surface described in Japanese Patent Publication No. 2-53717 is one of them. Incidentally, what is described in this publication is that, in a heat transfer surface constituted by a porous layer, a plurality of grooves in which the porosity of the porous layer surface is regularly varied is formed in a part of the surface of the porous layer. The porosity of the grooved portion is smaller than that of the portion without the groove.

【0006】[0006]

【発明が解決しようとする課題】上記従来の伝熱体は、
小温度差領域では、核沸騰を促進させるため高い伝熱性
能を示すが、大温度差領域で使用した場合には、伝熱面
と流体との間で膜沸騰を起こし、伝熱面上は蒸気層とな
り、液と伝熱面とは接触していない状態となり、熱伝達
は、伝熱面、蒸気層、液面と伝わるので、表面熱伝達率
は低下する。
[Problem to be solved by the invention] The above conventional heat transfer body is
In a small temperature difference region, nucleate boiling is promoted and high heat transfer performance is exhibited, but when used in a large temperature difference region, film boiling occurs between the heat transfer surface and the fluid, and the heat transfer surface The liquid becomes a vapor layer, and the liquid and the heat transfer surface are not in contact with each other, and heat is transferred to the heat transfer surface, the vapor layer, and the liquid surface, so the surface heat transfer coefficient decreases.

【0007】そこで本発明は、上記問題に鑑み、温度差
の大きい時にも膜沸騰せず、核沸騰状態が維持でき、温
度差の小さい時にも核沸騰が促進され、結果的に大温度
差領域及び小温度差領域でも高性能な伝熱面を提供する
ことを目的とするものである。
In view of the above-mentioned problems, the present invention is capable of maintaining a nucleate boiling state without causing film boiling even when the temperature difference is large, and promoting nucleate boiling even when the temperature difference is small, resulting in a large temperature difference region. The purpose of this invention is to provide a high-performance heat transfer surface even in a small temperature difference region.

【0008】[0008]

【課題を解決するための手段】本発明は、伝熱基材表面
に熱伝導性材料の微細粒子結合層と粗大粒子結合層とを
順次設けたことを特徴とする高性能伝熱体である。微細
粒子結合層は熱伝導性の良い例えば青銅粒子よりなり、
粒径130μm以下で、層厚は200〜300μmが適
当である。粗大粒子結合層は、青銅粒子のように熱伝導
性の良い材料でもよいが、セラミックス、ステンレス等
の低熱伝導性の材料でもよい。その粒径は400μm以
上600μm以下で、層厚は粒径の2倍以下がよい。
[Means for Solving the Problems] The present invention is a high-performance heat transfer body characterized by sequentially providing a fine particle bonding layer and a coarse particle bonding layer of a thermally conductive material on the surface of a heat transfer base material. . The fine particle bonding layer is made of bronze particles with good thermal conductivity, for example,
Suitably, the particle size is 130 μm or less and the layer thickness is 200 to 300 μm. The coarse particle bonding layer may be made of a material with good thermal conductivity such as bronze particles, but may also be made of a material with low thermal conductivity such as ceramics or stainless steel. The particle size is preferably 400 μm or more and 600 μm or less, and the layer thickness is preferably twice the particle size or less.

【0009】図1は本発明の構成を模式的に示すもので
、伝熱基材1の面上に、微細粒子2を3層程度積層して
微細粒子結合層4とする。このままでも核沸騰促進型高
性能伝熱面となり、高い熱流束を与えても伝熱基材1の
温度と液温差は5K以下となる。しかし、膜沸騰を起こ
すために、その温度差を20Kにすることはできない。 逆に粗大粒子を伝熱基材1に直接付けた場合は、伝熱基
材と液温との差を大きくすることはできるが、温度差の
小さい時の熱伝達も小さくなる。そこで、前記微細粒子
結合層4の上に粗大粒子3を2層程度積層して粗大粒子
結合層5を形成すると、温度差の大きい時にも膜沸騰せ
ずに核沸騰状態が維持でき、温度差の小さい時にも核沸
騰が促進され、結果的に高熱流束域でも低熱流束域でも
高性能な伝熱面を得ることができる。
FIG. 1 schematically shows the structure of the present invention, in which about three layers of fine particles 2 are laminated on the surface of a heat transfer base material 1 to form a fine particle bonding layer 4. Even as it is, it becomes a nucleate boiling-promoting high-performance heat transfer surface, and even if a high heat flux is applied, the difference between the temperature of the heat transfer base material 1 and the liquid temperature is 5K or less. However, the temperature difference cannot be 20K to cause film boiling. On the other hand, when coarse particles are attached directly to the heat transfer base material 1, the difference between the heat transfer base material and the liquid temperature can be increased, but the heat transfer also becomes small when the temperature difference is small. Therefore, if the coarse particle bonding layer 5 is formed by laminating about two layers of coarse particles 3 on the fine particle bonding layer 4, the nucleate boiling state can be maintained without film boiling even when the temperature difference is large, and the temperature difference Nucleate boiling is promoted even when the temperature is small, and as a result, a high-performance heat transfer surface can be obtained in both high and low heat flux regions.

