WO2001008906A1 - Pneumatique - Google Patents

Pneumatique Download PDF

Info

Publication number
WO2001008906A1
WO2001008906A1 PCT/JP2000/005052 JP0005052W WO0108906A1 WO 2001008906 A1 WO2001008906 A1 WO 2001008906A1 JP 0005052 W JP0005052 W JP 0005052W WO 0108906 A1 WO0108906 A1 WO 0108906A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
sub
pneumatic tire
tire according
main
Prior art date
Application number
PCT/JP2000/005052
Other languages
English (en)
French (fr)
Inventor
Jun Matsuzaki
Makoto Ishiyama
Takayuki Fukunaga
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/806,414 priority Critical patent/US6796347B1/en
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to DE60038946T priority patent/DE60038946D1/de
Priority to JP2001513605A priority patent/JP4404510B2/ja
Priority to EP00948272A priority patent/EP1125769B1/en
Publication of WO2001008906A1 publication Critical patent/WO2001008906A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1254Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern with closed sipe, i.e. not extending to a groove
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S152/00Resilient tires and wheels
    • Y10S152/03Slits in threads

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire having a plurality of substantially square land portions sandwiched between two sets of main grooves having different angles with respect to the tire equatorial plane on a tread.
  • a sub-groove such as a sipe When a sub-groove such as a sipe is provided on the land, the edge component is increased and the jet performance is improved. However, the rigidity of the land is reduced and the dry performance may be reduced.
  • a pair of main grooves 100 extending in the circumferential direction (arrow A direction and arrow B direction) and a pair of main grooves 102 intersecting the main groove 100 are formed.
  • a sub-groove 106 is formed parallel to the main groove 102 in the land portion 104 of a substantially parallelogram divided by, and the land portion 104 is divided into two in the tire circumferential direction, There is a problem that the rigidity of the land portion 104 in the tire circumferential direction is reduced.
  • An object of the present invention is to provide a pneumatic tire capable of improving wet performance while maintaining rigidity of a land portion in consideration of the above fact. Means to solve the problem
  • the invention according to claim 1 is a pneumatic tire in which a tread has a plurality of substantially rectangular land portions sandwiched between two sets of main grooves having different angles with respect to the tire equatorial plane, and a sub-groove is disposed in the land portion.
  • the foreland portion has diagonal lines of different lengths, and the sub-groove is arranged at the center of the land portion and substantially along the shorter diagonal line.
  • the invention according to claim 2 is the pneumatic tire according to claim 1, wherein the sub-groove does not open to the main groove.
  • the invention according to claim 3 is the pneumatic tire according to claim 2, wherein a length of the sub groove is 30% or more and less than 70% of a length of the shorter diagonal line.
  • the invention according to claim 4 is the pneumatic tire according to any one of claims 1 to 3, wherein an angle formed by the shorter diagonal line and the sub groove is within ⁇ 20 °. It is characterized by having.
  • the invention according to claim 5 is the pneumatic tire according to any one of claims 1 to 4, wherein the sub-groove is disposed substantially on the shorter diagonal line.
  • the invention according to claim 6 is the pneumatic tire according to any one of claims 1 to 5, wherein the depth of the auxiliary groove is 30% or more of the depth of the main groove. It is characterized by.
  • the invention according to claim 7 is the pneumatic tire according to any one of claims 1 to 6, wherein an end groove opening to the main groove is connected to an end of the sub groove. It is characterized by having.
  • the invention according to claim 8 is the pneumatic tire according to claim 7, wherein the end groove is open to the main groove closest to an end of the sub groove. .
  • the invention according to claim 9 is the pneumatic tire according to claim 8, wherein an angle between the end groove and the sub groove is obtuse.
  • the invention according to claim 10 is the pneumatic tire according to any one of claims 7 to 9, wherein the end groove and the main groove in the vicinity where the end groove is not open. And the angle between them is within 30 °.
  • the invention according to claim 11 is the pneumatic tire according to any one of claims 7 to 10, wherein the end grooves are provided at both ends of the sub groove.
  • the groove is characterized by opening in one of the main grooves facing each other, and the other sub-groove is opening in the other main groove of the main grooves facing each other.
  • the invention according to claim 12 is the pneumatic tire according to any one of claims 7 to 11, wherein the end groove is not deeper than the sub groove.
  • the invention according to claim 13 is the pneumatic tire according to claim 12, wherein the depth of the end groove is 10% or more and 30% or less of the depth of the main groove. It is a feature.
  • the invention according to claim 14 is the pneumatic tire according to any one of claims 1 to 13, wherein a shortest distance between an end of the sub-groove and the main groove closest to the end is provided. The distance is at least 15% of the length of the shorter diagonal line.
  • the invention according to claim 15 is characterized in that the tread includes a plurality of substantially quadrangular land portions sandwiched between two sets of main grooves having different angles with respect to the tire equatorial plane, and a pneumatic device in which sub-grooves are arranged in the land portions.
  • the land portion has a sub-groove penetrating from one side to any other side, and the sub-groove is inclined in the same direction as a shorter diagonal line of the land portion, and the land is A central sub-groove disposed in the center of the portion, an end sub-groove extending in a direction different from the central sub-groove and opening to the nearest main groove, and the central sub-groove and the end sub-groove being smoothed.
  • a connecting portion that connects to the connecting portion.
  • the connecting portion has an arc shape having a radius of curvature of 3 or more and 10 or less.
  • the invention according to claim 17 is a pneumatic pump according to claim 15 or claim 16.
  • the length of the central sub-groove portion is less than 70% of the length of the shorter diagonal line.
  • the invention according to claim 18 is the pneumatic tire according to any one of claims 15 to 17, wherein an angle between the shorter diagonal line and the central sub-groove is ⁇ It is characterized by being within 20 °.
  • the invention according to claim 19 is the pneumatic tire according to any one of claims 15 to 18, wherein the central sub-groove portion is disposed substantially on the shorter diagonal line. It is characterized by having.
  • the invention according to claim 20 is the pneumatic tire according to any one of claims 15 to 20, wherein the depth of the central sub groove portion is 30% of the depth of the main groove. It is characterized by the above.
  • the invention according to claim 21 is the pneumatic retirer according to any one of claims 15 to 20, wherein the end portion sub-groove portion and the vicinity where the end portion sub-groove portion is not open The angle between the main groove and the main groove is within 30 °.
  • the invention according to claim 22 is the pneumatic tire according to any one of claims 15 to 21, wherein the end sub-groove is not deeper than the central sub-groove.
  • the invention according to claim 23 is the pneumatic tire according to claim 22, wherein the depth of the end sub-groove portion is 10% or more and less than 30% of the depth of the main groove. It is characterized by.
  • the invention according to claim 24 is the pneumatic tire according to any one of claims 15 to 23, wherein the sub-groove is perpendicular to the longitudinal direction at each point in the longitudinal direction.
  • chamfered portions are provided at both corners of the opening to the tread surface of the sub-groove.
  • the invention according to claim 25 is the pneumatic tire according to claim 24, wherein in the cross-section perpendicular to the length direction of the sub-groove, the cross-sectional shape of the chamfer is a gentle convex shape. It is characterized by.
  • the invention according to claim 26 is the pneumatic pump according to claim 24 or claim 25.
  • the maximum value of the depth H of the chamfered portion is not less than 5% and not more than 50% of the groove depth D of the sub-groove.
  • the invention according to claim 27 is the pneumatic tire according to any one of claims 24 to 26, wherein a cross section perpendicular to a length direction of the sub groove is parallel to a tread surface.
  • the maximum value of the length L of the chamfered portion measured at least 5% or more and 50% or less of the maximum width W of the land portion where the sub-groove is formed in the tire axial direction.
  • the invention according to claim 28 is the pneumatic tire according to any one of claims 24 to 27, wherein a change in the contact pressure in the land portion under the action of the lateral force is reduced.
  • the depth H of the chamfer at each point in the length direction of the sub-groove is gradually changed.
  • the invention according to claim 29 is the pneumatic tire according to claim 28, wherein the depth H of the chamfered portion is smaller than other portions at the land end and the land center of the sub-groove. It is characterized by being large.
  • the invention's effect is the pneumatic tire according to claim 28, wherein the depth H of the chamfered portion is smaller than other portions at the land end and the land center of the sub-groove. It is characterized by being large.
  • the substantially rectangular land portions having diagonal lines of different lengths and having different angles with respect to the tire equatorial plane are sandwiched between two sets of main grooves, specifically, a parallelogram land portion and a diamond land portion. Etc. can be raised.
  • the edge component is increased and the wet performance is improved.
  • the minor ditch was arranged substantially along the shorter diagonal of the land, for example, a parallelogram-shaped land or a diamond-shaped land was divided into two triangles close to an equilateral triangle. Therefore, the decrease in rigidity of the land part due to the provision of the sub-groove can be minimized.
  • the pneumatic tire according to claim 1 is capable of ensuring dry performance. ⁇ Etch performance can be improved.
  • the length of the sub-groove is 30% or more and less than 70% of the length of the shorter diagonal.
  • the jet performance cannot be obtained even if the sub-groove is provided.
  • the pneumatic tire according to claim 4 has an excellent effect that a reduction in rigidity of the land portion due to the provision of the sub-groove in the land portion can be suppressed, and dry performance can be reliably ensured.
  • the angle between the shorter diagonal line and the sub-groove is preferably set within ⁇ 10 °, and more preferably within ⁇ 5 °.
  • the land portion By arranging the minor groove substantially on the shorter diagonal, the land portion can be divided into two triangles of substantially the same size, and the minor groove is angled with respect to the shorter diagonal. In this case, the rigidity of the land portion can be minimized as compared with the case of arranging the land portions. For this reason, it has the excellent effect that dry performance can be more reliably ensured.
  • Sub-groove including so-called sipes formed in the land
  • the power is closed (when not connected to any main groove)
  • the land enters the puddle on the wet road surface
  • Water trapped between the land surface and the road immediately flows from the land surface into the subditch.
  • the end groove that opens to the main groove is connected to the end of the sub groove, the water sucked into the sub groove can be discharged to the main groove via the end groove.
  • the water between the and is easily discharged, and the wet performance can be improved.
  • the width of the end groove is wider than the width of the sub groove from the viewpoint of drainage to the main groove.
  • the pneumatic tire according to claim 7 has an excellent effect that water between the land surface and the road surface is easily discharged, and the jet performance can be improved as compared with the case where only the sub-groove is used. Having.
  • the end groove is opened to the main groove closest to the end of the sub groove, the length of the end groove can be shortened, and the water in the sub groove can be efficiently discharged to the main groove. Water can be drained into the ditch.
  • the pneumatic tire according to claim 8 has an excellent effect that the wet performance can be further improved.
  • the angle formed between the end groove and the sub groove is obtuse.
  • the pneumatic tire according to claim 9 has an excellent effect that the wet performance can be further improved.
  • the angle formed between the end groove and the main groove in the vicinity where the end groove is not open is set within 30 °, so that the main groove opening of the end groove is set. A decrease in rigidity in the vicinity can be suppressed, and a turn near the opening of the main groove after traveling can be suppressed.
  • one sub-groove is opened in one of the main grooves facing each other, and the other sub-groove is opened in the other main groove of the main grooves facing each other.
  • the water sucked into the sub-groove can be efficiently discharged to both main grooves via the end groove, and the water between the land tread and the road surface is discharged well.
  • the wet performance can be further improved.
  • the end groove is formed not to be deeper than the sub groove, a locally reduced rigidity portion of the outer peripheral edge portion of the land portion is suppressed. More preferably, by forming the end grooves shallower than the sub-grooves, it is possible to secure the entire outer periphery ⁇ of the land portion, to be resistant to bending deformation of the land portion, and to secure high rigidity. it can.
  • the depth of the end groove is set to be 10% or more and 30% or less of the depth of the main groove, both drainage at the initial wear and rigidity of the land are compatible. be able to.
  • the depth of the end groove is less than 10% of the depth of the main groove, drainage of the end groove at the beginning of wear cannot be obtained.
  • the tread is roughened and irregularities are formed on the tread, and a drainage effect is obtained by the recess formed in the tread.
  • the depth of the end groove exceeds 30% of the depth of the main groove, the rigidity of the land decreases, and bending deformation tends to occur, and dry performance decreases.
  • the depth of the end groove is 1 mm or more and 4 mm or less.
  • the depth of the end groove is set at 1 or more and 4 or less, it is possible to achieve both drainage at the beginning of wear and rigidity of the land.
  • the depth of the end groove is less than 1 band, drainage of the end groove in the early stage of wear cannot be obtained.
  • the tread surface becomes rough and irregularities are formed on the tread surface, and the drainage effect can be obtained by the concave portion formed on the land tread surface.
  • the minor groove is not open in the main groove, set the shortest distance between the end of the minor groove and the main groove closest to this end to at least 15% of the length of the shorter diagonal, The rigidity of the land can be secured.
  • substantially rectangular land portion sandwiched between two sets of main grooves having different angles with respect to the tire equatorial plane specifically, a parallelogram land portion, a rhombic land portion, and the like are raised.
  • the sub-groove opening to the main groove is arranged in such a substantially rectangular land, the edge component that cuts the water film interposed between the road surface and the land tread increases, and the sub-groove becomes Since the water existing between the road surface and the tread of the land part is absorbed and drained to the main ditch, the jet performance is improved.
  • the end sub-groove connecting to the central sub-groove located in the center of the land is open to the nearest main groove, so the water interposed between the center of the land and the road surface has the shortest distance. Is discharged into the main groove. Moreover, since the central sub-groove and the end sub-groove are smoothly connected by the connecting portion, the water absorbed in the central sub-groove smoothly flows through the connecting portion and is discharged to the main groove.
  • the central sub-groove and the end sub-groove are smoothly connected by the connecting portion, it is possible to suppress non-uniformity of stress caused by a joint portion between the central sub-groove and the end sub-groove, and to provide a heel. 'The occurrence of abrasion can be suppressed.
  • the central sub-groove is arranged in the center of the land by being inclined in the same direction as the shorter diagonal, so that the land is close to a regular triangle.
  • the land is not weakened in a unique direction. Therefore, the pneumatic tire according to claim 15 has an excellent effect that the dry performance can be ensured and the jetting performance can be improved.
  • the radius of curvature of the connecting portion is less than 3 mm, it is not possible to eliminate stress concentration near the connecting portion, and cracks are likely to occur. In addition, uneven stress occurs near the joint, and heel-and-toe wear is likely to occur. In addition, the flow path resistance increases at the connection, and the drainage performance decreases.
  • the central sub-groove becomes less, and the central sub-groove becomes the original function (the land part is divided into two triangles close to an equilateral triangle, and the land part becomes Prevent weakening in a unique direction.)
  • the connecting portion be formed in an arc shape with a radius of curvature (measured at the groove center line) of 3 or more and 10 or less.
