WO2001005501A1 - Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene - Google Patents

Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene Download PDF

Info

Publication number
WO2001005501A1
WO2001005501A1 PCT/FR2000/001552 FR0001552W WO0105501A1 WO 2001005501 A1 WO2001005501 A1 WO 2001005501A1 FR 0001552 W FR0001552 W FR 0001552W WO 0105501 A1 WO0105501 A1 WO 0105501A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
supported
group
hydrogen peroxide
Prior art date
Application number
PCT/FR2000/001552
Other languages
English (en)
Inventor
Michel Devic
Original Assignee
Atofina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9909260A external-priority patent/FR2796311B1/fr
Priority to NZ516005A priority Critical patent/NZ516005A/en
Priority to EP00940448A priority patent/EP1204477B1/fr
Priority to JP2001510579A priority patent/JP4251809B2/ja
Priority to BRPI0012222-0A priority patent/BR0012222B1/pt
Priority to AT00940448T priority patent/ATE454215T1/de
Application filed by Atofina filed Critical Atofina
Priority to AU55385/00A priority patent/AU764178B2/en
Priority to CA002378919A priority patent/CA2378919C/fr
Priority to EA200200172A priority patent/EA004475B1/ru
Priority to DE60043657T priority patent/DE60043657D1/de
Priority to US10/018,868 priority patent/US6958138B1/en
Priority to UA2002010369A priority patent/UA76090C2/uk
Publication of WO2001005501A1 publication Critical patent/WO2001005501A1/fr
Priority to NO20016240A priority patent/NO323596B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/222Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid in the presence of a rotating device only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/224Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
    • B01J8/228Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical

Definitions

  • the present invention relates to a supported metal catalyst, suitable for the direct manufacture of hydrogen peroxide from hydrogen and oxygen. It also relates to the process for manufacturing said catalyst as well as the process for manufacturing hydrogen peroxide using said catalyst.
  • the low productivity of the catalytic manufacturing process of hydrogen peroxide directly from hydrogen and oxygen is an obstacle to its development. There are many attempts to improve this productivity. Mention may in particular be made of US 3,336 1 1 2, US 3,361,533, US 4,007,526, US 4,009,252, US 4,279,883 and US 4,335,092. These studies are mainly based on the general concept, namely stabilization hydrogen peroxide using a sequestering agent or decomposition inhibitor.
  • US Pat. No. 4,379,778 discloses a process for the direct manufacture of hydrogen peroxide from hydrogen and oxygen in an aqueous medium comprising decomposition inhibitors, in the presence of a palladium-carbon catalyst previously treated with an aldehyde or a ketone and, preferably, also pretreated with a dilute solution of hydrochloric acid.
  • US patents 5 1 28 1 14 and US 5 352 645 describe a method for preparing catalysts based on palladium or platinum-palladium supported on uniform microspheres, non-agglomerated and porous of silica, resistant to attrition by the use of ammonium citrate or urea as an additive and suitable for the direct manufacture of hydrogen peroxide.
  • Example 1 2 of US Patent 5 1 28 1 14 describes the two-step preparation of a supported catalyst containing about 0.05% by weight of platinum and 1% by weight of palladium on porous silica microspheres. The support is first prepared by atomization of a mixture of Ludox AS 40 silica and urea, then calcined at 650 ° C under nitrogen.
  • This support is then added to a solution of Pt and Pd, previously prepared by dissolving H 2 PtCI 6 and PdCI 2 in water, brought to a temperature between 60 and 70 ° C and acidified with concentrated HCl until '' to obtain a pH of about 1.2.
  • the resulting mixture is stirred, then atomized and finally, the powder obtained is reduced under a stream of hydrogen at 300 ° C.
  • Example 1 5 of US Patent 5,352,645 The preparation of the supported catalyst according to Example 1 5 of US Patent 5,352,645 is similar to that described in Example 1 2 of US Patent 5 1 28 1 1 4 with a difference.
  • the resulting mixture instead of being atomized, is dried under vacuum at 1,00 ° C. overnight, then the dried solid is reduced under a stream of hydrogen at 1,00 ° C.
  • Metallic crystallites of the order of 30 to 50 ⁇ were thus obtained.
  • the Applicant Company has developed a supported catalyst based on at least one metal chosen from group M formed of palladium, platinum, ruthenium, rhodium, iridium, osmium, holmium and gold and, in particular, a supported bimetallic catalyst.
  • the supported bimetallic catalyst generally consists of a metal from the majority group M and a metal from the minority group M.
  • the majority metal represents approximately 0.1 to 10% by weight of the catalyst and preferably between 0.5 to 1% by weight.
  • the minority metal represents approximately 0.001 to 0.1% by weight of the catalyst and preferably between 0.01 and 0.05%.
  • the particularly preferred supported bimetallic catalyst consists of palladium as the majority metal and platinum as the minority metal.
  • the present invention also relates to a supported plurimetallic catalyst made up of a majority group M metal and several minority group M metals.
  • the preferred supported plurimetallic catalyst comprises palladium, as the majority metal, platinum and at least one metal from group M, as minority metals.
  • the content of majority metal in the supported plimetallic catalyst is practically identical to that of the bimetallic catalyst and, each minority metal can be present in the catalyst in an amount representing approximately 0.001 to 0.1% by weight of the catalyst and preferably between approximately 0, 01 and 0.05%.
  • the present invention further provides a monometallic catalyst supported with, preferably, platinum or gold as the metallic constituent of group M.
  • the content of metallic constituent is generally between 0.1 and 10% by weight of the catalyst and preferably between 0.5 and 1% by weight.
  • the supported metal catalyst according to the invention is preferably characterized by clusters of crystallized metal or metals of size between 0.1 and 20 ⁇ m and, preferably, between 1 and
  • Silica, alumina, carbon and silicoaluminate may be suitable as a support. However, it is preferred to use silica and advantageously, silica particles of average size between 1 and 50 ⁇ m. It is also preferred to use silica with a BET specific surface greater than 200 m 2 / g and most often between 300 and 600 m 2 / g. The idrich microporous silica referenced 28.851 -9 has been found to be particularly advantageous.
  • the level of iron (Fe) in the support chosen is preferably less than 0.001% by weight.
  • a second subject of the invention is a process for the preparation of supported catalyst based on at least one metal from group M defined above.
  • This process successively comprising a step of impregnating a solution based on one or more salt (s) of at least one metal, chosen from group M, on a support and, a reduction step is characterized in that that at the end of the reduction stage, the catalyst is subjected to a treatment with an acidic aqueous solution (A) comprising bromine and bromide ions.
  • A acidic aqueous solution
  • the concentration of bromide ions in the aqueous solution (A) can be between 20 and 200 mg / l and preferably between 20 and 100 mg / l.
  • Bromine concentration can be between 20 and 200 mg / l and preferably between 20 and 100 mg / l.
  • (Br 2 ) can be between 2 and 20 mg / l and preferably between 2 and 10 mg / l.
  • the pH of the aqueous solution (A) is preferably between 1 and 3.
  • the aqueous solution (A) can be prepared for example by dissolving an alkali or alkaline earth metal bromide in water, then by addition of bromine in the form of bromine water with a concentration advantageously close to 1% by weight and finally, the pH can be adjusted using an acid.
  • the catalyst to be prepared comprises Pd
  • the solution (A) is made acidic with sulfuric acid or phosphoric acid. Orthophosphoric acid (H 3 PO 4 ) is however preferred.
  • the particularly preferred solution (A) comprises approximately 100 mg / l of NaBr, 10 mg / l of Br 2 and 10 g / l of orthophosphoric acid.
  • the operation is generally carried out with a reduced amount of supported catalyst of between 5 and 50 g per liter of solution (A). An amount of catalyst close to 10 g per liter of solution (A) is preferred.
  • the treatment temperature is generally between 10 and 80 ° C., and preferably between 40 and 60 ° C.
  • the duration of treatment can vary within wide limits. This duration can be between 1 and 1 2 hours, and preferably between 4 and 8 hours.
  • the catalytic solid is separated from the aqueous solution (A) by any known means, then dried at a temperature between 1 00 and 140 ° C and preferably close to 1 20 ° C. Drying at atmospheric pressure is most often used, for example using a ventilated oven.
  • the impregnation of the support can be carried out by any known means.