【0010】0010

【実施例】実施例を比較例とともに説明する。[Example] Examples will be explained together with comparative examples.

【0011】銅よりなる伝熱基材表面に、青銅微細粒子
130μm粒を用い、焼結により厚さ250μmの微細
粒子結合層を形成し、さらにその上に青銅粗大粒子40
0μm粒を用い焼結により厚さ500μmの粗大粒子結
合層を形成して試料Aとした。他に比較例として、無処
理のもの(試料B)、伝熱基材面に上記微細粒子結合層
のみを形成したもの(試料C)並びに伝熱基材面に上記
粗大粒子結合層のみを形成したもの(試料D)を用意し
た。
[0011] Fine bronze particles of 130 μm are used on the surface of a heat transfer base material made of copper, and a fine particle bonding layer with a thickness of 250 μm is formed by sintering, and on top of that, 40 μm of coarse bronze particles are formed.
Sample A was prepared by using 0 μm particles to form a coarse particle bonding layer with a thickness of 500 μm by sintering. Other comparative examples include one without treatment (Sample B), one with only the above fine particle bonding layer formed on the heat transfer base material surface (Sample C), and one with only the above coarse particle bonding layer formed on the heat transfer base material surface. (Sample D) was prepared.

【0012】液体窒素を用いて伝熱特性の試験をしたと
ころ図2に示す結果を得た。図中、矢印はその点以上の
熱流束で膜沸騰化し、温度差が急増することを示すもの
である。試料Bは105w/m2で温度差6Kを示し、
それ以上で膜沸騰を起こす。又、 5×103w/m2
で温度差2Kの比較的狭い温度範囲で核沸騰する。試料
Cは1.3×105w/m2で温度差4.5Kを示し、
それ以上で膜沸騰を起こし、5×103w/m2で温度
差0.2K以下と小さい温度差でも核沸騰を生じる、い
わゆる核沸騰促進型高性能伝熱面の特性を示す。試料D
は、1.5×105w/m2で温度差14Kを示し、そ
れ以上で膜沸騰し、又、5×103w/m2で温度差0
.3K以下と、低熱流束域で核沸騰促進効果を示す。
When the heat transfer characteristics were tested using liquid nitrogen, the results shown in FIG. 2 were obtained. In the figure, the arrow indicates that film boiling occurs at a heat flux above that point, and the temperature difference rapidly increases. Sample B shows a temperature difference of 6K at 105w/m2,
Anything above that will cause film boiling. Also, 5×103w/m2
Nucleate boiling occurs in a relatively narrow temperature range with a temperature difference of 2K. Sample C shows a temperature difference of 4.5K at 1.3 x 105w/m2,
Film boiling occurs above this temperature, and nucleate boiling occurs even with a small temperature difference of 0.2 K or less at 5×10 3 W/m 2 , exhibiting the characteristics of a so-called nucleate boiling-enhancing high-performance heat transfer surface. Sample D
shows a temperature difference of 14 K at 1.5 x 105 w/m2, film boiling occurs above that temperature, and a temperature difference of 0 at 5 x 103 w/m2.
.. It exhibits a nucleate boiling promoting effect in the low heat flux region of 3K or less.

【0013】これらに対し、試料Aは1.8×105w
/m2で温度差50Kとなるが、膜沸騰化し難く、5×
103w/m2では温度差0.15Kと核沸騰促進効果
を示す。
On the other hand, sample A has a power of 1.8×105w
/m2, the temperature difference is 50K, but film boiling is difficult to occur, and 5×
At 103 w/m2, the temperature difference is 0.15 K, which shows a nucleate boiling promoting effect.