  • the pneumatic tire according to claim 16 suppresses the occurrence of cracks and heel-and-toe wear, prevents the land from weakening in a specific direction, and furthermore, smoothly absorbs the water that has been absorbed. It has an excellent effect of being able to drain into the main ditch. Next, the effect of the pneumatic tire according to claim 17 will be described.
  • the pneumatic tire according to claim 17 has an excellent effect that both dry performance and wet performance can be achieved.
  • the angle between the shorter diagonal line and the central sub-groove is preferably set within ⁇ 10 °, more preferably ⁇ 5 °. .
  • the pneumatic tire according to claim 18 has an excellent effect that a reduction in rigidity of the land portion due to the provision of the sub-groove in the land portion can be suppressed, and dry performance can be reliably ensured.
  • the land By arranging the central sub-groove on the substantially shorter diagonal, the land can be divided into two triangles of substantially the same size, and the central sub-groove is positioned with respect to the shorter diagonal. As compared with the case of arranging at an angle, the decrease in rigidity of the land portion can be minimized.
  • the pneumatic tire according to claim 19 has an excellent effect that dry performance can be more reliably ensured.
  • the pneumatic tire according to claim 20 has an excellent effect that water absorption performance can be ensured until the middle stage of wear.
  • the angle formed between the end sub-groove and the main groove near which the end sub-groove is not opened is set within 30 °, so that the end sub-groove is formed. It is possible to suppress a decrease in rigidity in the vicinity of the main groove opening of the portion, and to suppress the curl near the main groove opening after traveling.
  • the end sub-groove is formed not deeper than the center sub-groove, a locally reduced rigidity portion of the outer peripheral edge portion of the land portion is suppressed. More preferably, by forming the end sub-groove portion shallower than the sub-groove, the outer peripheral edge portion of the land portion can be secured as a whole, and it is resistant to bending deformation and high rigidity can be secured.
  • the depth of the end sub-groove is 10% or more of the depth of the main groove.
  • the groove depth of the end portion sub-groove is 1 mm or more and 4 mm or less.
  • the depth of the sub-groove at the end is set to one thigh or more and four or less, the drainage at the beginning of wear and the rigidity of the land can be compatible.
  • each point in the length direction of the minor groove that is, the opening to the tread surface of the minor groove over the entire length of the minor groove Since the chamfers are provided at both corners, the surface pressure at the edge of the sub-groove when grounded can be reduced. In applications where high lateral force and front / rear force are frequently applied, the effect of reducing the surface pressure is great, and uneven wear, wear performance and exercise performance can be improved.
  • the cross-sectional shape of the chamfered portion By making the cross-sectional shape of the chamfered portion a gentle convex shape, for example, a round chamfer, a sudden change in the ground pressure can be suppressed.
  • the maximum value of the depth H of the chamfered portion of the sub-groove is less than 5% of the groove depth D of the sub-groove, the effect of reducing the change in the surface pressure under the action of the lateral force and the longitudinal force is reduced.
  • the contact area decreases.
  • the maximum value of the depth H of the chamfered portion is set to 5% or more and 50% or less of the groove depth D of the sub-groove.
  • the pneumatic tire according to claim 26 has an excellent effect that the surface pressure at the edge of the sub-groove can be optimally reduced.
  • the maximum value of the length L of the chamfered portion is set to 5% or more and 50% or less of the maximum width W of the land portion in the tire axial direction.
  • the pneumatic tire according to claim 27 has an excellent effect that the surface pressure at the edge of the sub-groove can be optimally reduced.
  • the contact pressure in the land when the lateral force acts is distributed depending on the shape of the land and the path of the sub-groove.
  • the land end and the center of the sub-groove have a particularly large surface pressure unless a chamfer is provided, and the depth H of the chamfer here is made larger than the other parts. It is effective in making the surface pressure uniform.
  • FIG. 1 is a development view of a tread of the pneumatic tire according to the first embodiment of the present invention.
  • Figure 2 is an enlarged view of the land.
  • Figure 3 is an enlarged view of the land.
  • FIG. 4 is a development view of a tread of the pneumatic tire according to the second embodiment of the present invention.
  • FIG. 5 is a development view of a tread of a pneumatic tire according to a third embodiment of the present invention.
  • Figure 6 is an enlarged view of the land.
  • FIG. 7 is a development view of a tread of a pneumatic tire according to a fourth embodiment of the present invention.
  • Figure 8 is an enlarged view of the land.
  • FIG. 9 is a developed view of the tread of the pneumatic tire according to the fifth embodiment of the present invention.
  • FIG. 1OA is a plan view of a land portion of the pneumatic tire according to the sixth embodiment of the present invention
  • FIG. 10B is a cross-sectional view of the land portion shown in FIG. is there.
  • FIG. 11 is a development view of a tread of a pneumatic tire for a front wheel according to Test Example 1.
  • FIG. 12 is a development view of a tread of a pneumatic tire for a rear wheel according to Test Example 1.
  • FIGS. 13A and 13B are plan views of a conventional land portion provided with a sub-groove. Embodiment
  • the tread 12 of the pneumatic tire 10 of the present embodiment has a tire circumferential direction (arrow A direction and arrow B direction) on the right side (arrow R direction side) of the tire equatorial plane CL.
  • the main groove 14, the main groove 16 and the main groove 18 extending along are formed, and are inclined at an angle of 30 ° or less with respect to the tire circumferential direction on the left side (arrow L direction side) of the tire equatorial plane CL.
  • a plurality of main grooves 20 are formed.
  • the angle 1 of the main groove 20 in the present embodiment with respect to the tire circumferential direction (measured on the acute angle side.
  • the angle formed with the tangent of the groove center line) is the tire equator. It is set to be larger on the shoulder side on the left side than on the CL side of the tire, and at the end on the CL side of the tire equatorial plane is approximately 5 ° to the tire circumferential direction, and at the end on the shoulder side to the tire circumferential direction. It is inclined at about 28 °.
  • the tread 12 has a plurality of main grooves 14, 16 and 18 on the right side of the tire equatorial plane CL, and a plurality of main grooves 22 intersecting the main grooves 18.
  • a plurality of main grooves 24 intersecting with the main groove 20 are formed.
  • the angle 0 2 of the main groove 22 of the present embodiment with respect to the tire circumferential direction (measured on the acute angle side with respect to the groove center line.
  • the groove center line is a curve
  • the angle between the groove center line and the tangent to the groove center line is
  • the tire equatorial plane is set to be larger on the right shoulder side than the CL side, and at the end on the tire equatorial plane CL side is approximately 60 ° with respect to the tire circumferential direction, at the end on the shoulder side. It is inclined at approximately 78 ° with respect to the tire circumferential direction.
  • the angle 0 3 of the main groove 24 of the present embodiment with respect to the tire circumferential direction (measured on the acute angle side with respect to the groove center line.
  • the groove center line is a curve
  • the angle formed by the tangent to the groove center line. Is set to be larger on the shoulder side on the left side than the tire equatorial plane CL side, and at the end on the tire equatorial plane CL side is approximately 60 ° with respect to the tire circumferential direction, At the end on the shoulder side, it is inclined at approximately 88 ° with respect to the tire circumferential direction.
  • the depths of 22 and main groove 24 are all the same.
  • the tread 12 has a plurality of quadrangular land portions 26 formed by the main groove 14, the main groove 16, the main groove 18, the main groove 20, the main groove 22, and the main groove 24.
  • Each land 26 is a square with two diagonal lengths different from each other.
  • most land portions 26 have sub-grooves 28 formed therein.
  • the minor groove 28 is preferably formed at the center of the land 26 so as to substantially extend along the shorter diagonal line 30 S shown by a two-dot chain line, and the shorter diagonal line is formed.
  • the angle 04 between the line 30S and the sub groove 28 is preferably within ⁇ 20 °.
  • the angle 04 between the shorter diagonal line 30S and the sub groove 28 is 0 °, that is, the sub groove 28 is formed on the shorter diagonal line 30S.
  • the depth of the sub-groove 28 is preferably 30% or more of the depth of the main groove 14, the main groove 16, the main groove 18, the main groove 20, the main groove 22, and the main groove 24.
  • the sub-groove 28 does not open in any of the main grooves (main groove 14, main groove 16, main groove 18, main groove 20, main groove 22, and main groove 24). As shown in FIG. 3, it is preferable to arrange the minor groove 28 at the center of the short diagonal line 30S, and set the length L1 of the minor groove 28 to 30% or more and less than 70% of the length L0 of the short diagonal line 3OS. Better.
  • the shortest distance Lmin between the end of the sub-groove 28 and the closest main groove be set to 15% or more and less than 35% of the length L0 of the shorter diagonal 30S.
  • the main groove 14, the main groove 16, the main groove 18, the main groove 20, the main groove 22, and the main groove 24 have a depth of 6 thighs
  • the sub groove 28 has a depth of 4 mm
  • the sub groove is set to 47% of the length L0 of the short diagonal 3 OS.
  • the shortest distance Lmin between the end of the sub-groove 28 and the closest main groove is set to 25% of the length L0 of the short diagonal 30S.
  • the groove width w of the sub-groove 28 is preferably 2 mm or less in order to suppress a decrease in rigidity of the land portion 26 (it may be substantially zero. That is, the sub-groove 28 may be a so-called sipe).
  • the pneumatic tire 10 of the present embodiment has a directional pattern, a tire size of 2 15/45 R 17, and is used for the right front wheel. To rotate.
  • the edge component of the sub-groove 28 increases and the rewetting performance is improved by the water absorbing action of the sub-groove 28.
  • the land 26 Since the sub-groove 28 is located on the shorter diagonal 30 S of the land 26, the land 26 is divided into two triangles close to an equilateral triangle, and the sub-groove 28 is provided. The decrease in rigidity of the land 26 can be minimized.
  • Depth of sub groove 28 is about 6 7% of the depth of main groove 14, main groove 16, main groove 18, main groove 20, main groove 22 and main groove 24 (sub groove depth 4 marauders, main groove depth 6 marauders), so water absorption performance can be ensured until the middle stage of wear.
  • end grooves 32 are connected to both ends of the sub groove 28.
  • the end groove 32 is a main groove closest to the end of the sub groove 28, and in this embodiment, a main groove located in the tire width direction (main groove 14, main groove 16, main groove 18, main groove 18). 20) and one end of the shoulder at the shortest distance, and is provided in parallel with the adjacent main groove 22 or main groove 24.
  • the depth of the end groove 32 is set shallower than that of the sub groove 28.
  • the depth of the end groove 3 2 of the present embodiment is 2 bandages, and the main groove 1, the main groove 16, the main groove 1
  • the depth of the main groove 22 and the main groove 24 is set at about 33% of the 6 thighs.
  • the pneumatic tire 10 of the present embodiment has a directional pattern, a tire size of 2 15/45 R 17, and is used for the right front wheel. Rotate in the direction.
  • the angle formed between the end groove 32 and the sub-groove 28 is obtuse, the flow path resistance can be suppressed, and the water in the sub-groove 28 can be efficiently drained to the main groove.
  • the end groove 32 is provided substantially in parallel with the main groove near the opening, the rigidity of the land portion 26 due to the provision of the end groove 32 can be suppressed most.
  • the end groove 32 is formed shallower than the sub groove 28, and the depth of the end groove 32 is set to approximately 33% of the depth of the main groove. The overall rigidity can be ensured, the rigidity of the land 26 is ensured, and dry performance is ensured.
  • the tread is roughened and irregularities are formed on the tread, and a drainage effect can be obtained by the recess formed on the tread surface.
  • the depth of the end groove 32 exceeds 30% of the depth of the main groove, the rigidity of the land portion 26 is reduced, so that the land portion 26 is easily bent and deformed, and the dry performance is reduced.
  • both of the two end grooves 32 are opened in the main groove in the tire axial direction, but one or both of them may be opened in the main groove in the tire circumferential direction.
  • the end grooves 32 are arranged point-symmetrically as in this embodiment. It is preferable to set the areas of the two continents to be approximately the same.
  • the tread 12 of the pneumatic tire 10 of the present embodiment has a main groove 34 extending along the tire circumferential direction on the right side of the tire equatorial plane CL.
  • main groove 34 extending along the tire circumferential direction on the right side of the tire equatorial plane CL.
  • main grooves 36 inclined at an angle of 0 5 (about 25 ° in this embodiment) with respect to the tire circumferential direction.
  • the tread 12 has a plurality of main grooves 42 intersecting with the main grooves 34, 36, 38 and 40.
  • the tread 12 has a plurality of triangular land portions 4 4 and a plurality of quadrangular land portions 4 6 formed by the main grooves 42 intersecting the main grooves 34, 36, 38 and 40. It is formed.
  • Each land portion 46 of the rectangle is a rectangle with two diagonal lengths different from each other. Except for a part of the plurality of quadrangular land portions 46, most of the land portions 46 have sub-grooves 48, similarly to the sub-groove 28 and the end groove 32 of the second embodiment. And an end groove 50 are formed.
  • the definition of the position, dimensions, and the like of the sub-groove 48 and the end groove 50 are the same as those of the sub-groove 28 and the end groove 32 of the first and second embodiments. Therefore, the pneumatic tire 10 of the present embodiment also has the same operation and effects as those of the first and second embodiments.
  • the pneumatic tire 10 of the present embodiment shown in FIG. 5 also has a directional pattern similarly to FIG. 4, the tire size is 2 1 5 4 5 R 17, and the tire is used for the right front wheel. Sometimes it rotates in the direction of arrow B.
  • a total of five different tires were prepared, one with no sub-grooves formed on the land and four with different sub-groove directions, and the jet performance and dry performance were compared.
  • test tire will be described below.
  • Each of the tires of Test Example 1 to Test Example 5 has the tread pattern shown in FIG.
  • Tire of Test Example 1 A tire with no sub-groove formed on the land (see Table 2 below).
  • Tire of Test Example 2 A tire having a minor groove formed parallel to the major groove in the tire circumferential direction (see Table 2 below).
  • Tire of Test Example 3 A tire in which a sub-groove is formed on the shorter diagonal line (the tire of the first embodiment.)
  • Tire of Test Example 4 A tire having a sub-groove formed on the longer diagonal line (see Table 2 below).
  • Tire of Test Example 5 A tire having a sub-groove formed in parallel with the main groove in the tire axial direction (see Table 2 below).
  • the depth of the main groove is 6 mm
  • the length of the sub-groove is 47% of the shorter diagonal length. (The shortest distance between the end of the sub-groove and the closest main groove is short. The diagonal length is 21%), and the depth of the minor groove is 4 mm.
  • ⁇ Etto performance An actual vehicle equipped with test tires was run on a test course ( ⁇ et road surface). The evaluation is the test driver's feeling evaluation. Dry performance: An actual vehicle with test tires was run on a test course (dry road). The evaluation is the test driver's feeling evaluation.
  • the evaluation is as shown in Table 2 below. The evaluation was based on the criteria described in Table 1 below.
  • Test example Test example 2 Test example 3 Test example 4 Test example 5
  • the tire of Test Example 3 to which the present invention is applied has the same dry performance as that of the tire of Test Example 1 in which the sub-groove is not formed, and has the best jet performance.
  • a total of 5 types 1 type of tire with no sub-grooves and end grooves on the land, 1 type of tire with only sub-grooves, and 3 types of tires with sub-grooves and different end grooves
  • Different tires were prepared and the performance of dry and dry performance was compared. The test tire will be described below.
  • Test Example 1 The tires of Test Example 1 to Test Example 5 all have the tread pattern shown in FIG.
  • Tire of Test Example 1 A tire with no sub-groove formed on the land (see Table 3 below).
  • Tire of Test Example 2 A tire having four thigh subgrooves formed parallel to the main groove in the tire circumferential direction (see Table 3 below).
  • Tire of Test Example 3 A tire in which four subgrooves with a depth of 4 were formed at both ends of a subgroove with a depth of 4 (see Table 3 below).
  • Tire of Test Example 4 A tire in which two end grooves with a depth of 2 are formed at both ends of the secondary groove with a depth of 4 (see Table 3 below).
  • Tire of Test Example 5 A tire having two thigh end grooves formed at both ends of the sub-groove having a depth of 2 (see Table 3 below).
  • the depth of the main groove is 6 mm
  • the length of the sub groove is 47% of the length of the shorter diagonal line.
