WO2001003295A1 - Fir-dezimierungsfilter - Google Patents

Fir-dezimierungsfilter Download PDF

Info

Publication number
WO2001003295A1
WO2001003295A1 PCT/DE2000/002088 DE0002088W WO0103295A1 WO 2001003295 A1 WO2001003295 A1 WO 2001003295A1 DE 0002088 W DE0002088 W DE 0002088W WO 0103295 A1 WO0103295 A1 WO 0103295A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
coefficients
ram
fir
decimation filter
Prior art date
Application number
PCT/DE2000/002088
Other languages
English (en)
French (fr)
Inventor
Christoph Braun
Original Assignee
Christoph Braun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christoph Braun filed Critical Christoph Braun
Priority to AU65552/00A priority Critical patent/AU6555200A/en
Priority to DE10081893T priority patent/DE10081893D2/de
Publication of WO2001003295A1 publication Critical patent/WO2001003295A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0607Non-recursive filters comprising a ROM addressed by the input data signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/065Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
    • H03H17/0664Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer where the output-delivery frequency is lower than the input sampling frequency, i.e. decimation

Definitions

  • the invention relates to a novel FIR filter for an AD converter according to the method from
  • AD converters according to the patent specification DE 43 33 908 require a special FIR filter, which in the
  • An AD converter results from a linear pulse modulation.
  • This pulse modulation is based on the comparison of a sinusoidal carrier signal (S (t)) with the analog input signal (Sm (t)) (FIG. 1). If both signals match, a uniform pulse (Dirac pulse) is generated.
  • the frequency spectrum of this pulse sequence P (t) (FIG. 1) is shown in FIG. 2.
  • This special type of pulse modulation converts the original low-pass signal (input signal) into a band-pass signal with the carrier signal frequency (S (t)) as the center frequency.
  • the temporal position of the pulses of the sequence P (t) is quantized using two high-frequency counters (see patent specification DE 43 33 908).
  • the size of the required coefficient memory results from the impulse response length and the sampling rate.
  • 3 shows the relationship between the number of filter coefficients required and the impulse response length.
  • the pulse sequence Pd (t) results from the temporal quantization of the pulse sequence P (t).
  • Fig. 3 shows the impulse response of a low-pass filter. From Fig. 3 it can be seen that the number of coefficients must be equal to the number of quantization time intervals n. With a correspondingly high temporal resolution, a large number of coefficients are therefore required.
  • a sequential FIR filter (FIG. 4) essentially consists of a RAM corresponding to the impulse response length, the coefficient memory and a multiplier with an accumulator.
  • the control logic SL (FIG. 4) stores the samples in the RAM according to the chronological order and selects the filter coefficients.
  • the multiplier forms the product of the samples and the filter coefficients, which are then added up in the accumulator.
  • the invention relates to a sequential FIR filter for the AD converter method (DE 43 33 908).
  • this FIR filter has to shift the bandpass signal back to the baseband and, on the other hand, suppress all nonlinear upper spectra, so that the output data rate can be reduced to the Nyquist rate of the analog input signal.
  • An essential feature of the invention is the linear coefficient interpolation. This means that only a fraction of the required coefficients have to be saved. The majority of the coefficients are interpolated linearly. Simulations have shown that with a number of N required coefficients, only a number of N stored coefficients is required. Consequently, only every Nth coefficient is in a read-only memory (ROM). All intermediate coefficients are linearly interpolated using two neighboring values (line equation). The linear interpolation ensures sufficient accuracy and can be implemented in digital circuit technology with relatively little effort. This clearly results from the fact that a sinusoidal signal can be approximated particularly well by linear interpolation between equidistant reference points.
  • the FIR filter structure according to the invention is characterized by two data memories. First, the Dirac pulses that correspond to the count results are multiplied by a digital sine signal. This brings the bandpass signal back to the low-pass position. With a very high resolution of the AD converter, this multiplication requires a very large number of sinusoidal signal coefficients.
  • FIG. 5 An exemplary embodiment of the invention is shown in FIG. 5. It shows the implementation of the FIR filter.
  • the filter essentially consists of the coefficient memory for the sinusoidal signal (Sinus-ROM), the memory for the filter coefficients (Filter-ROM), the linear interpolators 1 and 2, the control logic 1 3 and the working memories for the amplitude values (Amp-RAM) and the time values (time RAM).
  • An accumulator following the multiplier supplies the output signal of the FIR filter
  • results of the high-frequency counter represent the input signal of the FIR filter (FIG. 5).
  • the number results, which represent the Dirac impulse sequence, are first assigned the corresponding sinusoidal signal coefficients. These selected sinusoidal signal coefficients are then stored in the amp RAM. The selection and storage takes over
  • the linear interpolator 1 calculates the missing coefficients between two coefficients stored in the sine ROM (linear equation).
  • the linear interpolator can be implemented with simple adders and bit shift operations, for example -RAM stored
  • the number of values stored in the amplitude RAM (Amp -RAM) as well as in the time RAM depends on the length of the

