JP2636980B2 - High performance heat transfer - Google Patents

High performance heat transfer

Info

Publication number
JP2636980B2
JP2636980B2 JP14746391A JP14746391A JP2636980B2 JP 2636980 B2 JP2636980 B2 JP 2636980B2 JP 14746391 A JP14746391 A JP 14746391A JP 14746391 A JP14746391 A JP 14746391A JP 2636980 B2 JP2636980 B2 JP 2636980B2
Authority
JP
Japan
Prior art keywords
heat transfer
temperature difference
boiling
heat
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14746391A
Other languages
Japanese (ja)
Other versions
JPH04371800A (en
Inventor
武雄 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAI KEI KEI KK
Original Assignee
WAI KEI KEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAI KEI KEI KK filed Critical WAI KEI KEI KK
Priority to JP14746391A priority Critical patent/JP2636980B2/en
Publication of JPH04371800A publication Critical patent/JPH04371800A/en
Application granted granted Critical
Publication of JP2636980B2 publication Critical patent/JP2636980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば低温エッチング
装置、LPGのベーパーライザーなどの大温度差領域で
使用される熱交換器用高性能伝熱体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance heat exchanger for a heat exchanger used in a large temperature difference region such as a low-temperature etching apparatus and a vaporizer of an LPG.

【0002】[0002]

【従来の技術】熱交換器は温度の異なる2流体を熱伝達
させて、両者の温度差を狭めるものであり、2流体を分
ける熱交換器壁での表面熱伝達が課題となる。この場
合、一方の流体の沸点が伝熱面温度より低い場合には、
その流体が沸騰し、通常の伝熱形態とは異なり、核沸騰
か膜沸騰かで熱伝達が大きく変化する。核沸騰とは、伝
熱面に液が接しており、伝熱面上から蒸気泡が出ること
であり、膜沸騰とは、伝熱面上は蒸気層であり、液と伝
熱面は接触しておらず、蒸気泡は蒸気層に接する液面か
ら出ることをいう。
2. Description of the Related Art A heat exchanger transfers two fluids having different temperatures to reduce a temperature difference between the two fluids, and there is a problem of surface heat transfer at a heat exchanger wall separating the two fluids. In this case, if the boiling point of one fluid is lower than the heat transfer surface temperature,
The fluid boils, and the heat transfer varies greatly depending on nucleate boiling or film boiling, which is different from the normal form of heat transfer. Nucleate boiling is when liquid is in contact with the heat transfer surface and vapor bubbles come out from the heat transfer surface, and film boiling is a vapor layer on the heat transfer surface, and the liquid and heat transfer surface are in contact with each other. Does not mean that the vapor bubbles come out of the liquid surface in contact with the vapor layer.

【0003】沸騰する場合の熱伝達で、流体間の温度差
の比較的小さいものには核沸騰促進型高性能伝熱面があ
り、これは伝熱面に微小孔を設けて核沸騰を促進し、結
果的に同じ熱量を伝えるときに、これは伝熱面温度と流
体温度の差がより小さくなるようにしたものである。
[0003] In the heat transfer in the case of boiling, in which the temperature difference between the fluids is relatively small, there is a nucleate boiling-promoting high-performance heat transfer surface, which is provided with micro holes in the heat transfer surface to promote nucleate boiling. When the same amount of heat is transferred as a result, the difference between the heat transfer surface temperature and the fluid temperature is reduced.

【0004】流体間の温度差が比較的大きい場合には、
一方の液体は膜沸騰を起こし、熱伝達は伝熱面→蒸気層
→液面と伝わるので、伝熱面温度と液体温度は急増し、
表面熱伝達率は低下する。
When the temperature difference between fluids is relatively large,
One of the liquids causes film boiling, and heat transfer is transferred from the heat transfer surface to the vapor layer to the liquid surface.
The surface heat transfer coefficient decreases.