  • Test Example 1 The test method and evaluation criteria for the jet performance and dry performance are the same as in Test Example 1.
  • Each of the tires of Test Example 1 to Test Example 3 has a tread pattern shown in FIG.
  • Tire of Test Example 1 A tire with no sub-groove formed on the land (see Table 4 below).
  • Test example 2 tire A tire having an end groove parallel to the main groove located in the tire circumferential direction (see Table 4 below).
  • Tire of Test Example 3 A tire having an end groove parallel to the main groove located in the tire axial direction (see Table 4 below).
  • the depth of the main groove is 6 mm
  • the length of the sub groove is 47% of the length of the shorter diagonal
  • the depth of the end groove is 2 mm.
  • Test Example 2 The test method and evaluation criteria for the jet performance and dry performance are the same as in Test Example 2.
  • the tire with the end groove parallel to the main groove adjacent in the tire circumferential direction has better jet performance and the dry performance than the tire with the end groove parallel to the main groove adjacent in the tire axial direction. It can be seen that both are also compatible.
  • test tire will be described below.
  • Each of the tires of Test Example 1 to Test Example 5 has the tread pattern shown in Fig. 1, but the sub-groove and the end grooves are formed only in the land portions in the second row from the right. It is.
  • Tire of Test Example 1 Tire whose end groove has an angle of ⁇ 30 ° with respect to the main groove adjacent in the tire circumferential direction (see Table 5 below).
  • one (minus) of the angle means that the end groove is inclined such that the opening of the end groove approaches the main groove adjacent in the tire circumferential direction.
  • Tire of Test Example 2 Tire with an end groove angle of 15 ° (see Table 5 below).
  • Tire of Test Example 3 Tire with an end groove angle of 0 ° (see Table 5 below).
  • Tire of Test Example 4 Tire with an end groove angle of + 15 ° (see Table 5 below).
  • Tire of Test Example 5 Tire with an end groove angle of + 30 ° (see Table 5 below).
  • the dimensions of the land where the sub-groove and the end groove are formed are as shown in FIG. In each tire, the depth of the main groove is 6 mm, the length of the sub groove is 50% of the length of the shorter diagonal, and the depth of the sub groove is 2 mm.
  • test tires were mounted on an actual vehicle, and the test course (one lap of 60 seconds) was made 15 laps.
  • the angle of the end groove is preferably within ⁇ 15 °.
  • test tire will be described below.
  • Test Example 1 The tires of Test Example 1 to Test Example 5 all have the tread pattern shown in FIG.
  • the tire of Test Example 1 is a tire having no sub-groove formed on the land portion, and the tires of Test Examples 2 to 5 each have a sub-groove formed on each land portion. These tires differ (see Table 6 below).
  • the depth of the main ditch is 6 and the depth of the sub-ditch is 4.
  • the length of the sub-groove described in the table is indicated by an index, with the length of the sub-groove crossing the land along the shorter diagonal being 100.
  • Test A The test method is the same as Test A.
  • Test Example 1 Test Example 2 Test Example 3 Test Example 4 Test Example 5 Test Example 6
  • the tread 12 of the pneumatic tire 10 of the present embodiment includes a tire circumferential direction (arrow A direction and arrow B direction) on the right side (arrow R direction side) of the tire equatorial plane CL.
  • a main groove 14, a main groove 16 and a main groove 18 extending along the tire are formed on the left side of the tire equatorial plane CL (on the side of the arrow L) at an angle of 30 ° or less with respect to the tire circumferential direction.
  • a plurality of inclined main grooves 20 are formed.
  • the angle 01 of the main groove 20 in the present embodiment with respect to the tire circumferential direction (measured on the acute angle side.
  • the groove center line is a curve, the angle formed with the tangent of the groove center line) is the tire equatorial plane. It is set to be larger on the shoulder side on the left side than the CL side, the tire equatorial plane At the end on the CL side, approximately 5 ° with respect to the tire circumferential direction, and at the end on the shoulder side, approximately with respect to the tire circumferential direction Inclined at 28 °.
  • the tread 12 has a plurality of main grooves 14, 16 and 18 on the right side of the tire equatorial plane CL, and a plurality of main grooves 22 intersecting the main grooves 18, on the left side of the tire equatorial plane CL.
  • a plurality of main grooves 24 intersecting with the main grooves 20 are formed.
  • the angle 02 of the main groove 22 in the present embodiment with respect to the tire circumferential direction (measured on the acute angle side with respect to the groove center line.
  • the groove center line is a curved line
  • the angle between the groove center line and the tangent to the groove center line is the tire.
  • the equatorial plane is set to be larger on the right shoulder side than the CL side, and the tire equatorial plane is approximately 60 ° to the tire circumferential direction at the CL side end, and the tire circumferential direction at the shoulder side end. At about 78 °.
  • the angle ⁇ 3 of the main groove 24 of the present embodiment with respect to the circumferential direction of the tire (measured on the acute angle side with respect to the groove center line.
  • the angle between the groove center line and the tangent to the groove center line) is
  • the tire equatorial plane is set to be larger on the left shoulder side than the CL side, and at the end on the tire equatorial plane CL side, approximately 60 ° with respect to the tire circumferential direction, It is inclined at approximately 88 ° with respect to the tire circumferential direction at the end on the shoulder side.
  • main groove 14 main groove 16, main groove 18, main groove 20, main groove
  • the depths of 22 and the main groove 24 are all the same.
  • the tread 12 has a plurality of square land portions 26 formed by the main groove 14, main groove 16, main groove 18, main groove 20, main groove 22 and main groove 2.
  • Each land 26 is a square with two diagonal lengths different from each other.
  • the sub-groove 28 is located at the center of the land 26.
  • the radius of curvature of the connecting portion 28C is preferably 3 or more and 10 mm or less.
  • the central sub-groove 28 A is located at the center of the land 26, the shorter diagonal line shown by the two-dot chain line.
  • the angle formed by the shorter diagonal line 30S and the central sub-groove 28A is preferably within ⁇ 20 °.
  • the angle between the shorter diagonal line 30S and the central sub-groove portion 28A is 0 °, and the central sub-groove portion 28A is formed on the shorter diagonal line 30S. I have.
  • the depth of the central sub groove 28 A is 30% or more of the depth of the main groove 14, the main groove 16, the main groove 18, the main groove 20, the main groove 22 and the main groove 24. preferable.
  • the length L 1 of the central sub-groove 28 A (the distance between the intersection of the extension of the central sub-groove 28 A and the extension of the end sub-groove 28 B) is reduced by the length L of the short diagonal line 30 S It is preferably set to 30% or more and less than 70% of 0.
  • the main groove 14, the main groove 16, the main groove 18, the main groove 20, the main groove 22 and The depth of the main groove 24 is 6 each, the depth of the central sub-groove 28 A is 2 hidden, and the length L 1 of the central sub-groove 28 A is short. 7%, the depth of the end sub-groove 28 B is set to 2 bandages.
  • the groove width w of the sub-groove 28 is preferably 2 or less to suppress the decrease in rigidity of the land portion 26 (it may be substantially zero. That is, the sub-groove 28 may be a so-called sipe.)
  • the pneumatic tire 10 of the present embodiment has a directional pattern, has a tire size of 2 15 45 R 17, and is used for the right front wheel. Rotate in the direction.
  • the pattern of the pneumatic tire used for the left front wheel is symmetrical to the pattern shown in FIG.
  • the length of the end sub-groove 28B can be shortened. Since the 28 C is in an arc shape, the absorbed water can be efficiently drained to the main groove. If the radius of curvature of the connecting portion 28 C is less than 3 mm, stress concentration near the connecting portion 28 C cannot be eliminated, and cracks are likely to occur. In addition, stress unevenness occurs near the connecting portion 28 C, and heel 'and' wear is likely to occur. In addition, the flow path resistance increases at the connection point 28 C, and the drainage performance decreases.
  • the land 26 Since the central sub-groove 28 A is located on the shorter diagonal 30 S of the land 26, the land 26 is divided into two triangles close to an equilateral triangle. It is possible to prevent the part 26 from weakening in a unique direction, and to minimize the decrease in rigidity of the land part 26. For this reason, deformation of the land 26 is suppressed, and dry performance is secured.
  • the central sub-groove 28A becomes small.
  • the central sub-groove 28 A can perform its original function (dividing the land 26 into two triangles close to an equilateral triangle to prevent the land 26 from weakening in a unique direction). Disappears.
  • the depth of the central sub groove 28 A is about 33% of the depth of the main groove 14, main groove 16, main groove 18, main groove 20, main groove 22 and main groove 24. (2 thighs at the central sub-groove 28 A, 6 thighs at the main groove), so that the drainage of the land 26 can be ensured.
  • the length L 1 of the central sub-groove 28 A is 70% or more of the length L 0 of the short diagonal line 30 S, the rigidity of the land 26 decreases, and the dry performance decreases.
  • the depth of the end sub-groove portion 28B exceeds 30% of the depth of the main groove, the rigidity of the land portion 26 is reduced, so that the land portion 26 is easily bent and deformed, and the dry performance is reduced.
  • both of the two end sub-grooves 28B are opened in the main groove in the tire axial direction.
  • either one or both may be opened in the main groove in the tire circumferential direction. good.
  • the land portion 26 is divided into two small land portions by a central sub-groove 28 A, two end sub-grooves 28 B and a connecting portion 28 C, a pair of end portions as in this embodiment is used. It is preferable that the sub-grooves 28B are arranged point-symmetrically, and the areas of the two land areas are set to be substantially the same.
  • a fifth embodiment of the pneumatic retire according to the present invention will be described with reference to FIG.
  • the pneumatic retirer 50 of the fifth embodiment is a tire for the left rear wheel used in pairs with the pneumatic retirer 10 (for the front wheels) of the fourth embodiment.
  • the pattern of the pneumatic tire used for the right rear wheel is symmetrical to the pattern in FIG. Note that the same components as those of the fourth embodiment are denoted by the same reference numerals and description thereof is omitted. Further, the tire size of the pneumatic tire 50 of the present embodiment is 245Z45R17.
  • the tread 12 of the pneumatic tire 50 of the present embodiment has a main groove extending along the tire circumferential direction (arrow A direction and arrow B direction) on the left side (arrow R direction side).
  • 32, 34, 36, 38, 40, 42 are formed on the right side (in the direction of the arrow L) of the main groove 4 inclined at an angle of 40 ° or less with respect to the tire circumferential direction. 4 are formed.
  • the angle 0 1 (measured on the acute side) of the main groove 44 with respect to the tire circumferential direction in the present embodiment is the tire. It is set to be larger on the shoulder side on the right side than the CL side on the equatorial plane.
  • the end on the CL side of the tire equatorial plane is approximately 5 ° with respect to the tire circumferential direction, and the end on the shoulder side with respect to the tire circumferential direction. At about 32 °.
  • the tread 12 has, on the left side, a plurality of main grooves 46 extending from the shoulder on the left side to the main grooves 38 and intersecting with the main grooves 32, 34, 36, and on the right side, A plurality of main grooves 48 extending from the right shoulder side to the main groove 38 and intersecting with the main grooves 40, 42, 4 are formed.
  • the angle ⁇ 2 of the main groove 46 in the present embodiment with respect to the tire circumferential direction (measured on the acute angle side with respect to the groove center line.
  • the groove center line is a curve, the angle between the groove center line and the tangent to the groove center line) It is set to be larger on the left shoulder side, approximately 55 ° at the end on the tire equatorial plane CL side with respect to the tire circumferential direction, and approximately 9 on the shoulder side end with respect to the tire circumferential direction. Inclined at 0 °.
  • the angle 0 3 of the main groove 48 in the present embodiment with respect to the tire circumferential direction (measured on the acute side with respect to the groove center line.
  • the groove center line is a curve
  • the angle formed by the tangent to the groove center line. Is set to be larger on the right shoulder side, and the tire red
  • the road surface is inclined at approximately 55 ° with respect to the tire circumferential direction at the end on the CL side, and at approximately 88 ° with respect to the tire circumferential direction at the end on the shoulder side.
  • the depths of the main grooves 32, 34, 36, 38, 40, 42, 44, 46, 48 are all the same.
  • the tread 12 has a plurality of square land portions 52 formed by these main grooves 32, 34, 36, 38, 40, 42, 44, 46, 48.
  • a sub-groove 28 defined in the same manner as in the fourth embodiment is formed.
  • the pneumatic tire 50 according to the present embodiment also has the same operational effects as the pneumatic tire 10 according to the fourth embodiment.
  • FIGS. 10A and 10B A sixth embodiment of the pneumatic tire of the present invention will be described with reference to FIGS. 10A and 10B.
  • the sub-groove 28 of the land 26 has chamfers 54 at both corners.
  • the chamfered portion 54 is provided over the entire length of the sub-groove 28.
  • the chamfered portion 54 has a gentle convex shape (for example, an arc shape having a single radius of curvature and a different curvature) in a cross section perpendicular to the length direction of the sub-groove 28. Etc.).
  • a gentle convex shape for example, an arc shape having a single radius of curvature and a different curvature
  • the maximum value of the depth H of the chamfered portion 54 is preferably 5% or more and 50% or less of the groove depth D of the sub-groove 28, and more preferably 10% or more and 30% or less. .
  • the maximum value of the depth H of the chamfered portion 54 is less than 5% of the groove depth D, the effect of reducing the change in the surface pressure under the action of the lateral force and the longitudinal force is small, and the groove depth D is 50%. If it is larger than%, the contact area decreases.
  • the maximum value of the length L of the chamfered portion 54 measured parallel to the tread surface is 5% or more of the maximum width W of the land portion 26 in the tire axial direction 5
  • the content is preferably 0% or less, more preferably 10% or more and 30% or less.
  • the maximum value of the length L of the chamfer 54 is 50% of the maximum width W of the land 26 in the tire axial direction If it exceeds, the contact area decreases, and if it is less than 5%, the effect of reducing the change in surface pressure under the action of the lateral force and longitudinal force is reduced.
  • the depth H of the chamfered portion 54 is larger in the sub-groove 28 at the land end and in the center of the land than in other portions.
  • the land end and the central part of the sub-groove 28 will have a particularly large surface pressure unless the chamfered part 54 is provided, and the depth H here should be made larger. This is effective in making the surface pressure uniform.
  • the contact pressure in the land portion 26 when the lateral force acts is distributed depending on the shape of the land portion 26 and the route of the sub groove 28, but the depth of the chamfer portion 54 of the sub groove 28 is small.
  • the tires of Test Example 1 are a pneumatic tire 60 (for front wheels) shown in FIG. 11 and a pneumatic tire 62 (for rear wheels) shown in FIG.
  • the sub-grooves 28 formed in the land portions 26 of the tires 60 and 62 of Test Example 1 are those in which the central sub-groove 28 A and the end sub-groove 28 B are directly connected.
  • the connecting portion between the central sub-groove 28 A and the end sub-groove 28 B is angular.
  • Test Example 2 are the pneumatic tire 10 of the fourth embodiment (for front wheels) and the second embodiment 50 (for rear wheels).
  • the lap time was evaluated using an index with the time of Test Example 1 set to 100. The smaller the index, the shorter the lap time.
  • the uneven wear was evaluated by indexing the amount of heel-and-wear on the land portion of the tire of Test Example 1 as 100. The smaller the index, the less uneven wear and the better the uneven wear resistance.
  • the number of cracks generated in the land of the tire of Test Example 1 was 100 Exponential notation. The smaller the index, the smaller the number of cracks generated and the better the crack resistance.
  • the grip durability was a filling evaluation by a test driver, and the evaluation was indicated by an index with the tire of Test Example 1 being 100. The larger the index, the better the drip persistence. Table 7
  • Two types of tires according to the test example are prepared, mounted on an actual vehicle, and run on a wet road surface (depth of 1-3 marauders) on a tet course.
  • Lap time (best time) and lap time (average value of 10 laps) In addition to the measurement, after running for a predetermined distance, the uneven wear mode (Hill and Toe) and the degree of crack generation were observed, and the drip continuity during running and the aquaplaning level were examined.
  • the aquaplaning level was a filling evaluation by a test driver, and the evaluation was represented by an index with the tire of Test Example 1 being 100. The higher the index, the higher the aquaplaning level. Table 8