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

Die Erfindung betrifft ein neuartiges FIR-Filter für einen AD-Wandler nach dem Verfahren aus der Patentschrift DE 43 33 908. Dieses Verfahren beruht auf einer nichtäquidistanten Signalabstastung und erfordert daher ein spezielles, digitales FIR-Dezimierungsfilter. Das erfindungsgemässe FIR-Filter ist durch eine lineare Interpolation der Filterkoeffizienten gekennzeichnet. Dadurch reduziert sich erheblich der Speicheraufwand für die Koeffizienten. Charakteristisch für die neue Filterstruktur sind die beiden Datenspeicher (RAM) für Amplituden- und Zeitwerte. Die Erfindung ermöglicht ein sequentielles Dezimierungsfilter mit relativ geringem Schaltugnsaufwand.

Description

FIR-Dezimierungsfilter
Beschreibung
Die Erfindung betrifft ein neuartiges FIR-Filter für einen AD-Wandler nach dem Verfahren aus der
Patentschrift DE 43 33 908.
AD-Wandler entsprechend der Patentschrift DE 43 33 908 benötigen ein spezielles FIR-Filter, das im
Normalfall einen großen schaltungstechnischen Aufwand bedeutet.
Aufgabe der vorliegenden Erfindung ist es, durch eine vorteilhafte Gestaltung des FIR-Filters den schaltungstechnischen Aufwand deutlich zu reduzieren.
Ein AD-Wandler nach dem Verfahren aus DE 43 33 908 geht aus einer linearen Pulsmodulation hervor. Diese Pulsmodulation basiert auf dem Vergleich eines sinusförmigen Trägersignals (S(t)) mit dem analogen Eingangssignal (Sm(t)) (Fig. 1). Bei Übereinstimmung beider Signale wird jeweils ein gleichförmiger Impuls (Dirac-Impuls) erzeugt. Das Frequenzspektrum dieser Pulsfolge P(t) (Fig. 1) ist in Fig. 2 dargestellt. Diese spezielle Art der Pulsmodulation setzt das ursprüngliche Tiefpaßsignal (Eingangssignal) in ein Bandpaßsignal mit der Trägersignalfrequenz (S(t)) als Mittenfrequenz um. Zur AD-Wandlung wird die zeitliche Lage der Impulse der Folge P(t) mit zwei Hochfrequenzzählern quantisiert (siehe Patentschrift DE 43 33 908). Bei einem normalen, digitalen FIR-Filter ergibt sich die Größe des benötigten Koeffizientenspeichers aus der Impulsantwortlänge und der Abtastrate. In Fig. 3 ist der Zusammenhang zwischen Anzahl der benötigten Filterkoeffizienten, der Impulsantwortlänge dargestellt. Die Pulsfolge Pd(t) ergibt sich aus der zeitlichen Quantisierung der Pulsfolge P(t). Fig. 3 zeigt die Impulsantwort eines Tiefpaßfilters. Aus Fig. 3 erkennt man, daß die Koeffizientenanzahl gleich der Anzahl der Quantisierungszeitintervalle n sein muß. Bei einer entsprechend hohen zeitlichen Auflösung werden daher sehr viele Koeffizienten benötigt.
Ein sequentielles FIR-Filter (Fig. 4) besteht im Wesentlichen aus einem RAM entsprechend der Impulsantwortlänge, dem Koeffizientenspeicher und einem Multiplizierer mit Akkumulator. Die Steuerlogik SL (Fig. 4) speichert die Abtastwerte entsprechend der zeitlichen Reihenfolge in das RAM und wählt die Filterkoeffizienten aus. Der Multiplizierer bildet das Produkte aus den Abtastwerten und den Filterkoeffizienten, die dann im Akkumulator aufsummiert werden.
Die Erfindung bezieht sich auf ein sequentielles FIR-Filter für das AD-Wandlerverfahren (DE 43 33 908). Dieses FIR-Filter muß zum Einen das Bandpaßsignal wieder ins Basisband verschieben und zum Anderen alle nichtlinearen Oberspektren unterdrücken, so daß die Ausgangsdatenrate auf die Nyquistrate des analogen Eingangssignals reduziert werden kann.
Dazu ist eine neuartige Struktur eines FIR-Filters notwendig, die zudem mit deutlich reduzierter Koeftizientenspeichergröße auskommt. Diese Probleme werden durch die erfindugsgemäße FIR- Filterstruktur gelöst.
Ein wesentliches Merkmal der Erfindung ist die lineare Koeffizienteninterpolation. Dies bedeutet, daß nur ein Bruchteil der benötigten Koeffizienten gespeichert werden müssen. Die Überwiegende Anzahl der Koeffizienten werden linear interpoliert. Simulationen haben gezeigt, daß bei einer Anzahl von N benötigten Koeffizienten nur eine Anzahl von N gespeicherten Koeffizienten erforderlich ist. Folglich befindet sich nur jeder N -nte Koeffizient in einem Festwertspeicher (ROM). Alle dazwischenliegenden Koeffizienten werden mit Hilfe zwei benachbarter Werte linear interpoliert (Geradengleichng). Die lineare Interpolation gewährleistet eine ausreichende Genauigkeit und läßt sich in digitaler Schaltungstechnik mit relativ geringem Aufwand realisieren. Anschaulich ergibt sich dies aus der Tatsache, daß ein sinusförmiges Signal besonders gut durch lineare Interpolation zwischen äquidistanten Stützstellen angenähert werden kann.