【0005】従来、小温度差領域で高い伝熱性能を有
し、かつ、伝熱性能の安定した、信頼性のある高性能伝
熱体に関しては、さまざまな創意工夫がなされ、特許出
願もされている。例えば、特公平2−53717号公報
に記載された多孔質伝熱面もその一つである。因に該公
報に記載されたものは、多孔質層により構成された伝熱
面において、多孔質層の表面の一部に多孔質層表面の一
空隙率を規則的に変化させた溝が複数配置され、溝部分
の空隙率が溝のない部分より小さく形成されていること
を特徴とするものである。
Conventionally, various ingenuity has been devised and a patent application has been filed for a reliable high-performance heat transfer material having high heat transfer performance in a small temperature difference region and stable heat transfer performance. ing. For example, a porous heat transfer surface described in Japanese Patent Publication No. 2-53717 is one of them. On the other hand, what is described in the publication is that, on a heat transfer surface constituted by a porous layer, a plurality of grooves in which one porosity of the surface of the porous layer is regularly changed are formed in a part of the surface of the porous layer. And the porosity of the groove portion is formed smaller than that of the portion without the groove.

【0006】[0006]

【発明が解決しようとする課題】上記従来の伝熱体は、
小温度差領域では、核沸騰を促進させるため高い伝熱性
能を示すが、大温度差領域で使用した場合には、伝熱面
と流体との間で膜沸騰を起こし、伝熱面上は蒸気層とな
り、液と伝熱面とは接触していない状態となり、熱伝達
は、伝熱面、蒸気層、液面と伝わるので、表面熱伝達率
は低下する。
SUMMARY OF THE INVENTION The above-mentioned conventional heat transfer bodies are:
In the small temperature difference region, high heat transfer performance is exhibited to promote nucleate boiling, but when used in the large temperature difference region, film boiling occurs between the heat transfer surface and the fluid, and the heat transfer surface has It becomes a vapor layer and the liquid and the heat transfer surface are not in contact with each other, and heat transfer is conducted to the heat transfer surface, the vapor layer, and the liquid surface, so that the surface heat transfer coefficient decreases.

【0007】そこで本発明は、上記問題に鑑み、温度差
の大きい時にも膜沸騰せず、核沸騰状態が維持でき、温
度差の小さい時にも核沸騰が促進され、結果的に大温度
差領域及び小温度差領域でも高性能な伝熱面を提供する
ことを目的とするものである。
In view of the above problems, the present invention does not cause film boiling even when the temperature difference is large, and can maintain the nucleate boiling state. Even when the temperature difference is small, nucleate boiling is promoted. It is another object of the present invention to provide a high-performance heat transfer surface even in a small temperature difference region.

【0008】[0008]

【課題を解決するための手段】本発明は、伝熱基材表面
に熱伝導性材料の微細粒子結合層と粗大粒子結合層とを
順次設けたことを特徴とする高性能伝熱体である。微細
粒子結合層は熱伝導性の良い例えば青銅粒子よりなり、
粒径130μm以下で、層厚は200〜300μmが適当であ
る。粗大粒子結合層は、青銅粒子のように熱伝導性の良
い材料でもよいが、セラミックス、ステンレス等の低熱
伝導性の材料でもよい。その粒径は400μm以上600μm
以下で、層厚は粒径の2倍以下がよい。
SUMMARY OF THE INVENTION The present invention is a high-performance heat transfer element characterized in that a fine particle bonding layer and a coarse particle bonding layer of a heat conductive material are sequentially provided on the surface of a heat transfer substrate. . The fine particle bonding layer is made of, for example, bronze particles having good heat conductivity,
It is appropriate that the particle size is 130 μm or less and the layer thickness is 200 to 300 μm. The coarse particle bonding layer may be made of a material having good heat conductivity such as bronze particles, or may be made of a material having low heat conductivity such as ceramics and stainless steel. The particle size is 400μm or more and 600μm
Below, the layer thickness is preferably twice or less the particle size.