【0014】熱伝達率(=熱流束/温度差)で示すと表
1のとおりとなる。
Table 1 shows the heat transfer coefficient (=heat flux/temperature difference).

【0015】[0015]

【表1】   熱流束(w/m2)  A           
 B         C       D   1.
8×105     3600w/m2K    膜沸
騰     同  左   同  左        
                    (250w
/m2K)   1.0×105     6250 
         16700      28500
    10500   5×103       3
3000         2500       2
5000    17000  試料Aは高熱流束域でも膜沸騰し難く、1.8×105
w/m2でも3600w/m2Kを示すが、B、C、D
は膜沸騰となり、この熱伝達率250w/m2Kに比べ
て10倍以上の実質性能がある。
[Table 1] Heat flux (w/m2) A
B C D 1.
8×105 3600w/m2K Film boiling Same left Same left
(250w
/m2K) 1.0×105 6250
16700 28500
10500 5×103 3
3000 2500 2
5000 17000 Sample A is difficult to film boil even in the high heat flux region, and has a temperature of 1.8×105
Even w/m2 shows 3600w/m2K, but B, C, D
This results in film boiling, and the actual performance is more than 10 times that of this heat transfer coefficient of 250 w/m2K.

【0016】次に本発明の応用例について述べる。Next, an application example of the present invention will be described.

【0017】超LSIの加工に用いられる低温エッチン
グ装置は、加工面を−130℃程度に冷却するため、例
えば図3に示すような構成がとられる。図3中、6は加
工面で、その下部に液体窒素槽7を取り付け、加工面6
から垂下する伝熱制御棒8を液体窒素に浸し冷却する。 液体窒素は、液体窒素入口9より入り、窒素ガス出口1
0よりガスとなって排出される。伝熱制御は液体窒素の
液レベルを調整し、伝熱制御棒8の液浸漬深さを変える
ことによる冷却制御と加工面6に内蔵したヒーター11
による加熱制御のバランスで行う。この方式での問題点
は加工面が−130 ℃で液体窒素の沸点が−196 
℃であるため、両者の温度差が66℃と大温度差である
。そして、伝熱棒の表面は沸騰熱伝達である。伝熱制御
の応答をよくするには、加工面部、伝熱制御棒は熱伝導
率のよいことが必要であり、伝熱部の小型化のためには
伝熱制御棒の熱伝達のよいことが必要である。しかし、
熱伝導がよいことは、伝熱制御棒と液の温度差が大きく
なることで、伝熱制御棒表面で膜沸騰し、結果的に熱伝
達が悪くなる。したがって、伝熱制御棒の表面には膜沸
騰化し難いという特性が要求される。そこで伝熱制御棒
表面に本発明を適用する。計算によると、伝熱制御棒表
面に本発明を適用することにより、伝熱制御棒の長さを
短くすることができ、装置全体を小型化することができ
る。又、伝熱制御棒の長さが短いこと、並びに膜沸騰し
難いために伝熱量が大きくなることは、温度応答が早く
制御し易くなる。
A low-temperature etching apparatus used for processing VLSIs has a configuration as shown in FIG. 3, for example, in order to cool the processing surface to about -130°C. In Fig. 3, 6 is the processing surface, and a liquid nitrogen tank 7 is attached to the lower part of the processing surface.
The heat transfer control rod 8 hanging from the tube is immersed in liquid nitrogen to cool it. Liquid nitrogen enters from liquid nitrogen inlet 9 and nitrogen gas outlet 1
0, it becomes gas and is emitted. Heat transfer control includes cooling control by adjusting the liquid nitrogen level and changing the liquid immersion depth of the heat transfer control rod 8, and a heater 11 built into the processing surface 6.
This is done by balancing the heating control. The problem with this method is that the machined surface is -130°C and the boiling point of liquid nitrogen is -196°C.
℃, the temperature difference between the two is 66℃, which is a large temperature difference. And the surface of the heat transfer rod is boiling heat transfer. In order to improve the response of heat transfer control, the machined surface and heat transfer control rod must have good thermal conductivity, and in order to downsize the heat transfer part, the heat transfer control rod must have good heat transfer. is necessary. but,
Good heat conduction means that the temperature difference between the heat transfer control rod and the liquid increases, which causes film boiling on the surface of the heat transfer control rod, resulting in poor heat transfer. Therefore, the surface of the heat transfer control rod is required to have the property of being resistant to film boiling. Therefore, the present invention is applied to the surface of the heat transfer control rod. According to calculations, by applying the present invention to the surface of the heat transfer control rod, the length of the heat transfer control rod can be shortened, and the entire device can be downsized. In addition, the short length of the heat transfer control rod and the large amount of heat transfer due to the resistance to film boiling result in faster temperature response and easier control.