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

明細書 空気入リタイヤ 技術分野
本発明は空気入りタイヤに係り、 特に、 トレッドにタイヤ赤道面に対する角 度の異なる 2組の主溝に挟まれる実質上四角形の複数の陸部を備えた空気入 りタイヤに関する。 背景技術
従来、 トレツドにタイヤ赤道面に対する角度の異なる 2組の主溝に挟まれる 実質上四角形の複数の陸部を備えた空気入りタイヤがある。
このような空気入りタイヤにおいて、 ウエット性能を向上させるために、 陸 部にサイプ等の副溝を設けることが考えられる。
陸部にサイプ等の副溝を設けると、 エッジ成分が増加してゥエツト性能は改 善される反面、 陸部の剛性が低下してドライ性能の低下を招く虞れがある。 例えば、 図 1 3 Aに示すように、 周方向 (矢印 A方向及び矢印 B方向) に延 びる一対の主溝 1 0 0とこの主溝 1 0 0に交差する一対の主溝 1 0 2とによ つて区分される略平行四辺形の陸部 1 0 4に、 主溝 1 0 2と平行な副溝 1 0 6 を形成し、 陸部 1 0 4をタイヤ周方向に 2分した場合、 陸部 1 0 4のタイヤ周 方向の剛性が低下してしまう問題がある。
また、 図 1 3 Bに示すように、 略平行四辺形の陸部 1 0 4に、 長い方の対角 線に沿って副溝 1 0 6を形成した場合、 実質的に細長い三角形の小陸部が 2つ 形成されてしまい、 副溝 1 0 6の長手方向と直交する方向 (矢印 C方向) の陸 部 1 0 4の剛性が著しく低下する問題がある。
本発明は上記事実を考慮し、 陸部の剛性を維持しつつ、 ウエット性能を向上 することのできる空気入りタイヤを提供することが目的である。 課題を解決する手段
請求項 1に記載の発明は、 トレツドにタイヤ赤道面に対する角度の異なる 2 組の主溝に挟まれる実質上四角形の複数の陸部を備え、 前記陸部に副溝を配置 した空気入りタイヤであって、 前陸部は異なる長さの対角線を有し、 前記副溝 を、 前記陸部の中央部に、 かつ短い方の対角線に実質的に沿うように配置した ことを特徴としている。
請求項 2に記載の発明は、 請求項 1に記載の空気入りタイヤにおいて、 前記 副溝は、 前記主溝に開口していないことを特徴としている。
請求項 3に記載の発明は、 請求項 2に記載の空気入りタイヤにおいて、 前記 副溝の長さは、 前記短い方の対角線の長さの 3 0 %以上 7 0 %未満であること を特徴としている。
請求項 4に記載の発明は、 請求項 1乃至請求項 3の何れか 1項に記載の空気 入りタイヤにおいて、 前記短い方の対角線と前記副溝とのなす角度が、 ± 2 0 ° 以内であることを特徴としている。
請求項 5に記載の発明は、 請求項 1乃至請求項 4の何れか 1項に記載の空気 入りタイヤにおいて、 前記副溝は、 実質的に前記短い方の対角線上に配置され ていることを特徴としている。
請求項 6に記載の発明は、 請求項 1乃至請求項 5の何れか 1項に記載の空気 入りタイヤにおいて、 前記副溝の深さは前記主溝の深さの 3 0 %以上であるこ とを特徴としている。
請求項 7に記載の発明は、 請求項 1乃至請求項 6の何れか 1項に記載の空気 入りタイヤにおいて、 前記副溝の端部には、 前記主溝に開口する端部溝が連結 されていることを特徴としている。
請求項 8に記載の発明は、 請求項 7に記載の空気入りタイヤにおいて、 前記 端部溝は、 前記副溝の端部から最も近い前記主溝に開口していることを特徴と している。
請求項 9に記載の発明は、 請求項 8に記載の空気入りタイヤにおいて、 前記 端部溝と前記副溝のなす角度が鈍角であることを特徴としている。 請求項 1 0に記載の発明は、 請求項 7乃至請求項 9の何れか 1項に記載の空 気入りタイヤにおいて、 前記端部溝と前記端部溝が開口していない近傍の前記 主溝とのなす角度が 3 0 ° 以内であることを特徴している。
請求項 1 1に記載の発明は、 請求項 7乃至請求項 1 0の何れか 1項に記載の 空気入りタイヤにおいて、 前記端部溝は、 前記副溝の両端部に設けられ、 一方 の副溝は互いに対向する主溝のうちの一方の主溝に、 他方の副溝は互いに対向 する主溝のうちの他方の主溝に開口していることを特徴としている。
請求項 1 2に記載の発明は、 請求項 7乃至請求項 1 1の何れか 1項に記載の 空気入りタイヤにおいて、 前記端部溝は、 前記副溝よりも深くないことを特徴 としている。
請求項 1 3に記載の発明は、 請求項 1 2に記載の空気入りタイヤにおいて、 前記端部溝の深さは、 前記主溝の深さの 1 0 %以上 3 0 %以下であることを特 徴としている。
請求項 1 4に記載の発明は、 請求項 1乃至請求項 1 3の何れか 1項に記載の 空気入りタイヤにおいて、 前記副溝の端部と前記端部に最も近い前記主溝との 最短距離が、 前記短い方の対角線の長さの 1 5 %以上であることを特徴として いる。
請求項 1 5に記載の発明は、 トレッドにタイヤ赤道面に対する角度の異なる 2組の主溝に挟まれる実質上四角形の複数の陸部を備え、 前記陸部に副溝を配 置した空気入りタイヤであって、 前記陸部には、 一つの辺から他の何れかの辺 に貫通する副溝を有し、 前記副溝は、 陸部の短い方の対角線と同方向に傾斜し 前記陸部の中央部に配置された中央副溝部と、 前記中央副溝部と異なる方向に 延びると共に最も近傍の主溝に開口する端部副溝部と、 前記中央副溝部と前記 端部副溝部とを滑らかに連結する連結部とを有することを特徴としている。 請求項 1 6に記載の発明は、 請求項 1 5に記載の空気入りタイヤにおいて、 前記連結部は、 曲率半径が 3匪以上 1 0匪以下の円弧形状であることを特徴と している。
請求項 1 7に記載の発明は、 請求項 1 5または請求項 1 6に記載の空気入り タイヤにおいて、 前記中央副溝部の長さは、 前記短い方の対角線の長さの 7 0 %未満であることを特徴としている。
請求項 1 8に記載の発明は、 請求項 1 5乃至請求項 1 7の何れか 1項に記載 の空気入りタイヤにおいて、 前記短い方の対角線と前記中央副溝部とのなす角 度が、 ± 2 0 ° 以内であることを特徴としている。
請求項 1 9に記載の発明は、 請求項 1 5乃至請求項 1 8の何れか 1項に記載 の空気入りタイヤにおいて、 前記中央副溝部は、 実質的に前記短い方の対角線 上に配置されていることを特徴としている。
請求項 2 0に記載の発明は、 請求項 1 5乃至請求項 2 0の何れか 1項に記載 の空気入りタイヤにおいて、 前記中央副溝部の深さは前記主溝の深さの 3 0 % 以上であることを特徴としている。
請求項 2 1に記載の発明は、 請求項 1 5乃至請求項 2 0の何れか 1項に記載 の空気入リタイヤにおいて、 前記端部副溝部と前記端部副溝部が開口していな い近傍の前記主溝とのなす角度が 3 0 ° 以内であることを特徴している。 請求項 2 2に記載の発明は、 請求項 1 5乃至請求項 2 1の何れか 1項に記載 の空気入りタイヤにおいて、 前記端部副溝部は、 前記中央副溝部よりも深くな いことを特徴としている。
請求項 2 3に記載の発明は、 請求項 2 2に記載の空気入りタイヤにおいて、 前記端部副溝部の深さは、 前記主溝の深さの 1 0 %以上 3 0 %未満であること を特徴としている。
請求項 2 4に記載の発明は、 請求項 1 5乃至請求項 2 3の何れか 1項に記載 の空気入りタイヤにおいて、 前記副溝は、 長さ方向の各点で、 長さ方向に直角 な断面において、 前記副溝の踏面への開口部の両角部に面取部を設けたことを 特徴としている。
請求項 2 5に記載の発明は、 請求項 2 4に記載の空気入りタイヤにおいて、 前記副溝の長さ方向に直角な断面において、 前記面取部の断面形状がなだらか な凸形状であることを特徴としている。
請求項 2 6に記載の発明は、 請求項 2 4または請求項 2 5に記載の空気入り タイヤにおいて、 前記面取部の深さ Hの最大値が、 前記副溝の溝深さ Dの 5 % 以上 5 0 %以下であることを特徴としている。
請求項 2 7に記載の発明は、 請求項 2 4乃至請求項 2 6の何れか 1項に記載 の空気入りタイヤにおいて、 前記副溝の長さ方向に直角な断面において、 踏面 に対して平行に計測した前記面取部の長さ Lの最大値が、 前記副溝の形成され ている陸部のタイヤ軸方向最大幅 Wの 5 %以上 5 0 %以下であることを特徴 としている。
請求項 2 8に記載の発明は、 請求項 2 4乃至請求項 2 7の何れか 1項に記載 の空気入りタイヤにおいて、 横力作用下での陸部内の接地圧の変化が小さくな るように、 前記副溝の長さ方向の各点での前記面取部の深さ Hを緩やかに変化 させていることを特徴としている。
請求項 2 9に記載の発明は、 請求項 2 8に記載の空気入りタイヤにおいて、 前記面取部の深さ Hは、 前記副溝の陸部端及び陸部中央部において他の部分よ リ大きいことを特徴としている。 発明の効果
次に、 請求項 1に記載の空気入りタイヤの効果を説明する。
異なる長さの対角線を有し、 タイヤ赤道面に対する角度の異なる 2組の主溝 に挟まれる実質上四角形の陸部としては、 具体的には、 平行四辺形の陸部、 菱 形の陸部等を上げるとができる。
このような実質上四角形の陸部に副溝を配置することによりエッジ成分が 増加し、 ウエット性能が向上する。
また、 副溝を、 実質的に陸部の短い方の対角線に沿って配置したので、 例え ば、 平行四辺形の陸部や菱形の陸部を正三角形に近い 2つの三角形に区分する ことになるので、 副溝を設けたことによる陸部の剛性の低下を最小限に抑える ことができる。
このため、 接地時の陸部の変形が抑えられ、 ドライ性能が確保される。 したがって、 請求項 1に記載の空気入りタイヤは、 ドライ性能を確保しつつ ゥエツト性能を向上させることができる。
次に、 請求項 2に記載の空気入りタイヤの効果を説明する。
請求項 2に記載の空気入りタイヤでは、 副溝が主溝に開口していないので、 主溝に開口させた副溝を備えた陸部よりも陸部の剛性の低下を抑えることが でき、 高いドライ性能が確保される。
次に、 請求項 3に記載の空気入りタイヤの効果を説明する。
請求項 3に記載の空気入りタイヤでは、 主溝に開口しない副溝を陸部に備え ている場合、 その副溝の長さを短い方の対角線の長さの 3 0 %以上 7 0 %未満 としたので、 吸水性を確保しつつ陸部の剛性の低下を抑えることができ、 ゥェ ット性能とドライ性能を両立することができる。
なお、 副溝の長さが短い方の対角線の長さの 3 0 %未満になると、 副溝を設 けてもゥエツト性能が得られなくなる。
一方、 副溝の長さが短い方の対角線の長さの 7 0 %を越えると、 陸部の剛性 が低下してドライ性能が低下する。
次に、 請求項 4に記載の空気入リタイヤの効果を説明する。
請求項 4に記載の空気入りタイヤは、 陸部に副溝を設けたことによる陸部の 剛性低下を抑え、 ドライ性能を確実に確保することができる、 という優れた効 果を有する。
短い方の対角線と副溝とのなす角度が ± 2 0 ° を外れると、 陸部の剛性が低 下してドライ性能が低下する。
なお、 陸部の剛性の低下を抑えるには、 短い方の対角線と副溝とのなす角度 を ± 1 0 ° 以内に設定することが好ましく、 ± 5 ° 以内に設定することが更に 好ましい。
次に、 請求項 5に記載の空気入りタイヤの効果を説明する。
副溝を、 実質的に短い方の対角線上に配置したことにより、 該陸部を略同じ 大きさの 2つの三角形に区分することができ、 副溝を短い方の対角線に対して 角度を付けて配置する場合に比較して該陸部の剛性の低下を最も抑えること ができる。 このため、 ドライ性能をより確実に確保することができる、 という優れた効 果を有する。
次に、 請求項 6に記載の空気入りタイヤの効果を説明する。
副溝の深さを主溝の深さの 3 0 %以上としたので、 摩耗中期まで吸水性能を 確保することができる。
次に、 請求項 7に記載の空気入りタイヤの効果を説明する。
陸部に形成された副溝 (所謂サイプも含む) 力 両閉になっている場合 (い ずれの主溝にも連結していない場合) 、 陸部がウエット路面の水溜まりに踏み 込んだ時に、 陸部踏面と路面との間に挟まれた水は瞬時に陸部踏面から副溝内 に流れ込む。
ここで、 副溝が両閉になっている場合、 副溝内に水が充満した場合、 それ以 上水を吸わなくなり、 副溝による排水効果が期待できなくなる。
しかしながら、 副溝の端部に、 主溝に開口する端部溝を連結すると副溝に吸 い込まれた水を端部溝を介して主溝へ排出することができ、 陸部踏面と路面と の間の水が排出され易くなリ、 ウエット性能を向上することができる。
また、 前記端部溝の幅は、 前記副溝の幅より広いことが、 主溝への排水性と いう観点から好ましい。
したがって、 請求項 7に記載の空気入りタイヤは、 陸部踏面と路面との間の 水が排出され易くなり、 副溝のみの場合よリもゥエツト性能を向上することが できる、 という優れた効果を有する。
次に、 請求項 8に記載の空気入りタイヤの効果を説明する。
請求項 8に記載の空気入りタイヤでは、 端部溝を副溝の端部から最も近い主 溝に開口させたので、 端部溝の長さを短くでき、 副溝の水を効率的に主溝へ排 水することができる。
したがって、 請求項 8に記載の空気入りタイヤは、 ウエット性能をより向上 することができる、 という優れた効果を有する。
次に、 請求項 9に記載の空気入りタイヤの効果を説明する。
請求項 9に記載の空気入りタイヤでは、 端部溝と副溝のなす角度を鈍角とす ることによリ流路抵抗を抑制し、 副溝の水を最も効率的に主溝へ排水すること ができる。
したがって、 請求項 9に記載の空気入りタイヤは、 ウエット性能をより一層 向上することができる、 という優れた効果を有する。
次に、 請求項 1 0に記載の空気入りタイヤの効果を説明する。
請求項 1 0に記載の空気入りタイヤでは、 端部溝とこの端部溝が開口してい ない近傍の主溝とのなす角度を 3 0 ° 以内に設定したので、 端部溝の主溝開口 付近の剛性低下を抑えることができ、 走行後の該主溝開口付近のめくれを抑え ることができる。
次に、 請求項 1 1に記載の空気入りタイヤの効果を説明する。
請求項 1 1に記載の空気入りタイヤでは、 一方の副溝は互いに対向する主溝 のうちの一方の主溝に、 他方の副溝は互いに対向する主溝のうちの他方の主溝 に開口しているので、 副溝に吸い込まれた水を端部溝を介して両方の主溝へ効 率的に排出することができ、 陸部踏面と路面との間の水がよリー層排出され易 くなリ、 ウエット性能を更に向上することができる。
次に、 請求項 1 2に記載の空気入りタイヤの効果を説明する。
請求項 1 2に記載の空気入りタイヤでは、 端部溝を副溝よりも深くなく形成 したので、 陸部の外周縁部分の局部的な剛性低下部分を抑制する。 より好まし くは、 端部溝を副溝より浅く形成することにより、 陸部の外周緣部分を全体的 に確保することができ、 陸部の曲げ変形に強く、 高い剛性を確保することがで きる。
次に、 請求項 1 3に記載の空気入りタイヤの効果を説明する。
請求項 1 3に記載の発明は、 端部溝の深さを、 主溝の深さの 1 0 %以上 3 0 %以下に設定したので、 摩耗初期の排水性と陸部の剛性を両立することがで きる。 ここで、 端部溝の深さが主溝の深さの 1 0 %未満になると、 摩 耗初期の端部溝の排水作用が得られなくなる。 なお、 端部溝が消滅する頃には、 踏面が荒れて踏面に凹凸が形成され、 踏面踏面に形成された凹部により排水効 果が得られる。 一方、 端部溝の深さが主溝の深さの 3 0 %を越えると、 陸部の剛性が低下し て曲げ変形し易くなリ、 ドライ性能が低下する。
一般的には、 請求項 1 2に記載の空気入りタイヤにおいて、 前記端部溝の深 さは、 1 mm以上 4 mm以下となる。
端部溝の深さを 1 匪以上 4匪以下に設定したので、 摩耗初期の排水性と陸部 の剛性を両立することができる。
ここで、 端部溝の深さが 1 匪未満になると、 摩耗初期の端部溝の排水作用が 得られなくなる。 なお、 端部溝が消滅する頃には、 踏面が荒れて踏面に凹凸が 形成され、 陸部踏面に形成された凹部により排水効果が得られる。
—方、 端部溝の深さが 4匪を越えると、 陸部の剛性が低下して曲げ変形し易 くなリ、 ドライ性能が低下する。
次に、 請求項 1 4に記載の空気入りタイヤの効果を説明する。
副溝が主溝に開口していない場合、 副溝の端部とこの端部に最も近い主溝と の最短距離を、 短い方の対角線の長さの 1 5 %以上に設定することで、 陸部の 剛性を確保することができる。
ここで、 副溝の端部とこの端部に最も近い主溝との最短距離が、 短い方の対 角線の長さの 1 5 %未満になると、 副溝の端部が主溝に近過ぎ、 陸部の剛性が 低下する。
次に、 請求項 1 5に記載の空気入りタイヤの効果を説明する。
タイヤ赤道面に対する角度の異なる 2組の主溝に挟まれる実質上四角形の 陸部としては、 具体的には、 平行四辺形の陸部、 菱形の陸部等を上げるとがで さる。
このような実質上四角形の陸部に、 主溝に開口する副溝を配置したので、 路 面と陸部踏面との間に介在する水膜を切るエッジ成分が増加し、 また、 副溝が 路面と陸部踏面との間に介在する水を吸水して主溝へ排水するので、 ゥエツト 性能が向上する。
陸部の中央に配置された中央副溝部に連結する端部副溝部は、 最も近傍の主 溝に開口しているので、 陸部中央部分と路面との間に介在する水は、 最短距離 で主溝へと排出される。 しかも、 中央副溝部と端部副溝部とが連結部により滑 らかに連結されているので、 中央副溝部に吸収された水がスムーズに連結部を 流れて主溝へと排出される。
また、 中央副溝部と端部副溝部とが連結部により滑らかに連結されているの で、 中央副溝部と端部副溝部とのつなぎ部分での応力集中を抑えることができ、 耐クラック性を向上させることができる。
さらに、 中央副溝部と端部副溝部とが連結部により滑らかに連結されている ので、 中央副溝部と端部副溝部とのつなぎ部分に起因する応力の不均一を抑え ることができ、 ヒール ' アンド , ト一摩耗の発生を抑えることができる。
さらに、 請求項 1 5に記載の空気入りタイヤでは、 中央副溝部を短い方の対 角線と同方向に傾斜させて陸部の中央部に配置したので、 陸部を正三角形に近 い 2つの三角形に区分することになリ、 陸部が特異方向に弱くなることが無い。 したがって、 請求項 1 5に記載の空気入りタイヤは、 ドライ性能を確保しつ っゥエツト性能を向上させることができる、 という優れた効果を有する。
次に、 請求項 1 6に記載の空気入りタイヤの効果を説明する。
連結部の曲率半径が 3 mm未満になると、 連結部付近での応力集中を排除でき なくなり、 クラックが生じ易くなる。 また、 連結部付近で応力不均一が生じ、 ヒール ' アンド ' トー摩耗を発生し易くなる。 さらに、 連結部で流路抵抗が増 加し、 排水性が低下する。
—方、 連結部の曲率半径が 1 0匪を越えると、 中央副溝部が少なくなリ、 中 央副溝部が本来の機能 (陸部を正三角形に近い 2つの三角形に区分し、 陸部が 特異方向に弱くなることを防止すること。 ) を発揮できなくなる。
したがって、 連結部を、 曲率半径 (溝中心線で計測) が 3 匪以上 1 0 匪以下 の円弧形状とすることが良い。
したがって、 請求項 1 6に記載の空気入りタイヤは、 クラック及びヒール · アンド · トー摩耗の発生を抑え、 陸部が特異方向に弱くなることを防止し、 そ の上、 吸水した水をスムーズに主溝に排水することができる、 という優れた効 果を有する。 次に、 請求項 1 7に記載の空気入りタイヤの効果を説明する。
請求項 1 7に記載の空気入りタイヤでは、 中央副溝部の長さを短い方の対角 線の長さの 7 0 %未満としたので、 陸部の剛性の低下を抑えることができ、 ド ラィ性能を確保することができる。
したがって、 請求項 1 7に記載の空気入りタイヤは、 ドライ性能とウエット 性能を両立できる、 という優れた効果を有する。
次に、 請求項 1 8に記載の空気入りタイヤの効果を説明する。
短い方の対角線と中央副溝部とのなす角度が ± 2 0 ° を外れると、 陸部の剛 性が低下してドライ性能が低下する。
なお、 陸部の剛性の低下を抑えるには、 短い方の対角線と中央副溝部とのな す角度を ± 1 0 ° 以内に設定することが好ましく、 ± 5 ° 以内に設定すること が更に好ましい。
したがって、 請求項 1 8に記載の空気入りタイヤは、 陸部に副溝を設けたこ とによる陸部の剛性低下を抑え、 ドライ性能を確実に確保することができる、 という優れた効果を有する。
次に、 請求項 1 9に記載の空気入りタイヤの効果を説明する。
中央副溝部を、 実質的に短い方の対角線上に配置したことにより、 該陸部を 略同じ大きさの 2つの三角形に区分することができ、 中央副溝部を短い方の対 角線に対して角度を付けて配置する場合に比較して該陸部の剛性の低下を最 も抑えることができる。
したがって、 請求項 1 9に記載の空気入りタイヤは、 ドライ性能をより確実 に確保することができる、 という優れた効果を有する。
次に、 請求項 2 0に記載の空気入りタイヤの効果を説明する。
中央副溝部の深さを主溝の深さの 3 0 %以上としたので、 排水性を確保する ことができる。
したがって、 請求項 2 0に記載の空気入りタイヤは、 摩耗中期まで吸水性能 を確保することができる、 という優れた効果を有する。
次に、 請求項 2 1に記載の空気入りタイヤの効果を説明する。 請求項 2 1に記載の空気入りタイヤでは、 端部副溝部とこの端部副溝部が開 口していない近傍の主溝とのなす角度を 3 0 ° 以内に設定したので、 端部副溝 部の主溝開口付近の剛性低下を抑えることができ、 走行後の該主溝開口付近の めくれを抑えることができる。
次に、 請求項 2 2に記載の空気入りタイヤの効果を説明する。
請求項 2 2に記載の空気入りタイヤでは、 端部副溝部を中央副溝部よリも深 くなく形成したので、 陸部の外周縁部分の局部的な剛性低下部分を抑制する。 より好ましくは、 端部副溝部を副溝より浅く形成することにより、 陸部の外周 縁部分を全体的に確保することができ、 曲げ変形に強く、 高い剛性を確保する ことができる。
次に、 請求項 2 3に記載の空気入りタイヤの効果を説明する。
請求項 2 3に記載の発明は、 端部副溝部の深さを、 主溝の深さの 1 0 %以上
3 0 %未満に設定したので、 摩耗初期の排水性と陸部の剛性を両立することが できる。
ここで、 端部副溝部の深さが主溝の深さの 1 0 %未満になると、 摩耗初期の 端部副溝部の排水作用が得られなくなる。
一方、 端部副溝部の深さが主溝の深さの 3 0 %を越えると、 陸部の剛性が低 下して曲げ変形し易くなリ、 ドライ性能が低下する。
一般的には、 請求項 2 2に記載の空気入りタイヤにおいて、 前記端部副溝部 の溝深さは、 1 mm以上 4 mm以下となる。
端部副溝部の深さを 1 腿以上 4匪以下に設定したので、 摩耗初期の排水性と 陸部の剛性を両立することができる。
ここで、 端部副溝部の深さが l mm未満になると、 摩耗初期の端部副溝部の排 水作用が得られなくなる。
一方、 端部副溝部の深さが 4 mmを越えると、 陸部の剛性が低下して曲げ変形 し易くなリ、 ドライ性能が低下する。
次に、 請求項 2 4に記載の空気入りタイヤの効果を説明する。
副溝の長さ方向の各点、 即ち、 副溝の全長に渡って、 副溝の踏面への開口部 の両角部に面取部を設けたので、 接地した際の副溝のエッジ部の面圧を下げる ことができる。 高い横力及び前後力が頻度多く働く用途では、 この面圧低減の 効果は大きく、 偏摩耗、 摩耗性能及び運動性能を改善することができる。
次に、 請求項 2 5に記載の空気入りタイヤの効果を説明する。
面取部の断面形状をなだらかな凸形状、 例えばアール面取とすることにより、 急激な接地圧の変化を抑えることができる。
次に、 請求項 2 6に記載の空気入りタイヤの効果を説明する。
副溝の面取部の深さ Hの最大値が副溝の溝深さ Dの 5 %未満では、 横力及び 前後力作用下での面圧の変化の低減効果が小さくなる。
—方、 副溝の面取部の深さ Hの最大値が副溝の溝深さ Dの 5 0 %よりも大き くなると、 接地面積が減少してしまう。
したがって、 面取部の深さ Hの最大値を副溝の溝深さ Dの 5 %以上 5 0 %以 下に設定することが好ましい。
したがって、 請求項 2 6に記載の空気入りタイヤは、 副溝のエッジ部の面圧 を最適に下げることができる、 という優れた効果を有する。
次に、 請求項 2 7に記載の空気入りタイヤの効果を説明する。
踏面に対して平行に計測した面取部の長さ Lの最大値が、 副溝の形成されて いる陸部のタイヤ軸方向最大幅 Wの 5 0 %を越えると、 接地面積が減少してし まう。
一方、 踏面に対して平行に計測した面取部の長さ Lの最大値が、 副溝の形成 されている陸部のタイヤ軸方向最大幅 Wの 5 %未満では、 横力及び前後力作用 下での面圧の変化の低減効果が小さくなる。
したがって、 面取部の長さ Lの最大値を陸部のタイヤ軸方向最大幅 Wの 5 % 以上 5 0 %以下に設定することが好ましい。
したがって、 請求項 2 7に記載の空気入りタイヤは、 副溝のエッジ部の面圧 を最適に下げることができる、 という優れた効果を有する。
次に、 請求項 2 8に記載の空気入りタイヤの効果を説明する。
横力作用時の陸部内の接地圧は、 陸部の形状、 副溝の経路により分布するが、 副溝の面取部の深さを長さ方向の各点で緩やかに変えることにより、 均一化し いては、 偏摩耗、 摩耗性能,運動性能の改善に効果を発揮する。
次に、 請求項 2 9に記載の空気入りタイヤの効果を説明する。
陸部において、 副溝の陸部端及び中央部は面取部が設けられていなければ特 に大きな面圧となり、 ここでの面取部の深さ Hを他の部分よリ大きくすること により、 面圧均一化に効果がある。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る空気入りタイヤのトレツドの展開図 である。
図 2は、 陸部の拡大図である。
図 3は、 陸部の拡大図である。
図 4は、 本発明の第 2の実施形態に係る空気入りタイヤのトレツドの展開図 である。
図 5は、 本発明の第 3の実施形態に係る空気入りタイヤのトレッドの展開図 である。
図 6は、 陸部の拡大図である。
図 7は、 本発明の第 4の実施形態に係る空気入りタイヤのトレツドの展開図 である。
図 8は、 陸部の拡大図である。
図 9は、 本発明の第 5の実施形態に係る空気入りタイヤのトレツドの展開図 である。
図 1 O Aは本発明の第 6の実施形態に係る空気入りタイヤの陸部の平面図 であり、 図 1 0 Bは図 1 O Aに示す陸部の 1 0 B— 1 0 B線断面図である。 図 1 1は、 試験例 1に係る前輪用の空気入りタイヤのトレッドの展開図であ る。
図 1 2は、 試験例 1に係る後輪用の空気入りタイヤのトレツドの展開図であ る。 図 1 3 A及び図 1 3 Bは、 副溝を設けた従来の陸部の平面図である。 実施の形態
[第 1の実施形態]
本発明の空気入りタイヤの第 1の実施形態を図 1乃至図 3にしたがって説 明する。
図 1に示すように、 本実施形態の空気入りタイヤ 1 0のトレッド 1 2には、 タイヤ赤道面 C Lの右側 (矢印 R方向側) にタイヤ周方向 (矢印 A方向及び矢 印 B方向) に沿って延びる主溝 1 4、 主溝 1 6及び主溝 1 8が形成されており、 タイヤ赤道面 C Lの左側 (矢印 L方向側) にタイヤ周方向に対して 3 0 ° 以下 の角度で傾斜する主溝 2 0が複数形成されている。
本実施形態の主溝 2 0のタイヤ周方向に対する角度 1 (鋭角側で計測。 な お、 溝中心線が曲線である場合には溝中心線の接線とのなす角度。 ) は、 タイ ャ赤道面 C L側よりも左のショルダー側で大きくなるように設定されており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 5 ° 、 ショルダー側の端 部でタイヤ周方向に対して略 2 8 ° で傾斜している。
さらにトレッド 1 2には、 タイヤ赤道面 C Lの右側に主溝 1 4、 主溝 1 6及 び主溝 1 8に交差する主溝 2 2が複数形成されており、 タイヤ赤道面 C Lの左 側に主溝 2 0に交差する主溝 2 4が複数形成されている。
本実施形態の主溝 2 2のタイヤ周方向に対する角度 0 2 (溝中心線で鋭角側 で計測。 なお、 溝中心線が曲線である場合には溝中心線の接線とのなす角度。 ) は、 タイヤ赤道面 C L側よリも右のショルダー側で大きくなるように設定され ており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 6 0 ° 、 ショル ダー側の端部でタイヤ周方向に対して略 7 8 ° で傾斜している。
また、 本実施形態の主溝 2 4のタイヤ周方向に対する角度 0 3 (溝中心線で 鋭角側で計測。 なお、 溝中心線が曲線である場合には溝中心線の接線とのなす 角度。 ) は、 タイヤ赤道面 C L側よりも左のショルダー側で大きくなるように 設定されており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 6 0 ° 、 ショルダー側の端部でタイヤ周方向に対して略 88° で傾斜している。
本実施形態では、 これらの主溝 14、 主溝 1 6、 主溝 1 8、 主溝 20、 主溝
22及び主溝 24の深さは全て同一である。
トレッド 1 2には、 これらの主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 20、 主 溝 22及び主溝 24によって四角形の陸部 2 6が複数形成されている。
各陸部 2 6は、 2つの対角線の長さが互いに異なる四角形である。
これら複数の陸部 26の内の一部を除き、 大部分の陸部 26には、 副溝 28 が形成されている。
次に、 副溝 28の規定に付いて説明する。 なお、 以下には、 代表して右側か ら数えて 3番目の陸部 26に付いて図 2乃至図 3に基づいて説明する。 なお、 その他の陸部 26の副溝 28に付いても同じ規定を採用する。
図 2に示すように、 副溝 28は、 陸部 2 6の中央部に、 2点鎖線で示す短い 方の対角線 30 Sに実質上沿うように形成されることが好ましく、 短い方の対 角線 30 Sと副溝 2 8とのなす角度 04 は、 ± 20° 以内が好ましい。
本実施形態では、 短い方の対角線 30 Sと副溝 28とのなす角度 04 が 0° 、 即ち、 副溝 28が短い方の対角線 30 S上に形成されている。
また、 副溝 28の深さは主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 20、 主溝 2 2及び主溝 24の深さの 30 %以上が好ましい。
さらに、 副溝 28は、 何れの主溝 (主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0、 主溝 22及び主溝 24) にも開口していないことが好ましく、 図 3に示す ように、 副溝 28を短い対角線 30 Sの中央に配置し、 副溝 28の長さ L1 を 短い対角線 3 O Sの長さ L0 の 30 %以上 70 %未満に設定することが好まし い。
また、 副溝 28の端部と最も近い主溝との最短距離 Lmin は、 短い方の対角 線 30 Sの長さ L0 の 1 5 %以上 3 5 %未満に設定することが好ましい。
本実施形態では、 主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 20、 主溝 22及び 主溝 24の深さが各々 6腿、 副溝 28の深さが 4mm、 副溝 28の長さ Ll が短 い対角線 3 O Sの長さ L0 の 47 %に設定されている。 ちなみに、 副溝 28の端部と最も近い主溝との最短距離 Lmin は、 短い対角 線 30 Sの長さ L0 の 25 %に設定されている。
また、 副溝 28の溝幅 wは、 陸部 2 6の剛性の低下を抑えるために 2mm以下 が好ましい (実質的に零でも良い。 即ち、 副溝 28は所謂サイプでも良い。 ) 。 なお、 図 1に示すように本実施形態の空気入りタイヤ 1 0は方向性パターン を有しており、 タイヤサイズが 2 1 5/45 R 1 7、 右前輪に用いられ、 走行 時には矢印 B方向に回転する。
(作用)
( 1 ) 副溝 28を陸部 26に形成したので、 副溝 28のエッジ成分の増加及 び、 副溝 28の吸水作用によリウエツト性能が向上する。
(2) 副溝 28を、 陸部 26の短い方の対角線 30 S上に配置したので、 陸 部 26を正三角形に近い 2つの三角形に区分することになり、 副溝 28を設け たことによる陸部 26の剛性の低下を最小限に抑えることができる。
このため、 陸部 26の変形が抑えられ、 ドライ性能が確保される。
なお、 短い方の対角線 30 Sと副溝 28とのなす角度 Θ 3 が ±20° の範囲 を外れると、 陸部 2 6の剛性が低下する。
(3) 陸部 2 6が路面に接地しだ際、 陸部 2 6の中央部に接地圧が集中し易 いが、 陸部 2 6の中央部に副溝 2 8を設けたので、 この副溝 28の両側に接地 圧を分散し、 陸部 2 6の中央部の高い接地圧を緩和することもできる。
(4) 副溝 28が主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 20、 主溝 22及び 主溝 24に開口していないので、 開口させた場合に比較して陸部 26の剛性の 低下を抑えることができる。
( 5) 副溝 28の深さを主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 20、 主溝 2 2及び主溝 24の深さの約 6 7 % (副溝深さ 4匪、 主溝深さ 6匪) としたので、 摩耗中期まで吸水性能を確保することができる。
(6) 副溝 28の長さ L1 を短い対角線 30 Sの長さ L0 の 47 %に設定し たので、 ウエット性能とドライ性能を両立することができる。
( 7 ) 副溝 28の端部とこの端部に最も近い主溝との最短距離 Lmin を、 短 い方の対角線 3 O Sの長さ L 0の 2 5 %に設定したので、 陸部 2 6の剛性を確 保することができる。
ここで、 副溝 2 8の端部と最も近い主溝との最短距離 L min が、 短い方の対 角線 3 0 Sの長さ L 0 の 1 5 %未満になると、 副溝 2 8の端部が主溝に近過ぎ、 陸部 2 6の剛性が低下する。
[第 2の実施形態]
本発明の空気入リタイヤの第 2の実施形態を図 4にしたがって説明する。 な お、 第 1の実施形態と同一構成には同一符号を付し、 その説明は省略する。 図 4に示すように、 副溝 2 8の両端部には、 端部溝 3 2が連結されている。 端部溝 3 2は、 副溝 2 8の端部から最も近い主溝、 本実施形態ではタイヤ幅 方向に位置する主溝 (主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0 ) 及びショル ダ一端に最短距離で開口しており、 隣接する主溝 2 2または主溝 2 4と平行に 設けられている。
端部溝 3 2の深さは、 副溝 2 8よりも浅く設定されている。
本実施形態の端部溝 3 2の深さは 2匪であり、 主溝 1 4、 主溝 1 6、 主溝 1
8、 主溝 2 2及び主溝 2 4の深さ 6腿の約 3 3 %に設定されている。
なお、 図 4に示すように本実施形態の空気入りタイヤ 1 0は方向性パターン を有しており、 タイヤサイズが 2 1 5 / 4 5 R 1 7、 右前輪に用いられ、 走行 時には矢印 B方向に回転する。
(作用)
また、 端部溝 3 2と副溝 2 8のなす角度を鈍角としたので、 流路抵抗の抑制 が可能となり、 副溝 2 8の水を効率的に主溝へ排水することができる。
端部溝 3 2を、 開口していない近傍の主溝と実質的に平行に設けたので、 端 部溝 3 2を設けたことによる陸部 2 6の剛性低下を最も抑えることができる。 端部溝 3 2を副溝 2 8よりも浅く形成し、 端部溝 3 2の深さを、 主溝の深さの 約 3 3 %に設定したので、 陸部 2 6の外周縁部分の剛性を全体的に確保するこ とができ、 陸部 2 6の剛性が確保され、 ドライ性能が確保される。
ここで、 端部溝 3 2の深さが主溝の深さの 1 0 %未満になると、 摩耗初期に 排水作用が得られなくなる。
なお、 端部溝 3 2が消滅する頃には、 踏面が荒れて踏面に凹凸が形成され、 踏面表面に形成された凹部により排水効果が得られる。
一方、 端部溝 3 2の深さが主溝の深さの 3 0 %を越えると、 陸部 2 6の剛性 が低下して曲げ変形し易くなリ、 ドライ性能が低下する。
なお、 本実施形態では、 2つの端部溝 3 2を両方ともタイヤ軸方向の主溝に 開口させたが、 何れか一方または両方を、 タイヤ周方向の主溝に開口させても 良い。
なお、 陸部 2 6が副溝 2 8と 2つの端部溝 3 2により 2つの小陸部に区分す る場合、 この実施形態のように端部溝 3 2を点対称に配置し、 2つの小陸部の 面積を略同一に設定することが好ましい。
[第 3の実施形態]
本発明の空気入リタイヤの第 3の実施形態を図 5にしたがって説明する。 図 5に示すように、 本実施形態の空気入りタイヤ 1 0のトレッド 1 2には、 タイヤ赤道面 C Lの右側にタイヤ周方向に沿って延びる主溝 3 4が形成され ており、 主溝 3 4の右側にはタイヤ周方向に対して角度 0 5 (本実施形態では 約 2 5 ° ) で傾斜する主溝 3 6が複数形成されている。
さらにトレッド 1 2には、 主溝 3 4、 主溝 3 6、 主溝 3 8及び主溝 4 0に交 差する主溝 4 2が複数形成されている。
トレッド 1 2には、 これらの主溝 3 4、 主溝 3 6、 主溝 3 8及び主溝 4 0に 交差する主溝 4 2によって三角形の陸部 4 4及び四角形の陸部 4 6が複数形 成されている。
四角形の各陸部 4 6は、 2つの対角線の長さが互いに異なる四角形である。 これら複数の四角形の陸部 4 6の内の一部を除き、 大部分の陸部 4 6には、 第 2の実施形態の副溝 2 8及び端部溝 3 2と同様に副溝 4 8及び端部溝 5 0 が形成されている。
なお、 この副溝 4 8及び端部溝 5 0の位置、 寸法等の規定は、 第 1及び第 2 の実施形態の副溝 2 8及び端部溝 3 2と同様である。 したがって、 本実施形態の空気入りタイヤ 1 0も、 第 1及び第 2の実施形態 と同様の作用効果が得られる。
なお、 図 5に示す本実施形態の空気入りタイヤ 1 0も図 4と同様に方向性パ ターンを有しており、 タイヤサイズが 2 1 5 4 5 R 1 7、 右前輪に用いられ、 走行時には矢印 B方向に回転する。
(試験 A )
陸部に副溝の形成されていないタイヤ 1種及び副溝の向きの異なる 4種の タイヤの合計 5種類の異なるタイヤを用意し、 ゥエツト性能及びドライ性能の 比較を行った。
以下に試験タイヤを説明する。
試験例 1のタイヤ乃至試験例 5のタイヤは、 何れも図 1に示すトレッドパタ —ンを有している。
試験例 1のタイヤ :陸部に副溝が形成されていないタイヤである (下記の表 2参照) 。
試験例 2のタイヤ: タイヤ周方向の主溝に平行に副溝を形成したタイヤであ る (下記の表 2参照) 。
試験例 3のタイヤ :短い方の対角線上に副溝を形成したタイヤである (第 1 の実施形態のタイヤ。 )
試験例 4のタイヤ :長い方の対角線上に副溝を形成したタイヤである (下記 の表 2参照) 。
試験例 5のタイヤ : タイヤ軸方向の主溝に平行に副溝を形成したタイヤであ る (下記の表 2参照) 。
なお、 何れも主溝の深さは 6 mm、 副溝の長さは短い方の対角線の長さの 4 7 % (ちなみに、 副溝の端部と最も近い主溝との最短距離が、 短い方の対角線 長さの 2 1 % ) 、 副溝の深さは 4 mmである。
次に、 試験方法を説明する。
ゥエツト性能:試験タイヤを装着した実車をテストコース (ゥエツト路面) で走行させた。 評価は、 テストドライバーのフィーリング評価である。 ドライ性能:試験タイヤを装着した実車をテストコース (乾燥路) で走行さ せた。 評価は、 テストドライバーのフィーリング評価である。
評価は以下の表 2に示す通りである。 なお、 評価は、 以下の表 1に記載する 基準で付けた。
表 1 、、、 AA.
+ 5 大変良い
+ 4 かなり良い
+ 3 良い
+ 2 少し良い (一般ドライバーが分かるレベル)
+ 1 少し良い (テストドライバーが分かるレベル)
0 基準 (陸部に副溝が無いタイヤ)
- 1 少し悪い (テストドライバ一が分かるレベル)
- 2 少し悪い (一般ドライバ一が分かるレベル)
- 3 悪い
- 4 かなり悪い
- 5 大変悪い
状 試験例 試験例 2 試験例 3 試験例 4 試験例 5
\
t
t ゥエツト性能 0 + + 2 0 + ドライ性能 0 一 1 0 3 2
試験の結果、 本発明の適用された試験例 3のタイヤは、 副溝の形成されてい ない試験例 1タイヤと同等のドライ性能を有し、 しかもゥエツト性能は最も優 れていることが分かる。
(試験 B )
陸部に副溝及び端部溝の形成されていないタイヤ 1種、 副溝のみ形成されて いるタイヤ 1種、 及び副溝が形成され端部溝の深さが異なるタイヤ 3種の合計 5種類の異なるタイヤを用意し、 ゥエツト性能及びドライ性能の比較を行った。 以下に試験タイヤを説明する。
試験例 1のタイヤ乃至試験例 5のタイヤは、 何れも図 4に示すトレツドパタ ーンを有している。
試験例 1のタイヤ :陸部に副溝が形成されていないタイヤである (下記の表 3参照) 。
試験例 2のタイヤ: タイヤ周方向の主溝に平行に深さ 4腿の副溝を形成した タイヤである (下記の表 3参照) 。
試験例 3のタイヤ :深さ 4腿の副溝の両端部に、 深さ 4匪の端部溝を形成し たタイヤである (下記の表 3参照) 。
試験例 4のタイヤ :深さ 4匪の副溝の両端部に、 深さ 2匪の端部溝を形成し たタイヤである (下記の表 3参照) 。
試験例 5のタイヤ :深さ 2匪の副溝の両端部に、 深さ 2腿の端部溝を形成し たタイヤである (下記の表 3参照) 。
なお、 何れも主溝の深さは 6麵、 副溝の長さは短い方の対角線の長さの 4 7 %である。
ゥエツト性能及びドライ性能のテスト方法及び評価基準は試験例 1 と同様 である。
評価は以下の表 3に示す通リであり、 試験時のラップタイムも合わせて記載 した。
Figure imgf000026_0001
試験の結果、 ウエット性能に関しては、 副溝のみを形成した試験例 2のタイ ャよりも、 端部溝を追加した試験例 3〜 5のタイヤの方がウエット性能は向上 していることが分かる。 しかし、 端部溝を副溝と同じ深さにした試験例 3のタ ィャは、 陸部剛性が低下した結果、 ドライ性能が大きく低下した。
(試験例 C )
陸部に副溝及び端部溝の形成されていないタイヤ 1種と、 副溝が形成され端 部溝の位置の異なる 2種類のタイヤを用意し、 ゥエツト性能及びドライ性能の 比較を つた。
試験例 1のタイヤ乃至試験例 3のタイヤは、 何れも図 4に示すトレッドバタ ーンを有している。
試験例 1のタイヤ :陸部に副溝が形成されていないタイヤである (下記の表 4参照) 。
試験例 2のタイヤ:タイヤ周方向に位置する主溝に平行な端部溝を形成した タイヤである (下記の表 4参照) 。
試験例 3のタイヤ:タイヤ軸方向に位置する主溝に平行な端部溝を形成した タイヤである (下記の表 4参照) 。
なお、 何れも主溝の深さは 6 mm、 副溝の長さは短い方の対角線の長さの 4 7 %、 端部溝の深さは 2 mmである。
ゥエツト性能及びドライ性能のテスト方法及び評価基準は試験例 2と同様 である。
評価は以下の表 4に示す通りであり、 試験時のラップタイムも合わせて記載 した。
表 4
Figure imgf000028_0001
試験の結果、 端部溝をタイヤ周方向に隣接する主溝に平行に設けたタイヤの 方が、 タイヤ軸方向に隣接する主溝に平行に設けたタイヤよりもゥエツト性能 に優れ、 さらにドライ性能も両立されていることが分かる。
(試験 D )
端部溝の向きの異なる 5種類のタイヤを用意し、 陸部の耐久性の比較を行つ た。
以下に試験タイヤを説明する。
試験例 1のタイヤ乃至試験例 5のタイヤは、 何れも図 1に示すトレッドパタ ーンを有しているが、 副溝及び端部溝は、 右から 2列目の陸部のみに形成した タイヤである。
試験例 1のタイヤ : タイヤ周方向に隣接する主溝に対する端部溝の角度が— 3 0 ° のタイヤ (下記の表 5参照) 。 ここで、 角度の一 (マイナス) は、 端部溝 の開口がタイヤ周方向に隣接する主溝へ接近する方向に端部溝が傾斜してい ることを意味する。 試験例 2のタイヤ 端部溝の角度が一 1 5 ° のタイヤ (下記の表 5参照) 。 試験例 3のタイヤ 端部溝の角度が 0 ° のタイヤ (下記の表 5参照) 。
試験例 4のタイヤ 端部溝の角度が + 1 5 ° のタイヤ (下記の表 5参照) 。 試験例 5のタイヤ 端部溝の角度が + 3 0 ° のタイヤ (下記の表 5参照) 。 なお、 副溝及び端部溝を形成した陸部の寸法は、 図 6に示す通りである。 ま た、 何れのタイヤも主溝の深さは 6 mm、 副溝の長さは短い方の対角線の長さの 5 0 %、 副溝の深さは 2 mmである。
次に、 試験方法を説明する。
試験は、 試験タイヤを実車に装着し、 テストコース ( 1周 6 0秒) を 1 5周 させた。
なお、 結果は、 1 5周走行後のタイヤの踏面 (端部溝の主溝側の開口部分。 表の矢印で図示した部分。 ) にめくれが生じていないものを〇、 めくれが生じ ているものを Xとした。
結果は、 以下の表 5に示す通りである。
試験例 試験例 2 試験例 3 試験 形 状
めくれ X 〇 〇
試験の結果、 端部溝の角度は、 ± 1 5 ° 以内が良いことが分かる。
(試験 E )
陸部に副溝の形成されていないタイヤ 1種、 陸部に副溝が形成され副溝の長 さの異なるタイヤ 4種の合計 5種類の異なるタイヤを用意し、 ゥエツト性能及 びドライ性能の比較を行った。
以下に試験タイヤを説明する。
試験例 1のタイャ乃至試験例 5のタイヤは、 何れも図 4に示すトレッドパタ —ンを有している。
試験例 1のタイヤは陸部に副溝が形成されていないタイヤであり、 試験例 2 乃至試験例 5のタイヤは、 何れも各陸部に副溝が形成されているが、 副溝の長 さが異なるタイヤである (下記の表 6参照) 。
何れも主溝の深さは 6匪、 副溝の深さは 4匪である。 また、 表内の記載した 副溝の長さは、 短い方の対角線に沿って陸部を横断した副溝の長さを 1 0 0と した指数表示である。
なお、 試験方法は試験 Aと同様である。
<
試験例 1 試験例 2 試験例 3 試験例 4 試験例 5 試験例 6
形 状
Figure imgf000032_0001
副溝長さ 0 0 0 20 40 60 80 100
ゥェット性能 0 0 + 2 + 2. 5 + 1. 5 + 1
ドライ性能 0 0 一 1 一 2 一 3 一 4
試験の結果、 副溝の長さは、 評価一 3以下を不可とすると、 ウエット性能と ドライ性能を両立するには、 短い方の対角線の長さに対して 30% (20 %と 40%との間) 〜7 0%以内 (または 80 %未満) が良いことが分かる。
[第 4の実施形態]
本発明の空気入リタイヤの第 4の実施形態を図 7及び図 8にしたがって説 明する。
図 7に示すように、 本実施形態の空気入りタイヤ 1 0の卜レツド 1 2には、 タイヤ赤道面 C Lの右側 (矢印 R方向側) にタイヤ周方向 (矢印 A方向及び矢 印 B方向) に沿って延びる主溝 1 4、 主溝 1 6及び主溝 1 8が形成されており 、 タイヤ赤道面 C Lの左側 (矢印 L方向側) にタイヤ周方向に対して 30° 以 下の角度で傾斜する主溝 20が複数形成されている。
本実施形態の主溝 20のタイヤ周方向に対する角度 01 (鋭角側で計測。 な お、 溝中心線が曲線である場合には溝中心線の接線とのなす角度。 ) は、 タイ ャ赤道面 C L側よりも左のショルダー側で大きくなるように設定されており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 5° 、 ショルダー側の端 部でタイヤ周方向に対して略 28° で傾斜している。
さらにトレッド 1 2には、 タイヤ赤道面 C Lの右側に主溝 1 4、 主溝 1 6及 び主溝 1 8に交差する主溝 22が複数形成されており、 タイヤ赤道面 C Lの左 側に主溝 20に交差する主溝 24が複数形成されている。
本実施形態の主溝 22のタイヤ周方向に対する角度 02 (溝中心線で鋭角側 で計測。 なお、 溝中心線が曲線である場合には溝中心線の接線とのなす角度。 ) は、 タイヤ赤道面 C L側よリも右のショルダー側で大きくなるように設定され ており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 60° 、 ショル ダー側の端部でタイヤ周方向に対して略 7 8° で傾斜している。
また、 本実施形態の主溝 24のタイヤ周方向に対する角度 Θ3 (溝中心線で 鋭角側で計測。 なお、 溝中心線が曲線である場合には溝中心線の接線とのなす 角度。 ) は、 タイヤ赤道面 C L側よりも左のショルダー側で大きくなるように 設定されており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 60° 、 ショルダー側の端部でタイヤ周方向に対して略 8 8 ° で傾斜している。
本実施形態では、 これらの主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0、 主溝
2 2及び主溝 2 4の深さは全て同一である。
トレッド 1 2には、 これらの主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0、 主 溝 2 2及び主溝 2 によって四角形の陸部 2 6が複数形成されている。
各陸部 2 6は、 2つの対角線の長さが互いに異なる四角形である。
これら複数の陸部 2 6の内の一部を除き、 大部分の陸部 2 6には、 副溝 2 8 が形成されている。
次に、 副溝 2 8の規定に付いて説明する。 なお、 以下には、 代表して右側か ら数えて 3番目の陸部 2 6に付いて図 8に基づいて説明する。 なお、 その他の 陸部 2 6の副溝 2 8に付いても同じ規定を採用する。
図 8に示すように、 副溝 2 8は、 陸部 2 6の中央部に配置される中央副溝部
2 8 A、 中央副溝部 2 8 Aの端部から最も近い主溝に開口する端部副溝部 2 8 B及び中央副溝部 2 8 Aと端部副溝部 2 8 Bとを連結する円弧状の連結部 2
8 Cを有している。
水の流動抵抗を少なくするために、 連結部 2 8 Cの曲率半径は 3 廳以上 1 0 mm以下が好ましい。
中央副溝部 2 8 Aは、 陸部 2 6の中央部に、 2点鎖線で示す短い方の対角線
3 0 Sに実質上沿うように形成されることが好ましく、 短い方の対角線 3 0 S と中央副溝部 2 8 Aとのなす角度は、 ± 2 0 ° 以内が好ましい。 本実施形態で は、 短い方の対角線 3 0 Sと中央副溝部 2 8 Aとのなす角度が 0 ° であり、 中 央副溝部 2 8 Aは短い方の対角線 3 0 S上に形成されている。
また、 中央副溝部 2 8 Aの深さは主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0 、 主溝 2 2及び主溝 2 4の深さの 3 0 %以上が好ましい。
さらに、 中央副溝部 2 8 Aの長さ L 1 (中央副溝部 2 8 Aの延長線と端部副 溝部 2 8 Bの延長線との交点間距離) を短い対角線 3 0 Sの長さ L 0の 3 0 % 以上 7 0 %未満に設定することが好ましい。
本実施形態では、 主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0、 主溝 2 2及び 主溝 2 4の深さが各々 6匪、 中央副溝部 2 8 Aの深さが 2隱、 中央副溝部 2 8 Aの長さ L 1 が短い対角線 3 0 Sの長さ L 0 の略 4 7 %、 端部副溝部 2 8 Bの 深さが 2匪に設定されている。
また、 副溝 2 8の溝幅 wは、 陸部 2 6の剛性の低下を抑えるために 2匪以下 が好ましい (実質的に零でも良い。 即ち、 副溝 2 8は所謂サイプでも良い。 ) £ 図 7に示すように本実施形態の空気入りタイヤ 1 0は方向性パターンを有 しておリ、 タイヤサイズが 2 1 5 4 5 R 1 7、 右前輪に用いられ、 走行時に は矢印 B方向に回転する。 なお、 左前輪に用いられる空気入りタイヤのバタ一 ンは図 7のパターンと対称形状である。
(作用)
( 1 ) 陸部 2 6に副溝 2 8を横断させたので、 副溝 2 8のエッジ成分の増加 及び、 副溝 2 8の吸排水作用によりウエット性能が向上する。 なお、 副溝 2 8 に吸い込まれた水は端部副溝部 2 8 Bを介して主溝へ排出される。
さらに、 端部副溝部 2 8 Bを副溝 2 8の端部から最も近い主溝に最短距離で 開口させているので、 端部副溝部 2 8 Bの長さを短くでき、 また、 連結部 2 8 Cを円弧形状としたので吸収した水を効率的に主溝へ排水することができる。 なお、 連結部 2 8 Cの曲率半径が 3 mm未満になると、 連結部 2 8 C付近での 応力集中を排除できなくなり、 クラックが生じ易くなる。 また、 連結部 2 8 C 付近で応力不均一が生じ、 ヒール 'アンド ' 卜一摩耗を発生し易くなる。 さら に、 連結部 2 8 Cで流路抵抗が増加し、 排水性が低下する。
( 2 ) 中央副溝部 2 8 Aを、 陸部 2 6の短い方の対角線 3 0 S上に配置した ので、 陸部 2 6を正三角形に近い 2つの三角形に区分することになリ、 陸部 2 6が特異方向に弱くなることを防止し、 陸部 2 6の剛性の低下を最小限に抑え ることができる。 このため、 陸部 2 6の変形が抑えられ、 ドライ性能が確保さ れる。
なお、 短い方の対角線 3 0 Sと中央副溝部 2 8 Aとのなす角度 0 3 が ± 2 0 ° の範囲を外れると、 陸部 2 6の剛性が低下する。
また、 連結部 2 8 Cの曲率半径が 1 0 mmを越えると、 中央副溝部 2 8 Aが少 なくなり、 中央副溝部 2 8 Aが本来の機能 (陸部 2 6を正三角形に近い 2つの 三角形に区分し、 陸部 2 6が特異方向に弱くなることを防止すること。 ) を発 揮できなくなる。
( 3 ) 陸部 2 6が路面に接地した際、 陸部 2 6の中央部に接地圧が集中し易 いが、 陸部 2 6の中央部に中央副溝部 2 8 Aを設けたので、 この副溝 2 8の両 側に接地圧を分散し、 陸部 2 6の中央部の高い接地圧を緩和することもできる。
( 4 ) 中央副溝部 2 8 Aの深さを主溝 1 4、 主溝 1 6、 主溝 1 8、 主溝 2 0、 主溝 2 2及び主溝 2 4の深さの約 3 3 % (中央副溝部 2 8 Aの深さ 2 腿、 主溝 深さ 6 腿) としたので、 陸部 2 6の排水性を確保することができる。
( 5 ) 中央副溝部 2 8 Aの長さ L 1 を短い対角線 3 0 Sの長さ L 0 の 4 7 % に設定したので、 ゥエツト性能とドライ性能を両立することができる。
なお、 中央副溝部 2 8 Aの長さ L 1 が短い対角線 3 0 Sの長さ L 0 の 7 0 % 以上になると、 陸部 2 6の剛性が低下し、 ドライ性能が低下する。
( 6 ) 端部副溝部 2 8 Bの深さを中央副溝部 2 8 Aの深さと同等に設定し、 端部副溝部 2 8 Bの深さを、 主溝の深さの約 3 3 %に設定したので、 陸部 2 6 の外周縁部分の剛性を全体的に確保することができ、 陸部 2 6の剛性が確保さ れ、 ドライ性能が確保される。
一方、 端部副溝部 2 8 Bの深さが主溝の深さの 3 0 %を越えると、 陸部 2 6 の剛性が低下して曲げ変形し易くなリ、 ドライ性能が低下する。
なお、 本実施形態では、 2つの端部副溝部 2 8 Bを両方ともタイヤ軸方向の 主溝に開口させたが、 何れか一方または両方を、 タイヤ周方向の主溝に開口さ せても良い。
なお、 陸部 2 6が中央副溝部 2 8 Aと 2つの端部副溝部 2 8 B及び連結部 2 8 Cにより 2つの小陸部に区分する場合、 この実施形態のように一対の端部副 溝部 2 8 Bを点対称に配置し、 2つの小陸部の面積を略同一に設定することが 好ましい。
[第 5の実施形態]
本発明の空気入リタイヤの第 5の実施形態を図 9にしたがって説明する。 この第 5の実施形態の空気入リタイヤ 5 0は、 第 4の実施形態の空気入リタ ィャ 1 0 (前輪用) と対で用いられる左後輪用のタイヤである。 なお、 右後輪 に用いられる空気入りタイヤのパターンは図 9のパターンと対称形状である。 なお、 第 4の実施形態と同一構成に関しては同一符号を付しその説明は省略 する。 また、 本実施形態の空気入りタイヤ 5 0のタイヤサイズは、 2 4 5 Z 4 5 R 1 7である。
図 9に示すように、 本実施形態の空気入りタイヤ 5 0の卜レツド 1 2には、 左側 (矢印 R方向側) にタイヤ周方向 (矢印 A方向及び矢印 B方向) に沿って 延びる主溝 3 2, 3 4, 3 6, 3 8, 4 0, 4 2が形成されており、 その右側 (矢印 L方向側) にタイヤ周方向に対して 4 0 ° 以下の角度で傾斜する主溝 4 4が複数形成されている。
本実施形態の主溝 4 4のタイヤ周方向に対する角度 0 1 (鋭角側で計測。 な お、 溝中心線が曲線である場合には溝中心線の接線とのなす角度。 ) は、 タイ ャ赤道面 C L側よりも右のショルダー側で大きくなるように設定されており、 タイヤ赤道面 C L側の端部でタイヤ周方向に対して略 5 ° 、 ショルダー側の端 部でタイヤ周方向に対して略 3 2 ° で傾斜している。
さらにトレッド 1 2には、 左側では、 左側のショルダー側から主溝 3 8へ向 かって延びて主溝 3 2, 3 4, 3 6と交差する主溝 4 6が複数形成されており、 右側では、 右側のショルダー側から主溝 3 8へ向かって延びて主溝 4 0, 4 2 , 4と交差する主溝 4 8が複数形成されている。
本実施形態の主溝 4 6のタイヤ周方向に対する角度 Θ 2 (溝中心線で鋭角側 で計測。 なお、 溝中心線が曲線である場合には溝中心線の接線とのなす角度。 ) は、 左のショルダー側で大きくなるように設定されており、 タイヤ赤道面 C L 側の端部でタイヤ周方向に対して略 5 5 ° 、 ショルダー側の端部でタイヤ周方 向に対して略 9 0 ° で傾斜している。
また、 本実施形態の主溝 4 8のタイヤ周方向に対する角度 0 3 (溝中心線で 鋭角側で計測。 なお、 溝中心線が曲線である場合には溝中心線の接線とのなす 角度。 ) は、 右のショルダー側で大きくなるように設定されており、 タイヤ赤 道面 C L側の端部でタイヤ周方向に対して略 5 5° 、 ショルダー側の端部でタ ィャ周方向に対して略 88° で傾斜している。
本実施形態では、 これらの主溝 32, 34, 3 6, 38, 40, 42, 44, 46, 48の深さは全て同一である。
トレッド 1 2には、 これらの主溝 32, 34, 3 6, 38, 40, 42, 4 4, 46, 48によって四角形の陸部 52が複数形成されており、 これらの陸 部 52には、 第 4の実施形態と同様に規定される副溝 28が形成されている。
したがって、 本実施形態の空気入りタイヤ 50も、 第 4の実施形態の空気入 リタイヤ 1 0と同様の作用効果が得られる。
[第 6の実施形態]
本発明の空気入りタイヤの第 6の実施形態を図 1 OA及び図 1 0 Bにした がって説明する。 図 1 OA及び図 1 0 Bに示すように、 陸部 2 6の副溝 28に は、 両角部に面取部 54が形成されている。
面取部 54は、 副溝 28の全長に渡って設けられている。
面取部 54は、 図 1 0 Bに示すように、 副溝 28の長さ方向に直角な断面に おいて、 なだらかな凸形状 (例えば、 単一の曲率半径を有する円弧形状、 曲率 の異なる複数の円弧を組み合わせた形状等) であることが好ましい。
面取部 54の深さ Hの最大値は、 副溝 28の溝深さ Dの 5 %以上 50 %以下 であることが好ましく、 なかでも 1 0 %以上 30 %以下であることが更に好ま しい。
面取部 54の深さ Hの最大値が、 溝深さ Dの 5 %未満では、 横力及び前後力 作用下での面圧の変化の低減効果が小さくなリ、 溝深さ Dの 50 %よりも大き くなると、 接地面積が減少してしまう。
副溝 28の長さ方向に直角な断面において、 踏面に対して平行に計測した面 取部 54の長さ Lの最大値は、 陸部 2 6のタイヤ軸方向最大幅 Wの 5 %以上 5 0 %以下であることが好ましく、 中でも 1 0 %以上 30 %以下であることが更 に好ましい。
面取部 54の長さ Lの最大値が、 陸部 26のタイヤ軸方向最大幅 Wの 50% を越えると接地面積が減少してしまい、 5 %未満では横力及び前後力作用下で の面圧の変化の低減効果が小さくなる。
面取部 5 4の深さ Hは、 副溝 2 8において陸部端及び陸部中央部において、 その他の部分よりも大きいことが好ましい。 陸部 2 6において、 副溝 2 8の陸 部端及び中央部は面取部 5 4が設けられていなければ特に大きな面圧となリ、 ここでの深さ Hを他よリ大きくすることにより、 面圧均一化に効果がある。 また、 横力作用時の陸部 2 6内の接地圧は、 陸部 2 6の形状、 副溝 2 8の経 路によリ分布するが、 副溝 2 8の面取部 5 4の深さ Hを長さ方向の各点で緩や かに変えることにより、 均一化しいては、 偏摩耗、 摩耗性能,運動性能の改善に 効果を発揮する。
(試験 F )
試験例に係るタイヤを 2種類用意し、 実車に装着してドライ路面のテストコ —スを走行し、 ラップタイム (ベスト) 、 ラップタイム ( 1 0周の平均値) を 計測すると共に、 所定距離走行後に偏摩耗形態 (ヒール ·アンド · トー) 及び クラックの発生具合を観察し、 また、 走行時のグリップ持続性を調べた。 試験例 1のタイヤは、 図 1 1に示す空気入りタイヤ 6 0 (前輪用) と図 1 2 に示す空気入りタイヤ 6 2 (後輪用) である。 試験例 1のタイヤ 6 0, 6 2の 陸部 2 6に形成されている副溝 2 8は、 中央副溝部 2 8 Aと端部副溝部 2 8 B とが直接連結されているものであり、 中央副溝部 2 8 Aと端部副溝部 2 8 Bと の連結部分が角張っているものである。
試験例 2のタイヤは、 第 4の実施形態の空気入りタイヤ 1 0 (前輪用) と第 2の実施形態 5 0 (後輪用) である。
ラップタイムの評価は、 試験例 1のタイムを 1 0 0とする指数表示とした。 指数が小さい程ラップタイムが短いことを表す。
偏摩耗の評価は、 試験例 1のタイヤの陸部に生じたヒール · アンド ' ト一摩 耗の段差量を 1 0 0として指数表示した。 指数が小さいほど偏摩耗が少なく、 耐偏摩耗性に優れていることを表す。
クラックの評価は、 試験例 1のタイヤの陸部に生じたクラックの数を 1 0 0 として指数表示した。 指数が小さいほどクラックの発生数が少なく、 耐クラッ ク性に優れていることを表す。
グリップ持続性は、 テスト ドライバーによるフィ一リング評価であり、 評価 は試験例 1のタイヤを 1 0 0とした指数で表示した。 指数が大きいほどダリッ プ持続性が良いことを表す。 表 7
Figure imgf000040_0001
(試験 G )
試験例に係るタイヤを 2種類用意し、 実車に装着してウエッ ト路面 (水深 1 〜3匪程度) のテトコースを走行し、 ラップタイム (ベストタイム) 、 ラップ タイム( 1 0周の平均値) を計測すると共に、 所定距離走行後に偏摩耗形態(ヒ —ル · アンド · ト一) 及びクラックの発生具合を観察し、 また、 走行時のダリ ップ持続性及びァクァプレーニングレベルを調べた。
アクアプレーニングレベルは、 テスト ドライバ一によるフィ一リング評価で あり、 評価は試験例 1のタイヤを 1 0 0とした指数で表示した。 指数が大きい ほどアクアプレーニングレベルが高いことを表す。 表 8
Figure imgf000041_0001
試験の結果、 ウエット路面走行においては、 試験例 2のタイヤは、 全ての項 目において試験例 1のタイヤよりも優れていることが分かる。

Claims

請求の範囲
1 . トレツドにタイヤ赤道面に対する角度の異なる 2組の主溝に挟まれる実 質上四角形の複数の陸部を備え、 前記陸部に副溝を配置した空気入りタイヤで あって、
前陸部は異なる長さの対角線を有し、
前記副溝を、 前記陸部の中央部に、 かつ短い方の対角線に実質的に沿うよう に配置したことを特徴とする空気入りタイヤ。
2 . 前記副溝は、 前記主溝に開口していないことを特徴とする請求項 1に記 載の空気入りタイヤ。
3 . 前記副溝の長さは、 前記短い方の対角線の長さの 3 0 %以上 7 0 %未満 であることを特徴とする請求項 2に記載の空気入りタイヤ。
4 . 前記短い方の対角線と前記副溝とのなす角度が、 ± 2 0 ° 以内であるこ とを特徴とする請求項 1乃至請求項 3の何れか 1項に記載の空気入りタイヤ。
5 . 前記副溝は、 実質的に前記短い方の対角線上に配置されていることを特 徴とする請求項 1乃至請求項 4の何れか 1項に記載の空気入りタイヤ。
6 . 前記副溝の深さは前記主溝の深さの 3 0 %以上であることを特徴とする 請求項 1乃至請求項 5の何れか 1項に記載の空気入リタイヤ。
7 . 前記副溝の端部には、 前記主溝に開口する端部溝が連結されていること を特徴とする請求項 1乃至請求項 6の何れか 1項に記載の空気入りタイヤ。
8 . 前記端部溝は、 前記副溝の端部から最も近い前記主溝に開口しているこ とを特徴とする請求項 7に記載の空気入りタイヤ。
9 . 前記端部溝と前記副溝のなす角度が鈍角であることを特徴とする請求項 8に記載の空気入りタイヤ。
1 0 . 前記端部溝と前記端部溝が開口していない近傍の前記主溝とのなす角 度が 3 0 ° 以内であることを特徴とする請求項 7乃至請求項 9の何れか 1項 に記載の空気入りタイヤ。
1 1 . 前記端部溝は、 前記副溝の両端部に設けられ、 一方の副溝は互いに対 向する主溝のうちの一方の主溝に、 他方の副溝は互いに対向する主溝のうちの 他方の主溝に開口していることを特徴とする請求項 7乃至請求項 1 0の何れ か 1項に記載の空気入りタイヤ。
1 2. 前記端部溝は、 前記副溝よりも深くないことを特徴とする請求項 7乃 至請求項 1 1の何れか 1項に記載の空気入リタイヤ。
1 3. 前記端部溝の深さは、 前記主溝の深さの 1 0 %以上 3 0 %以下である ことを特徴とする請求項 1 2に記載の空気入りタイヤ。
1 4. 前記副溝の端部と前記端部に最も近い前記主溝との最短距離が、 前記 短い方の対角線の長さの 1 5 %以上 3 5 %未満であることを特徴とする請求 項 1乃至請求項 1 3の何れか 1項に記載の空気入リタイヤ。
1 5. トレツドにタイヤ赤道面に対する角度の異なる 2組の主溝に挟まれる 実質上四角形の複数の陸部を備え、 前記陸部に副溝を配置した空気入りタイヤ であって、
前記陸部には、 一つの辺から他の何れかの辺に貫通する副溝を有し、 前記副溝は、 陸部の短い方の対角線と同方向に傾斜し前記陸部の中央部に配 置された中央副溝部と、 前記中央副溝部と異なる方向に延びると共に最も近傍 の主溝に開口する端部副溝部と、 前記中央副溝部と前記端部副溝部とを滑らか に連結する連結部とを有することを特徴とする空気入りタイヤ。
1 6. 前記連結部は、 曲率半径が 3mm以上 1 0匪以下の円弧形状であること を特徴とする請求項 1 5に記載の空気入りタイヤ。
1 7. 前記中央副溝部の長さは、 前記短い方の対角線の長さの 7 0 %未満で あることを特徴とする請求項 1 5または請求項 1 6に記載の空気入りタイヤ。
1 8. 前記短い方の対角線と前記中央副溝部とのなす角度が、 ± 20° 以内 であることを特徴とする請求項 1 5乃至請求項 1 7の何れか 1項に記載の空 気入りタイヤ。
1 9. 前記中央副溝部は、 実質的に前記短い方の対角線上に配置されている ことを特徴とする請求項 1 5乃至請求項 1 8の何れか 1項に記載の空気入り タイヤ。
2 0 . 前記中央副溝部の深さは前記主溝の深さの 3 0 %以上であることを特 徴とする請求項 1 5乃至請求項 1 9の何れか 1項に記載の空気入りタイヤ。 2 1 . 前記端部副溝部と前記端部副溝部が開口していない近傍の前記主溝と のなす角度が 3 0 ° 以内であることを特徴する請求項 1 5乃至請求項 2 0の 何れか 1項に記載の空気入リタイヤ。
2 2 . 前記端部副溝部は、 前記中央副溝部よりも深くないことを特徴とする 請求項 1 5乃至請求項 2 1の何れか 1項に記載の空気入りタイヤ。
2 3 . 前記端部副溝部の深さは、 前記主溝の深さの 1 0 %以上 3 0 %未満で あることを特徴とする請求項 2 2に記載の空気入りタイヤ。
2 4 . 前記副溝は、 長さ方向の各点で、 長さ方向に直角な断面において、 前 記副溝の踏面への開口部の両角部に面取部を設けたことを特徴とする請求項 1 5乃至請求項 2 3の何れか 1項に記載の空気入りタイヤ。
2 5 . 前記副溝の長さ方向に直角な断面において、 前記面取部の断面形状が なだらかな凸形状であることを特徴とする請求項 2 4に記載の空気入りタイ ャ。
2 6 . 前記面取部の深さ Hの最大値が、 前記副溝の溝深さ Dの 5 %以上 5 0 %以下であることを特徴とする請求項 2 4または請求項 2 5に記載の空気 入りタイヤ。
2 7 . 前記副溝の長さ方向に直角な断面において、 踏面に対して平行に計測 した前記面取部の長さ Lの最大値が、 前記副溝の形成されている陸部のタイヤ 軸方向最大幅 Wの 5 %以上 5 0 %以下であることを特徴とする請求項 2 4乃 至請求項 2 6の何れか 1項に記載の空気入りタイヤ。
2 8 . 横力作用下での陸部内の接地圧の変化が小さくなるように、 前記副溝 の長さ方向の各点での前記面取部の深さ Hを緩やかに変化させていることを 特徴とする請求項 2 4乃至請求項 2 7の何れか 1項に記載の空気入りタイヤ。 2 9 . 前記面取部の深さ Hは、 前記副溝の陸部端及び陸部中央部において最 大となることを特徴とする請求項 2 8に記載の空気入りタイヤ。 補正書の請求の範囲
[2000年 12月 27日 (27. 12. 00) 国際事務局受理:出願当初 の請求の範囲 2及び 7取り下げられた;出願当初の請求の範囲 1, 3, 8
及び 10— 12は補正された;他の請求の範囲は変更なし。 (3頁)]
1. (補正後) 卜レッドにタイヤ赤道面に対する角度の異なる 2組の主溝に 挟まれる実質上四角形の複数の陸部を備え、 前記陸部に副溝を配置した空気入 りタイヤであって、
前陸部は異なる長さの対角線を有し、
前記副溝を、 前記陸部の中央部に、 かつ短い方の対角線に実質的に沿うよう に配置し、
前記副溝の端部に、 前記主溝に開口する端部溝を連結したことを特徴とする 空気入りタイヤ。
2. (削除)
3. (補正後) 前記副溝の長さは、 前記短い方の対角線の長さの 30 %以上 70 %未満であることを特徴とする請求項 1に記載の空気入りタイヤ。
4. 前記短い方の対角線と前記副溝とのなす角度が、 ±20° 以内であるこ とを特徴とする請求項 1乃至請求項 3の何れか 1項に記載の空気入りタイヤ。
5. 前記副溝は、 実質的に前記短い方の対角線上に配置されていることを特 徴とする請求項 1乃至請求項 4の何れか 1項に記載の空気入りタイヤ。
6. 前記副溝の深さは前記主溝の深さの 3 0 %以上であることを特徴とする 請求項 1乃至請求項 5の何れか 1項に記載の空気入りタイヤ。
7. (削除)
8. (補正後) 前記端部溝は、 前記副溝の端部から最も近い前記主溝に開口 していることを特徴とする請求項 1乃至請求項 6の何れか 1項に記載の空気 入りタイヤ。
9. 前記端部溝と前記副溝のなす角度が鈍角であることを特徴とする請求項 8に記載の空気入りタイヤ。
1 0. (補正後) 前記端部溝と前記端部溝が開口していない近傍の前記主溝 とのなす角度が 30 ° 以内であることを特徴とする請求項 8または請求項 9 に記載の空気入りタイヤ。 補正された (条約第膽)
1 1 . (補正後) 前記端部溝は、 前記副溝の両端部に設けられ、 一方の副溝 は互いに対向する主溝のうちの一方の主溝に、 他方の副溝は互いに対向する主 溝のうちの他方の主溝に開口していることを特徴とする請求項 8乃至請求項 1 0の何れか 1項に記載の空気入りタイヤ。
1 2 . (補正後) 前記端部溝は、 前記副溝よりも深くないことを特徴とする 請求項 8乃至請求項 1 1の何れか 1項に記載の空気入りタイヤ。
1 3 . 前記端部溝の深さは、 前記主溝の深さの 1 0 %以上 3 0 %以下である ことを特徴とする請求項 1 2に記載の空気入りタイヤ。
1 4 . 前記副溝の端部と前記端部に最も近い前記主溝との最短距離が、 前記 短い方の対角線の長さの 1 5 %以上 3 5 %未満であることを特徴とする請求 項 1乃至請求項 1 3の何れか 1項に記載の空気入りタイヤ。
1 5 . トレッドにタイヤ赤道面に対する角度の異なる 2組の主溝に挟まれる 実質上四角形の複数の陸部を備え、 前記陸部に副溝を配置した空気入りタイヤ であって、
前記陸部には、 一つの辺から他の何れかの辺に貫通する副溝を有し、 前記副溝は、 陸部の短い方の対角線と同方向に傾斜し前記陸部の中央部に配 置された中央副溝部と、 前記中央副溝部と異なる方向に延びると共に最も近傍 の主溝に開口する端部副溝部と、 前記中央副溝部と前記端部副溝部とを滑らか に連結する連結部とを有することを特徴とする空気入りタイヤ。
1 6 . 前記連結部は、 曲率半径が 3 niffl以上 1 Ο ππη以下の円弧形状であること を特徴とする請求項 1 5に記載の空気入りタイヤ。
1 7 . 前記中央副溝部の長さは、 前記短い方の対角線の長さの 7 0 %未満で あることを特徴とする請求項 1 5または請求項 1 6に記載の空気入りタイヤ。
1 8 . 前記短い方の対角線と前記中央副溝部とのなす角度が、 ± 2 0 ° 以内 であることを特徴とする請求項 1 5乃至請求項 1 7の何れか 1項に記載の空 気入りタイヤ。
1 9 . 前記中央副溝部は、 実質的に前記短い方の対角線上に配置されている ことを特徴とする請求項 1 5乃至請求項 1 8の何れか 1項に記載の空気入り
44 補正された用紙 (条約第 19¾) タイヤ。
2 0 . 前記中央副溝部の深さは前記主溝の深さの 3 0 %以上であることを特 徴とする請求項 1 5乃至請求項 1 9の何れか 1項に記載の空気入りタイヤ。
2 1 . 前記端部副溝部と前記端部副溝部が開口していない近傍の前記主溝と のなす角度が 3 0 ° 以内であることを特徴する請求項 1 5乃至請求項 2 0の 何れか 1項に記載の空気入りタイヤ。
2 2 . 前記端部副溝部は、 前記中央副溝部よりも深くないことを特徴とする 請求項 1 5乃至請求項 2 1の何れか 1項に記載の空気入りタイヤ。
2 3 . 前記端部副溝部の深さは、 前記主溝の深さの 1 0 %以上 3 0 %未満で あることを特徴とする請求項 2 2に記載の空気入りタイヤ。
2 4 . 前記副溝は、 長さ方向の各点で、 長さ方向に直角な断面において、 前 記副溝の踏面への開口部の両角部に面取部を設けたことを特徴とする請求項
1 5乃至請求項 2 3の何れか 1項に記載の空気入りタイヤ。
2 5 . 前記副溝の長さ方向に直角な断面において、 前記面取部の断面形状が なだらかな凸形状であることを特徴とする請求項 2 4に記載の空気入りタイ ャ。
2 6 . 前記面取部の深さ Hの最大値が、 前記副溝の溝深さ Dの 5 %以上 5 0 %以下であることを特徴とする請求項 2 4または請求項 2 5に記載の空気 入りタイヤ。
2 7 . 前記副溝の長さ方向に直角な断面において、 踏面に対して平行に計測 した前記面取部の長さ Lの最大値が、 前記副溝の形成されている陸部のタイヤ 軸方向最大幅 Wの 5 %以上 5 0 %以下であることを特徴とする請求項 2 4乃 至請求項 2 6の何れか 1項に記載の空気入りタイヤ。
2 8 . 横力作用下での陸部内の接地圧の変化が小さくなるように、 前記副溝 の長さ方向の各点での前記面取部の深さ Hを緩やかに変化させていることを 特徴とする請求項 2 4乃至請求項 2 7の何れか 1項に記載の空気入りタイヤ。
2 9 . 前記面取部の深さ Hは、 前記副溝の陸部端及び陸部中央部において最 大となることを特徴とする請求項 2 8に記載の空気入りタイヤ。
45
補正された ffi抵 (条約第 19¾)
PCT/JP2000/005052 1999-07-30 2000-07-28 Pneumatique WO2001008906A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/806,414 US6796347B1 (en) 1999-07-30 2000-06-28 Pneumatic tire including auxiliary grooves
DE60038946T DE60038946D1 (de) 1999-07-30 2000-07-28 Luftreifen
JP2001513605A JP4404510B2 (ja) 1999-07-30 2000-07-28 空気入りタイヤ
EP00948272A EP1125769B1 (en) 1999-07-30 2000-07-28 Pneumatic tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP21800199 1999-07-30
JP11/218002 1999-07-30
JP11/218001 1999-07-30
JP21800299 1999-07-30

Publications (1)

Publication Number Publication Date
WO2001008906A1 true WO2001008906A1 (fr) 2001-02-08

Family

ID=26522341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005052 WO2001008906A1 (fr) 1999-07-30 2000-07-28 Pneumatique

Country Status (6)

Country Link
US (1) US6796347B1 (ja)
EP (1) EP1125769B1 (ja)
JP (1) JP4404510B2 (ja)
DE (1) DE60038946D1 (ja)
ES (1) ES2306664T3 (ja)
WO (1) WO2001008906A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010551A2 (en) * 1998-12-14 2000-06-21 Bridgestone Corporation Pneumatic tire
WO2004005051A1 (ja) * 2002-07-05 2004-01-15 The Yokohama Rubber Co.,Ltd. 氷雪路用空気入りタイヤ
JP2006123760A (ja) * 2004-10-29 2006-05-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
CN100400315C (zh) * 2001-06-06 2008-07-09 横滨橡胶株式会社 充气轮胎
JP2013511438A (ja) * 2009-11-23 2013-04-04 コンパニー ゼネラール デ エタブリッスマン ミシュラン 雪上性能改善用の面取り部を有する側方溝を備えたタイヤ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60121869T2 (de) * 2000-06-22 2007-03-08 Bridgestone Corp. Luftreifen
US20080128061A1 (en) * 2006-12-04 2008-06-05 Aaron Scott Puhala Pneumatic tire with spiral grooving
USD735638S1 (en) * 2013-07-16 2015-08-04 Hankook Tire Co., Ltd. Tire tread
JP5635170B1 (ja) * 2013-10-23 2014-12-03 株式会社ブリヂストン 空気入りタイヤ
WO2016198296A1 (en) * 2015-06-12 2016-12-15 Bridgestone Corporation Tyre tread
JP6750358B2 (ja) * 2016-07-11 2020-09-02 住友ゴム工業株式会社 空気入りタイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818249B2 (ja) * 1979-03-05 1983-04-12 株式会社ブリヂストン ウエツト・スキツド抵抗性の高い乗用車用空気入りタイヤ
JPH0281773A (ja) * 1988-09-17 1990-03-22 Bridgestone Corp 空気入りタイヤ対
JPH0569706A (ja) * 1991-09-10 1993-03-23 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤ
JPH05116510A (ja) * 1991-10-29 1993-05-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH08192607A (ja) * 1994-11-17 1996-07-30 Bridgestone Corp 重荷重用空気入りタイヤ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2302875A1 (fr) * 1975-03-04 1976-10-01 Michelin & Cie Perfectionnements aux enveloppes de pneumatiques
JPS5244901A (en) * 1975-10-04 1977-04-08 Bridgestone Corp High durable tread pattern of two grooves rip type pneumtic tire
GB2018208B (en) 1978-04-08 1982-08-18 Bridgestone Tire Co Ltd Pneumatic radial tyre for heyvy vehicles
JPS5818249A (ja) 1981-07-27 1983-02-02 アルプス電気株式会社 異方導電性エラストマ−シ−トおよびその製造方法
JPH02182505A (ja) * 1989-01-08 1990-07-17 Toyo Tire & Rubber Co Ltd 自動車用タイヤのトレッドパターン
US5198047A (en) 1990-11-14 1993-03-30 The Goodyear Tire & Rubber Company Winter type tire tread
EP0602989A1 (en) * 1992-12-16 1994-06-22 Sumitomo Rubber Industries, Co. Ltd Pneumatic tyre
DE4425899A1 (de) 1994-07-22 1996-01-25 Continental Ag Reifen mit profilierter Lauffläche mit S-förmigen Querrillen
AT403453B (de) 1994-12-09 1998-02-25 Semperit Ag Fahrzeugreifen
US5824169A (en) * 1995-01-20 1998-10-20 The Goodyear Tire & Rubber Company Pneumatic tire having improved wear properties
FR2748696B1 (fr) * 1996-05-20 1999-12-31 Bridgestone Corp Bandage pneumatique a dessin directionnel asymetrique notamment pour voiture de course
DE69722728T2 (de) * 1996-08-05 2003-12-04 Sumitomo Rubber Industries Ltd., Kobe Luftreifen
JPH10151915A (ja) * 1996-11-21 1998-06-09 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP4267735B2 (ja) 1998-12-14 2009-05-27 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818249B2 (ja) * 1979-03-05 1983-04-12 株式会社ブリヂストン ウエツト・スキツド抵抗性の高い乗用車用空気入りタイヤ
JPH0281773A (ja) * 1988-09-17 1990-03-22 Bridgestone Corp 空気入りタイヤ対
JPH0569706A (ja) * 1991-09-10 1993-03-23 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤ
JPH05116510A (ja) * 1991-10-29 1993-05-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH08192607A (ja) * 1994-11-17 1996-07-30 Bridgestone Corp 重荷重用空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1125769A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010551A2 (en) * 1998-12-14 2000-06-21 Bridgestone Corporation Pneumatic tire
EP1010551A3 (en) * 1998-12-14 2001-08-29 Bridgestone Corporation Pneumatic tire
US6695023B1 (en) 1998-12-14 2004-02-24 Bridgestone Corporation Pneumatic tire including closed sipes
CN100400315C (zh) * 2001-06-06 2008-07-09 横滨橡胶株式会社 充气轮胎
WO2004005051A1 (ja) * 2002-07-05 2004-01-15 The Yokohama Rubber Co.,Ltd. 氷雪路用空気入りタイヤ
US7438100B2 (en) 2002-07-05 2008-10-21 They Yokohama Rubber Co., Ltd. Pneumatic tire for ice-bound or snow-covered road
JP2006123760A (ja) * 2004-10-29 2006-05-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP4626269B2 (ja) * 2004-10-29 2011-02-02 横浜ゴム株式会社 空気入りタイヤ
JP2013511438A (ja) * 2009-11-23 2013-04-04 コンパニー ゼネラール デ エタブリッスマン ミシュラン 雪上性能改善用の面取り部を有する側方溝を備えたタイヤ

Also Published As

Publication number Publication date
EP1125769A4 (en) 2002-05-22
US6796347B1 (en) 2004-09-28
EP1125769A1 (en) 2001-08-22
DE60038946D1 (de) 2008-07-03
ES2306664T3 (es) 2008-11-16
JP4404510B2 (ja) 2010-01-27
EP1125769B1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP4862090B2 (ja) 空気入りタイヤ
EP2631087B1 (en) Pneumatic tire
JP2650040B2 (ja) 乗用車用空気入りタイヤ
JP4216545B2 (ja) 空気入りタイヤ
WO2004041556A1 (ja) 空気入りタイヤ
JPH05286312A (ja) 空気入りタイヤ
US10479142B2 (en) Pneumatic tire
EP2602127A1 (en) Tire
WO2016027648A1 (ja) 空気入りタイヤ
JP4267735B2 (ja) 空気入りタイヤ
WO2001008906A1 (fr) Pneumatique
JP7225865B2 (ja) タイヤ
JP4116355B2 (ja) 空気入りタイヤ
JP4107385B2 (ja) 空気入りタイヤ
JP4441009B2 (ja) 空気入りタイヤ
JP4184674B2 (ja) 空気入りタイヤ
JP4285617B2 (ja) 空気入りラジアルタイヤ
JP4758059B2 (ja) 空気入りタイヤ
JPH05338415A (ja) 空気入りタイヤ
JP4472138B2 (ja) 空気入りタイヤ
JP3832954B2 (ja) 二輪車用空気入りラジアルタイヤ
EP2821257A1 (en) Pneumatic tire
JPH07285302A (ja) 空気入りタイヤ
JP3388887B2 (ja) 空気入りタイヤ
JP3397450B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 513605

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000948272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09806414

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000948272

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000948272

Country of ref document: EP