【0009】図1は本発明の構成を模式的に示すもの
で、伝熱基材1の面上に、微細粒子2を3層程度積層し
て微細粒子結合層4とする。このままでも核沸騰促進型
高性能伝熱面となり、高い熱流束を与えても伝熱基材1
の温度と液温差は5K以下となる。しかし、膜沸騰を起
こすために、その温度差を20Kにすることはできな
い。逆に粗大粒子を伝熱基材1に直接付けた場合は、伝
熱基材と液温との差を大きくすることはできるが、温度
差の小さい時の熱伝達も小さくなる。そこで、前記微細
粒子結合層4の上に粗大粒子3を2層程度積層して粗大
粒子結合層5を形成すると、温度差の大きい時にも膜沸
騰せずに核沸騰状態が維持でき、温度差の小さい時にも
核沸騰が促進され、結果的に高熱流束域でも低熱流束域
でも高性能な伝熱面を得ることができる。
FIG. 1 schematically shows the structure of the present invention. About three layers of fine particles 2 are laminated on the surface of a heat transfer substrate 1 to form a fine particle bonding layer 4. As it is, it becomes a nucleate-boiling-promoting high-performance heat transfer surface.
And the liquid temperature difference is 5K or less. However, in order to cause film boiling, the temperature difference cannot be reduced to 20K. Conversely, when the coarse particles are directly attached to the heat transfer substrate 1, the difference between the heat transfer substrate and the liquid temperature can be increased, but the heat transfer when the temperature difference is small also decreases. Therefore, when the coarse particle bonding layer 5 is formed by laminating about two coarse particles 3 on the fine particle bonding layer 4, the nucleate boiling state can be maintained without film boiling even when the temperature difference is large, and the temperature difference can be maintained. Nucleate boiling is promoted even when is small, and as a result, a high-performance heat transfer surface can be obtained in both a high heat flux region and a low heat flux region.

【0010】[0010]

【実施例】実施例を比較例とともに説明する。EXAMPLES Examples will be described together with comparative examples.

【0011】銅よりなる伝熱基材表面に、青銅微細粒子
130μm粒を用い、焼結により厚さ250μmの微細粒子結
合層を形成し、さらにその上に青銅粗大粒子400μm粒
を用い焼結により厚さ500μmの粗大粒子結合層を形成
して試料Aとした。他に比較例として、無処理のもの
(試料B)、伝熱基材面に上記微細粒子結合層のみを形
成したもの(試料C)並びに伝熱基材面に上記粗大粒子
結合層のみを形成したもの(試料D)を用意した。
[0011] Bronze fine particles are formed on the surface of a heat transfer substrate made of copper.
Using a 130 μm grain, a fine particle bonding layer having a thickness of 250 μm was formed by sintering, and a coarse particle bonding layer having a thickness of 500 μm was formed thereon by sintering using 400 μm grains of bronze coarse particles thereon to obtain a sample A. . In addition, as a comparative example, an untreated sample (sample B), a sample in which only the fine particle bonding layer was formed on the heat transfer base material surface (sample C), and only the coarse particle bonding layer formed on the heat transfer base material surface (Sample D) was prepared.

【0012】液体窒素を用いて伝熱特性の試験をしたと
ころ図2に示す結果を得た。図中、矢印はその点以上の
熱流束で膜沸騰化し、温度差が急増することを示すもの
である。試料Bは105w/m2で温度差6Kを示し、それ以
上で膜沸騰を起こす。又、 5×103w/m2で温度差2Kの
比較的狭い温度範囲で核沸騰する。試料Cは1.3×105w/
m2で温度差4.5Kを示し、それ以上で膜沸騰を起こ
し、5×103w/m2で温度差0.2K以下と小さい温度差で
も核沸騰を生じる、いわゆる核沸騰促進型高性能伝熱面
の特性を示す。試料Dは、1.5×105w/m2で温度差14K
を示し、それ以上で膜沸騰し、又、5×103w/m2で温度差
0.3K以下と、低熱流束域で核沸騰促進効果を示す。
When a heat transfer characteristic test was performed using liquid nitrogen, the results shown in FIG. 2 were obtained. In the figure, the arrow indicates that the film boiling occurs due to the heat flux above that point, and the temperature difference increases rapidly. Sample B shows a temperature difference of 6K at 10 5 w / m 2 , above which film boiling occurs. Nucleate boiling occurs in a relatively narrow temperature range of 5 × 10 3 w / m 2 and a temperature difference of 2K. Sample C is 1.3 × 10 5 w /
shows the temperature difference 4.5K m 2, and the more in cause film boiling, 5 × 10 3 in w / m 2 results in nucleate boiling at the temperature difference 0.2K or less and small temperature difference, so-called nucleate boiling-promoting high Shows the characteristics of the performance heat transfer surface. Sample D has a temperature difference of 14K at 1.5 × 10 5 w / m 2
Above that, film boiling occurs, and a temperature difference of 0.3 K or less at 5 × 10 3 w / m 2 shows a nucleate boiling promoting effect in a low heat flux region.