【0018】図4は低温エッチング装置への他の応用例
で、液体窒素槽7の内壁面に本発明の高性能伝熱体を形
成したものである。この装置は、図3の装置に比べて加
工し易い特徴がある。
FIG. 4 shows another example of application to a low-temperature etching apparatus, in which the high-performance heat transfer body of the present invention is formed on the inner wall surface of a liquid nitrogen tank 7. This device has the feature that it is easier to process than the device shown in FIG.

【0019】[0019]

【発明の効果】本発明は伝熱面と流体との温度差が大き
い時にも膜沸騰せず、核沸騰状態が維持でき、温度差の
小さい時にも核沸騰が促進され、結果的に大温度差領域
及び小温度差領域でも高性能な伝熱面を得ることができ
、低温エッチング装置、LPGのベーパーライザー等に
応用して有用である。
Effects of the Invention: The present invention does not cause film boiling even when the temperature difference between the heat transfer surface and the fluid is large and maintains the nucleate boiling state, and even when the temperature difference is small, nucleate boiling is promoted, resulting in large temperatures. A high-performance heat transfer surface can be obtained even in a temperature difference region and a small temperature difference region, and it is useful for application to low-temperature etching equipment, LPG vaporizers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of the present invention.

【図2】実施例並びに比較例についての温度差と熱流束
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between temperature difference and heat flux for Examples and Comparative Examples.

【図3】本発明の応用例の説明図である。FIG. 3 is an explanatory diagram of an application example of the present invention.

【図4】本発明の他の応用例の説明図である。FIG. 4 is an explanatory diagram of another application example of the present invention.

【符号の説明】[Explanation of symbols]

1  伝熱基材 2  微細粒子 3  粗大粒子 4  微細粒子結合層 5  粗大粒子結合層 6  加工面 7  液体窒素槽 8  伝熱制御棒 9  液体窒素入口 10  窒素ガス出口 11  ヒーター 12  高性能伝熱体 1 Heat transfer base material 2. Fine particles 3 Coarse particles 4 Fine particle bonding layer 5 Coarse particle bonding layer 6 Processed surface 7. Liquid nitrogen tank 8 Heat transfer control rod 9 Liquid nitrogen inlet 10 Nitrogen gas outlet 11 Heater 12 High performance heat transfer body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  伝熱基材表面に、熱伝導性材料の微細
粒子結合層と粗大粒子結合層とを順次設けたことを特徴
とする高性能伝熱体。
1. A high-performance heat transfer body, characterized in that a fine particle bonding layer and a coarse particle bonding layer of a thermally conductive material are sequentially provided on the surface of a heat transfer base material.
【請求項2】  微細粒子の粒径を130μm以下、微
細粒子結合層の層厚を200〜300μmとし、粗大粒
子の粒径を400μm以上、粗大粒子結合層の層厚を粗
大粒子の粒径の2倍以下としてなる請求項1記載の高性
能伝熱体。
2. The particle size of the fine particles is 130 μm or less, the layer thickness of the fine particle bonding layer is 200 to 300 μm, the particle size of the coarse particles is 400 μm or more, and the layer thickness of the coarse particle bonding layer is smaller than the particle size of the coarse particles. 2. The high-performance heat transfer body according to claim 1, wherein the temperature is less than twice as high.
JP14746391A 1991-06-19 1991-06-19 High performance heat transfer Expired - Lifetime JP2636980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746391A JP2636980B2 (en) 1991-06-19 1991-06-19 High performance heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746391A JP2636980B2 (en) 1991-06-19 1991-06-19 High performance heat transfer

Publications (2)

Publication Number Publication Date
JPH04371800A true JPH04371800A (en) 1992-12-24
JP2636980B2 JP2636980B2 (en) 1997-08-06

Family

ID=15430945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746391A Expired - Lifetime JP2636980B2 (en) 1991-06-19 1991-06-19 High performance heat transfer

Country Status (1)

Country Link
JP (1) JP2636980B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018350A1 (en) * 1993-12-27 1995-07-06 Hitachi Chemical Company, Ltd. Heat transfer material
WO2001013057A1 (en) * 1999-08-12 2001-02-22 Nkk Corporation Heat exchange tube and heat recovery method using it
JP2011226738A (en) * 2010-04-22 2011-11-10 Toshiba Corp Heat transfer medium and method for manufacturing the same
US20150068712A1 (en) * 2012-05-24 2015-03-12 Purdue Research Foundation Apparatus and method for increasing boiling heat transfer therein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900505A (en) * 2010-08-19 2010-12-01 燿佳科技股份有限公司 Heat pipe and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018350A1 (en) * 1993-12-27 1995-07-06 Hitachi Chemical Company, Ltd. Heat transfer material
US5943543A (en) * 1993-12-27 1999-08-24 Hitachi Chemical Company, Ltd. Heat transmitting member and method of manufacturing the same
WO2001013057A1 (en) * 1999-08-12 2001-02-22 Nkk Corporation Heat exchange tube and heat recovery method using it
JP2011226738A (en) * 2010-04-22 2011-11-10 Toshiba Corp Heat transfer medium and method for manufacturing the same
US20150068712A1 (en) * 2012-05-24 2015-03-12 Purdue Research Foundation Apparatus and method for increasing boiling heat transfer therein
US10309733B2 (en) * 2012-05-24 2019-06-04 Purdue Research Foundation Apparatus and method for increasing boiling heat transfer therein

Also Published As

Publication number Publication date
JP2636980B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
Semenic et al. Experimental study of biporous wicks for high heat flux applications
Ciloglu An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface
Sablowski et al. Dropwise Condensation on Advanced Functional Surfaces–Theory and Experimental Setup
Jun et al. Effect of subcooling on pool boiling of water from sintered copper microporous coating at different orientations
JPH04371800A (en) High-performance heat transfer body
Xu et al. Liquid‐Superspreading‐Boosted High‐Performance Jet‐Flow Boiling for Enhancement of Phase‐Change Cooling
Thakur et al. Enhancement in pool boiling heat transfer of ethanol and nanofluid on novel supersonic nanoblown nanofiber textured surface
Fletcher et al. Thermal contact resistance of selected low-conductance interstitial materials.
Zhang et al. Using bulk micromachined structures to enhance pool boiling heat transfer
JPH06307791A (en) High performance heat transfer
Schmidt et al. Thermal boundary resistance at interfaces between sapphire and indium
Park et al. Nucleate boiling heat transfer in nanofluids with carbon nanotubes up to critical heat fluxes
Sharma et al. Effect of jet inclination and coolant flow rate on thermal and rewetting behavior during bottom jet impingement on hot horizontal surfaces
KR102585362B1 (en) Freeze casting apparatus and freeze casting method using the same
Kelkar et al. Thermal boundary resistance for thin-film high-Tc superconductors at varying interfacial temperature drops
Khooshehchin et al. Experimental study of the effects of horizontal and vertical roughnesses of heater surface on bubble dynamic and heat transfer coefficient in pool boiling
Zhukov et al. Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon
Li et al. Performance characteristics of the metal foam wick prepared by magnetron sputtering method
Semenic et al. Use of liquid film evaporation in biporous media to achieve high heat flux over large areas
Kalawa et al. Heat transfer research on enhanced heating surfaces in pool boiling
Semenic et al. Biporous sintered copper for closed loop heat pipe evaporator
Rawlings et al. Influence of dislocations on the Kapitza conductance of copper at temperatures between 1 and 2 K
Ghavami et al. Thermal Conductivity of Some Ceramic Materials at Cryogenic Temperatures
Gundappa et al. Analysis of thermal stresses in a solid circular cylinder subjected to conductive heat transfer with thermal boundary conductance
Shimada et al. Enhancement of boiling heat transfer in a narrow space restricted by an interference plate with holes