Geht man von einer Tiefpaß-Filterung der Zählergebnisse des AD-Wandlers aus, so ist die erfindugsgemäße FIR-Filterstruktur durch zwei Datenspeicher gekennzeichnet. Zunächst werden die Diracimpulse, die den Zählergebnissen entsprechen, mit einem digitalen Sinussignal multipliziert. Dadurch wird das Bandpaßsignal wieder in Tiefpaßlage gebracht. Bei einer sehr hohen Auflösung des AD-Wandlers erfordert diese Multiplikation eine sehr große Anzahl an Sinussignalkoeffizienten. Durch die lineare Interpolation reduziert sich erheblich der Speicheraufwand für die Sinussignalkoeffizienten (N — » V N ) Da der AD-Wandler auf einer mchtaquidistanten Abtastubg beruht, müssen nicht nur die Ergebnisse der Sinusmultiplikation sondern auch die Zeitwerte (Zahlergebnisse ) für die Dauer der Impulsantwort des FIR-Filters in einem Arbeitsspeicher (RAM) abgelegt werden In einem Speicher befinden sich dann die Amplitudenwerte (Amp -RAM) und in 5 einem weiteren die Zeitwerte (Zeit-RAM) Die sich aus einer aquidistanten Abtastung der Tiefpaßimpulsantwort ergebenen Filterkoeffizienten werden in einem Festwertspeicher (ROM) abgelegt Zur Reduzierung des Speicheraufwandes werden die Koeffizienten, die zeitlich zwischen den gespeicherten Werten liegen, erfindungsgemaß durch eine lineare Interpolation ermittelt Diese
Maßnahme fuhrt zu einer deutlichen Reduzierung des Speicheraufwandes ( N — > N ) 10 Die Zeitwerte im Zeit-RAM wählen die Entsprechenden Filterkoeffizienten aus, die dann mit den Amplitudenwerten im Amp -RAM entsprechend multipliziert werden Wie bei einem gewöhnlichen FIR- Filter werden dann diese Produkte im Akkumulator aufsummiert und bilden dann das Ausgangssignal des FIR-Filters bzw des AD-Wandlers
15 Ein Ausfuhrungsbeispiel der Erfindung ist in Fig 5 dargestellt Sie zeigt die Realisierung des FIR- Filters Das Filter besteht im Wesentlichen aus dem Koeffizientenspeicher für das Sinussignal (Sinus- ROM), dem Speicher für die Filterkoeffizienten (Filter-ROM), den linearen Interpolatoren 1 und 2 , der Steuerlogik 1 3 und den Arbeitsspeichern für die Amplitudenwerte (Amp -RAM) und den Zeitwerten (Zeit-RAM) Ein dem Multiplizierer folgender Akkumulator liefert das Ausgangssignal des FIR-Filters
20 bzw des AD-Wandlers
Die Ergebnisse der Hochfrequenzzahler (Patentschrift DE 43 33 908) stellen das Eingangssignal des FIR-Filters (Fig 5) dar Den Zahlergebnissen, die die Diracstoßfolge repräsentieren, werden zuerst die entsprechenden Sinussignalkoeffizienten zugeordnet Anschließend werden dann diese ausgewählten Sinussignalkoeffizienten im Amp -RAM gespeichert Die Auswahl und Speicherung übernimmt die
25 Steuerlogik SL1 Der lineare Inteφolator 1 (Lin -Interpolator 1) berechnet die fehlenden Koeffizienten zwischen zwei im Sinus-ROM gespeicherten Koeffizienten (Geradengleichung) Der lineare Interpolator kann dabei z B mit einfachen Addierern und Bit-Schiebeoperationen realisiert werden Gleichzeitig werden die Zahlergebnisse im Zeit-RAM gespeichert Die Anzahl der gespeicherten Werte im Amplituden RAM (Amp -RAM) als auch im Zeit-RAM hangfei dabei von der Lange der
30 Impulsantwort des FIR-Filters ab Die Steueriogik SL2 ist sorgt für αie korrekte Reihenfolge der Datenspeicherung über die Steuerlogik SL3 werden dann den Zeitwerten die entsprechenden Filterkoeffizienten zugeordnet und an den Multiplizierer weiter geleitet Der lineare Interpolator 2 bestimmt dabei die Werte zwischen zwei benachbarten Koeffizienten aus dem Filter-ROM (Geradengleichung) Der
35 Multiplizierer bildet das Produkt zwischen den Filterkoeffizienten und den zugeordneten Amplitudenwerten im Amp -RAM Der Akkumulator überlagert die Ergebnisse der Multiplikationen und bildet so das Ausgangssignal
In diesem Beispiel wird von einer Tiefpaßfilterfunktion ausgegangen, weil durch die Zuordnung von Zahlergebnissen und Sinussignalkoeffizienten das Bandpaßsignal wieder in den Tiefpaßbereich
40 verschoben wird Soll das Bandpaßsignal direkt gefiltert werden, so entfallt der gestrichelt eingerahmte Teil in Fig 5 Allerdings haben Simulationen gezeigt, das dann gegenüber einer Tiefpaßfilterung die Impulsantwort des Bandpaßfilters wesentlich langer sei muß (höhere Sperrdampfung)
45
50 Hierzu 2 Seιte(n) Zeichnungen
_53
60