【0013】これらに対し、試料Aは1.8×105w/m2で温
度差50Kとなるが、膜沸騰化し難く、5×103w/m2では
温度差0.15Kと核沸騰促進効果を示す。
On the other hand, sample A had a temperature difference of 50K at 1.8 × 10 5 w / m 2 , but it was difficult to cause film boiling. At 5 × 10 3 w / m 2 , the temperature difference was 0.15K and the nucleate boiling promoting effect was obtained. Is shown.

【0014】熱伝達率(=熱流束/温度差)で示すと表
1のとおりとなる。
Table 1 shows the heat transfer coefficient (= heat flux / temperature difference).

【0015】[0015]

【表1】 熱流束(w/m2) A B C D 1.8×105 3600w/m2K 膜沸騰 同 左 同 左 (250w/m2K) 1.0×105 6250 16700 28500 10500 5×103 33000 2500 25000 17000 試料Aは高熱流束域でも膜沸騰し難く、1.8×105w/m2
も3600w/m2Kを示すが、B、C、Dは膜沸騰となり、こ
の熱伝達率250w/m2Kに比べて10倍以上の実質性能があ
る。
[Table 1] Heat flux (w / m 2 ) ABCD 1.8 × 10 5 3600 w / m 2 K Film boiling Same left Same as left (250 w / m 2 K) 1.0 × 10 5 6250 16700 28500 10500 5 × 10 3 33000 2500 25000 17000 Sample A is hard to boil even in a high heat flux region and shows 3600 w / m 2 K even at 1.8 × 10 5 w / m 2 , but B, C and D are film boiling and this heat transfer coefficient is 250 w 10 times more effective performance than / m 2 K.

【0016】次に本発明の応用例について述べる。Next, an application example of the present invention will be described.

【0017】超LSIの加工に用いられる低温エッチン
グ装置は、加工面を−130℃程度に冷却するため、例え
ば図3に示すような構成がとられる。図3中、6は加工
面で、その下部に液体窒素槽7を取り付け、加工面6か
ら垂下する伝熱制御棒8を液体窒素に浸し冷却する。液
体窒素は、液体窒素入口9より入り、窒素ガス出口10よ
りガスとなって排出される。伝熱制御は液体窒素の液レ
ベルを調整し、伝熱制御棒8の液浸漬深さを変えること
による冷却制御と加工面6に内蔵したヒーター11による
加熱制御のバランスで行う。この方式での問題点は加工
面が−130 ℃で液体窒素の沸点が−196 ℃であるため、
両者の温度差が66℃と大温度差である。そして、伝熱棒
の表面は沸騰熱伝達である。伝熱制御の応答をよくする
には、加工面部、伝熱制御棒は熱伝導率のよいことが必
要であり、伝熱部の小型化のためには伝熱制御棒の熱伝
達のよいことが必要である。しかし、熱伝導がよいこと
は、伝熱制御棒と液の温度差が大きくなることで、伝熱
制御棒表面で膜沸騰し、結果的に熱伝達が悪くなる。し
たがって、伝熱制御棒の表面には膜沸騰化し難いという
特性が要求される。そこで伝熱制御棒表面に本発明を適
用する。計算によると、伝熱制御棒表面に本発明を適用
することにより、伝熱制御棒の長さを短くすることがで
き、装置全体を小型化することができる。又、伝熱制御
棒の長さが短いこと、並びに膜沸騰し難いために伝熱量
が大きくなることは、温度応答が早く制御し易くなる。
A low-temperature etching apparatus used for processing an VLSI has a structure as shown in FIG. 3, for example, in order to cool a processing surface to about -130.degree. In FIG. 3, reference numeral 6 denotes a processing surface, on which a liquid nitrogen tank 7 is mounted, and a heat transfer control rod 8 hanging from the processing surface 6 is immersed in liquid nitrogen for cooling. Liquid nitrogen enters through a liquid nitrogen inlet 9 and is discharged as a gas through a nitrogen gas outlet 10. The heat transfer control is performed by adjusting the liquid level of the liquid nitrogen and changing the liquid immersion depth of the heat transfer control rod 8 in balance with the cooling control and the heating control by the heater 11 built in the processing surface 6. The problem with this method is that the working surface is -130 ° C and the boiling point of liquid nitrogen is -196 ° C.
The temperature difference between the two is a large temperature difference of 66 ° C. And the surface of the heat transfer rod is boiling heat transfer. In order to improve the response of heat transfer control, it is necessary that the processed surface and the heat transfer control rod have good thermal conductivity, and in order to reduce the size of the heat transfer section, the heat transfer of the heat transfer control rod must be good. is required. However, good heat conduction means that a large temperature difference between the heat transfer control rod and the liquid causes film boiling on the heat transfer control rod surface, resulting in poor heat transfer. Therefore, the surface of the heat transfer control rod is required to have a property that film boiling is difficult. Therefore, the present invention is applied to the heat transfer control rod surface. According to the calculation, by applying the present invention to the surface of the heat transfer control rod, the length of the heat transfer control rod can be shortened, and the entire apparatus can be downsized. In addition, the fact that the length of the heat transfer control rod is short and that the amount of heat transfer is large due to the difficulty of film boiling makes the temperature response quick and easy to control.

【0018】図4は低温エッチング装置への他の応用例
で、液体窒素槽7の内壁面に本発明の高性能伝熱体を形
成したものである。この装置は、図3の装置に比べて加
工し易い特徴がある。
FIG. 4 shows another example of application to a low-temperature etching apparatus, in which a high-performance heat transfer body of the present invention is formed on the inner wall surface of a liquid nitrogen tank 7. This device has a feature that it is easier to process than the device of FIG.

【0019】[0019]

【発明の効果】本発明は伝熱面と流体との温度差が大き
い時にも膜沸騰せず、核沸騰状態が維持でき、温度差の
小さい時にも核沸騰が促進され、結果的に大温度差領域
及び小温度差領域でも高性能な伝熱面を得ることがで
き、低温エッチング装置、LPGのベーパーライザー等
に応用して有用である。
According to the present invention, the film boiling does not occur even when the temperature difference between the heat transfer surface and the fluid is large, the nucleate boiling state can be maintained, and the nucleate boiling is promoted even when the temperature difference is small. A high-performance heat transfer surface can be obtained even in the difference region and the small temperature difference region, and is useful when applied to a low-temperature etching device, a vaporizer of LPG, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of the present invention.

【図2】実施例並びに比較例についての温度差と熱流束
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a temperature difference and a heat flux in Examples and Comparative Examples.

【図3】本発明の応用例の説明図である。FIG. 3 is an explanatory diagram of an application example of the present invention.

【図4】本発明の他の応用例の説明図である。FIG. 4 is an explanatory diagram of another application example of the present invention.

【符号の説明】[Explanation of symbols]

1 伝熱基材 2 微細粒子 3 粗大粒子 4 微細粒子結合層 5 粗大粒子結合層 6 加工面 7 液体窒素槽 8 伝熱制御棒 9 液体窒素入口 10 窒素ガス出口 11 ヒーター 12 高性能伝熱体 DESCRIPTION OF SYMBOLS 1 Heat transfer base material 2 Fine particle 3 Coarse particle 4 Fine particle bonding layer 5 Coarse particle bonding layer 6 Processing surface 7 Liquid nitrogen tank 8 Heat transfer control rod 9 Liquid nitrogen inlet 10 Nitrogen gas outlet 11 Heater 12 High-performance heat transfer element

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝熱基材表面に、熱伝導性材料の微細粒
子結合層と粗大粒子結合層とを順次設けたことを特徴と
する高性能伝熱体。
1. A high-performance heat transfer material comprising a heat transfer base material and a fine particle bond layer and a coarse particle bond layer of a heat conductive material sequentially provided on the surface of the heat transfer base material.
【請求項2】 微細粒子の粒径を130μm以下、微細粒
子結合層の層厚を200〜300μmとし、粗大粒子の粒径を
400μm以上、粗大粒子結合層の層厚を粗大粒子の粒径
の2倍以下としてなる請求項1記載の高性能伝熱体。
2. The fine particles have a particle size of 130 μm or less, the fine particle bonding layer has a thickness of 200 to 300 μm, and the coarse particles have a particle size of
2. The high-performance heat transfer body according to claim 1, wherein the thickness of the coarse particle bonding layer is 400 μm or more and twice or less the particle size of the coarse particles.
JP14746391A 1991-06-19 1991-06-19 High performance heat transfer Expired - Lifetime JP2636980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746391A JP2636980B2 (en) 1991-06-19 1991-06-19 High performance heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746391A JP2636980B2 (en) 1991-06-19 1991-06-19 High performance heat transfer

Publications (2)

Publication Number Publication Date
JPH04371800A JPH04371800A (en) 1992-12-24
JP2636980B2 true JP2636980B2 (en) 1997-08-06

Family

ID=15430945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746391A Expired - Lifetime JP2636980B2 (en) 1991-06-19 1991-06-19 High performance heat transfer

Country Status (1)

Country Link
JP (1) JP2636980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900505A (en) * 2010-08-19 2010-12-01 燿佳科技股份有限公司 Heat pipe and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018350A1 (en) * 1993-12-27 1995-07-06 Hitachi Chemical Company, Ltd. Heat transfer material
WO2001013057A1 (en) * 1999-08-12 2001-02-22 Nkk Corporation Heat exchange tube and heat recovery method using it
JP2011226738A (en) * 2010-04-22 2011-11-10 Toshiba Corp Heat transfer medium and method for manufacturing the same
US10309733B2 (en) * 2012-05-24 2019-06-04 Purdue Research Foundation Apparatus and method for increasing boiling heat transfer therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900505A (en) * 2010-08-19 2010-12-01 燿佳科技股份有限公司 Heat pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04371800A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
Haack et al. Novel lightweight metal foam heat exchangers
Chen et al. Thermal conductivities of evaporated gold films on silicon and glass
Semenic et al. Experimental study of biporous wicks for high heat flux applications
Colgan et al. High performance and subambient silicon microchannel cooling
JPH0271540A (en) Supporting table for temperature adjustment of small substance and temperature adjusting method by this
KR20040088554A (en) Capillary evaporator
JP2636980B2 (en) High performance heat transfer
US20020135980A1 (en) High heat flux electronic cooling apparatus, devices and systems incorporating same
JP2009506579A (en) Method and apparatus for evaporative cooling inside a microfluidic system
Jun et al. Effect of subcooling on pool boiling of water from sintered copper microporous coating at different orientations
JP6852352B2 (en) Loop heat pipes and electronics
JP2008182204A (en) Method and device for heating substrate
JPH06307791A (en) High performance heat transfer
TWI445048B (en) Method and apparatus for heating a substrate
Schmidt Thermal boundary (Kapitza) resistance at niobium-epoxy interfaces in the superconducting and normal states
El-Genk et al. Composite spreader for cooling computer chip with non-uniform heat dissipation
El-Genk et al. Advanced spreaders for enhanced cooling of high power chips
Nitsche et al. Heat transfer between sapphire and lead
Semenic et al. Use of liquid film evaporation in biporous media to achieve high heat flux over large areas
Muzychka et al. Application of thermal spreading resistance in compound and orthotropic systems
JP2001297977A (en) Quick heating and cooling plate
JPH03148879A (en) Thermoelement
JPH0470559B2 (en)
US6359325B1 (en) Method of forming nano-scale structures from polycrystalline materials and nano-scale structures formed thereby
Matsumoto et al. Proposal of package structure requirements for effective cooling from the bottom side of chips (from the substrate side), aiming for a three-dimensional (3D) chip stack