  • the impregnation step consists in bringing the chosen support into contact with a most concentrated aqueous solution possible salt (s) of at least one metal from group M so as to form a paste.
  • This contacting can be carried out by adding the concentrated aqueous solution of metal salt (s), at room temperature, in a mixer containing the support.
  • the duration of the mixing generally depends on the amount of support involved, but for productivity reasons it is preferred, after the addition of the metal solution, to mix for approximately 0.5 to 3 hours.
  • the resulting paste is preferably filtered, then wrung and finally dried. To ensure maximum spin, it is recommended to carefully pack the filtered dough.
  • the impregnated support is dried at a temperature preferably between 20 and 50 ° C.
  • the drying is advantageously carried out under conditions favoring slow crystallization and, preferably, in the absence of agitation.
  • the drying time generally depends on the temperature and the pressure. It is most often between 1 and 7 days. For information, in a vacuum oven heated to 40 ° C, it takes 48 hours to dry the impregnated and wrung out solid. Drying can also be carried out at room temperature for one week.
  • a particular mode of preparation of the supported catalyst based on at least one group M metal successively comprises the following steps:
  • step (c) reduction of the dried solid from step (b)
  • step (d) treatment of the reduced solid from step (c) with an acidic aqueous solution (A), comprising bromine and bromide ions
  • step (E) filtration of the solid treated in step (d) and drying at a temperature between 100 and 140 ° C.
  • the preferred operating conditions for each stage of the preparation are the same as those described above.
  • the experimental conditions already used in the prior art in particular US 5 1 28 1 14 and US 5 352 645, can be applied.
  • Any known means for promoting the dissolution of metal salts, in order to obtain a concentrated aqueous solution for the impregnation step (a), can be used. Mention may in particular be made of the use of a few drops of acid, of slight heating and of agitation using ultrasound.
  • the oven used for the reduction is first purged with nitrogen for a sufficient time, generally 1 5 and 60 minutes, then swept with hydrogen and then brought to a temperature between 250 and 350 ° C.
  • the reduction time of the solid at the chosen temperature can be between 1 and
  • a third object of the invention is the process for the direct manufacture of hydrogen peroxide from hydrogen and oxygen. This process is characterized in that the catalyst described above and prepared is used.
  • the catalyst can be used both in a process for the direct manufacture of hydrogen peroxide in a tubular reactor and in a stirred reactor. It is particularly suitable for the process in which hydrogen and oxygen are injected into the aqueous reaction medium of the stirred reactor and oxygen is introduced into the continuous gas phase of the stirred reactor.
  • the catalyst can advantageously be used in a process for the direct manufacture of hydrogen peroxide in which hydrogen and oxygen are injected into the lower part of the aqueous reaction medium and oxygen is introduced into the phase continuous gaseous gas of the stirred reactor such that the composition of this continuous gaseous phase is outside the flammability zone.
  • the catalyst has proven to be very interesting when the stirred reactor is provided with several turbines arranged along a single vertical axis.
  • the catalyst has proved particularly advantageous in a continuous process for the direct manufacture of hydrogen peroxide with recycling of reagents, such as hydrogen.
  • Aldrich microporous silica (ref. 28,851 -9) having the following characteristics:
  • Average particle size 25 ⁇ m BET surface 500 m 2 / g Pore volume 0.75 cm 3 / g
  • Average pore diameter 60 ⁇ are placed in a glass beaker, stirred by a magnetic bar.
  • the 50 cm 3 of metal salt solution prepared previously are then quickly added.
  • After 1 hour 30 minutes of stirring at 25 ° C. a thick slurry is obtained which is filtered on a No. 3 frit and spun under vacuum for 2 hours 30 minutes.
  • the filter cake is placed in a crystallizer on a glass cloth and dried 48 hours at 40 ° C in a vacuum oven.
  • the dried solid is then reduced in a stream of 60 Nl / h of H 2 at 300 ° C for 1 h 30 then cooled to room temperature in 6 hours.
  • the reduced solid is then treated at 40 ° C. for 5 hours with 2000 cm 3 of solution containing 100 mg / l of NaBr, 10 mg / l of Br 2 and 10 g / l of H 3 PO 4 .
  • the resulting mixture is then filtered and the catalyst is dried for 24 hours in a ventilated oven at 120 ° C.
  • the catalyst contains 0.7% Pd and 0.03% platinum by weight.
  • Example 2 The procedure is as for Example 1 with the only difference that the reduced solid is used directly as a catalyst without treatment with the brominated aqueous solution.
  • Example 3 After impregnating the silica as in Example 1, instead of filtering the slurry and wringing out the filtered paste, the slurry is dried in a rotary laboratory evaporator (Heidolph with a fluted glass flask of 500 cm 3 ). The flask rotates in an oil bath at 120 ° C. under vacuum of 40 mm Hg. After evaporation, the solid is reduced and then treated as described in Example 1.
  • Example 3 The procedure is as described in Example 3 except that the solid after reduction is not treated with the brominated aqueous solution.
  • Example 3 The procedure is as described in Example 3 except that after impregnation the slurry is left in ambient air for one week instead of drying in the rotary evaporator.
  • Example 7 The procedure is as described in Example 1 except that the Pd is replaced by Au.
  • a selected quantity of aqueous reaction medium and catalyst are introduced into a cylindrical reactor of total capacity, 1,500 cm 3 provided with 2 or 3 flanged turbines 45 mm in diameter, 4 vertical counter blades and a tubular cooling bundle. .
  • the aqueous reaction medium is prepared by adding 1 2 g of H 3 PO 4 , 58 mg of NaBr and 5 mg of Br 2 in 1000 cm 3 of demineralized water.
  • the reactor is pressurized by injecting a selected flow of oxygen into the continuous gas phase.
  • the pressure remains constant thanks to a pressure regulator.
  • the liquid medium is brought to the chosen temperature by circulation of thermostatically controlled water in the bundle of cooling tubes.
  • Stirring is set at 1,900 rpm and selected flows of oxygen and hydrogen are injected into the liquid phase at the center of the lower turbine.
  • the flow rate and the hydrogen content of the gas mixture leaving the pressure regulator are measured. After the end of the expected reaction time, the arrival of hydrogen and oxygen in the aqueous reaction medium is cut off and the injection of oxygen into the gaseous phase is continued until the hydrogen disappears in the latter. The oxygen supply is then cut off and the reactor is decompressed.
  • the aqueous hydrogen peroxide solution is weighed and separated from the catalyst by filtration on a Millipore ' 8 filter.
  • the selectivity for H 2 O 2 is defined as being the percentage of the number of moles of H 2 O 2 formed out of the number of moles of H 2 consumed.
  • the conversion rate is defined as the percentage of the volume of H 2 consumed over the volume of H 2 introduced.
  • the catalytic results for each test are summarized in the following

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un catalyseur métallique supporté à base d'au moins un métal choisi dans le groupe M formé de palladium, platine, ruthénium, rhodium, d'iridium, d'holmium, d'osmium et d'or, utilisé dans la fabrication directe du peroxyde d'hydrogène à partir d'hydrogène et d'oxygène. Le procédé de préparation du catalyseur comprenant successivement une étape d'imprégnation d'une solution à base d'un ou plusieurs sel(s) d'au moins un métal du groupe M sur un support, et une étape de réduction caractérisée en ce qu'à l'issue de l'étape de réduction, le catalyseur est soumis à un traitement avec une solution aqueuse acide comprenant du brome et des ions bromure. Le catalyseur est caractérisé par des amas de métal ou métaux cristallisés de taille comprise entre 0,1 et 20 microns et de préférence comprise entre 0,1 et 10 microns. Le catalyseur bimétallique supporté est préféré, par exemple Pd-Pt, Au-Pt, Pd-Ho et Pd-Au.

Description

CATALYSEUR METALLIQUE SUPPORTE, SA PREPARATION ET SES APPLICATIONS DANS LA FABRICATION DIRECTE DU PEROXYDE
D'HYDROGENE
La présente invention concerne un catalyseur métallique supporté, apte à la fabrication directe du peroxyde d'hydrogène à partir d'hydrogène et d'oxygène. Elle a également pour objet le procédé de fabrication dudit catalyseur ainsi que le procédé de fabrication du peroxyde d'hydrogène mettant en œuvre ledit catalyseur. La faible productivité du procédé de fabrication catalytique du peroxyde d'hydrogène directement à partir d'hydrogène et d'oxygène est un frein à son développement. Des tentatives pour améliorer cette productivité sont nombreuses. On peut citer notamment US 3 336 1 1 2, US 3 361 533, US 4 007 526, US 4 009 252, US 4 279 883 et US 4 335 092. Ces études sont principalement basées sur le concept général, à savoir la stabilisation du peroxyde d'hydrogène à l'aide d'agent séquestrant ou d'inhibiteur de décomposition.
D'autres voies pour améliorer la productivité en peroxyde d'hydrogène du procédé direct ont également été explorées. Ainsi, le brevet US 4 379 778 divulgue un procédé de fabrication directe du peroxyde d'hydrogène à partir d'hydrogène et d'oxygène dans un milieu aqueux comprenant des inhibiteurs de décomposition, en présence d'un catalyseur palladium-charbon préalablement traité avec un aldéhyde ou une cétone et, de préférence, prétraité également avec une solution diluée d'acide chlorhydrique.
L'emploi d'un bromure dans le milieu aqueux réactionnel du procédé direct de fabrication de peroxyde d'hydrogène est décrit dans le brevet US 4 772 458.
Enfin, les brevets US 5 1 28 1 14 et US 5 352 645 décrivent une méthode de préparation des catalyseurs à base de palladium ou platine- palladium supporté sur des microsphères uniformes, non-agglomérées et poreuses de silice, résistant à l'attrition grâce à l'utilisation de citrate d'ammonium ou d'urée comme additif et aptes à la fabrication directe du peroxyde d'hydrogène. L'exemple 1 2 du brevet US 5 1 28 1 14 décrit la préparation en deux étapes d'un catalyseur supporté contenant environ 0,05 % en poids de platine et 1 % en poids de palladium sur des microsphères poreuses de silice. Le support est d'abord préparé par atomisation d'un mélange de silice Ludox AS 40 et d'urée, puis calciné à 650°C sous azote. Ce support est ensuite ajouté à une solution de Pt et Pd, préalablement préparée par dissolution de H2PtCI6 et PdCI2 dans l'eau, portée à une température comprise entre 60 et 70°C et acidifiée par de l'HCI concentré jusqu'à l'obtention d'un pH d'environ 1 ,2. Le mélange résultant est agité, puis atomisé et enfin, la poudre obtenue est réduite sous courant d'hydrogène à 300°C.
La préparation du catalyseur supporté suivant l'exemple 1 5 du brevet US 5 352 645 est similaire à celle décrite à l'exemple 1 2 du brevet US 5 1 28 1 1 4 avec toutefois une différence. En effet, le mélange résultant, au lieu d'être atomisé, est séché sous vide à 1 00°C pendant toute une nuit, puis le solide séché est réduit sous courant d'hydrogène à 1 00°C. Des cristallites métalliques de l'ordre de 30 à 50 Â ont ainsi été obtenues.
La Société déposante a mis au point un catalyseur supporté à base d'au moins un métal choisi dans le groupe M formé de palladium, platine, ruthénium, rhodium, d'iridium, d'osmium, d'holmium et d'or et, en particulier, un catalyseur bimétallique supporté. Le catalyseur bimétallique supporté est en général constitué d'un métal du groupe M majoritaire et d'un métal du groupe M minoritaire. Le métal majoritaire représente environ 0, 1 à 10 % en poids du catalyseur et de préférence entre 0,5 à 1 % en poids. Le métal minoritaire représente environ 0,001 à 0, 1 % en poids du catalyseur et de préférence entre 0,01 et 0,05 %.
Comme métal majoritaire, le palladium et l'or sont avantageusement choisis. Comme métal minoritaire, le platine et l'holmium sont avantageusement choisis- Le catalyseur bimétallique supporté particulièrement préféré est constitué de palladium comme métal majoritaire et du platine comme métal minoritaire. La présente invention vise également un catalyseur plurimétallique supporté constitué d'un métal du groupe M majoritaire et de plusieurs métaux du groupe M minoritaires. Le catalyseur plurimétallique supporté préféré comprend le palladium, comme métal majoritaire, le platine et au moins un métal du groupe M, comme métaux minoritaires.
La teneur en métal majoritaire dans le catalyseur plurimétallique supporté est pratiquement identique à celle du catalyseur bimétallique et, chaque métal minoritaire peut être présent dans le catalyseur en quantité représentant environ 0,001 à 0,1 % en poids du catalyseur et de préférence entre environ 0,01 et 0,05 %.
La présente invention fourni, en outre, un catalyseur monométallique supporté avec, de préférence, le platine ou l'or comme constituant métallique du groupe M. La teneur en constituant métallique est en général compris entre 0, 1 et 1 0 % en poids du catalyseur et de préférence compris entre 0,5 et 1 % en poids.
Le catalyseur métallique supporté selon l'invention est, de préférence, caractérisé par des amas de métal ou métaux cristallisé(s) de taille comprise entre 0, 1 et 20 μm et, de préférence, comprise entre 1 et
La silice, l'alumine, le charbon et le silicoaluminate peuvent convenir comme support. Toutefois, on préfère utiliser la silice et avantageusement, des particules de silice de taille moyenne comprise entre 1 et 50 //m. On préfère également utiliser de la silice de surface spécifique BET supérieure à 200 m2/g et le plus souvent comprise entre 300 et 600 m2/g. La silice microporeuse d'AIdrich référencée 28,851 -9 s'est avérée particulièrement intéressante.
Le taux de fer (Fe) dans le support choisi est, de préférence, inférieur à 0,001 % en poids.
Un deuxième objet de l'invention est un procédé de préparation de catalyseur supporté à base d'au moins un métal du groupe M précédemment défini. Ce procédé comprenant successivement une étape d'imprégnation d'une solution à base d'un ou de plusieurs sel(s) d'au moins un métal, choisi du groupe M, sur un support et, une étape de réduction est caractérisé en ce qu'à l'issue de l'étape de réduction, le catalyseur est soumis à un traitement avec une solution aqueuse (A) acide comprenant du brome et des ions bromure.
Selon la présente invention, la concentration des ions bromure dans la solution aqueuse (A) peut être comprise entre 20 et 200 mg/l et de préférence comprise entre 20 et 100 mg/l. La concentration en brome
(Br2) peut être comprise entre 2 et 20 mg/l et de préférence comprise entre 2 et 1 0 mg/l.
Le pH de la solution aqueuse (A) est de préférence compris entre 1 et 3. La solution aqueuse (A) peut être préparée par exemple par dissolution d'un bromure de métal alcalin ou alcalino-terreux dans de l'eau, puis par ajout du brome sous forme d'eau de brome de concentration avantageusement voisine de 1 % en poids et enfin, le pH peut être ajusté à l'aide d'un acide. Lorsque le catalyseur à préparer comprend du Pd, la solution (A) est rendue acide par de l'acide sulfurique ou de l'acide phosphorique. L'acide orthophosphorique (H3PO4) est toutefois préféré.
La solution (A) particulièrement préférée comprend environ 1 00 mg/l de NaBr, 10 mg/l de Br2 et 1 0 g/l d'acide orthophosphorique.
On opère en général avec une quantité de catalyseur supporté réduit comprise entre 5 et 50 g par litre de solution (A). Une quantité de catalyseur voisine de 1 0 g par litre de solution (A) est préférée.
La température de traitement est en générale comprise entre 1 0 et 80°C, et de préférence comprise entre 40 et 60°C.
La durée de traitement peut varier dans de larges limites. Cette durée peut être comprise entre 1 et 1 2 heures, et de préférence comprise entre 4 et 8 heures.
Après le traitement, le solide catalytique est séparé de la solution aqueuse (A) par tout moyen connu, puis séché à une température comprise entre 1 00 et 140°C et de préférence voisine de 1 20°C. Le séchage à pression atmosphérique est le plus souvent utilisé, par exemple à l'aide d'une étuve ventilée.
L'imprégnation du support peut être effectuée par tout moyen connu. Avantageusement, l'étape d'imprégnation consiste à mettre en contact le support choisi avec une solution aqueuse la plus concentrée possible, du ou des sel(s) d'au moins un métal du groupe M de manière à former une pâte. Cette mise en contact peut être effectuée par ajout de la solution aqueuse concentrée de sel(s) métallique(s), à température ambiante, dans un malaxeur contenant le support. La durée du malaxage dépend en général de la quantité de support mise en jeu, mais pour des raisons de productivité on préfère, après l'ajout de la solution métallique, malaxer pendant environ 0,5 à 3 heures.
Après le malaxage et avant l'étape de réduction, la pâte résultante est de préférence filtrée, puis essorée et enfin séchée. Pour assurer un essorage maximal, il est recommandé de tasser soigneusement la pâte filtrée. A l'issu de l'essorage, le support imprégné est séché à une température de préférence comprise entre 20 et 50°C. Le séchage est avantageusement effectué dans les conditions favorisant une cristallisation lente et, de préférence, en l'absence d'agitation. La durée de séchage dépend en général de la température et de la pression. Elle est le plus souvent comprise entre 1 et 7 jours. A titre indicatif dans une étuve à vide chauffée à 40°C, il suffit de 48 heures pour sécher le solide imprégné et essoré. Le séchage peut également être effectué à température ambiante pendant une semaine. Un mode particulier de préparation du catalyseur supporté à base d'au moins un métal du groupe M comprend successivement les étapes suivantes :
(a) la mise en contact d'un support, choisi dans le groupe formé par la silice, l'alumine, le charbon et le silicoaluminate, avec une solution aqueuse concentrée de(s) sel(s) d'au moins un métal du groupe M de manière à former une pâte
(b) filtration, essorage, puis séchage de la pâte dans des conditions favorisant une cristallisation lente
(c) réduction du solide séché de l'étape (b) (d) traitement du solide réduit de l'étape (c) avec une solution aqueuse (A) acide, comprenant du brome et des ions bromure
(e) filtration du solide traité à l'étape (d) et séchage à une température comprise entre 100 et 140°C. Les conditions opératoires préférées de chaque étape de la préparation sont les mêmes que celles décrites précédemment. S'agissant de l'étape de réduction, on peut appliquer les conditions expérimentales déjà utilisées dans l'art antérieur, notamment US 5 1 28 1 14 et US 5 352 645.
Tout moyen connu pour favoriser la dissolution des sels métalliques, afin d'obtenir une solution aqueuse concentrée pour l'étape d'imprégnation (a), peut être utilisé. On peut citer notamment l'emploi de quelques gouttes d'acide, d'un léger chauffage et d'agitation à l'aide des ultrasons.
On préfère broyer le solide séché provenant de l'étape (b) avant de la soumettre à l'étape de réduction. De façon pratique, le four utilisé pour la réduction est d'abord purgé par de l'azote pendant un temps suffisant, en général 1 5 et 60 minutes, puis balayé par de l'hydrogène et ensuite porté à une température comprise entre 250 et 350 °C. La durée de réduction du solide à la température choisie peut être comprise entre 1 et
3 heures. Après réduction, le four est ramené à la température ambiante puis, purgé à l'azote.
Un troisième objet de l'invention est le procédé de fabrication directe du peroxyde d'hydrogène à partir d'hydrogène et d'oxygène. Ce procédé est caractérisé en ce que l'on met en œuvre le catalyseur précédemment décrit et préparé.
Le catalyseur peut être mis en œuvre aussi bien dans un procédé de fabrication directe du peroxyde d'hydrogène en réacteur tubulaire, qu'en réacteur agité. Il convient tout particulièrement au procédé dans lequel, l'hydrogène et l'oxygène sont injectés dans le milieu réactionnel aqueux du réacteur agité et de l'oxygène est introduit dans la phase gazeuse continue du réacteur agité.
Le catalyseur peut être avantageusement mis en œuvre dans un procédé de fabrication directe du peroxyde d'hydrogène selon lequel, l'hydrogène et l'oxygène sont injectés dans la partie inférieure du milieu réactionnel aqueux et, de l'oxygène est introduit dans la phase gazeuse continue du réacteur agité en quantité telle que la composition de cette phase gazeuse continue soit en dehors de la zone d'inflammabilité. Le catalyseur s'est avéré très intéressant lorsque le réacteur agité est muni de plusieurs turbines disposées le long d'un axe vertical unique. Lorsque l'hydrogène et l'oxygène sont injectés sous forme de petites bulles dans la partie inférieure du milieu réactionnel aqueux dans des proportions telles que le rapport des débits molaires hydrogène sur oxygène soient supérieurs à 0,041 6, une productivité en peroxyde d'hydrogène supérieure à celle de l'art antérieur est obtenue.
Le catalyseur s'est avéré particulièrement intéressant dans un procédé continu de fabrication directe de peroxyde d'hydrogène avec recyclage des réactifs, comme l'hydrogène.
PARTIE EXPERIMENTALE
Préparation des catalyseurs Exemple 1 On ajoute à température ambiante dans 50 cm3 d'eau déminéralisée :
- 0,33 g de PdCI2 (réf. Aldrich : 20,588-5)
- 0,021 g de H2PtCI6 (réf. Aldrich : 25,402-9) et quelques gouttes d'HCI à 30 % en poids pour favoriser la dissolution.
- 20 g de silice microporeuse Aldrich (réf. 28,851 -9) ayant les caractéristiques suivantes :
Taille moyenne des particules 25 μm Surface BET 500 m2/g Volume des pores 0,75 cm3/g
Diamètre moyen des pores 60 Â sont placés dans un bêcher de verre, agité par un barreau magnétique. On ajoute alors rapidement les 50 cm3 de solution de sels métalliques préparée précédemment. Après 1 H30 d'agitation à 25 °C, on obtient une bouillie épaisse qui est filtrée sur un fritte N ° 3 et essoré sous vide pendant 2H30. Le gâteau de filtration est placé dans un cristallisoir sur une toile de verre et séché 48 heures à 40°C dans une étuve à vide. Le solide séché est ensuite réduit dans un courant de 60 Nl/h d'H2 à 300°C pendant 1 H30 puis refroidi jusqu'à la température ambiante en 6 heures. Le solide réduit est alors traité à 40°C pendant 5 heures avec 2 000 cm3 de solution contenant 1 00 mg/l de NaBr, 1 0 mg/l de Br2 et 10 g/l d'H3PO4.
On filtre ensuite le mélange résultant et on sèche le catalyseur pendant 24 heures à l'étuve ventilée à 1 20°C.
Après analyse le catalyseur contient 0,7 % de Pd et 0,03 % de platine en poids.
Exemple 2 On opère comme pour l'exemple 1 avec comme seule différence que le solide réduit est utilisé directement comme catalyseur sans traitement avec la solution aqueuse bromée.
Exemple 3 Après l'imprégnation de la silice comme à l'exemple 1 , au lieu de filtrer la bouillie et d'essorer la pâte filtrée, on sèche la bouillie dans un évaporateur rotatif de laboratoire (Heidolph avec un ballon en verre cannelé de 500 cm3). Le ballon tourne dans un bain d'huile à 1 20°C sous vide de 40 mm Hg. Après l'évaporation, le solide est réduit puis traité comme décrit à l'exemple 1 .
Exemple 4
On opère comme décrit à l'exemple 3 sauf que le solide après réduction n'est pas traité par la solution aqueuse bromée.
Exemple 5
On opère comme décrit à l'exemple 3 sauf qu'après imprégnation la bouillie est laissé à l'air ambiant pendant une semaine à la place du séchage dans l'évaporateur rotatif.
Exemple 6
On opère comme décrit à l'exemple 1 sauf que le Pd est remplacé par l'Au. Exemple 7
On opère comme décrit à l'exemple 1 sauf que le Pt est remplacé par le Ho. Exemple 8
On opère comme décrit à l'exemple 1 sauf que le Pt est remplacé par l'Au. Préparation de la solution de peroxyde d'hydrogène
Mode opératoire général
Dans un réacteur cylindrique de capacité totale, 1 500 cm3 muni de 2 ou 3 turbines flasquées de 45 mm de diamètre, de 4 contrepales verticales et d'un faisceau tubulaire de refroidissement, on introduit une quantité choisie de milieu réactionnel aqueux et de catalyseur.
Le milieu réactionnel aqueux est préparé par addition de 1 2 g de H3PO4, 58 mg de NaBr et 5 mg de Br2 dans 1 000 cm3 d'eau déminéralisée.
Le réacteur est pressurisé par injection d'un débit choisi d'oxygène dans la phase gazeuse continue. La pression reste constante grâce à un régulateur de pression. Le milieu liquide est porté à la température choisie par circulation d'eau thermostatée dans le faisceau de tubes de refroidissement.
L'agitation est réglée à 1 900 t/min et des débits choisis d'oxygène et d'hydrogène sont injectés dans la phase liquide au centre de la turbine inférieure.
On mesure le débit et la teneur en hydrogène du mélange gazeux sortant du régulateur de pression. Après l'écoulement du temps de réaction prévu, on coupe l'arrivée d'hydrogène et d'oxygène dans le milieu réactionnel aqueux et on maintient l'injection d'oxygène dans la phase gazeuse continue jusqu'à disparition de l'hydrogène dans cette dernière. On coupe alors l'arrivée d'oxygène et on décomprime le réacteur.
La solution aqueuse de peroxyde d'hydrogène est pesée et séparée du catalyseur par filtration sur un filtre Millipore'8.
Cette solution est ensuite dosée par iodométrie pour déterminer la concentration en H2O2. La sélectivité en H2O2 est définie comme étant le pourcentage du nombre de moles d'H2O2 formées sur le nombre de moles d'H2 consommées.
Le taux de conversion est défini comme étant le pourcentage du volume d'H2 consommé sur le volume d'H2 introduit. Les résultats catalytiques pour chaque essai sont résumés dans le
Tableau I.
Figure imgf000011_0001
Tableau I

Claims

REVEN D I CATI O N S
1 . Procédé de préparation d'un catalyseur supporté à base d'au moins un métal du groupe M formé de palladium, platine, ruthénium, rhodium, d'iridium, d'osmium, d'holmium et d'or, comprenant successivement une étape d'imprégnation d'une solution à base d'un ou de plusieurs sel(s) d'au moins un métal du groupe M sur un support, et une étape de réduction caractérisée en ce qu'à l'issue de l'étape de réduction, le catalyseur est soumis à un traitement avec une solution aqueuse (A) acide comprenant du brome et des ions bromure.
2. Procédé selon la revendication 1 caractérisé en ce que la concentration des ions bromure dans la solution aqueuse (A) est comprise entre 20 et 200 mg/l, et de préférence comprise entre 20 et 1 00 mg/l.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que la concentration en brome est comprise entre 2 et 20 mg/l et de préférence comprise entre 2 et 1 0 mg/l.
4. Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que le pH de la solution aqueuse (A) est compris entre 1 et 3.
5. Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que la température de traitement est comprise entre 10 et 80°C et de préférence comprise entre 40 et 60°C.
6. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'après le traitement, le solide catalytique est séparé de la solution A puis séché à une température comprise entre 1 00 et 140°C.
7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce qu'après imprégnation et avant l'étape de réduction, la pâte résultante est filtrée, puis essorée et enfin séchée.
8. Procédé selon la revendication 7 caractérisé en ce que le séchage est effectué dans des conditions favorisant une cristallisation lente.
9. Catalyseur supporté à base d'au moins un métal choisi dans le groupe M formé de palladium, platine, ruthénium, rhodium, d'iridium, d'osmium, d'holmium et d'or, la teneur d'un métal choisi étant comprise entre 0, 1 et 1 0 % en poids du catalyseur, caractérisé par des amas de métal ou métaux cristallisés de taille comprise entre 0, 1 et 20 μm et de préférence comprise entre 0,1 et 10 μm.
10. Procédé ou catalyseur selon l'une des revendications 1 à 9 caractérisé en ce que le palladium et l'or sont avantageusement choisis.
1 1 . Procédé ou catalyseur selon l'une des revendications 1 à 9 caractérisé en ce que le catalyseur est un bimétallique supporté dans lequel le métal minoritaire représente entre 0,001 à 0, 1 % en poids du catalyseur.
12. Procédé ou catalyseur selon la revendication 1 1 caractérisé en ce que le métal minoritaire est le platine.
13. Procédé ou catalyseur selon l'une des revendications 1 à 1 2 caractérisé en ce que le support est une silice de surface spécifique BET, de préférence supérieure à 200m2/g.
14. Procédé de fabrication directe du peroxyde d'hydrogène à partir d'hydrogène et d'oxygène caractérisé en ce que l'on met en œuvre un catalyseur selon l'une des revendications 1 à 1 3.
PCT/FR2000/001552 1999-07-16 2000-06-07 Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene WO2001005501A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US10/018,868 US6958138B1 (en) 1999-07-16 2000-06-07 Supported metal catalyst, preparation and applications for directly making hydrogen peroxide
CA002378919A CA2378919C (fr) 1999-07-16 2000-06-07 Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene
JP2001510579A JP4251809B2 (ja) 1999-07-16 2000-06-07 担持金属触媒、その製造方法及び過酸化水素の直接製造におけるその適用
BRPI0012222-0A BR0012222B1 (pt) 1999-07-16 2000-06-07 processo de preparo de um catalisador suportado, catalisador suportado e processo de produção direta do peróxido e hidrogênio.
AT00940448T ATE454215T1 (de) 1999-07-16 2000-06-07 Verfahren zur herstellung metallischen geträgerten katalysatoren beinhaltend einen behandlungschritt mit wässriger lösung aus brom und bromionen
NZ516005A NZ516005A (en) 1999-07-16 2000-06-07 Supported metal catalyst, its preparation and its applications in the direct manufacture of hydrogen peroxide
AU55385/00A AU764178B2 (en) 1999-07-16 2000-06-07 Supported metal catalyst, preparation and applications for directly making hydrogen peroxide
EP00940448A EP1204477B1 (fr) 1999-07-16 2000-06-07 Procede de preparation d'un catalyseur metallique supporte contenant une etape de traitement a la solution aqueuse du brome et des ions bromure.
EA200200172A EA004475B1 (ru) 1999-07-16 2000-06-07 Металлический катализатор на подложке, способ его получения и способ прямого получения пероксида водорода
DE60043657T DE60043657D1 (de) 1999-07-16 2000-06-07 Verfahren zur herstellung metallischen geträgerten katalysatoren beinhaltend einen behandlungschritt mit wässriger lösung aus brom und bromionen
UA2002010369A UA76090C2 (en) 1999-08-09 2000-07-06 Supported catalyst, process of making thereof and method for direct production of hydrogen peroxide
NO20016240A NO323596B1 (no) 1999-07-16 2001-12-19 Fremgangsmate ved fremstilling av en baret metallkatalysator og fremgangsmate for direktefremstilling av hydrogenperoksyd.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR99/09260 1999-07-16
FR9909260A FR2796311B1 (fr) 1999-07-16 1999-07-16 Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene
FR9910310A FR2796312B1 (fr) 1999-07-16 1999-08-09 Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene
FR99/10310 1999-08-09

Publications (1)

Publication Number Publication Date
WO2001005501A1 true WO2001005501A1 (fr) 2001-01-25

Family

ID=26235041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001552 WO2001005501A1 (fr) 1999-07-16 2000-06-07 Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene

Country Status (17)

Country Link
US (1) US6958138B1 (fr)
EP (1) EP1204477B1 (fr)
JP (1) JP4251809B2 (fr)
KR (1) KR100554927B1 (fr)
CN (1) CN1210105C (fr)
AT (1) ATE454215T1 (fr)
AU (1) AU764178B2 (fr)
BR (1) BR0012222B1 (fr)
CA (1) CA2378919C (fr)
DE (1) DE60043657D1 (fr)
EA (1) EA004475B1 (fr)
FR (1) FR2796312B1 (fr)
NO (1) NO323596B1 (fr)
NZ (1) NZ516005A (fr)
PL (1) PL353747A1 (fr)
TR (1) TR200200073T2 (fr)
WO (1) WO2001005501A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443020A1 (fr) 2003-02-03 2004-08-04 Repsol Quimica S.A. Procédé integré pour l'oxydation sélective de composés organiques
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide
WO2013010835A1 (fr) 2011-07-15 2013-01-24 Solvay Sa Procédé pour obtenir du peroxyde d'hydrogène, et supports de catalyseur pour ledit procédé
EP2875861A2 (fr) 2013-11-26 2015-05-27 SK Innovation Co., Ltd. Procédé de préparation d'un catalyseur possédant de multicouches d'électrolyte polymère dispersées de paladium/platine traitées avec de l'acide sulfurique
EP3511295A1 (fr) 2018-01-15 2019-07-17 Univerza V Ljubljani Procédé de préparation de péroxyde d'hydrogène étiqueté isotopiquement

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780810B2 (en) 2002-03-13 2004-08-24 Council Of Scientific And Industrial Research Multifunctional catalyst useful in the synthesis of chiral vicinal diols and process for the preparation thereof, and process for the preparation of chiral vicinal diols using said multifunctional catalysts
EP1346767A1 (fr) * 2002-03-15 2003-09-24 Council of Scientific and Industrial Research Catalyseur multifonctionel utile dans la synthèse des diols vicinaux chiraux et son procédé de préparation
JP4655755B2 (ja) * 2005-05-18 2011-03-23 住友化学株式会社 過酸化水素の製造方法
GB0514075D0 (en) * 2005-07-11 2005-08-17 Cardiff University Improvements in catalysts
US7541309B2 (en) * 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
JP2010536572A (ja) * 2007-08-30 2010-12-02 ソルヴェイ(ソシエテ アノニム) 触媒担体およびその調製方法
CN101402039B (zh) * 2008-11-13 2010-12-08 北京化工大学 一种负载型金属钯催化剂的制备方法
KR101474571B1 (ko) * 2009-05-13 2014-12-19 에스케이이노베이션 주식회사 고분자 전해질 다층박막 촉매 및 그 제조 방법
WO2012171892A1 (fr) 2011-06-17 2012-12-20 Solvay Sa Procédé pour la production de peroxyde d'hydrogène
WO2014083309A1 (fr) * 2012-11-30 2014-06-05 Johnson Matthey Public Limited Company Catalyseur bimétallique
JPWO2018016359A1 (ja) * 2016-07-19 2019-05-09 三菱瓦斯化学株式会社 過酸化水素製造用貴金属触媒および過酸化水素の製造方法
KR102002482B1 (ko) * 2017-10-12 2019-07-23 한국과학기술연구원 과산화수소 합성용 Immiscible 복합체 촉매 및 이를 이용한 과산화수소 합성 방법
US11192091B2 (en) * 2019-03-22 2021-12-07 The Hong Kong University Of Science And Technology Palladium-ruthenium alloys for electrolyzers
CN110395696A (zh) * 2019-07-26 2019-11-01 四川轻化工大学 一种基于钯基双金属催化甲酸合成双氧水的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053333A (fr) * 1973-09-14 1975-05-12
EP0266875A1 (fr) * 1986-09-10 1988-05-11 Hitachi, Ltd. Méthode de combustion catalytique utilisant un catalyseur résistant à la chaleur
US5128114A (en) * 1989-04-14 1992-07-07 E. I. Du Pont De Nemours And Company Silica microspheres, method of improving attrition resistance
EP0685451A1 (fr) * 1994-06-02 1995-12-06 The Standard Oil Company Procédé de préparation d'un catalyseur d'acétate de vinyle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953368A (en) * 1971-11-01 1976-04-27 Exxon Research And Engineering Co. Polymetallic cluster compositions useful as hydrocarbon conversion catalysts
US4154751A (en) * 1978-03-01 1979-05-15 Exxon Research & Engineering Co. Preparation and use of supported potassium (or rubidium)-Group VIII-metal cluster catalysts in CO/H2 Fischer-Tropsch synthesis reactions
US4847231A (en) * 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
US5234584A (en) * 1991-02-04 1993-08-10 United Technologies Corporation Catalytic oxidation of aqueous organic contaminants
US5135731A (en) * 1991-05-15 1992-08-04 E. I. Du Pont De Nemours And Company Method for catalytic production of hydrogen peroxide
JPH06106076A (ja) * 1991-12-04 1994-04-19 Stonehard Assoc Inc 高分散金属微粒子担持触媒の製造方法
GB9203497D0 (en) * 1992-02-19 1992-04-08 Lilly Industries Ltd Pharmaceutical compounds
US5536693A (en) 1994-06-02 1996-07-16 The Standard Oil Company Process for the preparation of vinyl acetate catalyst
ES2137539T3 (es) * 1995-09-25 1999-12-16 Ecole Polytech Procedimiento para fabricar un electrodo para un dispositivo electroquimico.
US5853693A (en) 1996-04-03 1998-12-29 Mitsubishi Gas Chemical Company, Inc. Hydrogenation catalyst for production of hydrogen peroxide, and method for preparation of same
US6207128B1 (en) * 1997-05-05 2001-03-27 Akzo Nobel N.V. Method of producing a catalyst
FR2767722B1 (fr) * 1997-08-29 1999-12-31 Inst Francais Du Petrole Nouveau catalyseur utilisable dans les reactions de transformation de composes organiques
DE19753464A1 (de) * 1997-12-02 1999-06-10 Basf Ag Palladium-Cluster und ihre Verwendung als Katalysatoren
US6297185B1 (en) * 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
US6168775B1 (en) * 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
JP3575307B2 (ja) * 1998-12-28 2004-10-13 トヨタ自動車株式会社 排ガス浄化用触媒及びその製造方法
DE19912733A1 (de) * 1999-03-20 2000-09-21 Degussa Verfahren zur Herstellung von Wasserstoffperoxid durch Direktsynthese

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053333A (fr) * 1973-09-14 1975-05-12
EP0266875A1 (fr) * 1986-09-10 1988-05-11 Hitachi, Ltd. Méthode de combustion catalytique utilisant un catalyseur résistant à la chaleur
US5128114A (en) * 1989-04-14 1992-07-07 E. I. Du Pont De Nemours And Company Silica microspheres, method of improving attrition resistance
EP0685451A1 (fr) * 1994-06-02 1995-12-06 The Standard Oil Company Procédé de préparation d'un catalyseur d'acétate de vinyle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197535, Derwent World Patents Index; Class A41, AN 1975-57901W, XP002133679 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide
EP1443020A1 (fr) 2003-02-03 2004-08-04 Repsol Quimica S.A. Procédé integré pour l'oxydation sélective de composés organiques
US6822103B2 (en) 2003-02-03 2004-11-23 Repsol Quimica, S.A. Integrated process for selective oxidation of organic compounds
WO2013010835A1 (fr) 2011-07-15 2013-01-24 Solvay Sa Procédé pour obtenir du peroxyde d'hydrogène, et supports de catalyseur pour ledit procédé
US9610573B2 (en) 2011-07-15 2017-04-04 Solvay Sa Process to obtain hydrogen peroxide, and catalyst supports for the same process
EP2875861A2 (fr) 2013-11-26 2015-05-27 SK Innovation Co., Ltd. Procédé de préparation d'un catalyseur possédant de multicouches d'électrolyte polymère dispersées de paladium/platine traitées avec de l'acide sulfurique
EP3511295A1 (fr) 2018-01-15 2019-07-17 Univerza V Ljubljani Procédé de préparation de péroxyde d'hydrogène étiqueté isotopiquement

Also Published As

Publication number Publication date
NO323596B1 (no) 2007-06-11
EA200200172A1 (ru) 2002-08-29
TR200200073T2 (tr) 2003-03-21
PL353747A1 (en) 2003-12-01
BR0012222B1 (pt) 2011-03-22
CN1210105C (zh) 2005-07-13
NZ516005A (en) 2004-06-25
CA2378919A1 (fr) 2001-01-25
FR2796312B1 (fr) 2001-09-07
FR2796312A1 (fr) 2001-01-19
NO20016240L (no) 2001-12-19
DE60043657D1 (de) 2010-02-25
JP4251809B2 (ja) 2009-04-08
CA2378919C (fr) 2007-10-02
EA004475B1 (ru) 2004-04-29
AU5538500A (en) 2001-02-05
NO20016240D0 (no) 2001-12-19
CN1378484A (zh) 2002-11-06
KR20020040740A (ko) 2002-05-30
ATE454215T1 (de) 2010-01-15
BR0012222A (pt) 2002-03-26
EP1204477A1 (fr) 2002-05-15
US6958138B1 (en) 2005-10-25
JP2003520662A (ja) 2003-07-08
EP1204477B1 (fr) 2010-01-06
AU764178B2 (en) 2003-08-14
KR100554927B1 (ko) 2006-03-03

Similar Documents

Publication Publication Date Title
EP1204477B1 (fr) Procede de preparation d'un catalyseur metallique supporte contenant une etape de traitement a la solution aqueuse du brome et des ions bromure.
RU2131395C1 (ru) Способ получения пероксида водорода и катализатор для получения пероксида водорода
JP4999225B2 (ja) 多孔質担体に担持されたナノサイズの金属粒子より成る、酢酸ビニル製造用触媒、特にエチレンと酢酸とからの気相酸化反応で酢酸ビニルを得るための触媒の製造方法
CZ173794A3 (en) Process for preparing hydrogen peroxide, catalyst for making the same and a process for preparing such catalyst
JPS5921660B2 (ja) 支持体に担持された触媒の製造方法
JP5588107B2 (ja) 触媒の改良
FR2565844A1 (fr) Nouveaux microagregats de metaux non nobles, procede pour leur preparation et application a la catalyse de la photoreduction de l'eau
RU2146172C1 (ru) Каталитическая композиция, способ ее приготовления и способ очистки терефталевой кислоты
BE1004650A3 (fr) Synthese directe de peroxyde d'hydrogene par catalyse heterogene, catalyseur pour ladite synthese et procede de preparation dudit catalyseur.
CN107754794A (zh) 用于直接合成过氧化氢的催化剂
CN100490969C (zh) 载体金属催化剂、其制备方法和其在直接制备过氧化氢中的用途
KR20140063799A (ko) H202 합성을 위한 촉매 및 상기 촉매의 제조 방법
JP4451618B2 (ja) 白金コロイド溶液の製造方法および白金コロイド粒子が表面に定着した担持体
FR2796314A1 (fr) Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene
US7166557B2 (en) Process for the preparation of a microspheroidal catalyst
JPH05213607A (ja) 不均質触媒作用による過酸化水素の直接合成法、その合成のための触媒及びその触媒の製造方法
JP4318821B2 (ja) アントラキノン類の水素化触媒
UA76090C2 (en) Supported catalyst, process of making thereof and method for direct production of hydrogen peroxide
US5171884A (en) Preparation process for glyoxylic acid by catalytic oxidation of glyoxal in an aqueous medium in the presence of catalytic quantities of platinum
JPS62265243A (ja) 1,4−シクロヘキサンジオンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2000940448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 516005

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020027000074

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/36/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2378919

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 55385/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002/00073

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 008138842

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 200200172

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 10018868

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000940448

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027000074

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 55385/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027000074

Country of ref document: KR