Claims

Patentansprüche:
1. Sequentielles, digitales FIR-Dezimierungsfilter für nichtaquidistante Signalabtastungen, dadurch gekennzeichnet, daß dem Koeffizientenspeicher ein linearer Interpolator folgt, der die Koeffizienten zwischen zwei gespeicherten Werten durch lineare Interpolation (Geradengleichung) ermittelt.
2. FIR-Dezimierungsfilter nach Anspruch 1 , dadurch gekennzeichnet, daß die Eingangswerte in einem Zeitspeicher-RAM und nach entsprechender Multiplikation mit dem Sinussignal in einem Amplitudenspeicher-RAM gespeichert werden.
PCT/DE2000/002088 1999-07-02 2000-06-27 Fir-dezimierungsfilter WO2001003295A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU65552/00A AU6555200A (en) 1999-07-02 2000-06-27 Fir decimation filter
DE10081893T DE10081893D2 (de) 1999-07-02 2000-06-27 Fir-Dezimierungsfilter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999130702 DE19930702A1 (de) 1999-07-02 1999-07-02 FIR-Dezimierungsfilter
DE19930702.4 1999-07-02

Publications (1)

Publication Number Publication Date
WO2001003295A1 true WO2001003295A1 (de) 2001-01-11

Family

ID=7913531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002088 WO2001003295A1 (de) 1999-07-02 2000-06-27 Fir-dezimierungsfilter

Country Status (3)

Country Link
AU (1) AU6555200A (de)
DE (2) DE19930702A1 (de)
WO (1) WO2001003295A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372393A (en) * 2001-02-20 2002-08-21 Samsung Electronics Co Ltd Sampling rate conversion using interpolated filter coefficients
US6457567B1 (en) 1998-08-15 2002-10-01 Delphi Technologies, Inc. Leaf spring for a disc brake
US6520296B1 (en) 1998-08-15 2003-02-18 Delphi Technologies, Inc. Multiple disc brake system
US6705434B1 (en) 1998-08-15 2004-03-16 Delphi Technologies, Inc. Multiple disc brake system
US6843350B2 (en) 2000-05-05 2005-01-18 Delphi Technologies, Inc. Method and apparatus for mounting a brake disc with resilient biasing means
US7913821B2 (en) 2000-07-25 2011-03-29 Bwi Company Limited S.A. Method and apparatus for controlling a braking system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494214A (en) * 1983-02-03 1985-01-15 Rca Corporation Apparatus for generating scaled weighting coefficients for sampled data filters
DE4333908A1 (de) * 1993-10-05 1995-04-06 Christoph Braun Analog/Digital-Umsetzer
US5471411A (en) * 1992-09-30 1995-11-28 Analog Devices, Inc. Interpolation filter with reduced set of filter coefficients

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494214A (en) * 1983-02-03 1985-01-15 Rca Corporation Apparatus for generating scaled weighting coefficients for sampled data filters
US5471411A (en) * 1992-09-30 1995-11-28 Analog Devices, Inc. Interpolation filter with reduced set of filter coefficients
DE4333908A1 (de) * 1993-10-05 1995-04-06 Christoph Braun Analog/Digital-Umsetzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457567B1 (en) 1998-08-15 2002-10-01 Delphi Technologies, Inc. Leaf spring for a disc brake
US6520296B1 (en) 1998-08-15 2003-02-18 Delphi Technologies, Inc. Multiple disc brake system
US6705434B1 (en) 1998-08-15 2004-03-16 Delphi Technologies, Inc. Multiple disc brake system
US6843350B2 (en) 2000-05-05 2005-01-18 Delphi Technologies, Inc. Method and apparatus for mounting a brake disc with resilient biasing means
US7913821B2 (en) 2000-07-25 2011-03-29 Bwi Company Limited S.A. Method and apparatus for controlling a braking system
GB2372393A (en) * 2001-02-20 2002-08-21 Samsung Electronics Co Ltd Sampling rate conversion using interpolated filter coefficients
GB2372393B (en) * 2001-02-20 2003-04-30 Samsung Electronics Co Ltd Sampling rate conversion

Also Published As

Publication number Publication date
DE19930702A1 (de) 2001-01-11
DE10081893D2 (de) 2001-10-04
AU6555200A (en) 2001-01-22

Similar Documents

Publication Publication Date Title
DE112008003098B4 (de) Verfahren und Vorrichtung zur Berechnung von Interpolationsfaktoren in Abtastratenwandlungssystemen
DE3853669T2 (de) Schaltung und Verfahren zur Umsetzung der Abtastratenfrequenz.
EP0052847B1 (de) Verfahren und Schaltungsanordnung zur Umsetzung der Abtastfrequenz einer Abtastfolge unter Umgehung der Konversion in ein kontinuierliches Signal
DE102015116269B4 (de) Abtastratenwandler, analog-digital-wandler mit einem abtastratenwandler und verfahren zum umwandeln eines datenstroms von einer datenrate in eine andere datenrate
DE4233738A1 (de) Digitaler interpolator
DE3021012A1 (de) Verallgemeinertes interpolativers verfahren zur digital-analog-umsetzung von pcm signalen
DE102007046181A1 (de) CIC-Filter mit fraktionaler Integration
DE69422650T2 (de) Als dreistufiges transversales Filter anwendbare digitale Filterschaltung
DE2831059C2 (de) Integrierender Kodeumsetzer
DE19521609B4 (de) Dezimationsfilter mit wählbarem Dezimationsverhältnis und Verfahren zur Dezimationsfilterung
DE69923259T2 (de) Digitaler Filter
DE19521610B4 (de) Dezimationsfilter unter Verwendung einer Nullfüllschaltung zur Lieferung eines wählbaren Dezimationsverhältnisses sowie Verfahren zur Dezimationsfilterung
DE102005018858B4 (de) Digitales Filter und Verfahren zur Bestimmung seiner Koeffizienten
DE68910349T2 (de) Digitales Filter mit integrierter Dezimierung.
DE3785654T2 (de) Tonsignalerzeugungsvorrichtung mit einem digitalen Filter.
WO2001003295A1 (de) Fir-dezimierungsfilter
DE19919575C1 (de) Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten in eine Folge von digitalen Ausgangswerten um einen nicht ganzzahligen Faktor
DE3044582A1 (de) Digitaler verstaerker, insbesondere zur verwendung in einer digitalen fernsprech-teilnehmerschaltung
DE19510655B4 (de) Schaltungsanordnung zum Filtern eines Stroms quantisierter elektrischer Signale und Verfahren zum Filtern eines Stoms quantisierter elektrischer Signale
DE102006054776B4 (de) Vorrichtung und Verfahren für die Sigma-Delta-Modulation
DE19510656B4 (de) Schaltungsanordnung und Verfahren zum Filtern quantisierter elektrischer Signale
DE4022387C2 (de)
DE69611155T2 (de) Digitales filter
DE3751088T2 (de) Signalverarbeitungseinrichtung.
DE3412106C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR LK LU MG MN MW NO NZ PL PT RO RU SD SE SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 10081893

Country of ref document: DE

Date of ref document: 20011004

WWE Wipo information: entry into national phase

Ref document number: 10081893

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP