WO2001002587A2 - Neue antimycotika und fungizide, verfahren zu deren herstellung und ihre verwendung - Google Patents

Neue antimycotika und fungizide, verfahren zu deren herstellung und ihre verwendung Download PDF

Info

Publication number
WO2001002587A2
WO2001002587A2 PCT/EP2000/004972 EP0004972W WO0102587A2 WO 2001002587 A2 WO2001002587 A2 WO 2001002587A2 EP 0004972 W EP0004972 W EP 0004972W WO 0102587 A2 WO0102587 A2 WO 0102587A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
yeast
toxin
seq
polypeptide
Prior art date
Application number
PCT/EP2000/004972
Other languages
English (en)
French (fr)
Other versions
WO2001002587A3 (de
Inventor
Klaus Rehfeldt
Simone Theisen
Frank Weiler
Manfred Schmitt
Original Assignee
Aventis Research & Technologies Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Research & Technologies Gmbh & Co Kg filed Critical Aventis Research & Technologies Gmbh & Co Kg
Priority to IL14725200A priority Critical patent/IL147252A0/xx
Priority to KR1020027000108A priority patent/KR20020059581A/ko
Priority to AU59694/00A priority patent/AU5969400A/en
Priority to JP2001508359A priority patent/JP2003504030A/ja
Priority to SK12-2002A priority patent/SK122002A3/sk
Priority to CA002372935A priority patent/CA2372935A1/en
Priority to EP00945695A priority patent/EP1196608A2/de
Priority to BR0012172-0A priority patent/BR0012172A/pt
Publication of WO2001002587A2 publication Critical patent/WO2001002587A2/de
Priority to NO20020003A priority patent/NO20020003L/no
Publication of WO2001002587A3 publication Critical patent/WO2001002587A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to new antimycotics and fungicides obtainable from yeast, processes for their preparation and use.
  • the antimycotics currently used to treat such infections have considerable side effects, since they destroy the structural integrity of the eukaryotic cytoplasmic membrane and thereby also damage the infected host organism [Hector, 1993].
  • the application of conventional antimycotics has also led in a short time to a rapid increase in resistance to fluconazole, which spread rapidly among the human-pathogenic microorganisms and represent an increasing problem [Cameron et al., 1993; Chavenet et al., 1994; Maenza et al., 1996; Pfaller et al., 1994; Rex et al., 1995; Troillet et al., 1993].
  • a target of selective antimycotics are the ß-1, 3-D-glucans of the yeast cell wall, which are essential for the mechanical and osmotic stability of the cell, but which are not found in higher eukaryotes and are therefore used as "Achilles'verses" in the fight against pathogenic yeasts could [Roemer et al., 1994].
  • substances that selectively intervene in the cell wall structure of yeasts and fungi are of great interest, no antibiotic-like inhibitors have so far been used to treat mycoses.
  • Yeast persist stably and in high copy number without recognizable damage to the eukaryotic host cell [Tipper & Schmitt, 1991].
  • the three hitherto known killer toxins (K1, K2, K28) of the yeast S. cerevisiae are non-glycosylated ⁇ / ß heterodimers, which are translated by the infected cell as higher molecular weight preprotoxins and by intracellular secretion through complex modifications are processed into the biologically active killer proteins [Hanes et al., 1986; Dignard et al., 1991; Schmitt & Tipper, 1995].
  • cerevisiae toxins are based either on the destruction of membrane integrity (toxins K1, K2) or (as in the case of killer toxin K28) on a cell cycle arrest with targeted inhibition of DNA synthesis [Bussey, 1991; Schmitt &
  • killer toxins of classes K1, K2 and K28 differ significantly in their modes of action and physicochemical properties, they have in common that they have narrow spectrum of activity and kill predominantly sensitive yeasts of closely related species. This restricted spectrum of action is based on the fact that the previously characterized
  • Baker's yeast killer toxins must interact with different receptor populations at the yeast cell wall and cytoplasmic membrane levels in order to kill a sensitive target cell.
  • yeast zeilwand is either highly branched ⁇ -1,6-D-glucans or the outer mannotriose side chains of a cell wall mannoprotein [Bussey, 1991; Schmitt & Radler 1987, 1988].
  • killer strains have also been described in the genera Debaryomyces, Hansenula, Cryptococcus, Rhodotorula, Trichosporon, Pichia, Kluyveromyces, Torulopsis and Williopsis [McCracken et al., 1994; Park et al., 1996; Schmitt s Neuhausen, 1994; Walker er al., 1995].
  • the genetic basis of the killer phenomenon in these yeasts is not based on viral genomes, but rather either on linear dsDNA plasmids or on chromosomal yeast genes [Schründer et al., 1994].
  • Yeast is widespread and represents a potential that should not be underestimated in the development of selective antimycotics [Walker et al., 1995; Hodgson et al., 1995; Polonelli et al., 1986; Schmitt & Neuhausen, 1994; Neuhausen & Schmitt, 1996; Schmitt et al., 1997], however, such protein toxins have not yet been provided.
  • the highly effectively produced and secreted killer toxin WICALTIN also protein toxin
  • DSM 12865 wild type yeast Williopsis californica strain 3/57
  • ZYGOCIN also protein toxin
  • DSM 12864 are particularly suitable Control of yeasts and / or fungi that are pathogenic to humans and plants.
  • toxin genes are suitably cloned and sequenced within the scope of this invention and thus a method for the genetic engineering production and overexpression in culture of WICALTIN and ZYGOCIN is established.
  • One object of the invention therefore relates to protein toxins obtainable from Williopsis californica, particularly preferably the strain DSM 12865 and Zygosaccharomyces bailii, particularly preferably the strain DSM 12864.
  • DSM 12864 and DSM 12865 in particular secrete biologically highly effective protein toxins which, due to their broad spectrum of action (see Examples 4 and 7), also kill numerous human and phytopathogenic pathogens.
  • the invention therefore also relates to selective antimycotics or fungicides, in the sense that the protein toxins - and the polypeptides according to the invention below and their coding nucleic acids according to the invention, in particular in the functional unit of a toxin gene - are potential bio-pharmaceuticals which due to their specific, receptor-mediated effect, kill only yeasts and / or fungi and are completely harmless for higher eukaryotes - and thus also for humans and mammalian cells - as well as plants, preferably cultivated plants [cf. Pfeiffer et al., 1988].
  • yeast Saccharomyces cerevisiae, Candida albicans, Candida krusei, Candida glabrata, Candida vinii, Hanseniaspora uvarum, Kl ⁇ yveromyces marxian ⁇ s, Methschnikowia pulcherrima, Ustilago maydis, Debaryomyces hansenii, Pichia jomadiaiaiaxiaaciaxiaciaiaiiaxiaacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia, Pichia anomalyacia.
  • Candida albicans Candida glabrata, Candida tropicalis, Debaryomyces hansenii, Kluyveromyces lactis, Metschnikowia pulcherrima, Pichia anomala, Pichia jadinii, Saccharomyces cerevisiae, Sporthrix spec, Torulaspora delbrueckomycesiaisailiaisiazomycysacialisiazolysporia, liposaccharides, Torulasporia delia
  • the particularly strong activity of the wicaltin-producing yeast strain DSM 12865 is probably due to its pronounced secretion efficiency, which is significantly more pronounced in comparison to other strains of the same type of yeast.
  • the 'killer' property of the zygocin-producing yeast strain DSM 12864 is based on an infection with toxin-coding double-stranded RNA viruses (Mz t rdsRNA), which persist in the cytoplasm in a stable and high copy number and the relevant yeast (strain DSM 12864) for production and enable secretion of zygocin [Cf. Schmitt & Neuhausen, 1994].
  • Other strains of the same species showed no toxin production because they do not harbor toxin-encoding dsRNA viruses in the cytoplasm and can therefore be classified phenotypically as 'non-killers'.
  • the present invention therefore furthermore relates to nucleic acids coding for a protein toxin - with an amino acid sequence according to SEQ ID No 1 and No 2 and a glucanase activity - or a functional variant thereof, and
  • nucleic acid (s) Parts thereof with at least 8 nucleotides, preferably with at least 15 or 20 nucleotides, in particular with at least 100 nucleotides, especially with at least 300 nucleotides (hereinafter referred to as "nucleic acid (s) according to the invention").
  • the complete nucleic acids code for protein toxins, which after intracellular
  • Processing and secretion have a size of 309 amino acids and a molecular mass of 34 kDa (SEQ ID No 1) or of 99 amino acids and a molecular mass of 10 kDa (SEQ ID No 2).
  • the expression of the nucleic acid according to SEQ ID No 1 in the yeast S. cerevisiae results in a recombinant WICALTIN, which as a glycosylated protein with significant ß-1, 3-D-glucanase activity in the
  • nucleic acids according to the invention are nucleic acids which, in the case of SEQ ID No 1 for encode a protein toxin with glucanase activity and, in the case of SEQ ID No 2, for an in vivo presumably O-glycosylated protein toxin called ZYGOCIN.
  • the nucleic acids according to the invention are obtainable from DSM 12865 (SEQ ID No 1) and DSM 12864 (SEQ ID No 2).
  • the nucleic acids according to the invention are a DNA or RNA, preferably a double-stranded DNA, and in particular a DNA with a nucleic acid sequence according to SEQ ID No 1 from item 1 to item 947 and according to SEQ ID No 2 from item 1 to item . 713.
  • the two positions determine the start and the end of the coding region, i.e. the first and last amino acid of the respective reading frame.
  • the term “functional variant” means a nucleic acid which is functionally related to the nucleic acids according to the invention.
  • related nucleic acids are nucleic acids from different yeast cells or strains and cultures or allelic variants.
  • the present invention also encompasses variants of nucleic acids which can come from various yeast / yeast strains or other infectious agents such as dermatophytes and molds (according to the DHS system).
  • variants means nucleic acids which have a homology, in particular a sequence identity of approximately 60%, preferably approximately 75%, in particular approximately 90% and above all approximately 95 % exhibit.
  • the parts of the nucleic acid according to the invention can be used, for example, for the production of individual epitopes, as probes for identifying further functional variants or as antisense nucleic acids.
  • a nucleic acid of at least about 8 nucleotides is suitable as an antisense nucleic acid
  • a nucleic acid of at least about 15 nucleotides is suitable as a primer in the PCR
  • nucleic acid from at least approx. 20 nucleotides for the identification of further variants and a nucleic acid from at least approx. 100 nucleotides as a probe.
  • the nucleic acid according to the invention contains one or more non-coding sequences and / or a poly (A) sequence, one or more (for intracellular pro-protein processing) Kex2p endopeptidase recognition sequences and one or more potential N -Glykosyl michsstellen.
  • the non-coding sequences are regulatory sequences, such as promoter or enhancer sequences, for the controlled expression of the coding toxin gene containing the nucleic acids according to the invention.
  • the nucleic acid according to the invention is therefore contained in a vector, preferably in an expression vector or vector which is active in gene therapy.
  • the expression vectors can, for example in the case of the nucleic acid according to SEQ ID No 2, prokaryotic and / or eukaryotic expression vectors or in
  • nucleic acid according to SEQ ID No 1 is exclusively eukaryotic expression vectors. Expression of the toxin-coding nucleic acid according to SEQ ID No 1 in Escherichia coli is not possible because the heterologously expressed protein toxin in question is toxic to the bacterial cell. A cloning of the WICALTIN-encoding nucleic acid according to SEQ ID No 1 is only possible in E. coli with plasmids that do not carry a promoter (eg with the aid of derivatives of the plasmid pBR322).
  • prokaryotic vector that allows heterologous expression of the ZYGOCIN-coding nucleic acid according to SEQ ID No 2 is the commercially available vector pGEX-4T-1, which in E. coli expresses a gluthathione-S-transferase-ZYGOCIN- Fusion protein allowed.
  • Another vector for the expression of ZYGOCIN in E. coli is, for example, the T7 expression vector pGM10 (Martin, 1996), which codes for an N-terminal Met-Ala-His6 tag, which advantageously cleans the expressed protein via Ni 2 + -NTA column enables.
  • suitable eukaryotic expression vectors for expression in Saccharomyces cerevisiae are the vectors p426Met25 or p426GAL1 (Mumberg et al. (1994) Nucl.
  • the expression vectors also contain suitable regulatory sequences for the host cell, such as, for example, the trp promoter for expression in E. coli (see, for example, EP-B1-0154133), the ADH-2 promoter for expression in yeasts (Radorel et al. (1983), J. Biol. Chem. 258, 2674), the baculovirus polyhedrin promoter for expression in insect cells (see, for example, EP-B1-0127839) or the early SV40
  • suitable regulatory sequences for the host cell such as, for example, the trp promoter for expression in E. coli (see, for example, EP-B1-0154133), the ADH-2 promoter for expression in yeasts (Radorel et al. (1983), J. Biol. Chem. 258, 2674), the baculovirus polyhedrin promoter for expression in insect cells (see, for example, EP-B1-0127839) or the early SV40
  • Promoter or LTR promoters e.g. by MMTV (Mouse Mammary Tumor Virus; Lee et al. (1981) Nature, 214, 228).
  • MMTV Mammary Tumor Virus
  • virus vectors preferably adenovirus vectors, in particular replication-deficient adenovirus vectors, or adeno-associated virus vectors, e.g. an adeno-associated virus vector consisting exclusively of two inserted terminal repeat sequences (ITR).
  • ITR inserted terminal repeat sequences
  • Suitable adenovirus vectors are described, for example, in McGrory, W.J. et al. (1988)
  • Suitable adeno-associated virus vectors are described, for example, in Muzyczka, N. (1992) Curr. Top. Microbiol. Immunol. 158, 97; WO95 / 23867; Samulski, R.J. (1989) J. Virol, 63, 3822; WO95 / 23867; Chiorini, J.A. et al. (1995) Human Gene Therapy 6, 1531 or Kotin, R.M. (1994) Human Gene Therapy 5, 793.
  • Vectors with gene therapy effects can also be obtained by complexing the nucleic acid according to the invention with liposomes.
  • Lipid mixtures such as those of Feigner, PL et al. (1987) Proc. Natl. Acad. Sei, USA 84, 7413; Behr, JP et al. (1989) Proc. Natl. Acad. Be. USA 86, 6982; Feigner, JH et al. (1994) J. Biol. Chem. 269, 2550 or Gao, X. & Huang, L. (1991) Biochim. Biophys. Acta 1189, 195.
  • the DNA is bound ionically on the surface of the liposomes in such a ratio that a positive net charge remains and the DNA is completely complexed by the liposomes.
  • the nucleic acids according to the invention are therefore contained in a vector, preferably in an expression vector for the production of transgenic plants. Since the killer toxins WICALTIN and ZYGOCIN described have a broad spectrum of activity and also kill plant-pathogenic yeasts and fungi, it is possible to provide transgenic plants which, for example, are resistant to infection with the maize pathogen Ustilago maydis. Similar experiments have already been carried out on tobacco plants which, by heterologous expression of the naturally virally coded killer toxin KP4 from U.
  • the nucleic acids according to the invention also represented in the toxin genes WCT and ZBT, can be cloned into so-called bidirectional pBI vectors (from CLONTECH) and used for Production of transgenic plants can be used.
  • the relevant toxin genes WCT and ZBT are brought under transcriptional control of the strong cauliflower mosaic virus promoter (CaMV-P). The more precise structure of the vectors to be constructed is shown schematically in Example 9.
  • nucleic acids according to the invention can, for example, be chemically disclosed using the sequences disclosed in SEQ ID No 1 and No 2 or using the peptide sequences disclosed in SEQ ID No 1 and No 2 using the genetic code, e.g. can be synthesized according to the phosphotriester method (see e.g. Uhlman, E.
  • Another way of getting hold of the nucleic acid according to the invention is to isolate it from a suitable gene bank using a suitable probe (see, for example, Sambrook, J. et al. (1989) Moleeular Cloning. A laboratory manual. 2nd Edition, Cold Spring Harbor, New York). For example, single-stranded DNA
  • the present invention further relates to the polypeptides as such with an amino acid sequence according to SEQ ID No 1 and No 2 or a functional variant thereof, and parts thereof with at least six amino acids, preferably with at least 12 amino acids, in particular with at least 65 amino acids. and especially with 309 amino acids (SEQ ID No 1) and with 99 amino acids
  • an approximately 6-12, preferably approximately 8 amino acid long polypeptide can contain an epitope which, after coupling to a support, is used to produce specific poly- or monoclonal antibodies (see, for example, US Pat. No. 5,656,435).
  • Polypeptides with a length of at least approx. 65 amino acids can also be used directly without a carrier for the production of poly- or monoclonal antibodies.
  • the term "functional variant” in the sense of the present invention means polypeptides which are functionally related to the peptide according to the invention, i.e. have glucanase activity. Variants are also understood to mean allelic variants or polypeptides which can come from various yeast / yeast strains or other infectious agents such as dermatophytes, molds (according to the DHS system).
  • this also includes polypeptides which have a sequence homology, in particular a sequence identity of approximately 70%, preferably approximately 80%, in particular approximately 90%, in particular approximately 95%, of the polypeptide with the amino acid sequence Figure 2 have. Furthermore, this also includes deletion of the polypeptide in the range from about 1 to 60, preferably from about 1 to 30, in particular from about 1 to 15, especially from about 1 to 5, amino acids. For example, the first amino acid methionine may be absent without significantly changing the function of the polypeptide. In addition, this also includes fusion proteins which contain the polypeptides according to the invention described above, the fusion proteins themselves already having the function of a glucanase or being able to acquire the specific function only after the fusion portion has been split off.
  • this includes fusion proteins with a portion of, in particular, non-human sequences from about 1 - 200, preferably about 1 - 150, in particular about 1 - 100, especially about 1 - 50 amino acids.
  • non-human peptide sequences are prokaryotic peptide sequences, for example from the galactosidase from E. coli or a so-called histidine tag, for example a Met-Ala-His 6 tag.
  • a fusion protein with a so-called histidine tag is particularly advantageously suitable for purifying the expressed protein on columns containing metal ions, for example on a Ni 2+ NTA column.
  • NTA stands for the chelator "nitrilothacetic acid” (Qiagen GmbH, Hilden).
  • the invention also includes those polypeptides according to the invention which are masked, in the sense of a proprotein or in the broadest sense as a pre-drug.
  • the parts of the polypeptides according to the invention represent, for example, epitopes that can be specifically recognized by antibodies.
  • polypeptides according to the invention are produced, for example, by expression of the nucleic acid according to the invention in a suitable expression system, as already described above, using methods which are generally known to the person skilled in the art.
  • a suitable expression system as already described above.
  • Only eukaryotic organisms are suitable as host cells for the production of correctly processed and thus biologically active protein toxins, preferably the sprout yeast Saccharomyces cerevisiae and the split yeast Schizosaccharomyces pombe.
  • the parts of the polypeptide mentioned can also be synthesized using classic peptide synthesis (Merrifield technique). They are particularly suitable for obtaining antisera, with the aid of which suitable gene expression banks can be searched in order to arrive at further functional variants of the polypeptide according to the invention.
  • Another object of the present invention therefore relates to a
  • the split yeast Schizosaccharomyces pombe is very particularly preferred, since this yeast behaves naturally WICALTIN and ZYGOCIN resistant and has already been used successfully several times for heterologous expression of foreign proteins [Giga-Hama & Kumagai (1997), in "Foreign Gene Expression in Fission Yeast : Schizosaccharomyces pombe ", Springer Verlag].
  • the toxin-coding nucleic acids according to SEQ ID No 1 and SEQ ID No 2 can be cloned, for example, into the S. pombe vector pREP1 [Maundrell (1990), J. Biol. Chem.
  • pombe we have already constructed an expression / secretion vector [vector pTZ ⁇ / ⁇ ; see Example 11], which contains the secretion and processing signal of the viral K28 preprotoxin gene [Schmitt & Tipper, 1995] and thereby enables an effective secretion of the foreign protein which is connected 'in-frame'.
  • Another object of the present invention also relates to antibodies which react specifically with the polypeptide according to the invention, the above-mentioned parts of the polypeptide either being immunogenic themselves or by
  • suitable carriers e.g. bovine serum albumin
  • suitable carriers e.g. bovine serum albumin
  • suitable carriers e.g. bovine serum albumin
  • the antibodies are either polyclonal or monoclonal.
  • the preparation which is also an object of the present invention, is carried out, for example, by generally known methods by immunizing a mammal, for example a rabbit, with the polypeptide according to the invention or the parts thereof, optionally in the presence of, for example, Freund's adjuvant and / or aluminum hydroxide gels (see, for example, Diamond, BA et al. (1981) The New England Journal of Medicine, 1344).
  • the polyclonal antibodies produced in the animal as a result of an immunological reaction can then be easily isolated from the blood by generally known methods and purified, for example, by column chromatography.
  • affinity purification of the antibodies in which for example, the respective antigen (ZYGOCIN or WICALTIN) is covalently coupled to a generally available CnBr-activated Sepharose matrix and used to purify the respective toxin-specific antibodies.
  • the respective antigen ZYGOCIN or WICALTIN
  • Monoclonal antibodies can for example by the known method of
  • Another object of the present invention is also a medicament containing the nucleic acids according to the invention or the polypeptides according to the invention
  • a medicament for the treatment of mycoses such as superficial, cutaneous and subcutaneous dermatomycoses, mucous membrane and systemic mycoses, particularly preferred Candida mycoses, in which an invented nucleic acid according to the invention or a polypeptide according to the invention is formulated with pharmaceutically acceptable additives and / or auxiliaries.
  • toxin WICALTIN produced and purified by strain DSM 12865
  • strain DSM 12865 has a significantly higher toxicity on yeast than the topical antimycotics clotrimazole and miconazole which have been tested in comparison and are frequently used for the treatment of mycoses.
  • the invention therefore also relates to a medicament in the above sense containing an antimycotic or a protein toxin obtainable from DSM 12864 and / or DSM 12865 and / or polypeptides according to the invention having an antimycotic effect.
  • a drug is particularly suitable for gene therapy use in humans which contains the nucleic acid according to the invention in naked form or in the form of one of the above-described gene therapy vectors or in a form complexed with liposomes.
  • Suitable additives and / or auxiliary substances are, for example, a physiological saline solution, stabilizers, proteinase inhibitors, nuclease inhibitors, etc.
  • Another object of the present invention is also a diagnostic agent containing a nucleic acid according to the invention, a polypeptide according to the invention or antibodies according to the invention and optionally suitable additives and / or auxiliaries and a method for producing a diagnostic agent for diagnosing mycoses, such as superficial, cutaneous and subcutaneous dermatomycoses, Mucosal and systemic mycoses, particularly preferred Candida mycoses, in which a nucleic acid according to the invention, a polypeptide according to the invention or antibodies according to the invention are mixed with suitable additives and / or auxiliary substances.
  • a diagnostic agent based on the polymerase chain reaction PCR diagnostics, for example in accordance with EP-0200362
  • a Northern and / or Southern blot as described in more detail in Example 13
  • PCR diagnostics for example in accordance with EP-0200362
  • a Northern and / or Southern blot as described in more detail in Example 13
  • These tests are based on the specific hybridization of the nucleic acid according to the invention with the complementary counter strand, usually the corresponding mRNA.
  • the nucleic acid according to the invention can also be modified here, as described for example in EP0063879.
  • a DNA fragment according to the invention is preferably labeled using suitable reagents, for example radioactive with ⁇ -P 32 -dATP or non-radioactive with biotin, according to generally known methods and with isolated RNA, which was preferably bound to suitable membranes made of cellulose or nylon, for example. incubated. It is also advantageous to separate the isolated RNA prior to hybridization and binding to a membrane, for example by means of agarose gel electrophoresis. With the same amount of RNA examined from each tissue sample, the amount of mRNA that was specifically labeled by the probe can thus be determined.
  • suitable reagents for example radioactive with ⁇ -P 32 -dATP or non-radioactive with biotin
  • Another diagnostic agent contains the polypeptide according to the invention or the immunogenic parts thereof described in more detail above.
  • the polypeptide or parts thereof which are preferably bound to a solid phase, for example made of nitrocellulose or nylon, can be brought into contact with the body fluid to be examined, for example blood, in vitro, in order to be able to react with antibodies, for example.
  • the antibody-peptide complex can then be detected, for example, using labeled anti-human IgG or anti-human IgM antibodies become.
  • the label is, for example, an enzyme, such as peroxidase, that catalyzes a color reaction. The presence and the amount of autoimmune antibodies present can thus be easily and quickly detected via the color reaction.
  • Another diagnostic agent contains the antibodies according to the invention themselves. With the aid of these antibodies, for example, a tissue sample from humans can be easily and quickly examined to determine whether the polypeptide in question is present.
  • the antibodies according to the invention are labeled, for example, with an enzyme, as already described above.
  • the specific antibody is labeled, for example, with an enzyme, as already described above.
  • Peptide complex can thus be detected easily and just as quickly via an enzymatic color reaction.
  • the invention further relates to a fungicide which comprises the nucleic acids and / or the polypeptides according to the invention (individually or in
  • Combination and optionally suitable additives or auxiliaries and a method for producing a fungicide for controlling harmful yeasts and harmful fungi, in which a nucleic acid or a polypeptide according to the invention is formulated with agriculturally acceptable additives and / or auxiliaries.
  • a transgenic plant is produced which expresses the protein toxin according to the invention.
  • the invention therefore also relates to plant cells and inherently to the transgenic plant as such containing the polypeptides and / or protein toxins according to the invention.
  • Another object of the present invention also relates to a test for the identification of functional interactors, such as e.g. Inhibitors or stimulators containing a nucleic acid according to the invention, a polypeptide according to the invention or the antibodies according to the invention and, if appropriate, suitable additives and / or auxiliaries.
  • functional interactors such as e.g. Inhibitors or stimulators containing a nucleic acid according to the invention, a polypeptide according to the invention or the antibodies according to the invention and, if appropriate, suitable additives and / or auxiliaries.
  • a suitable test for the identification of functional interactors is for example the so-called “two-hybrid system” (Fields, S. & Sternglanz, R. (1994) Trends in Genetics, 10, 286).
  • a cell for example a yeast cell, is transformed or transfected with one or more expression vectors which express a fusion protein which contains the polypeptide according to the invention and a DNA binding domain of a known protein, for example Gal4 or LexA from E.
  • coli contains and / or express a fusion protein containing an unknown polypeptide and a transcription activation domain, for example from Gal4, herpes virus VP16 or B42.
  • the cell contains a reporter gene, for example the LacZ gene from E. coli, "Green Fluorescence Protein” or the amino acid biosynthesis genes of the yeast His3 or Leu2, which is regulated by regulatory sequences such as the lexA promoter / operator or by a so-called "Upstream Activation Sequence" (UAS) of the yeast is controlled.
  • the unknown polypeptide is encoded, for example, by a DNA fragment that comes from a gene bank, for example from a human gene bank.
  • a cDNA library is immediately produced in yeast using the expression vectors described, so that the test can be carried out immediately thereafter.
  • the nucleic acid according to the invention is encoded in a functional unit on the nucleic acid for the LexA DNA
  • cDNA fragments from a cDNA library are cloned in a functional unit to the nucleic acid coding for the Gal4 transcription activation domain, so that a fusion protein from an unknown polypeptide and the Gal4 transcription activation domain in the transformed yeast is expressed.
  • the yeast transformed with both expression vectors which is for example Leu2 " , additionally contains a nucleic acid which codes for Leu2 and is controlled by the LexA promoter / operator.
  • the Gal4 binds -Transcription activation domain via the LexA DNA binding domain to the LexA promoter / operator, whereby this is activated and the Leu2 gene is expressed.
  • the Leu2 " yeast can grow on minimal medium which does not contain leucine .
  • the LacZ or "Green Fluorescence Protein” reporter gene instead of an amino acid biosynthesis gene, the activation of the transcription can be demonstrated by the fact that blue or green fluorescent colonies form.
  • the blue or green fluorescence staining can also be easily quantified in the spectrophotometer, for example at 585 nm in the case of a blue staining.
  • expression gene banks can be easily and quickly searched for polypeptides that interact with the polypeptide according to the invention.
  • the new polypeptides found can then be isolated and further characterized.
  • Another possible application of the "two-hybrid system” is to influence the interaction between the polypeptide according to the invention and a known or unknown polypeptide by other substances, such as e.g. chemical compounds. In this way it is also easy to find new valuable chemically synthesizable active ingredients that can be used as therapeutic agents.
  • the present invention is therefore not only intended for a method for finding polypeptide-like interactors, but also extends for a method for finding substances which can interact with the protein-protein complex described above.
  • Such peptide-like as well as chemical interactors are therefore referred to in the sense of the present invention as functional interactors which can have an inhibiting or a stimulating effect.
  • the invention further relates to a method for producing the protein toxins by culturing and secreting the protein toxins in a medium which is a synthetic culture medium (BAVC medium) which is used for chromatographic purification of the secreted toxins, for example by means of ultrafiltration and cation exchange chromatography and / or affinity chromatography on laminarin-Sepharose and / or mannoprotein-Sepharose, much easier [Cf. Example 1 and Appendix to Examples].
  • BAVC medium synthetic culture medium
  • Strain DSM 12865 produced and secreted WICALTINS can achieve a further increase in toxin production if the medium by adding the vegetable (and generally available) ß-1, 3-D-glucans laminarin in one Final concentration of 1% is supplemented. As explained in Example 14, the addition of laminarin to the culture medium leads to an induction of the WICALTIN production, which could be attributed to an induction of the transcription by Northern analyzes.
  • Synthetic B medium can be used to produce the toxin ZYGOCIN secreted by DSM 12864 [cf. Radler et al., 1993].
  • killer yeast W. californica strain 3/57 shows maximum toxin production when cultivated in BAVC medium (pH 4.7).
  • the killer yeast was first incubated for 24 h in 5 ml of YEPD medium at 30 ° C. with shaking, then completely transferred to 200 ml of BAVC medium and again cultured on the shaker (140 rpm) at 20 ° C. for 48 h.
  • the dialyzed preparation was sterile filtered through a 0.2 ⁇ m membrane and frozen in 1 ml aliquots at -20 ° C. Detection and calibration of toxin activity was carried out in the agar diffusion test on methylene blue agar (MBA; pH 4.7) against the sensitive indicator yeast Saccharomyces phenomenon visiae 192.2d. For this purpose, logarithmic dilution levels were prepared from the toxin concentrate in 0.1 M citrate-phosphate buffer (pH 4.7) and 100 ⁇ l each in previously punched holes (hole diameter 9 mm) of an MBA plate inoculated with the sensitive indicator yeast (2x10 5 cells / ml) pipetted in.
  • the concentrated WICALTIN was purified either by cation exchange chromatography on Bioscale-S (FPLC) or by affinity chromatography on an epoxy-activated Sepharose 6B matrix (from Pharmacia), to which the vegetable ⁇ -1,6-D- Glucan Pustulan has been coupled.
  • the toxin preparation enriched 625-fold in this way in its specific activity (Table 1) was gel-electrophoretically pure and showed SDS-PAGE (10-22%)
  • WICALTIN has an N-glycosidically linked carbohydrate content of about 3 kDa, which in this size also indicates a single N-glycosylation site in the protein toxin in yeast. Since the deglycosylated WICALTIN has a clearly limited toxicity, it can be concluded that the carbohydrate portion of WICALTIN is presumably necessary for binding to the sensitive target cell and thereby indirectly influences the biological activity of the toxin.
  • the first ten amino acids were determined by N-terminal amino acid sequencing of the purified killer toxin.
  • the N-terminus of WICALTIN has a significant homology to the amino terminus of the endo- ⁇ -1,3-glucanase encoded by the BGL2 gene of the yeast Saccharomyces cerevisiae.
  • glucanase activity can be detected in the unpurified toxin concentrate and in the purified toxin preparation. Both in the enzymatic test with the ß-1, 3-D-glucan laminarin as a substrate and in the fluorescence test with 4-methyl-umbelliferyl-ß-D-glucoside (MUC) as a substrate, a clear ß-1 was found in the WICALTIN preparations , 3-D glucanase activity can be detected; the ß-1, 6-D-glucan pustulan also tested was not hydrolyzed by WICALTIN.
  • MUC 4-methyl-umbelliferyl-ß-D-glucoside
  • Table 2 Spectrum of activity of WICALTIN on pathogenic and non-pathogenic yeasts of different types. All strains were tested in an agar diffusion test (MBA; pH
  • the toxin activity applied was 1x10 6 U / ml in all cases.
  • the C. tropicalis strain (patient number 541965) came from the Institute for Medical Microbiology and Hygiene at the University Clinic Mainz.
  • WICALTIN is a glycoprotein which is extremely toxic to yeasts and whose primary" target "is the cell wall ⁇ -1,3-glucans found in yeasts. Its selective Toxicity to yeasts and fungi is based on the fact that WICALTIN in the sensitive target cell destroys the structure and / or integrity of the cell wall and thus attacks yeast at its most sensitive point and ultimately kills it.
  • the virus-encoded killer toxin ZYGOCIN of the yeast Z. bailii strain 412 was according to the method of Radler et al. (1993) isolated method from the culture supernatant of killer yeast, concentrated by ultrafiltration and finally purified by affinity chromatography.
  • the purification of ZYGOCIN developed in this study in just one step uses the natural affinity of the toxin
  • Yeast cell wall mannoproteins The isolated and partially isolated method from S. cerevisiae strain 192.2d described by Schmitt & Radler (1997) Purified mannoprotein was covalently coupled to an epoxy-activated Sepharose-6B matrix (Pharmacia) and used for FPLC for column chromatographic toxin purification. According to SDS-PAGE, the biologically highly active ZYGOCIN purified in this way showed a single protein band with an apparent molecular weight of about 10 kDa (FIG. 4).
  • the spectrum of activity of the viral ZYGOCIN of the yeast Z. bailii 412 (DSM 12864) determined in the agar diffusion test includes pathogenic and non-pathogenic yeast genera, of which Candida albicans and Sporothnx schenkii are pathogens in humans and animals, and Ustilago maydis and Debaryomyces hansenii and harmful yeasts in agriculture are feared in the food sector (Tab. 3).
  • Table 3 Spectrum of action of ZYGOCIN on pathogenic and non-pathogenic yeasts of different types. All strains were tested in an agar diffusion test (MBA; pH 4.5) against a ZYGOCIN preparation with an activity of 1x10 4 U / ml.
  • ZBT ZYGOCIN-encoding ZBT gene
  • the cDNA synthesis of the toxin-coding double-stranded RNA genome of the killer yeast Z. bailii 412 was carried out in accordance with the method described by Schmitt (1995) with purified M-dsRNA denatured by methylmercury hydroxide as a template and various hexanucleotides as 'primers'. After ligation in the EcoRI-restricted vector pUC18, transformation in E. coli and isolation of the recombinant plasmids, several cDNA clones could be identified and sequenced.
  • the cDNA sequence of the ZYGOCIN-coding reading frame contains the genetic information for a precursor protein (pro-toxin) from 238 amino acids, which carries a potential Kex2-endopeptidase cleavage site in amino acid position RR 139 .
  • the biologically active ZYGOCIN, its molecular weight (10 kDa; 99 amino acids) and N-terminals result from the Kex2-mediated pro-ZYGOCIN processing that takes place in vivo in the late Golgi stage
  • Amino acid sequence exactly match the values determined for the purified ZYGOCIN.
  • heterologous expression of the ZßT cDNA in the yeast S. cerevisiae resulted in the transformed yeasts being killed by their own toxin.
  • heterologous ZYGOCIN expression in the toxin-resistant fission yeast Schizosaccharomyces pombe will be sought, since, as with the example of the viral K28 toxin, it has already been shown that the fission yeast is particularly suitable for the expression and secretion of foreign proteins.
  • the toxin genes WCT and ZBT we cloned can be cloned into so-called bidirectional pBI vectors (from CLONTECH) and used to produce transgenic plants .
  • the relevant toxin genes WCT and ZBT are brought under the transcriptional control of the strong cauliflower mosaic virus promoter (CaMV-P).
  • CaMV-P cauliflower mosaic virus promoter
  • the WICALTIN-encoding WCT gene was cloned as a 930 bp EcoRI / Smal fragment into the generally available 2 ⁇ vector pYX242.
  • the resulting vector pSTH2 (FIG. 6) contains the toxin gene under transcriptional control of the yeast's own triose phosphate isomerase promoter (TPI) and thereby enables a constitutive expression of WICALTIN after transformation in yeast (S. cerevisiae).
  • the split yeast behaves resistant to WICALTIN and ZYGOCIN both as an intact cell and as a cell wall-free spheroplast, it is suitable as a host for the heterologous expression of the toxins in question.
  • a vector was constructed (pTZ ⁇ / ⁇ ; Figure 7), the carries a secretion and processing signal (S / P) which is functional in S. pombe and which originates from the cDNA of the viral K28 preprotox gene of the yeast S. cerevisiae [cf.
  • the secretion and processing signal ensures that the 'in-frame' downstream protein in the split yeast is imported into the lumen of the endoplasmic reticulum and thus introduced into the secretion pathway of the yeast. Due to the Kex2p cleavage site at the C-terminus of the S / P region, the desired foreign protein in a late Golgi compartment is split off from its intracellular transport vehicle by the yeast's own Kex2p endopeptidase and can finally be used as a biologically active protein ( ZYGOCIN and / or WICALTIN) are secreted into the external medium.
  • a biologically active protein ZYGOCIN and / or WICALTIN
  • WICALTIN Since purified WICALTIN has a broad spectrum of activity and also effectively kills human-pathogenic yeasts and / or fungi, it is important as a potential antimycotic. Therefore, comparative studies were carried out with WICALTIN on the topical antimycotics clotrimazole and microconazole that are currently used very frequently. First, the toxic effects of clotrimazole and
  • clotrimazole was dissolved in a concentration of 10 mg / ml in ethanol (96%); this stock solution was diluted with H 2 0 i des t and used in concentrations of 0.1 to 10 mg / ml of 100 ⁇ l each in the MBA test.
  • the inhibition zone diameter was between 12 and 32 mm when an amount of 10-50 ⁇ g clotrimazole was used.
  • a stock solution of 100 ⁇ g / ml in DMSO (100%) was prepared from miconazole, which in the same way as clotrimazole in the MBA test for biological activity against Sporothrix spec. was investigated.
  • the use of 0.08-0.3 ⁇ g miconazole led to inhibition zones between 22 and 36 mm in the 'bioassay'.
  • the biological activities of 10 ⁇ g clotrimazole and 0.08 ⁇ g miconazole correspond to that
  • Example 13 Detection of the WICALTIN-coding WCT gene of the yeast W. californica 3/57
  • nucleic acid according to SEQ ID No. 1 can be used to produce a WICALTIN-specific DNA probe for a subsequent Southern hybridization
  • a DIG-labeled, 930 bp long DNA probe was used to detect the WCT gene cloned into the vector pSTH1.
  • the vector pSTH1 constructed represents a derivative of the commonly available prokaryotic cloning vector pBR322.
  • the agarose gel electrophoresis shown in FIG. 9 and the corresponding Southern blot show beyond any doubt that the WICALTIN-encoding WCT gene can be detected with the nucleic acid probe produced.
  • the yeast strain DSM 12865 was added in 300 ml BAVC medium or in BAVC medium with the addition of 0.03% of the vegetable ⁇ -1,3 -D-Glucans Laminarin cultivated for 48 h at 20 ° C with gentle shaking (60 rpm) and used after different times to prepare the total RNA. All samples (10 ml) were pre-RNA
  • Isolation set to an equal cell number of 1.8 x 10 8 cells / ml and electrophoresed in denaturing agarose-formaldehyde gels.
  • a size of 1,100 bases could be detected for the WCT transcript both under non-inducing conditions (BAVC medium without additive) and in the laminarin-supplemented BAVC medium.
  • BAVC medium without additive BAVC medium without additive
  • a maximum WCT expression was reached towards the end of the exponential growth phase (after 19 h); the hybridization signals, which become significantly weaker in the stationary growth phase, indicate a weakened transmission out there.
  • the WCT transcript Under inducing culture conditions (in the presence of laminarin) the WCT transcript showed a significantly higher intensity after 10 h than in the non-induced culture, so that it can be concluded that the transcription of the WICALTIN-encoding WCT gene by adding ß- 1, 3-D glucans can be induced.
  • Biotin in 5 g KH 2 PO. ⁇ / 50 ml aqua dest. to solve.
  • Folic acid in 50 ml distilled water. dissolve with the addition of a few drops of dilute NaOH.
  • Riboflavin in 500 ml distilled water. and dissolve a few drops of HCI while heating. The remaining vitamins are in a little aqua dest. soluble.
  • the pH of the BAVC medium was adjusted to 4.7 by adding KOH.
  • Glucose and stock solutions were sterilized separately.
  • Amino acid, vitamin and trace element stock solutions were sterilized in flowing steam at 100 ° C for 20 minutes and then added to the autoclaved BAVC medium.
  • SEQ ID No. 1 DNA and derived amino acid sequence of the WCT-encoded protein toxin WICALTIN of the yeast Williopsis californica strain 3/57.
  • SEQ ID No. 2 cDNA and deduced amino acid sequence of the ZßT-encoded protein toxin ZYGOCIN of the yeast Z. bailii
  • Figure 1 N-terminal amino acid sequences of the W californica toxin WICALTIN and the endo- ⁇ -1,3-glucanase Bgl2 of the yeast S. cerevisiae. The only deviation of the otherwise identical partial sequences is shown in bold (Bgl2p sequence according to Klebl & Tanner, 1989)
  • FIG. 2 Kinetics of WICALTIN-treated cells of the sensitive yeast S. cerevisiae 192.2d in the presence (2a) and absence (2b) of the ⁇ -D-glucans laminarin (L) and pustulan (P).
  • the toxin used had a total activity of 4.0 x 10 5
  • Figure 3 (a, b, c, d): Agar diffusion test to detect a WICALTIN sensitivity / resistance in Kre1 + and Kre1 " strains of the yeast S. cerevisiae. By transforming the WICALTIN-resistant krel zero mutant S. cerevisiae
  • FIG. 4 (A) Gel electrophoretic analysis (SDS-PAGE) of the ZYGOCINS produced and secreted by the yeast Z. bailii strain 412 (DSM 12864) according to affinity
  • Figure 5 Schematic structure of a ZBT or WCT-bearing expression vector for the production of transgenic plants.
  • RB, LB right and left border sequences of the natural Ti plasmid from Agrobacterium tumefaciens
  • CaMV-P 35S promoter of the cauliflower mosaic virus
  • NOS-P, NOS-T transcription promoter and terminator of nopaline synthase
  • kan R Kanamycin resistance gene from Streptococcus for selection in E. coli
  • NPT-II Neomycin phosphotransferase gene from the transposon Tn5 for selection in plants.
  • FIG. 6 (A) Partial restriction map of the episomal vector pSTH2 for the heterologous expression of the WICALTIN-encoding toxin gene WCT in the yeast Saccharomyces cerevisiae.
  • Vector pSTH2 is a constructed plasmid based on the commercially available 2 ⁇ multi-copy vector pYX242, into which the WCT gene from strain DSM 12865 was cloned as a 930 bp EcoRI / Smal fragment.
  • the toxin in question is under the transcriptional control of the yeast's own TPI
  • Figure 7 Scheme of the structural structure of the vector pTZ ⁇ / ⁇ for the heterologous expression and secretion of foreign proteins (in particular WICALTIN and ZYGOCIN) in the fission yeast Schizosaccharomyces pombe.
  • P nm t ⁇ , nmt ⁇ transcription promoter and terminator of the thiamine-regulated nmtl gene of the split yeast S. pombe
  • S / P secretion and processing sequence of the viral K28 preprotoxin of the shoot yeast S. cerevisiae
  • arsl autonomously replicating sequence from chromosome 1 of the fission yeast
  • Ieu2 marker gene for the selection of leucine-prototrophic transformants from S. pombe
  • Figure 8 Comparative biological activities of purified WICALTIN, clotrimazole and miconazole; the specified molar amounts are generated in a 'bioassay' (agar diffusion test) against the sensitive indicator yeast Sporothrix spec. an inhibitor diameter of 12 mm.
  • FIG. 9 Detection of the WICALTIN-encoding WCT gene of the yeast W. californica 3/57 (DSM 12865) encoded in pSTHI (pBR322 derivative) by agarose gel electrophoresis (A) and Southern hybridization with a DIG-labeled WCT probe (B).
  • A agarose gel electrophoresis
  • B Southern hybridization with a DIG-labeled WCT probe
  • Figure 10 Northem analysis for transcriptional induction of the WICALTIN-encoding WCT gene of the yeast W californica 3/57 (DSM 12865) under non-inducing culture conditions in BAVC medium (A) and under inducing conditions in BAVC medium with additive of 0.03% laminarin (B).
  • the total RNA isolated from strain DSM 12865 was electrophoresed in a denaturing agarose / formaldehyde gel at constant voltage (7 V / cm). The RNA was hybridized on a nylon membrane against a WICALTIN-specific, DIG-labeled DNA probe (630 bp) and detected by chemiluminescence.
  • Lanes 1-8 correspond to the time of sampling to isolate the total RNA: lane 1, 10 h; Lane 2, 15 h; Lane 3, 19 h; Lane 4, 24 h; Lane 5, 33 h; Lane 6, 38 h; Lane 7, 43 h; Lane 8, 48 h]
  • microorganisms used in the context of the present invention were obtained from the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Maschenroder Weg 1, 38124 Braunschweig, Federal Republic of Germany, recognized as an international depository, in accordance with the requirements of the Budapest Treaty for the international recognition of the deposit of microorganisms deposited for the purpose of patenting (filing number; filing date):
  • K28 a new double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4807-4815.
  • Schmitt, MJ & F. Radler (1996). dsRNA viruses encode killer toxins in the yeast Saccharomyces. BioEngineering 2: 30-34. Schmitt, MJ & G. Schernikau (1997). Construction of a cDNA-based K1 / K2 / K28 triple killer strain of Saccharomyces cerevisiae. Food Technol. Biotechnol. 35: 281-285. Schmitt, MJ & P. Compain (1995). Killer toxin resistant kre12 mutants of Saccharomyces cerevisiae: genetic and biochemical evidence for a secondary K1 membrane receptor. Arch. Microbiol. 164: 435-443.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Fodder In General (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft die gentechnische Bereitstellung von Proteintoxinen aus Hefen - sogenannte Killerhefen - zur Bekämpfung von human- und pflanzenpathogenen Hefen und/oder Pilzen, wobei diese selektiv abgetötet werden. Die hohe Spezifizität gewährleistet den Einsatz der Proteintoxine als Antimycoticum und/oder Fungizid. Zudem können derartige Proteintoxine zum Pflanzenschutz verwendet werden.

Description

Neue Antimycotika und Fungizide, Verfahren zu deren Herstellung und ihre Verwendung
Beschreibung
Die vorliegende Erfindung betrifft neue Antimycotika und Fungizide erhältlich aus Hefe, Verfahren zu deren Herstellung und Verwendung.
Selektive Antimycotika haben größte Bedeutung, da Pilz- und/oder Hefe-bedingte Infektionen beim Menschen in den letzten Jahren stark zugenommen haben und ebenfalls in Lebens- und Futtermittel immer wieder zu unerwünschten Kontamination führen. Besonders schwerwiegende Folgen haben Mycosen bei immunsupprimierten Patienten, deren zelluläres und humorales Abwehrsystem auf einem nicht voll funktionstüchtigen Niveau gehalten werden muß [Anaissie, 1992; Meunier et al., 1992; Wingard, 1995]. Extrem Mycose-gefährdet sind HIV-1 -infizierte Personen (AIDS), die im fortgeschrittenen Krankheitsstadium sehr häufig an opportunistischen Infektionen durch Human-pathogene Pilze und/oder Hefen sterben [Levy, 1993]. Die gegenwärtig zur Therapie solcher Infektionen eingesetzten Antimycotika (wie Amphoterizin B, Fluconazol, Itraconazol, Ketoconazol) besitzen beträchtliche Nebenwirkungen, da sie die strukturelle Integrität der eukaryotischen Cytoplasmamembran zerstören und dadurch ebenfalls den infizierten Wirtsorganismus schädigen [Hector, 1993]. Die Applikation herkömmlicher Antimycotika hat zudem in nur kurzer Zeit zu einer rapiden Zunahme an Fluconazol-Resistenzen geführt, die sich unter den humanpatho- genen Mikroorganismen rasch ausbreiten und ein immer größer werdendes Problem darstellen [Cameron et al., 1993; Chavenet et al., 1994; Maenza et al., 1996; Pfaller et al., 1994; Rex et al., 1995; Troillet et al., 1993]. Es ist daher ein wichtiges Anliegen, Antimycotika zu entwickeln, die sich - ähnlich wie bakterielle Antibiotika - durch hohe Selektivität auszeichnen und möglichst nur humanpathogene Pilze und Hefen angreifen. Da jedoch die Mehrheit aller zellulären Prozesse bei höheren Organismen von Genprodukten gesteuert wird, die bei Eukaryoten ein hohes Maß an funktioneller
Homologie zeigen, ist es bislang nicht gelungen, "spezifisch-antifungale Antibiotika" zu entwickeln [Kurz, 1998; Komiyama et al., 1998]. Ein target von selektiven Antimycotika sind die ß-1 ,3-D-Glukane der Hefezellwand, die für die mechanische und osmotische Stabilität der Zelle unerläßlich sind, jedoch in höheren Eukaryoten nicht vorkommen und daher als "Achillesverse" bei der Bekämpfung pathogener Hefen genutzt werden könnten [Roemer et al., 1994]. Obwohl Substanzen, die selektiv in die Zellwandstruktur von Hefen und Pilzen eingreifen, somit von großem Interesse sind, wurden bislang noch keine Antibiotika-ähnlichen Hemmstoffe zur Behandlung von Mycosen eingesetzt. Während bakterielle Antibiotika-Produzenten bereits zu Beginn dieses Jahrhunderts entdeckt wurden, konnten ähnliche Effekte bei Hefen erst Anfang der Sechziger Jahre mit der Identifizierung sogenannter 'Killer'-Hefen beobachtet werden [Bevan & Makower, 1963]: Toxinpro- duzierende 'Killer'-Stämme der Bäckerhefe Saccharomyces cerevisiae produzieren und sezernieren sogenannte als "Killertoxine" bezeichneten Proteine, welche sensitive Hefen in einem Rezeptor-abhängigen Prozeß abtöten [Bussey, 1991 ; Tipper & Schmitt, 1991]. Die Fähigkeit zur Toxinproduktion beruht bei S. cerevisiae auf einer Infektion mit Reovirus-ähnlichen Doppelstrang-RNA-Viren, die im Cytoplasma der
Hefe stabil und in hoher Kopienzahl persistieren, ohne die eukaryotische Wirtszelle in erkennbarer Weise zu schädigen [Tipper & Schmitt, 1991]. Bei den drei bislang bekannten Killertoxinen (K1 , K2, K28) der Hefe S. cerevisiae handelt es sich um nicht-glykosylierte α/ß-Heterodimere, die von der infizierten Zelle als höhermolekula- re Präprotoxine translatiert und auf dem intrazellulären Sekretionsweg durch komplexe Modifikationen zu den biologisch aktiven Killerproteinen prozessiert werden [Hanes et al., 1986; Dignard et al., 1991 ; Schmitt & Tipper, 1995]. Die toxische Wirkung der S. cerevisiae Toxine beruht entweder auf einer Zerstörung der Membranintegrität (Toxine K1 , K2) oder (wie im Falle von Killertoxin K28) auf einem Zellzy- klus-Arrest mit gezielter Hemmung der DNA-Synthese [Bussey, 1991 ; Schmitt &
Compain, 1995; Schmitt et al., 1996]. Obwohl sich Killertoxine der Klassen K1, K2 und K28 in ihren Wirkungsweisen und physikochemischen Eigenschaften deutlich voneinander unterscheiden, ist ihnen gemeinsam, daß sie enge Wirkungsspektren besitzen und überwiegend sensitive Hefen nahe verwandter Arten abtöten. Dieses eingeschränkte Wirkspektrum beruht darauf, daß die bislang charakterisierten
Killertoxine der Bäckerhefe mit unterschiedlichen Rezeptor-Populationen auf den Ebenen von Hefezellwand und Cytoplasmamembran interagieren müssen, um eine sensitive Zielzelle abtöten zu können. Bei den primären Toxinrezeptoren der Hefe- zeilwand handelt es sich entweder um stark verzweigte ß-1 ,6-D-Glukane oder um die äußeren Mannotriose-Seitenketten eines Zellwand-Mannoproteins [Bussey, 1991 ; Schmitt & Radler 1987, 1988].
Neben den viralen Proteintoxinen der Hefen S. cerevisiae, Hanseniaspora uvarum,
Zygosaccharomyces bailii und Ustilago maydis, wurden Killerstämme auch in den Gattungen Debaryomyces, Hansenula, Cryptococcus, Rhodotorula, Trichosporon, Pichia, Kluyveromyces, Torulopsis und Williopsis beschrieben [McCracken et al., 1994; Park et al., 1996; Schmitt s Neuhausen, 1994; Walker er al., 1995]. Die gene- tische Grundlage des Killerphänomens beruht in diesen Hefen jedoch nicht auf viralen Genomen, sondern entweder auf linearen dsDNA-Plasmiden oder auf chromo- somalen Hefegenen [Schründer et al., 1994].
Intensive molekularbiologische Untersuchungen verschiedener Toxin-produzierender "Killerhefen" haben gezeigt, daß die Sekretion toxischer Proteine ('Killertoxine') bei
Hefen weitverbreitet ist und ein nicht zu unterschätzendes Potential bei der Entwicklung selektiver Antimycotika darstellt [Walker et al., 1995; Hodgson et al., 1995; Polonelli et al., 1986; Schmitt & Neuhausen, 1994; Neuhausen & Schmitt, 1996; Schmitt et al., 1997], jedoch konnten solche Proteintoxine bisher nicht bereitgestellt werden.
Daher ist es Aufgabe dieser Erfindung geeignete hochwirksame Proteintoxine mit antimycotischer oder fungizider Wirkung zur Bekämpfung von human und pflanzenpathogenen Hefen und/oder Pilzen bereitzustellen.
In überraschender Weise erweisen sich nunmehr das hochwirksam produzierte und sezemierte Killertoxin WICALTIN (auch Proteintoxin) aus der Wildtyphefe Williopsis californica Stamm 3/57 (DSM 12865) und das viruskodierte ZYGOCIN (auch Proteintoxin) der Hefe Zygosaccharomyces bailii (DSM 12864) als besonders geeignet zur Bekämpfung von human- und pflanzenpathogenen Hefen und/oder Pilzen.
Zudem können im Lebens- und Futtermittelbereich gefürchtete Schadhefen und Pilze abgetötet werden. Beide Proteintoxine besitzen daher das Potential als Antimycotikum und/oder Fungizid zur Bekämpfung von Hefe und/oder Pilzinfektionen, insbesondere Mycosen, eingesetzt zu werden. Diese Indikationen werden in der vorliegenden Erfindung durch Untersuchungen zur Wirkungsweise verifiziert. Die Toxingene werden im Rahmen dieser Erfindung geeignet kloniert und sequenziert und somit wird ein Verfahren für die gentechnische Herstellung und Überexpression in Kultur von WICALTIN und ZYGOCIN etabliert.
Ein Gegenstand der Erfindung betrifft daher Proteintoxine erhältlich aus Williopsis californica, besonders bevorzugt der Stamm DSM 12865 und Zygosaccharomyces bailii, besonders bevorzugt der Stamm DSM 12864. Beide Stämme wurden am 09.
Juni 1999 am DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, in 38124 Braunschweig, Mascheroder Weg 1 b nach dem Budapester Vertrag hinterlegt (www.dsmz.de).
Im Rahmen dieser Erfindung sezernieren insbesondere DSM 12864 und DSM 12865 biologisch hochwirksame Proteintoxine, die aufgrund ihres breiten Wirkspektrums (siehe Beispiel 4 und 7) auch zahlreiche human- und pflanzenpathogene Hefen und Pilze abtöten. Daher betrifft die Erfindung auch selektive Antimycotika oder Fungizide, in dem Sinne, daß es sich bei den Proteintoxinen - und den nachstehenden er- findungsgemäßen Polypeptiden und deren kodierenden erfindungsgemäßen Nukleinsäuren, insbesondere in der funktionellen Einheit eines Toxingens - um potentielle Bio-Pharmaka handelt, die aufgrund ihrer spezifischen, rezeptorvermittelten Wirkung ausschließlich Hefen und / oder Pilze abtöten und für höhere Eukaryoten - und damit ebenfalls für den Menschen und Säugetierzellen - sowie Pflanzen, vorzugs- weise Kulturpflanzen, völlig ungefährlich sind [Vgl. Pfeiffer et al., 1988].
Folgende human- und pflanzenpathogene sowie apathogene Hefen und / oder Pilze können selektiv abgetötet werden:
Zygocin-sensitive Hefearten: Saccharomyces cerevisiae, Candida albicans, Candida krusei, Candida glabrata, Candida vinii, Hanseniaspora uvarum, Klυyveromyces marxianυs, Methschnikowia pulcherrima, Ustilago maydis, Debaryomyces hansenii, Pichia anomala, Pichia jadinii, Pichia membranefaciens, Yarrowia lipolytica und Zygosaccharomyces roυxii. Wicaltin-sensitive Hefearten: Candida albicans, Candida glabrata, Candida tropicalis, Debaryomyces hansenii, Kluyveromyces lactis, Metschnikowia pulcherrima, Pichia anomala, Pichia jadinii, Saccharomyces cerevisiae, Sporthrix spec, Torulaspora delbrueckii, Torulaspora pretoriensis, Yarrowia lipolytica und Zygosaccharomyces bailii.
Die besonders starke Aktivität des Wicaltin-produzierenden Hefestammes DSM 12865 beruht vermutlich auf dessen ausgeprägter Sekretionseffizienz, die im Vergleich zu anderen Stämmen der gleichen Hefeart deutlich stärker ausgeprägt ist. Die 'Killer'-Eigenschaft des Zygocin-produzierenden Hefestammes DSM 12864 beruht auf einer Infektion mit toxinkodierenden Doppelstrang-RNA-Viren (MztrdsRNA), die stabil und in hoher Kopienzahl im Cytoplasma persistieren und die betreffende Hefe (Stamm DSM 12864) zur Produktion und Sekretion von Zygocin befähigen [Vgl. Schmitt & Neuhausen, 1994]. Andere Stämme der gleichen Art zeigten keine Toxin- Produktion, da sie keine toxinkodierenden dsRNA-Viren im Cytoplasma beherbergen und somit phänotypisch als 'Nicht-Killer' zu klassifizieren sind.
Ein weiterer Gegenstand der vorliegenden Erfindung sind daher Nukleinsäuren kodierend für ein Proteintoxin - mit einer Aminosäuresequenz gemäß SEQ ID No 1 und No 2 und einer Glucanase-Aktivität - oder eine funktionelle Variante davon, und
Teile davon mit mindestens 8 Nukleotiden, vorzugsweise mit mindestens 15 oder 20 Nukleotiden, insbesondere mit mindestens 100 Nukleotiden, vor allem mit mindestens 300 Nukleotiden (nachfolgend "erfindungsgemäße Nukleinsäure(n)" genannt).
Die vollständigen Nukleinsäuren kodieren für Proteintoxine, die nach intrazellulärer
Prozessierung und Sekretion eine Größe von 309 Aminosäuren und eine molekulare Masse von 34 kDa (SEQ ID No 1) bzw. von 99 Aminosäuren und eine molekulare Masse von 10 kDa aufweisen (SEQ ID No 2). Die Expression der Nukleinsäure nach SEQ ID No 1 in der Hefe S. cerevisiae resultiert in einem rekombinanten WICALTIN, das als glykosyliertes Protein mit signifikanter ß-1 ,3-D-Glukanase-Aktivität in den
Kulturüberstand der Hefe sezerniert wird [Vgl. Beispiel 10]. Weitere Experimente gemäß der vorliegenden Erfindung bestätigten, daß es sich bei den erfindungsgemäßen Nukleinsäuren um Nukleinsäuren handelt, die im Falle von SEQ ID No 1 für ein Proteintoxin mit Glucanase - Aktivität und im Falle von SEQ ID No 2 für ein in vivo vermutlich O-glykosyliertes, als ZYGOCIN bezeichnetes Proteintoxin kodieren. Die erfindungsgemäßen Nukleinsäuren sind erhältlich aus DSM 12865 (SEQ ID No 1) und DSM 12864 (SEQ ID No 2).
In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Nukleinsäuren eine DNA oder RNA, vorzugsweise eine doppelsträngige DNA, und insbesondere eine DNA mit einer Nukleinsäuresequenz gemäß SEQ ID No 1 von Pos. 1 bis Pos. 947 und gemäß SEQ ID No 2 von Pos. 1 bis Pos. 713 . Die beiden Positionen be- stimmen gemäß der vorliegenden Erfindung den Start und das Ende des kodierenden Bereiches, d.h. die jeweils erste und letzte Aminosäure des betreffenden Leserasters.
Unter dem Begriff "funktionelle Variante" versteht man gemäß der vorliegenden Er- findung eine Nukleinsäure, die funktioneil mit den erfindungsgemäßen Nukleinsäuren verwandt sind. Beispiele verwandter Nukleinsäuren sind Nukleinsäuren aus unterschiedlichen Hefezellen bzw. Stämmen und Kulturen oder allelische Varianten. Ebenfalls umfaßt die vorliegende Erfindung Varianten von Nukleinsäuren, die von verschiedenen Hefen / Hefestämmen oder anderen Infektionserregern wie Dermato- phyten und Schimmelpilzen (gemäß dem DHS-System) stammen können.
Im weiteren Sinne versteht man unter dem Begriff "Varianten" gemäß der vorliegenden Erfindung Nukleinsäuren, die eine Homologie, insbesondere eine Sequenzidentität von ca. 60%, vorzugsweise von ca. 75%, insbesondere von ca. 90% und vor allem von ca. 95% aufweisen.
Die Teile der erfindungsgemäßen Nukleinsäure können beispielsweise zur Herstellung einzelner Epitope, als Sonden zur Identifizierung weiterer funktioneller Varianten oder als Antisense-Nukleinsäuren verwendet werden. Beispielsweise eignet sich eine Nukleinsäure aus mindestens ca. 8 Nukleotiden als Antisense-Nukleinsäure, eine Nukleinsäure aus mindestens ca. 15 Nukleotiden als Primer beim PCR-
Verfahren, eine Nukleinsäure aus mindestens ca. 20 Nukleotiden für die Identifizierung weiterer Varianten und eine Nukleinsäure aus mindestens ca. 100 Nukleotiden als Sonde. In einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Nukleinsäure eine oder mehrere nicht-kodierende Sequenzen und/oder eine Poly(A)- Sequenz, eine oder mehrere (für die intrazelluläre Pro-Protein-Prozessierung notwendige) Kex2p Endopeptidase Erkennungssequenzen sowie eine oder mehrere potentielle N-Glykosylierungsstellen. Die nicht-kodierenden Sequenzen sind regulatorische Sequenzen, wie Promotor- oder Enhancer-Sequenzen, zur kontrollierten Expression des kodierenden Toxingens, enthaltend die erfindungsgemäßen Nukleinsäuren.
In einer weiteren Ausführungsform ist die erfindungsgemäße Nukleinsäure daher in einem Vektor, vorzugsweise in einem Expressionsvektor oder gentherapeutisch wirksamen Vektor enthalten.
Die Expressionsvektoren können beispielsweise im Falle der Nukleinsäure nach SEQ ID No 2 prokaryotische und/oder eukaryotische Expressionsvektoren bzw. im
Falle der Nukleinsäure nach SEQ ID No 1 ausschließlich eukaryotische Expressionsvektoren sein. Die Expression der toxinkodierenden Nukleinsäure nach SEQ ID No 1 in Escherichia coli ist nicht möglich, da das betreffende, heterolog exprimierte Proteintoxin für die Bakterienzelle toxisch ist. Eine Klonierung der WICALTIN- kodierenden Nukleinsäure nach SEQ ID No 1 ist in E. coli nur mit Plasmiden möglich, die keinen Promotor tragen (z.B. mit Hilfe von Derivaten des Plasmids pBR322). Ein Beispiel für einen prokaryotischen Vektor, der eine heterologe Expression der ZYGOCIN-kodierenden Nukleinsäure nach SEQ ID No 2 erlaubt, ist der kommerziell erhältliche Vektor pGEX-4T-1 , der in E. coli die Expression eines Gluthathion-S- Transferase-ZYGOCIN-Fusionsproteins erlaubt. Ein weiterer Vektor für die Expression von ZYGOCIN in E. coli ist z.B. der T7 Expressionsvektor pGM10 (Martin, 1996), welcher für einen N-terminalen Met-Ala-His6-Tag kodiert, der eine vorteilhafte Reinigung des exprimierten Proteins über eine Ni2+-NTA-Säule ermöglicht. Als eukaryotische Expressionsvektoren für die Expression in Saccharomyces cerevisiae eig- nen sich z.B. die Vektoren p426Met25 oder p426GAL1 (Mumberg et al. (1994) Nucl.
Acids Res., 22, 5767), für die Expression in Insektenzellen z.B. Baculovirus- Vektoren wie in EP-B1 -0127839 oder EP-B1 -0549721 offenbart, und für die Expression in Säugerzellen z.B. SV40-Vektoren, welche allgemein erhältlich sind. Im allgemeinen enthalten die Expressionsvektoren auch für die Wirtszelle geeignete regulatorische Sequenzen, wie z.B. den trp-Promotorfür die Expression in E. coli (s. z.B. EP-B1-0154133), den ADH-2-Promotor für die Expression in Hefen (Rüssel et al. (1983), J. Biol. Chem. 258, 2674), den Baculovirus-Polyhedrin-Promotor für die Expression in Insektenzellen (s. z.B. EP-B1 -0127839) oder den frühen SV40-
Promotor oder LTR-Promotoren z.B. von MMTV (Mouse Mammary Tumour Virus; Lee et al. (1981 ) Nature, 214, 228).
Beispiele von gentherapeutisch wirksamen Vektoren sind Virusvektoren, vorzugs- weise Adenovirusvektoren, insbesondere replikationsdefiziente Adenovirusvektoren, oder Adenoassoziierte Virusvektoren, z.B. ein Adenoassoziierter Virusvektor, der ausschließlich aus zwei insertierten terminalen Wiederholungssequenzen (ITR) besteht.
Geeignete Adenovirusvektoren sind beispielsweise in McGrory, W.J. et al. (1988)
Virol. 163, 614; Gluzman, Y. et al. (1982) in "Eukaryotic Viral Vectors" (Gluzman, Y. ed.) 187, Cold Spring Harbor Press, Cold Spring Habor, New York; Chroboczek, J. et al. (1992) Virol. 186, 280; Karlsson, S. et al. (1986) EMBO J.. 5, 2377 oder WO95/00655 beschrieben.
Geeignete Adeno-assoziierte Virusvektoren sind beispielsweise in Muzyczka, N. (1992) Curr. Top. Microbiol. Immunol. 158, 97; WO95/23867; Samulski, R.J. (1989) J. Virol, 63, 3822; WO95/23867; Chiorini, J.A. et al. (1995) Human Gene Therapy 6, 1531 oder Kotin, R.M. (1994) Human Gene Therapy 5, 793 beschrieben.
Gentherapeutisch wirksame Vektoren lassen sich auch dadurch erhalten, daß man die erfindungsgemäße Nukleinsäure mit Liposomen komplexiert. Hierzu eignen sich Lipidmischungen wie bei Feigner, P.L. et al. (1987) Proc. Natl. Acad. Sei, USA 84, 7413; Behr, J.P. et al. (1989) Proc. Natl. Acad. Sei. USA 86, 6982; Feigner, J.H. et al. (1994) J. Biol. Chem. 269, 2550 oder Gao, X. & Huang, L. (1991 ) Biochim. Bio- phys. Acta 1189, 195 beschrieben. Bei der Herstellung der Liposomen wird die DNA ionisch auf der Oberfläche der Liposomen gebunden, und zwar in einem solchen Verhältnis, daß eine positive Nettoladung verbleibt und die DNA vollständig von den Liposomen komplexiert wird. In einer weiteren Ausführungsform sind die erfindungsgemäßen Nukleinsäuren daher in einem Vektor, vorzugsweise in einem Expressionsvektor zur Herstellung von transgenen Pflanzen, enthalten. Da die beschriebenen Killertoxine WICALTIN und ZYGOCIN ein breites Wirkungsspektrum besitzen und auch pflanzenpathogene He- fen und Pilze abtöten, ist es möglich transgene Pflanzen bereitzustellen, die sich beispielsweise gegenüber einer Infektion mit dem Mais-pathogenen Erreger Ustilago maydis resistent verhalten. Ähnliche Versuche wurden bereits an Tabak-Pflanzen durchgeführt, die durch heterologe Expression des natürlicherweise viral kodierten Killertoxins KP4 von U. maydis in der Lage waren, das betreffende Proteintoxin zu sezernieren und dadurch einen spezifischen Schutz gegen Infektionen mit bestimmten phytopathogenen Stämmen von U. maydis aufbauten (Park et al., 1996; Kinal et al., 1995; Bevan, 1984). Aufbauend auf kommerziell erhältlichen Transformationssystemen, die auf modifizierten Derivaten des natürlichen Ti-Plasmids von Agrobacterium tumefaciens beruhen, können die erfindungsgemäßen Nukleinsäu- ren, ebenfalls repräsentiert in den Toxingenen WCT und ZBT, in sogenannte bidirektionale pBI-Vektroen (Fa. CLONTECH) einkloniert und zur Herstellung transgener Pflanzen eingesetzt werden. Die betreffenden Toxingene WCT und ZBT werden hierzu unter Transkriptionskontrolle des starken Blumenkohl-Mosaikvirus-Promotors (CaMV-P) gebracht. Der genauere Aufbau der zu konstruierenden Vektoren ist im Beispiel 9 schematisch dargestellt.
Die erfindungsgemäßen Nukleinsäuren können beispielsweise chemisch anhand der SEQ ID No 1 und No 2 offenbarten Sequenzen oder anhand der in SEQ ID No 1 und No 2 offenbarten Peptidsequenzen unter Heranziehen des genetischen Codes z.B. nach der Phosphotriester-Methode synthetisiert werden (siehe z.B. Uhlman, E.
& Peyman, A. (1990) Chemical Reviews, 90, 543, No. 4). Eine weitere Möglichkeit, die erfindungsgemäße Nukleinsäure in die Hand zu bekommen, ist die Isolierung aus einer geeigneten Genbank anhand einer geeigneten Sonde (s. z.B. Sambrook, J. et al. (1989) Moleeular Cloning. A laboratory manual. 2nd Edition, Cold Spring Harbor, New York). Als Sonde eignen sich beispielsweise einzelsträngige DNA-
Fragmente mit einer Länge von ca. 100 bis 1000 Nucleotiden, vorzugsweise mit einer Länge von ca. 200 bis 500 Nucleotiden, insbesondere mit einer Länge von ca. 300 bis 400 Nucleotiden, deren Sequenz aus der Nukleinsäuresequenz gemäß SEQ ID No 1 und No 2 abgeleitet werden kann. Ein weiterer Gegenstand der vorliegenden Erfindung sind die Polypeptide als solche mit einer Aminosäuresequenz gemäß SEQ ID No 1 und No 2 oder einer funktionel- len Variante davon, und Teile davon mit mindestens sechs Aminosäuren, vorzugsweise mit mindestens 12 Aminosäuren, insbesondere mit mindestens 65 Aminosäu- ren und vor allem mit 309 Aminosäuren (SEQ ID No 1 ) und mit 99 Aminosäuren
(SEQ ID No 2) (nachfolgend "erfindungsgemäße Polypeptid(e)" genannt). Beispielsweise kann ein ca. 6-12, vorzugsweise ca. 8 Aminosäuren-langes Polypeptid ein Epitop enthalten, das nach Kopplung an einen Träger zur Herstellung von spezifischen poly- oder monoklonalen Antikörper dient (siehe hierzu z. B. US 5,656,435). Polypeptide mit einer Länge von mindestens ca. 65 Aminosäuren können auch direkt ohne Träger zur Herstellung von poly- oder monoklonalen Antikörper dienen.
Unter dem Begriff "funktioneile Variante" im Sinne der vorliegenden Erfindung versteht man Polypeptide, die funktionell mit dem erfindungsgemäßen Peptid verwandt sind, d.h. eine Glucanase-Aktivität aufweisen. Unter Varianten versteht man auch allelische Varianten oder Polypeptide, die von verschiedenen Hefen / Hefestämmen oder anderen Infektionserregern wie Dermatophyten, Schimmelpilzen (gemäß dem DHS-System) stammen können.
Im weiteren Sinne versteht man darunter auch Polypeptide, die eine Sequenzhomologie, insbesondere eine Sequenzidentität von ca. 70%, vorzugsweise von ca. 80%, insbesondere von ca. 90%, vor allem von ca. 95% zu dem Polypeptid mit der Aminosäuresequenz gemäß Figur 2 haben. Ferner zählen hierzu auch Deletion des Po- lypeptids im Bereich von ca. 1 - 60, vorzugsweise von ca. 1 - 30, insbesondere von ca. 1 - 15, vor allem von ca. 1 - 5 Aminosäuren. Beispielsweise kann die erste Aminosäure Methionin fehlen, ohne daß die Funktion des Polypeptids wesentlich verändert wird. Daneben zählen hierzu auch Fusionsproteine, die die oben beschriebenen erfindungsgemäßen Polypeptide enthalten, wobei die Fusionsproteine selbst bereits die Funktion einer Glucanase haben oder erst nach Abspaltung des Fusionsanteils die spezifische Funktion bekommen können.Vor allem zählen hierzu Fusionsproteine mit einem Anteil von insbesondere nicht-humanen Sequenzen von ca. 1 - 200, vorzugsweise ca. 1 - 150, insbesondere ca. 1 - 100, vor allem ca. 1 - 50 Aminosäuren. Beispiele von nicht-humanen Peptidsequenzen sind prokaryotische Peptidsequen- zen, z.B. aus der Galactosidase von E. coli oder ein sogenannter Histidin-Tag, z.B. ein Met-Ala-His6-Tag. Ein Fusionsprotein mit einem sogenannten Histidin-Tag eignet sich besonders vorteilhaft zur Reinigung des exprimierten Proteins über Metallionen- haltige Säulen, beispielsweise über eine Ni2+-NTA-Säule. "NTA" steht für den Che- lator "nitrilothacetic acid" (Qiagen GmbH, Hilden). Insofern umfaßt die Erfindung auch solche erfindungsgemäße Polypeptide die maskiert sind, im Sinne eines Proproteins oder im weitesten Sinne als Pre-drug.
Die Teile der erfindungsgemäßen Polypeptide repräsentieren beispielsweise Epito- pe, die spezifisch von Antikörpern erkannt werden können.
Die erfindungsgemäßen Polypeptide werden beispielsweise durch Expression der erfindungsgemäßen Nukleinsäure in einem geeigneten Expressionssystem, wie oben bereits beschrieben, nach dem Fachmann allgemein bekannten Methoden hergestellt. Als Wirtzellen zur Herstellung korrekt prozessierter und damit biologisch aktiver Proteintoxine eignen sich ausschließlich eukaryotische Organismen, vorzugsweise die Sproßhefe Saccharomyces cerevisiae und die Spalthefe Schizosac- charomyces pombe.
Insbesondere die genannten Teile des Polypeptids können auch mit Hilfe der klassi- sehen Peptidsynthese (Merrifield-Technik) synthetisiert werden. Sie eignen sich insbesondere zur Gewinnung von Antiseren, mit deren Hilfe geeignete Genexpressionsbanken durchsucht werden können, um so zu weiteren funktioneilen Varianten des erfindungsgemäßen Polypeptids zu gelangen.
Ein weiterer Gegenstand der vorliegenden Erfindung bezieht sich daher auf ein
Verfahren zur Herstellung eines erfindungsgemäßen Polypeptids, wobei eine erfindungsgemäße Nukleinsäure in einer geeigneten Wirtszelle exprimiert und gegebenenfalls isoliert wird.
Ganz besonders bevorzugt ist die Spalthefe Schizosaccharomyces pombe, da sich diese Hefe natürlicherweise WICALTIN- und ZYGOCIN-resistent verhält und bereits mehrfach erfolgreich zur heterologen Expression von Fremdproteinen eingesetzt wurde [Giga-Hama & Kumagai (1997), in "Foreign Gene Expression in Fission Yeast: Schizosaccharomyces pombe", Springer Verlag]. Wie in Beispiel 11 ausge- führt, können die toxinkodierenden Nukleinsäuren nach SEQ ID No 1 und SEQ ID No 2 beispielsweise in den S. pombe Vektor pREP1 einkloniert werden [Maundrell (1990), J. Biol. Chem. 265:10857-10864], in dem sie unter Transkriptions-Kontrolle des Thiamin-regulierten nmt 1 Promotors der Spalthefe stehen [nmt = 'no message with rhiamine'] Hefen, die mit einem solchen Vektor transformiert werden, exprimie- ren das betreffende Fremdgen in Abhängigkeit von der jeweiligen Thiamin- Konzentration im Kulturmedium der Hefe. Hierdurch läßt sich gegebenenfalls die Phase des Hefewachstums von der Phase der Produktion des Fremdproteins zeitlich trennen, so daß es prinzipiell auch möglich ist, für die Hefe toxische Proteine zur Expression zu bringen. Um gleichzeitig eine Sekretion und damit eine deutlich leichtere Reinigung der in S. pombe heterolog exprimierten Toxine WICALTIN und ZYGOCIN zu ermöglichen, haben wir bereits einen Expressions-/Sekretions-Vektor konstruiert [Vektor pTZα/γ; siehe Beispiel 11], der das Sekretions- und Prozessie- rungssignal des viralen K28-Präprotoxingens enthält [Schmitt & Tipper, 1995] und dadurch eine effektive Sekretion des jeweils 'in-frame' nachgeschalteten Fremdproteins ermöglicht.
Ein anderer Gegenstand der vorliegenden Erfindung bezieht sich auch auf Antikörper, die mit dem erfindungsgemäßen Polypeptid spezifisch reagieren, wobei die oben genannten Teile des Polypeptids entweder selbst immunogen sind oder durch
Koppelung an geeignete Träger, wie z.B. bovines Serumalbumin, immunogen gemacht bzw. in ihrer Immunogenität gesteigert werden können.
Die Antikörper sind entweder polyklonal oder monoklonal. Die Herstellung, die auch einen Gegenstand der vorliegenden Erfindung darstellt, erfolgt beispielsweise nach allgemein bekannten Methoden durch Immunisieren eines Säugetiers, beispielsweise eines Kaninchens, mit dem erfindungsgemäßen Polypeptid oder den genannten Teilen davon, gegebenenfalls in Anwesenheit von z.B. Freund's Adjuvant und/oder Aluminiumhydroxidgelen (s. z.B. Diamond, B.A. et al. (1981 ) The New England Journal of Medicine, 1344). Die im Tier aufgrund einer immunologischen Reaktion entstandenen polyklonalen Antikörper lassen sich anschließend nach allgemein bekannten Methoden leicht aus dem Blut isolieren und z.B. über Säulenchromatographie reinigen. Bevorzugt wird eine Affinitätsreinigung der Antikörper, bei der bei- spielsweise das jeweilige Antigen (ZYGOCIN oder WICALTIN) kovalent an eine allgemein erhältliche CnBr-aktivierte Sepharose-Matrix gekoppelt und zur Reinigung der jeweils toxinspezifischen Antikörper eingesetzt wird.
Monoklonale Antikörper können beispielsweise nach der bekannten Methode von
Winter & Milstein (Winter, G. & Milstein, C. (1991 ) Nature, 349, 293) hergestellt werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist auch ein Arzneimittel, das die erfindungsgemäßen Nukleinsäuren oder die erfindungsgemäßen Polypeptide
(einzeln oder in Kombination) und gegebenenfalls geeignete Zusatz- oder Hilfsstoffe enthält und ein Verfahren zur Herstellung eines Arzneimittels zur Behandlung von Mycosen, wie oberflächliche, kutane und subkutane Dermatomykosen, Schleimhaut- und Systemmykosen, besonders bevozugt Candida-Mykosen, bei dem eine erfin- dungsgemäße Nukleinsäure oder ein erfindungsgemäßes Polypeptid mit pharmazeutisch annehmbaren Zusatz- und/oder Hilfsstoffen formuliert wird.
In Beispiel 12 ist ausgeführt, dass das von Stamm DSM 12865 produzierte und gereinigte Toxin WICALTIN sogar eine deutlich stärkere Toxizität auf Hefen besitzt, als die im Vergleich getesteten und zur Therapie von Mycosen häufig eingesetzten, topischen Antimycotika Clotrimazol und Miconazol.
Daher betrifft die Erfindung ebenfalls ein Arzneimittel im obigen Sinne enthaltend ein Antimycotikum oder ein Proteintoxin erhältlich aus DSM 12864 und/oder DSM 12865 und/oder erfindungsgemäße Polypeptide mit antimycotischer Wirkung.
Für die gentherapeutische Anwendung beim Menschen ist vor allem ein Arzneimittel geeignet, das die erfindungsgemäße Nukleinsäure in nackter Form oder in Form eines der oben beschriebenen gentherapeutisch wirksamen Vektoren oder in mit Lipo- somen komplexierter Form enthält.
Als geeignete Zusatz- und/oder Hilfsstoffe eignen sich z.B. eine physiologische Kochsalzlösung, Stabilisatoren, Proteinaseinhibitoren, Nukleaseinhibitoren etc. Ein weiterer Gegenstand der vorliegenden Erfindung ist auch ein Diagnostikum enthaltend eine erfindungsgemäße Nukleinsäure, ein erfindungsgemäßes Polypeptid oder erfindungsgemäße Antikörper und gegebenenfalls geeignete Zusatz- und/oder Hilfsstoffe und ein Verfahren zur Herstellung eines Diagnostikums zur Diagnose von Mycosen, wie oberflächliche, kutane und subkutane Dermatomykosen, Schleimhaut- und Systemmykosen, besonders bevozugt Candida-Mykosen, bei dem eine erfindungsgemäße Nukleinsäure, ein erfindungsgemäßes Polypeptid oder erfindungsgemäße Antikörper mit geeigneten Zusatz- und/oder Hilfsstoffen versetzt werden.
Beispielsweise können gemäß der vorliegenden Erfindung anhand der erfindungsgemäßen Nukleinsäure ein Diagnostikum auf der Basis der Polymerasekettenreakti- on (PCR-Diagnostik, z.B. gemäß EP-0200362) oder eines Northern und/oder Southern Blots, wie in Beispiel 13 näher beschrieben, hergestellt werden. Diese Tests beruhen auf der spezifischen Hybridisierung der erfindungsgemäßen Nuklein- säure mit dem komplementären Gegenstrang üblicherweise der entsprechenden mRNA. Die erfindungsgemäße Nukleinsäure kann hierbei auch modifiziert sein, wie z.B. in EP0063879 beschrieben. Vorzugsweise wird ein erfindungsgemäßes DNA- Fragment mittels geeigneter Reagenzien, z.B. radioaktiv mit α-P32-dATP oder nicht- radioaktiv mit Biotin, nach allgemein bekannten Methoden markiert und mit isolierter RNA, die vorzugsweise an geeignete Membranen aus z.B. Zellulose oder Nylon gebunden wurde, inkubiert. Zudem ist es vorteilhaft, die isolierte RNA vor der Hybridisierung und Bindung an eine Membran der Größe nach, z.B. mittels Agarose- Gelelektrophorese, aufzutrennen. Bei gleicher Menge an untersuchter RNA aus jeder Gewebeprobe kann somit die Menge an mRNA bestimmt werden, die spezifisch durch die Sonde markiert wurde.
Ein weiteres Diagnostikum enthält das erfindungsgemäße Polypeptid bzw. die oben näher beschriebenen immunogenen Teile davon. Das Polypeptid bzw. Teile davon, die vorzugsweise an eine Festphase, z.B. aus Nitrocellulose oder Nylon, gebunden sind, können beispielsweise mit der zu untersuchenden Körperflüssigkeit z.B. Blut, in vitro in Berührung gebracht werden, um so beispielsweise mit Antikörper reagieren zu können. Der Antikörper-Peptid-Komplex kann anschließend beispielsweise anhand markierter Antihuman-IgG- oder Antihuman-IgM-Antikörper nachgewiesen werden. Bei der Markierung handelt es sich beispielsweise um ein Enzym, wie Pero- xidase, das eine Farbreaktion katalysiert. Die Anwesenheit und die Menge an anwesenden Autoimmunantikörpern kann somit über die Farbreaktion leicht und schnell nachgewiesen werden.
Ein anderes Diagnostikum enthält die erfindungsgemäßen Antikörper selbst. Mit Hilfe dieser Antikörper kann beispielsweise eine Gewebeprobe des Menschen leicht und schnell dahingehend untersucht werden, ob das betreffende Polypeptid vorhanden ist. In diesem Fall sind die erfindungsgemäßen Antikörper beispielsweise mit einem Enzym, wie oben bereits beschrieben, markiert. Der spezifische Antikörper-
Peptid-Komplex kann dadurch leicht und ebenso schnell über eine enzymatische Farbreaktion nachgewiesen werden.
Ein weiterer Gegenstand der Erfindung betrifft ein Fungizid das die erfindungsgemä- ßen Nukleinsäuren und/oder die erfindungsgemäßen Polypeptide (einzeln oder in
Kombination) und gegebenenfalls geeignete Zusatz- oder Hilfsstoffe enthält und ein Verfahren zur Herstellung eines Fungizids zur Bekämpfung von Schadhefen und Schadpilzen, bei dem eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßes Polypeptid mit landwirtschaftlich annehmbaren Zusatz- und/oder Hilfsstoffen formuliert wird.
Wie bereits beschrieben wird in einer bevorzugten Ausführungsform eine transgene Pflanze hergestellt, welche das erfindungsgemäße Proteintoxin exprimiert. Daher betrifft die Erfindung ebenfalls Pflanzenzellen sowie inhärent die transgene Pflanze als solche enthaltend die erfindungsgemäßen Polypeptide und/oder Proteintoxine.
Ein anderer Gegenstand der vorliegenden Erfindung betrifft auch einen Test zur Identifizierung funktioneller Interaktoren, wie z.B. Inhibitoren oder Stimulatoren, enthaltend eine erfindungsgemäße Nukleinsäure, ein erfindungsgemäßes Polypeptid oder die erfindungsgemäßen Antikörper und gegebenenfalls geeignete Zusatz- und/oder Hilfsstoffe.
Ein geeigneter Test zur Identifizierung funktioneller Interaktoren, insbesondere solcher, die in der sensitiven Hefezelle mit dem Proteintoxin ZYGOCIN nach SEQ ID No 2 wechselwirken, ist z.B. das sogenannte "Two-Hybrid System" (Fields, S. & Sternglanz, R. (1994) Trends in Genetics, 10, 286). Bei diesem Test wird eine Zelle, beispielsweise eine Hefezelle, mit einem oder mehreren Expressionsvektoren transformiert oder transfiziert, die ein Fusionsprotein exprimieren, das das erfin- dungsgemäße Polypeptid und eine DNA-Bindedomäne eines bekannten Proteins, beispielsweise von Gal4 oder LexA aus E. coli, enthält und/oder ein Fusionsprotein exprimieren, das ein unbekanntes Polypeptid und eine Transkriptions- Aktivierungsdomäne, beispielsweise von Gal4, Herpesvirus VP16 oder B42, enthält. Zudem enthält die Zelle ein Reportergen, beispielsweise das LacZ-Gen aus E. coli, "Green Fluorescence Protein" oder die Aminosäure-Biosynthesegene der Hefe His3 oder Leu2, das durch regulatorische Sequenzen, wie z.B. den lexA- Promotor/Operator oder durch eine sogenannte "Upstream Activation Sequence" (UAS) der Hefe kontrolliert wird. Das unbekannte Polypeptid wird beispielsweise durch ein DNA-Fragment kodiert, das aus einer Genbank, beispielsweise aus einer humanen Genbank, stammt. Üblicherweise wird gleich eine cDNA-Genbank mit Hilfe der beschriebenen Expressionsvektoren in Hefe hergestellt, so daß der Test unmittelbar danach durchgeführt werden kann.
Beispielsweise wird in einem Hefe-Expressionsvektor die erfindungsgemäße Nu- kleinsäure in funktioneller Einheit an die Nukleinsäure kodierend für die LexA-DNA-
Bindedomäne Moniert, so daß ein Fusionsprotein aus dem erfindungsgemäßen Polypeptid und der LexA-DNA-Bindedomäne in der transformierten Hefe exprimiert wird. In einem anderen Hefe-Expressionsvektor werden cDNA-Fragmente aus einer cDNA-Genbank in funktioneller Einheit an die Nukleinsäure kodierend für die Gal4- Transkriptions-Aktivierungsdomäne kloniert, so daß ein Fusionsprotein aus einem unbekannten Polypeptid und der Gal4-Transkriptions-Aktivierungsdomäne in der transformierten Hefe exprimiert wird. Die mit beiden Expressionsvektoren transformierte Hefe, die beispielsweise Leu2" ist, enthält zusätzlich eine Nukleinsäure, die für Leu2 kodiert, und durch den LexA-Promotor/Operator kontrolliert wird. Im Falle einer funktioneilen Interaktion zwischen dem erfindungsgemäßen Polypeptid und dem unbekannten Polypeptid bindet die Gal4-Transkriptions-Aktivierungsdomäne über die LexA-DNA-Bindedomäne an den LexA-Promotor/Operator, wodurch dieser aktiviert und das Leu2-Gen exprimiert wird. Dies hat zur Folge, daß die Leu2" Hefe auf Minimalmedium, das kein Leucin enthält, wachsen kann. Bei Verwendung des LacZ- bzw. "Green Fluorescence Protein"-Reportergens anstelle eines Aminosäure-Biosynthesegens kann die Aktivierung der Transkription dadurch nachgewiesen werden, daß sich blau- bzw. grün-fluoreszierende Kolonien bilden. Die Blau- bzw. Grünfluoreszenzfärbung läßt sich aber auch leicht im Spec- trophotometer z.B. bei 585 nm im Falle einer Blaufärbung quantifizieren.
Auf diese Weise können Expressionsgenbanken leicht und schnell auf Polypeptide durchsucht werden, die mit dem erfindungsgemäßen Polypeptid interagieren. Anschließend können die gefundenen neuen Polypeptide isoliert und weiter charakteri- siert werden.
Eine weitere Anwendungsmöglichkeit des "Two-Hybrid-Systems" ist die Beeinflussung der Interaktion zwischen dem erfindungsgemäßen Polypeptid und einem bekannten oder unbekannten Polypeptid durch weitere Substanzen, wie z.B. chemische Verbindungen. Auf diese Weise lassen sich auch leicht neue wertvolle che- misch synthetisierbare Wirkstoffe auffinden, die als Therapeutikum eingesetzt werden können. Die vorliegende Erfindung ist daher nicht nur auf ein Verfahren zum Auffinden von polypeptidartigen Interaktoren bestimmt, sondern erstreckt sich auch auf ein Verfahren zum Auffinden von Substanzen, die mit dem oben beschriebenen Protein-Protein-Komplex interagieren können. Derartige peptidartige, wie auch che- mische Interaktoren werden daher im Sinne der vorliegenden Erfindungs als funktio- nelle Interaktoren bezeichnet, die eine inhibierende oder eine stimulierende Wirkung haben können.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung der Proteintoxine mittels Kultivierung und Sekretion der Proteintoxine in ein Medium, welches ein synthetisches Kulturmedium (BAVC-Medium) darstellt, das eine chromatographische Reinigung der sezernierten Toxine, beispielsweise mittels Ultrafiltration und Kationenaustausch-Chromatiographie und/oder Affinitäts- Chromatographie an Laminarin-Sepharose und/oder Mannoprotein-Sepharose, wesentlich erleichtert [Vgl. Beispiel 1 sowie Anhang zu Beispielen]. Im Falle des von
Stamm DSM 12865 produzierten und sezernierten WICALTINS läßt sich eine weitere Steigerung in der Toxinproduktion erreichen, wenn das Medium durch Zusatz von des pflanzlichen (und allgemein erhältlichen) ß-1 ,3-D-Glukans Laminarin in einer Endkonzentration von 1 % supplementiert wird. Wie in Beispiel 14 ausgeführt, führt der Zusatz von Laminarin zum Kulturmedium zu einer Induktion der WICALTIN- Produktion, die durch Northern-Analysen auf eine Induktion der Transkription zurückgeführt werden konnte.
Zur Produktion des von DSM 12864 sezernierten Toxins ZYGOCIN kann synthetisches B-Medium eingesetzt werden [Vgl. Radler et al., 1993].
Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung ohne die Erfindung auf diese Beispiele zu begrenzen.
Beispiele
Beispiel 1 :
Isolierung, Anreicherung und Reinigung des anti-Caπd/da-Toxins WICALTIN aus Kulturüberständen der Killerhefe W. californica Stamm 3/57 (DSM 12865) Das von der Killerhefe W. californica 3/57 sezemierte Killertoxin WICALTIN zeigt im
Agardiffusionstest auf Methylenblau-Agar gegen sensitive Hefen eine optimale Hemmwirkung bei pH 4,7 und 20°C. In synthetischem Flüssigmedium zeigt die Killerhefe W. californica Stamm 3/57 eine maximale Toxinproduktion bei Kultivierung in BAVC-Medium (pH 4,7). Zur Toxinanreicherung wurde die Killerhefe zunächst für 24 h in 5 ml YEPD-Medium bei 30°C unter Schütteln inkubiert, anschließend vollständig in 200 ml BAVC-Medium überführt und erneut 48 h bei 20°C auf dem Schüttler (140 Upm) kultiviert. Vier Hauptkulturen zu je 2,5 I BAVC-Medium (pH 4,7 in 5 I Erlenmeyer-Kolben) wurden mit der zweiten Vorkultur beimpft (1%-iges Inokulum) und fünf Tage bei 20°C unter leichtem Schütteln (60 Upm) bebrütet. Zur Konzentrierung des sezernierten Killertoxins wurde der zellfreie Kulturüberstand bei +4°C und einem
Druck von 1 bar durch Ultrafiltration an Polysulfonsäure-Membranen ('EasyFlow' [Fa. Sartorius]; Ausschlußgrenze 10 kDa) 200-fach auf ein Volumen von 50 ml eingeengt. Zur Entfernung niedermolekularer Verbindungen und Entsalzung des so gewonnenen Konzentrates wurde das Toxin über Nacht bei +4°C im Dialyseschlauch (Aus- schlußgrenze 10-20 kDa) gegen 5 mM Citrat-Phosphat-Puffer (pH 4,7) dialysiert. Zur
Lagerung des Toxinkonzentrates wurde das dialysierte Präparat über eine 0,2 μm Membran sterilfiltriert und in 1 ml Aliquots bei -20°C eingefroren. Nachweis und Eichung der Toxinaktivität erfolgten im Agardiffusionstest auf Methylenblau-Agar (MBA; pH 4,7) gegen die sensitive Indikatorhefe Saccharomyces cere- visiae 192.2d. Hierzu wurden vom Toxinkonzentrat logarithmische Verdünnungsstufen in 0,1 M Citrat-Phosphat-Puffer (pH 4,7) hergestellt und zu jeweils 100 μl in zuvor ausgestanzte Löcher (Lochdurchmesser 9 mm) einer mit der sensitiven Indikatorhefe beimpften MBA-Platte (2x105 Zellen/ml) einpipettiert. Nach dreitägiger Bebrütung der Platten bei 20°C wurden die deutlich sichtbaren Hemmhöfe ausgemessen. Hierbei zeigte sich, daß zwischen dem Hemmhofdurchmesser und dem Logarithmus der Toxinkonzentration eine lineare Beziehung besteht. Einem (um den Lochdurchmesser korrigierten) Hemmhofdurchmesser von 20 mm wurde eine willkürliche Toxinak- tivität von 1x104 Einheiten/ml zugeordnet. Die Reinigung des konzentrierten WICALTINS erfolgte entweder durch Kationenaustausch-Chromatographie an Bioscale-S (FPLC) oder durch Affinitäts- Chromatographie an einer epoxyaktivierten Sepharose-6B-Matrix (Fa. Pharmacia), an die zuvor das pflanzliche ß-1 ,6-D-Glukan Pustulan gekoppelt wurde. Das auf diese Weise in seiner spezifischen Aktivität 625-fach angereicherte Toxinpräparat (Ta- belle 1) war gelelektrophoretisch rein und zeigte nach SDS-PAGE (im 10-22%-igen
Gradientengel) nur noch eine einzelne Bande bei etwa 37 kDa, die gleichermaßen mit Coomassie-Blau (Proteinfärbung) und Perjodsäure-Schiffs-Reagenz (PAS; Koh- lenhydratfärbung) nachweisbar war. Die positive PAS-Färbung deutet auf eine potentielle N-Glykosylierung des anti-Cand/da-Toxins WICALTIN hin. Durch Behand- lung des gereinigten Toxins mit Endoglykosidase-H konnte bestätigt werden, daß
WICALTIN einen N-glykosidisch verknüpften Kohlenhydratanteil von etwa 3 kDa besitzt, der in dieser Größe in Hefe ebenfalls auf eine einzige N-Glykosylierungsstelle im Proteintoxin hindeutet. Da das deglykosylierte WICALTIN eine deutlich eingeschränkte Toxizität aufweist, kann gefolgert werden, daß der Kohlenhydratanteil von WICALTIN vermutlich für die Bindung an die sensitive Zielzelle notwendig ist und dadurch indirekt die biologische Aktivität des Toxins beeinflußt.
Tabelle 1 : Anreicherung von WICALTIN aus dem Kulturüberstand der Killerhefe Williopsis californica [UF, Ultrafiltration]
Präparat VoluGesamt- GesamtSpezifiAktivitäts- Reinimen protein Toxin- sche To- ausbeute gungs- aktivität xin- faktor [mg] [E] aktivität [%]
[ml] [E/mg]
Kulturüberstand 10000 24600 7,9 x 105 3,2 x 101 100 1
UF-
Retentat 50 162 6,3 x 105 3,9 x 103 80 122 lyophil.
Dialysat 25 45,8 3,1 x 105 6,8 x 103 39 213
Bio-Scale
S (Katio64 1 ,28 2,5 x 104 2,0 x 104 3,2 625 nenaustausch)
Beispiel 2:
Bestimmung der NH2-terminalen Aminosäuresequenz von WICALTIN und
Nachweis einer enzymatischen ß-1,3-Glukanase-Aktivität
Durch N-terminale Aminosäuresequenzierung des gereinigten Killertoxins wurden die ersten zehn Aminosäuren bestimmt. Wie aus Figur 1 zu erkennen ist, weist der N-Terminus von WICALTIN eine signifikante Homologie zum Aminoterminus der vom BGL2 Gen der Hefe Saccharomyces cerevisiae kodierten Endo-ß-1 ,3- Glucanase auf.
Aufgrund der ermittelten Homologie von WICALTIN zu Bgl2 wurde untersucht, ob im ungereinigten Toxinkonzentrat sowie im gereinigten Toxinpräparat eine Glucanase- Aktivität nachweisbar ist. Sowohl im enzymatischen Test mit dem ß-1 ,3-D-Glucan Laminarin als Substrat als auch im Fluoreszenztest mit 4-Methyl-Umbelliferyl-ß-D- Glucosid (MUC) als Substrat konnte in den WICALTIN-Präparaten eine deutliche ß- 1,3-D-Glukanaseaktivität nachgewiesen werden; das ebenfalls getestete ß-1 ,6-D- Glukan Pustulan wurde durch WICALTIN nicht hydrolysiert.
Beispiel 3:
Überlebensraten WICALTIN-behandelter Hefezellen in Gegenwart und Abwesenheit von Zellwand-Glukanen: Kompetitionsanalysen Sensitive Hefezellen des Stammes S. cerevisiae 192.2d, die in YEPD- Flüssigmedium (pH 4,7) bei 20°C in Gegenwart von 1x105 E/ml gereinigtem WICALTIN kultiviert werden, zeigten die in Figur 2 dargestellte Abtötungskinetik. Durch Zusatz des pflanzlichen ß-1,6-D-Glukans Pustulan konnte die Überlebensrate toxinbehandelter Hefezellen signifikant gesteigert werden und führte in Konzentrationen von 10 mg/ml zu einer vollständigen Aufhebung der WICALTIN-Toxizität. Im Unterschied zu Pustulan war das ß-1 ,3-D-Glukan Laminarin nicht in der Lage, die Überlebensrate der toxinbehandelten Hefen zu steigern (Figur 2). Die dargestellten Befunde lassen somit darauf schließen, daß die Wirkung von WICALTIN eine Bindung an ß-1 ,6-D-Glukane erfordert, die als primäre Andockstellen (Toxinrezeptoren) der Hefezellwand fungieren. In Übereinstimmung hiermit konnte gezeigt werden, daß sich Hefen mit einer Deletion im chromosomalen KRE1- Genlocus toxinresistent verhalten und nach Retransformation mit einem KRE1- tragenden episomalen Vektor wieder toxinsensitiv werden (Figur 3). In krel Mutan- ten beruht die Toxinresistenz auf einem deutlich verringerten ß-1 ,6-D-Glukangehalt und einer dadurch bedingten Verringerung der zur letalen Wirkung notwendigen To- xinbindung an die Hefezelloberfläche.
Beispiel 4: Wirkungs- und Abtötungsspektren von WICALTIN
Im Agardiffusionstest zeigte das gereinigte W. californica Toxin WICALTIN eine ausgeprägte Toxizität gegen die in Tabelle 2 dargestellten Hefen. Mit Ausnahme von drei Stämmen der Hefe Candida krusei wurden alle 22 getesteten, klinischen Pati- entenisolate sowie alle weiteren Kontrollstämme humanpathogener Candida-A en sehr effektiv durch WICALTIN abgetötet. Mit 14 toxinsensitiven Hefearten aus insgesamt 10 verschiedenen Gattungen zeigt WICALTIN ein für Killertoxine ungewöhnlich breites Wirkungsspektrum.
Tabelle 2: Wirkungsspektrum von WICALTIN auf pathogene und apathogene Hefen unterschiedlicher Gattungen. Alle Stämme wurden im Agardiffusionstest (MBA; pH
4,7) gegen gereinigtes WICALTIN getestet. Die applizierte Toxinaktivität betrug in allen Fällen 1x106 E/ml. Der Stamm C. tropicalis (Patientennummer 541965) stammte von dem Institut für Medizinische Mikrobiologie und Hygiene der Universitätsklinik Mainz.
Figure imgf000023_0001
Figure imgf000024_0001
Beispiel 5:
Klonierung, Sequenzierung und molekulare Charakterisierung des WICALTIN- codierenden WCT-Gens der Hefe W. californica Stamm 3/57 (DSM 12865) Aufbauend auf der N-terminalen Aminosäuresequenz von WICALTIN wurden spezifische DNA-Oligonukleotide hergestellt, die zur Identifizierung und Klonierung sowie zur molekularbiologischen Charakterisierung des chromosomal lokalisierten Toxin- gens WCT führten. Die DNA-Sequenz von C7~(SEQ ID No. 1) zeigt einen einzelnen offenen Leserahmen, der für ein potentiell N-glykosyliertes Protein aus 309 Aminosäuren und einem errechneten Molekulargewicht von 34.017 Da kodiert. Untersuchungen zur Wirkung des C7"-kodierten Killertoxins machten deutlich, daß es sich bei WICALTIN um ein für Hefen äußerst toxisches Glykoprotein handelt, dessen primäres "target" die in Hefen vorkommenden Zellwand-ß-1 ,3-D-Glukane sind. Seine selektive Toxizität auf Hefen und Pilze beruht darauf, daß WICALTIN in der sensitiven Zielzelle die Struktur und/oder Integrität der Zellwand zerstört und Hefen somit an ihrer empfindlichsten Stelle angreift und letztlich auch abtötet.
Beispiel 6:
Anreicherung und Reinigung des Virustoxins ZYGOCIN aus Kulturüberständen der Killerhefe Z. bailii Stamm 412 (DSM 12864)
Das viruskodierte Killertoxin ZYGOCIN der Hefe Z. bailii Stamm 412 wurde entsprechend der von Radler et al. (1993) beschriebenen Methode aus dem Kulturüberstand der Killerhefe isoliert, durch Ultrafiltration konzentriert und schließlich durch Affinitäts-Chromatographie gereinigt. Die in vorliegender Studie entwickelte Reini- gung von ZYGOCIN in nur einem Schritt nutzt die natürliche Affinität des Toxins zu
Zellwand-Mannoproteinen sensitiver Hefen. Das nach einer von Schmitt & Radler (1997) beschriebenen Methode aus S. cerevisiae Stamm 192.2d isolierte und teilge- reinigte Mannoprotein wurde kovalent an eine epoxyaktivierte Sepharose-6B-Matrix (Fa. Pharmacia) gekoppelt und mittels FPLC zur säulenchromatographischen Toxin- reinigung eingesetzt. Nach SDS-PAGE zeigte das in dieser Weise gereinigte, biologisch hoch aktive ZYGOCIN eine einzelne Proteinbande mit einem apparenten Mo- lekulargewicht von etwa 10 kDa (Figur 4).
Beispiel 7:
Wirkungs- und Abtötungsspektrum von ZYGOCIN
Das im Agardiffusionstest bestimmte Wirkungsspektrum des viralen ZYGOCINS der Hefe Z. bailii 412 (DSM 12864) umfaßt pathogene und apathogene Hefegattungen, von denen Candida albicans und Sporothnx schenkii als Krankeitserreger bei Mensch und Tier, und Ustilago maydis und Debaryomyces hansenii als Schadhefen in der Landwirtschaft und im Lebensmittelbereich gefürchtet sind (Tab. 3).
Tabelle 3: Wirkungsspektrum von ZYGOCIN auf pathogene und apathogene Hefen unterschiedlicher Gattungen. Alle Stämme wurden im Agardiffusionstest (MBA; pH 4,5) gegen ein ZYGOCIN-Präparat mit einer Aktivität von 1x104 E/ml getestet.
Figure imgf000025_0001
Beispiel 8:
Klonierung und Sequenzierung des ZYGOCIN-codierenden ZBT-Gens (ZBT) der Hefe Z. bailii Stamm 412 (DSM 12864)
Die cDNA-Synthese des toxincodierenden Doppelstrang-RNA-Genoms der Killer- hefe Z. bailii 412 erfolgte in Anlehnung an die von Schmitt (1995) beschriebene Methode mit gereinigter, durch Methylquecksilberhydroxid denaturierter M-dsRNA als Matritze und verschiedenen Hexanukleotiden als 'Primern'. Nach Ligation in den EcoRI-restringierten Vektor pUC18, Transformation in E. coli und Isolierung der re- kombinanten Plasmide konnten mehrere cDNA-Klone identifiziert und sequenziert werden. Die cDNA-Sequenz des ZYGOCIN-kodierenden Leserasters (SEQ ID No 2) enthält die genetische Information für ein Vorläuferprotein (Pro-Toxin) aus 238 Aminosäuren, welches in Aminosäureposition RR139 eine potentielle Kex2- Endopeptidase-Spaltstelle trägt. Durch die in vivo im späten Golgi-Stadium erfolgende Kex2-vermittelte Pro-ZYGOCIN-Prozessierung entsteht das biologisch aktive ZYGOCIN, dessen Molekulargewicht (10 kDa; 99 Aminosäuren) und N-terminale
Aminosäuresequenz exakt mit den für das gereinigte ZYGOCIN ermittelten Werten übereinstimmen.
Eine heterologe Expression der ZßT-cDNA in der Hefe S. cerevisiae führte aufgrund der Toxizität von ZYGOCIN dazu, daß sich die transformierten Hefen durch ihr eige- nes Toxin abtöteten. In Zukunft wird eine heterologe ZYGOCIN-Expression in der toxinresistenten Spalthefe Schizosaccharomyces pombe angestrebt, da wie am Beispiel des viralen K28-Toxins bereits gezeigt werden konnte, daß sich die Spalthefe besonders gut zur Expression und Sekretion von Fremdproteinen eignet.
Beispiel 9:
Expression der Toxingene WCT und ZBT in transgenen Pflanzen
Da die beschriebenen Killertoxine WICALTIN und ZYGOCIN ein breites Wirkungsspektrum besitzen und auch pflanzenpathogene Hefen und Pilze abtöten, sollte es möglich sein transgene Pflanzen zu konstruieren, die sich beispielsweise gegenüber einer Infektion mit dem Mais-pathogenen Erreger Ustilago maydis resistent verhalten. Ähnliche Versuche wurden bereits an Tabak-Pflanzen durchgeführt, die durch heterologe Expression des natürlicherweise viral kodierten Killertoxins KP4 von U. maydis in der Lage waren, das betreffende Killertoxin zu sezernieren und dadurch einen spezifischen Schutz gegen Infektionen mit bestimmten phytopathogenen Stämmen von U. maydis aufbauten (Park et al., 1996; Kinal et al., 1995; Bevan, 1984). Aufbauend auf kommerziell erhältlichen Transformationssystemen, die auf modifizierten Derivaten des natürlichen Ti-Plasmids von Agrobacterium tumefaciens beruhen, können die von uns Monierten Toxingene WCT und ZBT in sogenannte bidirektionale pBI-Vektoren (Fa. CLONTECH) einkloniert und zur Herstellung trans- gener Pflanzen eingesetzt werden. Die betreffenden Toxingene WCT und ZBT werden hierzu unter Transkriptionskontrolle des starken Blumenkohl-Mosaikvirus- Promotors (CaMV-P) gebracht. Der Aufbau der zu konstruierenden Vektoren ist in Figur 5 schematisch dargestellt.
Beispiel 10:
Heterologe Expression des WICALTIN-kodierenden WCT-Gens der Hefe W. californica 3/57 (DSM 12865) in S. cerevisiae
Zur heterologen Expression des WCT-Gens in der Hefe S. cerevisiae wurde das WICALTIN-kodierende WCT-Gen als 930 bp EcoRI/Smal-Fragment in den allgemein erhältlichen 2μ Vektor pYX242 einkloniert. Der resultierende Vektor pSTH2 (Figur 6) enthält das Toxingen unter Transkriptionskontrolle des hefeeigenen Triose- Phosphat-Isomerase-Promotors (TPI) und ermöglicht dadurch nach Transformation in Hefe (S. cerevisiae) eine konstitutive Expression von WICALTIN. Eine gelelektro- phoretische Analyse des Kulturüberstandes der auf diese Weise erhaltenen Hefe- transformanten zeigte, daß das rekombinante WICALTIN in das Außenmedium se- zerniert wird und eine dem homologen WICALTIN (aus Wildtyp-Stamm DSM 12865) entsprechende ß-1 ,3-D-Glukanase-Aktivität besitzt (Figur 6).
Beispiel 11 :
Versuche zur heterologen Expression von WICALTIN und ZYGOCIN in der Spalthefe Schizosaccharomyces pombe
Da sich die Spalthefe sowohl als intakte Zelle als auch als zelwandfreier Spha- eroplast resistent gegen WICALTIN und ZYGOCIN verhält, ist sie als Wirt zur he- terologen Expression der betreffenden Toxine geeignet. Um zu gewährleisten, daß die rekombinanten Toxine von der Spalthefe nicht nur exprimiert, sondern gleichzeitig auch in den intrazellulären Sekretionsweg eingeschleust und damit in das Außenmedium sezerniert werden, wurde ein Vektor konstruiert (pTZα/γ; Figur 7), der ein in S. pombe funktionelles Sekretions- und Prozessierungs-Signal (S/P) trägt, welches aus der cDNA des viralen K28-Präprotoxingens der Hefe S. cerevisiae stammt [Vgl. Schmitt, 1995; Schmitt & Tipper, 1995]. Das Sekretions- und Prozessie- rungssignal gewährleistet, daß das jeweils 'in-frame' nachgeschaltete Fremdprotein in der Spalthefe in das Lumen des endoplasmatischen Retikulums importiert und damit in den Sekretionsweg der Hefe eingeschleust wird. Durch die am C-Terminus der S/P-Region vorhandene Kex2p-Spaltstelle wird das gewünschte Fremdprotein in einem späten Golgi-Kompartiment durch die hefeeigene Kex2p-Endopeptidase von seinem intrazellulären Transport-Vehikel' abgespalten und kann schließlich als bio- logisch aktives Protein (ZYGOCIN und/oder WICALTIN) in das Außenmedium se- zerniert werden.
Beispiel 12:
Vergleichende biologische Aktivitäten von gereinigtem WICALTIN und der to- pischen Antimycotika Clotrimazol und Miconazol
Da gereinigtes WICALTIN ein breites Wirkungsspektrum besitzt und auch hu- manpathogene Hefen und/oder Pilze effektiv abtötet, kommt ihm eine Bedeutung als potentielles Antimycotikum zu. Daher wurden mit WICALTIN vergleichende Studien zu den derzeit sehr häufig eingesetzten topischen Antimycotika Clotrimazol und Mi- conazol durchgeführt. Zunächst wurde die toxische Wirkung von Clotrimazol und
Miconazol im MBA-Agardiffusionstest gegen Sporothrix spec. als Indikatorhefe getestet. Hierzu wurde Clotrimazol in einer Konzentration von 10 mg/ml in Ethanol (96%) gelöst; diese Stammlösung wurde mit H20 idest verdünnt und in Konzentrationen von 0,1 bis 10 mg/ml zu je 100 μl im MBA-Test eingesetzt. Der Hemmhofdurchmesser lag bei einer eingesetzten Menge von 10-50 μg Clotrimazol zwischen 12 und 32 mm.
Von Miconazol wurde eine Stammlösung von 100 μg/ml in DMSO (100%) hergestellt, die in gleicher Weise wie Clotrimazol im MBA-Test auf biologische Aktivität gegen Sporothrix spec. untersucht wurde. Der Einsatz von 0,08-0,3 μg Miconazol führte im 'Bioassay' zu Hemmhöfen zwischen 22 und 36 mm. Die biologischen Aki- vitäten von 10 μg Clotrimazol bzw. von 0,08 μg Miconazol entsprechen somit der
Toxizität von 2 μg gereinigtem WICALTIN. Ein auf das Molekulargewicht der drei getesteten Verbindungen basierender Vergleich zeigt, daß WICALTIN bereits in einer Konzentration von 0,07 pmol die gleiche Aktivität zeigt wie 0,2 pmol Miconazol und 29 pmol Clotrimazol; bei WICALTIN handelt es sich somit um ein überaus wirksames Antimycotikum (Figur 8).
Beispiel 13: Nachweis des WICALTIN-kodierenden WCT-Gens der Hefe W. californica 3/57
(DSM 12865) durch Southern-Hybridisierung mit genspezifischen DNA-Sonde.
Zum Nachweis, daß die Nukleinsäure nach SEQ ID No. 1 zur Herstellung einer WICALTIN-spezifischen DNA-Sonde für eine anschließende Southern- Hybridisierung eingesetzt werden kann, wurde eine DIG-markierte, 930 bp lange DNA-Sonde zum Nachweis des in den Vektor pSTH1 einklonierten WCT-Gens eingesetzt. Der konstruierte Vektor pSTH1 repräsentiert ein Derivat des allgemein erhältlichen, prokaryotischen Klonierungsvektors pBR322. Die in Figur 9 dargestellte Agarosegelelektrophorese und der entsprechende Southern-Blot zeigen zweifelsfrei, daß mit der hergestellten Nukleinsäuresonde, das WICALTIN-kodierende WCT-Gen nachgewiesen werden kann.
Beispiel 14:
Northern-Blot Analyse zum Nachweis einer Transkriptions-Induktion des WICALTIN-kodierenden WCT-Gens der Hefe Williopsis californica 3/57 (DSM 12865) durch ß-1 ,3-D-Glukane
Zum Nachweis einer ß-1 ,3-D-Glukan-induzierten H/CT-Transkription wurde der Hefestamm DSM 12865 in 300 ml BAVC-Medium bzw. in BAVC-Medium mit Zusatz von 0,03 % des pflanzlichen ß-1,3-D-Glukans Laminarin für 48 h bei 20°C und leichtem Schütteln (60 Upm) kultiviert und nach unterschiedlichen Zeiten zur Präpa- ration der Gesamt-RNA eingesetzt. Alle Proben (10 ml) wurden vor der RNA-
Isolierung auf eine gleiche Zellzahl von 1 ,8 x 108 Zellen/ml eingestellt und in denaturierenden Agarose-Formaldehydgelen elektrophoretisch aufgetrennt. Wie aus Figur 10 zu erkennen ist, konnte sowohl unter nicht-induzierenden Bedingungen (BAVC- Medium ohne Zusatz) als auch im Laminarin-supplementierten BAVC-Medium für das WCT-Transkript eine Größe von 1.100 Basen nachgewiesen werden. Ohne Glu- kanzusatz wurde gegen Ende der exponentiellen Wachstumsphase (nach 19 h) eine maximale WCT-Expression erreicht; die in der stationären Wachstumsphase deutlich schwächer werdenden Hybridisierungssignale deuten auf eine abgeschwächte Tran- skription hin. Unter induzierenden Kulturbedingungen (in Gegenwart von Laminarin) zeigte das WCT-Transkript nach 10 h eine deutlich höhere Intensität als in der nicht- induzierten Kultur, so daß gefolgert werden kann, daß die Transkription des WICALTIN-kodierenden WCT-Gens durch Zusatz von ß-1 ,3-D-Glukanen induziert werden kann.
Anhang Beispiele:
Verwendete Medien und Lösungen in den Beispielen: a.) BAVC-Medium
Glucose 50 g/l
D.L-Malat 20 g/l tri-Natriumcitrat 0,5 g/l
(NH4)2SO4 1 ,5 g/l MgSO4 1 ,0 g/l
CaCI2 0,5 g/l myo-lnosit 0,04 g/l
Aminosäure-Stammlösung (10 x) 200 ml/l
Spurenelemente-Stammlösung (100 x) 10 ml/l Vitamin-Stammlösung (100 x) 20 ml/l
Mit: b.) Aminosäure-Stammlösung (10 x)
Alanin 0,75 g/l
Argininmonohydrochlorid 3,5 g/l
Asparaginsäure 0,5 g/l
Glutaminsäure 3 g/l
Histidiniummonochlorid 0,2 g/l Methionin 0,4 g/l
Serin 0,5 g/l
Threonin2 g/l
Tryptophan 0,4 g/l c.) Spurenelement-Stammlösung (100 x)
Borsäure 200 mg/l FeCI3 x 6 H2O 200 mg/l ZnSO4 x 7 H2O 200 mg/l
AICI3 200 mg/l
CuSO4 x 5 H2O 100 mg/l Na2MoO4 x 2 H2O100 mg/l Li2SO4 x H20100 mg/l KJ 100 mg/l
Kaliumhydrogentartrat2 g/l
d.) Vitamin-Stammlösung (100 x)
4-Aminobenzoesäure 20 mg/l
Biotin 2 mg/l
Folsäure 2 mg/l
Nicotinsäure 100 mg/l
Pyridoxolhydrochlorid 100 mg/l Riboflavin 50 mg/l
Thiaminiumdichlorid 50 mg/l
Ca-D-Panthothenat 100 mg/l
Biotin: in 5 g KH2PO.ι/50 ml Aqua dest. lösen. Folsäure: in 50 ml Aqua dest. unter Zusatz von einigen Tropfen verdünnter NaOH lösen.
Riboflavin: in 500 ml Aqua dest. und einigen Tropfen HCI unter Erwärmen lösen. Die übrigen Vitamine sind in wenig Aqua dest. löslich.
Der pH-Wert des BAVC-Mediums wurde durch Zusatz von KOH auf pH 4,7 eingestellt. Glucose und Stammlösungen wurden getrennt voneinander sterilisiert. Aminosäure-, Vitamin- und Spurenelement-Stammlösungen wurden 20 Minuten im strömenden Dampf bei 100°C sterilisiert und danach dem autoklavierten BAVC- Medium zugesetzt. Figuren und die wichtigsten Sequenzen
SEQ ID No. 1 : DNA- und abgeleitete Aminosäure-Sequenz des WCT-kodierten Proteintoxins WICALTIN der Hefe Williopsis californica Stamm 3/57.
SEQ ID No. 2: cDNA- und abgeleitete Aminosäure-Sequenz des ZßT-kodierten Proteintoxins ZYGOCIN der Hefe Z. bailii
Figur 1 : N-terminale Aminosäuresequenzen des W californica Toxins WICALTIN und der Endo-ß-1 ,3-Glucanase Bgl2 der Hefe S. cerevisiae. Im Fettdruck ist die einzige Abweichung der ansonsten identischen Teilsequenzen dargestellt (Bgl2p- Sequenz nach Klebl & Tanner, 1989)
Figur 2: Abtötungskinetik WICALTIN-behandelter Zellen der sensitiven Hefe S. cerevisiae 192.2d in Gegenwart (2a)und Abwesenheit (2b)der ß-D-Glukane Laminarin (L) und Pustulan (P). Das eingesetzte Toxin hatte eine Gesamtaktivität von 4,0 x 105
E/ml bei einer spezifischen Aktivität von 4,2 x 105 E/mg Protein.
Figur 3 (a,b,c,d): Agardiffusionstest zum Nachweis einer WICALTIN- Sensitivität /Resistenz in Kre1+ und Kre1" Stämmen der Hefe S. cerevisiae. Durch Transformation der WICALTIN-resistenten krel Nullmutante S. cerevisiae
SEY6210[Δ/ re7] mit dem KRE7-tragenden Vektor pPGK[KRE1] wird die volle WICALTIN-Sensitivität wiederhergestellt.
Figur 4: (A) Gelelektrophoretische Analyse (SDS-PAGE) des von der Hefe Z. bailii Stamm 412 (DSM 12864) produzierten und sezernierten ZYGOCINS nach Affinitäts-
Chromatographie an Mannoprotein-Sepharose. (B) Agardiffusionstest zum Nachweis der biologischen Aktivität des gereinigten Killertoxins ZYGOCIN.
Figur 5: Schematischer Aufbau eines ZBT- bzw. WCT-tragenden Expressionsvek- tors zur Herstellung transgener Pflanzen.
[Erklärungen: RB, LB: 'right and left border'-Sequenzen des natürlichen Ti-Plasmids von Agrobacterium tumefaciens; CaMV-P: 35S Promotor des Blumenkohl- Mosaikvirus; NOS-P, NOS-T: Transkriptions-Promotor und -Terminator der Nopalin- Synthase; kanR: Kanamycin-Resistenzgen aus Streptococcus zur Selektion in E. coli; NPT-II: Neomycin-Phosphotransferasegen aus dem Transposon Tn5 zur Selektion in Pflanze].
Figur 6: (A) Partielle Restriktionskarte des episomalen Vektors pSTH2 zur heterologen Expression des WICALTIN-kodierenden Toxingens WCT in der Hefe Saccharomyces cerevisiae. Vektor pSTH2 ist ein konstruiertes Plasmid auf der Basis des kommerziell erhältlichen 2 μ Multi-Copy-Vektors pYX242, in welches das WCT-Gen aus Stamm DSM 12865 als 930 bp EcoRI/Smal-Fragment einkloniert wurde. Das betreffende Toxingen steht unter Transkriptionskontrolle des hefeeigenen TPI-
Promotors und ermöglicht dadurch nach Transformation in S. cerevisiae eine starke und konstitutive Expression von WICALTIN.
(B) Gelelektrophoretische Analyse (SDS-PAGE; 10-22,5 %-iges Gradientengel) konzentrierter Kulturüberstände von S. cerevisiae nach Transformation mit dem kon- struierten WICALTIN-Expressionsvektor pSTH2 (Spur 1 ) und dem Grundvektor pYX242 (Spur 2). Das in S. cerevisiae heterolog exprimierte WICALTIN ist mit einem Pfeil gekennzeichnet.
(C) Nachweis einer extrazellulären ß-1 ,3-D-Glukanase-Aktivität der Hefe S. cerevisiae nach Transformation mit dem WICALTIN-exprimierenden Hefevektor pSTH2. Zur Bestimmung der Exo-ß-1 ,3-D-Glukanase-Aktivität wurden die auf leucinfreiem
SC-Agar kultivierten Hefekolonien mit 0,04% 4-Methylumbelliferyl-ß-D-Glucosid (MUG) in 50 mM Na-Acetat-Puffer (pH 5,2) besprüht. Nach einer Inkubation bei 37°C für 30 min wurden die Agarplatten mit UV-Licht (Wellenlänge 254 nm) bestrahlt. Die Glucanase-Aktivität wurde aufgrund der MUG-Hydrolyse durch Fluoreszenz nach- gewiesen.
[Erklärungen: 1 und 4, S. cerevisiae transformiert mit einem Vektor (pEP-WCT), der das WICALTIN-kodierende WCT-Gen unter dessen eigenem Promotor exprimiert; 2, Wildtyphefe W. californica 3/57 (DSM 12865); 3, Wildtyphefe W californica 3/111 ; 5, S. cerevisiae nach Transformation mit dem WICALTIN exprimierenden Vektor pYX- WCT; 6, S. cerevisiae transformiert mit dem Grundvektor pYX242 (ohne Toxingen)] Figur 7: Schema des strukturellen Aufbaus des Vektors pTZα/γ zur heterologen Expression und Sekretion von Fremdproteinen (insbesondere von WICALTIN und ZYGOCIN) in der Spalthefe Schizosaccharomyces pombe. [Erklärungen: Pnmtι, nmtι, Transkriptions-Promotor und -Terminator des Thiamin- regulierten nmtl Gens der Spalthefe S. pombe; S/P, Sekretions- und Prozessie- rungssequenz des viralen K28-Präprotoxins der Sproßhefe S. cerevisiae; arsl, autonom replizierende Sequenz aus Chromosom 1 der Spalthefe; Ieu2, Leucin-2- Markergen zur Selektion Leucin-prototropher Transformanten von S. pombe]
Figur 8: Vergleichende biologische Aktivitäten von gereinigtem WICALTIN, Clotrimazol und Miconazol; die angegebenen molaren Mengen erzeugen im 'Bioassay' (Agardiffusionstest) gegen die sensitive Indikatorhefe Sporothrix spec. einen Hemmhof-Durchmesser von 12 mm.
Figur 9: Nachweis des in pSTHI (pBR322-Derivat) einklonierten WICALTIN- kodierenden WCT-Gens der Hefe W. californica 3/57 (DSM 12865) durch Agarose- gelelektrophorese (A) und Southern-Hybridisierung mit einer DIG-markierten WCT- Sonde (B). [Erklärungen: M, DIG-markierter DNA-Längenstandard II; Spur 1 , pSTHI restringiert mit EcoRI und Sa I; Spur 2, DNA-Marker 'Smart-Ladder"]
Figur 10: Northem-Analyse zur Transkriptions-Induktion des WICALTIN- kodierenden WCT-Gens der Hefe W californica 3/57 (DSM 12865) unter nicht- induzierenden Kulturbedingungen in BAVC-Medium (A) und unter induzierenden Bedingungen in BAVC-Medium mit Zusatz von 0,03 % Laminarin (B). Die elektro- phoretische Auftrennung der aus Stamm DSM 12865 isolierten Gesamt-RNA erfolgte in einem denaturierenden Agarose/Formaldehyd-Gel bei konstanter Spannung (7 V/cm). Die RNA wurde auf einer Nylonmembran gegen eine WICALTIN- spezifische, DIG-markierte DNA-Sonde (630 bp) hybridisiert und durch Chemilumi- neszenz detektiert.
[Erklärungen: M, DIG-markierter RNA-Längenstandard I; Spuren 1-8 entsprechen den Zeitpunkten der Probennahme zur Isolierung der Gesamt-RNA: Spur 1 , 10 h; Spur 2, 15 h; Spur 3, 19 h; Spur 4, 24 h; Spur 5, 33 h; Spur 6, 38 h; Spur 7, 43 h; Spur 8, 48 h]
Im Text verwendete Abkürzungen:
Figure imgf000035_0001
Hinterlegungen
Folgende im Rahmen der vorliegenden Erfindung verwendeten Mikroorganismen wurden bei der als internationale Hinterlegungsstelle anerkannten Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Maschenroder Weg 1 , 38124 Braunschweig, Bundesrepublik Deutschland, entsprechend den Anforderungen des Budapester Vertrages für die internationale Anerkennung der Hinterlegung von Mikroorganismen zum Zwecke der Patentierung hinterlegt (Hinterlegungsnummer; Hinterlegungsdatum):
Williopsis californica Stamm 3/57 (DSM 12865) (09.06.1999) Zygosacharomyces bailii Stamm 412 (DSM 12864) (09.06.1999)
Literaturnachweise
Anaissie, E. (1992). Opportunistic mycoses in the immuno compromised host: expe- rience at a cancer center and review. Clin. Infect. Dis. 14:43-51. Bevan, E.A. & M. Makower (1963). The physiological basis of the killer character in yeast. Proc. Int. Congr. Genet. XI: 1202-1203.
Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12:8711-8720.
Bussey, H. (1991). K1 killer toxin, a pore-forming protein from yeast. Mol. Microbiol. 5:2339-2343. Cameron, M.L., Schell, W.A., Bruch, S., Bartlett, J.A., Waskin, H.A. & J.R. Per- fect (1993). Correlation of in vitro fluconazole resistance of Candida isolates in rela- tion to therapy and Symptoms of individuals seropositive for human immunodeficien- cy virus type 1. Antimicrob. Agents Chemother. 37:2449-2453. Chavenet, P., Lopez, J., Grappin, M., Bannin, A., Duomg, M., Waldner, A., Buis- son, M., Camerlynck, P. & H. Portier (1994). Cross-sectional study of the suscepti- bility of Candida isolates to antifungal drugs and in vitro-in vivo correlation in HIV- infected patients. AIDS 8:945-950.
Dignard, D., Whiteway, M., Germain, D., Tessier, D. & D.Y. Thomas (1991). Expression in yeast of a cDNA copy of the K2 killer toxin gene. Mol. Gen. Genet. 227:127-136.
Hanes, S.D., Burn, V.E., Strley, S.L., Tipper, D . & D.Y. Thomas (1986). Expression of a cDNA derived from the yeast killer preprotoxin gene: implications for processing and immunity. Proc. Natl. Acad. Sei. USA 83:1675-1679. Hector, R.F. (1993). Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev. 6:1-21.
Hodgson, V.J., Button, D. & G.M. Walker (1995). Ant\-Candida activity of a novel killertoxin from the yeast Williopsis mrakii. Microbiol. 141 :2003-2012. Kinal, H., Park, CM., Berry, J., Koltin, Y. & J.A. Bruenn (1995). Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7:677-688.
Klebl, F. & W. Tanner (1989). Moleeular cloning of a cell wall exo-b-1 ,3-glucanase from Saccharomyces cerevisiae. J. Bacteriol. 171 :6259-6264. Komijama, T., Shirai, T., Ohta, T., Urakami, H., Furuichi, Y. & Y. Ohta (1998). Ac- tion properties of HYI killer toxin from Williopsis saturnus var. saturnus, and antibio- tics, aculeacin A and paulacandin B. Biol. Pharm. Bull. 21; 1013-1019. Kurz, M.B. (1998). New antifungal drug targets: a vision for the future. ASM News 64:31-39.
Levy, J.A. (1993). Pathogenesis of human immunodeficiency virus infections. Microbiol. Rev. 57:183-289.
Maenza, J.R., Keruly, J.C., Moore, R.D., Chaisson, R.E., Merz, W.G. & J.E. Gal- lant (1996). Risk factors for fluconazole-resistant candidiasis in human immunodefi- ciency virus-infected patients. J. Infect. Dis. 173:219-225.
McCracken, D.A., Martin, V.J., Stark, M.J.R. & P.L. Bolen (1994). The linear- plasmid-encoded toxin produced by the yeast Pichia accaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiol. 140:425-431. Meunier, F., Aoun, M. & N. Bitar (1992). Candidemia in immunocompromised pati- ents. Clin. Infect. Dis. 14: 120-125.
Mrsa, V., Klebl, F. & W. Tanner (1993). Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-ß-1 ,3-glucanase. J. Bacteriol. 175:2102-2106. Neuhausen, F. & M.J. Schmitt (1996). Transgenic expression of a toxin-coding kil- ler virus of the yeast Zygosaccharomyces bailii in Saccharomyces cerevisiae: gene- tic evidence for a possible function of "cryptic" mycoviruses in the evolution of their hosts. In: Transgenic Organisms and Biosafety: Horizontal Gene Transfer, Stability of DNA, and Expression of Transgenes, Schmidt, E.R. & Th. Hankeln (eds), 117- 124, Springer-Verlag. Park, CM., Banerjee, N., Koltin, Y. & J.A. Bruenn (1996). The Ustilago maydis virally encoded KP1 killer toxin. Mol. Microbiol. 20:957-963. Park, CM., Berry, J.O. & J.A. Bruenn (1996). High-Ievel secretion of a virally encoded anti-fungal toxin in transgenic tobacco plants. Plant Mol. Biol. 30:359-366. Pfaller, M.A., Chalberg, J.R., Redding, S.W., Smith, J., Farinacci, G., Fothergill, A.W. & M.G. Rinaldi (1994). Variations in fluconazole susceptibility and electropho- retic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J. Clin. Microbiol. 32:59-64.
Pfeiffer, P., Radler, F., Caspritz, G. & H. Hänel (1988). Effect of a killer toxin of yeast on eukaryotic Systems. Appl. Environ. Microbiol. 54:1068-1069. Polonelli, L., Lorenzini, R., De Bernadis, F. & G. Morace (1986). Potential thera- peutic effect of yeast killer toxin. Mycopathology 96:103-107. Radler, F., Herzberger, S., Schönig, I. & P. Schwarz (1993). Investigation of a killer strain of Zygosaccharomyces bailii. J. Gen. Microbiol. 139:495-500. Rex, J.H., Rinaldi, M.G. & M.A. Pfaller (1995). Resistance of Candida species to fluconazole. Antimicrob. Agents Chemoth. 39:1-8.
Roemer, T., Paravicini, G., Payton, M.A. & H. Bussey (1994). Characterization of the yeast (1-6)-ß-glucan biosynthetic components, Kre6p and Sknl p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J. Cell. Biol. 127:567-579.
Schmitt, M.J. & D.J. Tipper (1990). K28, a new double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol. Cell. Biol. 10:4807-4815.
Schmitt, M.J. & D.J. Tipper (1992). Genetic analysis of maintenance and expressi- on of L and M double-stranded RNAs from yeast killer virus K28. Yeast 8:373-384. Schmitt, M.J. & D.J. Tipper (1995). Sequence of the M28 dsRNA: preprotoxin is processed to an oc/ß heterodimeric protein toxin. Virology 213:341 -351. Schmitt, M.J. & F. Neuhausen (1994). Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Zygosaccharomyces bailii and Hanseniaspora uvarum. J. Virol. 68:1765-1772. Schmitt, M.J. & F. Radler (1987). Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J. Gen. Microbiol.
133:3347-3354.
Schmitt, M.J. & F. Radler (1988). Moleeular strueture of the cell wall receptor for killer toxin K28 in Saccharomyces cerevisiae. J. Bacteriol. 170:2192-2196. Schmitt, M.J. & F. Radler (1995). Mycoviren und Hefe-Killertoxine erlauben Einblik- ke in die Zellbiologie. Forschungsmagazin der Johannes Gutenberg-Universität Mainz 2:86-96.
Schmitt, M.J. & F. Radler (1996). dsRNA-Viren codieren Killertoxine bei der Hefe Saccharomyces. BioEngineering 2:30-34. Schmitt, M.J. & G. Schernikau (1997). Construction of a cDNA-based K1/K2/K28 triple killer strain of Saccharomyces cerevisiae. Food Technol. Biotechnol. 35:281- 285. Schmitt, M.J. & P. Compain (1995). Killer toxin resistant kre12 mutants of Saccharomyces cerevisiae: genetic and biochemical evidence for a secondary K1 membra- ne receptor. Arch. Microbiol. 164:435-443.
Schmitt, M.J. (1995). Cloning and expression of a cDNA copy of the viral K28 killer toxin gene in yeast. Mol. Gen. Genet. 246:236-246.
Schmitt, M.J., Brendel, M., Schwarz, R. & F. Radler (1989). Inhibition of DNA synthesis in Saccharomyces cerevisiae by yeast killer toxin K28. J. Gen. Microbiol.
135:1529-1535.
Schmitt, M.J., Klavehn, P., Wang, J., Schönig, I. & D.J. Tipper (1996). Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiol. 142:2655-2662.
Schmitt, M.J., Poravou, O., Trenz, K. & K. Rehfeldt (1997). Unique double- stranded RNAs responsible for the ant\-Candida activity of the yeast Hanseniaspora uvarum. J. Virol. 71 :8852-8855. Schmitt, M.J., Poravou, O., Trenz, K. & K. Rehfeldt (1997). Unique double- stranded RNAs responsible for the ant\-Candida activity of the yeast Hanseniaspora uvarum. J. Virol. 71 8852-8855.
Schründer, J., Meinhardt, F., Rohe, M. & J. Kämper (1994). Lineare Plasmide bei Mikroorganismen - Genetische Grundlagen und potentielle Anwendungen. BioEngi- neering 10:29-39. Tipper, D.J. & M.J. Schmitt (1991). Yeasrt dsRNA viruses: replication and killer phenotypes. Mol. Microbiol. 5:2331-2338.
Troillet, N., Durussel, C, Bille, J., Glauser. M.P. & J.P. Chave (1993). Correlation between in vitro susceptibility of Candida albicans and fluconazole-resistant oropha- ryngeal candidiasis in H/V-infected patients. J. Clin. Microbiol. Infect. Dis. 12:911- 915.
Walker, G.M., McLeod, A.H. & V.J. Hodgson (1995). Interactions between killer yeasts and pathogenic fungi. FEMS Microbiol. Lett. 127:213-222. Wickner, R.B. (1993). Double-stranded RNA virus replication and packaging. J. Biol. Chem. 268:3797-3800. Wingard, J.R. (1995). Importance of Candida species other than C. albicans as pa- thogens in oncology patients. Clin. Infect. Dis. 20:115-125.

Claims

Patentansprüche
1. Proteintoxine erhältlich aus Williopsis californica und/oder Zygosaccharomyces bailii.
2. Proteintoxine nach Anspruch 1 , erhältlich aus DSM 12864 und/oder DSM 12865 .
3. Proteintoxine nach Anspruch 1 und 2, dadurch gekennzeichnet, daß diese eine antimycotische und / oder fungizide Wirkung inne haben.
4. Proteintoxin nach einem der Ansprüche 1 bis 3 mit der Aktivität einer Glucana- se.
5. Proteintoxin nach Anspruch 4, dadurch gekennzeichnet, daß es an ß-1 ,6-D-
Glukane bindet und ß-1 ,3-D-Glucanase- und/oder ß-1 ,3- Glucanosyltransferase-Aktivität besitzt.
6. Nukleinsäure kodierend für eine Glucanase und/oder für ein Proteintoxin ge- maß einer der Ansprüche 1 -5 mit einer Aminosäuresequenz gemäß SEQ ID
No 1 oder SEQ ID No 2 oder eine funktionelle Variante davon, und Teile davon mit mindestens 8 Nukleotiden, wobei SEQ ID No 1 oder SEQ ID No 2 Teil des Anspruchs ist.
7. Nukleinsäure nach Anspruch 6, dadurch gekennzeichnet, daß die Nukleinsäure eine DNA oder RNA, vorzugsweise eine doppelsträngige DNA ist.
8. Nukleinsäure nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Nukleinsäure eine DNA mit einer Nukleinsäuresequenz gemäß SEQ ID No 1 von Basenposition 1 bis 951 oder SEQ ID No 2 von Basenposition 1 bis 717 ist, wobei SEQ ID No 1 oder SEQ ID No 2 Teil des Anspruchs ist.
9. Nukleinsäure nach Anspruch 8, dadurch gekennzeichnet, daß die Nukleinsäure eine oder mehrere regulatorische Regionen (Promotor, Εnhancer', Terminator) und/oder eine 3'-terminale PolyA-Sequenz und/oder eine zur intrazellulären Pro-Toxinprozessierung notwendige Kex2p-Endopeptidase-Spaltstelle und/oder eine oder mehrere potentielle N-Glykosylierungsstellen enthält.
10. Nukleinsäure nach einem der Ansprüche 8-9 erhältlich aus DSM 12864 und/oder DSM 12865.
11. Nukleinsäure nach einem der Ansprüche 6-10, dadurch gekennzeichnet, daß die Nukleinsäure in einem Vektor, vorzugsweise in einem Expressionsvektor oder gentherapeutisch wirksamen Vektor, enthalten ist.
12. Verfahren zur Herstellung einer Nukleinsäure nach einem der Ansprüche 6-10 dadurch gekennzeichnet, daß die Nukleinsäure chemisch synthetisiert oder anhand einer Sonde aus einer Genbank isoliert wird.
13. Polypeptid mit einer Aminosäuresequenz gemäß SEQ ID No 1 oder SEQ ID No 2 oder eine funktionelle Variante davon, und Teile davon mit mindestens 6 Aminosäuren.
14. Verfahren zur Herstellung eines Polypeptids gemäß Ansprüchen 1 -5 und 13, dadurch gekennzeichnet, daß eine Nukleinsäure gemäß einem der Ansprüche 6-11 in einer geeigneten Wirtszelle exprimiert wird.
15. Antikörper gegen ein Polypeptid gemäß einem der Ansprüche 1-5 und 13.
16. Verfahren zur Herstellung eines Antikörpers gemäß Anspruch 15, dadurch gekennzeichnet, daß ein Säugetier mit einem Polypeptid gemäß Anspruch 7 im- munisiert und gegebenenfalls die entstandenen Antikörper isoliert werden.
17. Arzneimittel enthaltend eine Nukleinsäure gemäß einem der Ansprüche 6-10 oder ein Polypeptid gemäß einem der Ansprüche 1-5 und 13 oder Antikörper gemäß Anspruch 15 und gegebenenfalls pharmazeutisch annehmbare Zusatz- und/oder Hilfsstoffe.
18. Verfahren zur Herstellung eines Arzneimittels zur Behandlung von Mycosen, wie oberflächliche, kutane und subkutane Dermatomykosen, Schleimhaut- und Systemmykosen, besonders bevozugt Cand/da-Mykosen, dadurch gekennzeichnet, daß eine Nukleinsäure gemäß einem der Ansprüche 6 -10 oder ein Polypeptid gemäß einem der Ansprüche 1-5 und 13 oder Antikörper gemäß Anspruch 15 mit einem pharmazeutisch annehmbaren Zusatz- und/oder Hiifs- stoff formuliert wird.
19. Diagnostikum enthaltend eine Nukleinsäure gemäß einem der Ansprüche 6-10 oder ein Polypeptid gemäß einem der Ansprüche 1-5 und 13 oder Antikörper gemäß Anspruch 15 und gegebenenfalls geeignete Zusatz- und/oder Hilfs- Stoffe.
20. Verfahren zur Herstellung eines Diagnostikums zur Diagnose von Mycosen, wie oberflächliche, kutane und subkutane Dermatomykosen, Schleimhaut- und Systemmykosen, besonders bevozugt Candida-Mykosen, dadurch ge- kennzeichnet, daß eine Nukleinsäure gemäß einem der Ansprüche 6-10 oder ein Polypeptid gemäß einem der Ansprüche 1-5 und 13 oder Antikörper gemäß Anspruch 15 mit einem pharmazeutisch annehmbaren Träger versetzt wird.
21. Test zur Identifizierung von funktionellen Interaktoren enthaltend eine Nuklein- säure gemäß einem der Ansprüche 6-10 oder ein Polypeptid gemäß einem der
Ansprüche 1-5 und 13 oder Antikörper gemäß Anspruch 15 und gegebenenfalls geeignete Zusatz- und/oder Hilfsstoffe.
22. Verwendung einer Nukleinsäure gemäß einem der Ansprüche 6-10 oder eines Polypeptids gemäß einem der Ansprüche 1-5 und 13 zur Identifizierung funktioneller Interaktoren.
23. Verwendung einer Nukleinsäure gemäß einem der Ansprüche 6-10 zum Auffinden von Varianten, dadurch gekennzeichnet, daß eine Genbank mit der genannten Nukleinsäure abgesucht und die gefundene Variante isoliert wird.
24. Verwendung eines Polypeptids gemäß einem der Ansprüche 1-5 und 13 zur
Bekämpfung von Schadhefen und Pilzen in Lebens- und Futtermittel.
25. Verfahren zur Kultivierung von DSM 12864 und DSM 12865, dadurch gekennzeichnet, daß diese in synthetischem B- und/oder BAVC-Medium kultiviert werden.
26. Verwendung der Nukleinsäuren gemäß einer der Ansprüche 6-11 zur Herstellung von transgenen Pflanzen und Pflanzenzellen.
PCT/EP2000/004972 1999-07-05 2000-05-31 Neue antimycotika und fungizide, verfahren zu deren herstellung und ihre verwendung WO2001002587A2 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
IL14725200A IL147252A0 (en) 1999-07-05 2000-05-31 Novel antimycotics and fungicides, processes for their preparation, and their use
KR1020027000108A KR20020059581A (ko) 1999-07-05 2000-05-31 항진균약과 살진균제, 이들의 제조방법 및 이들의 용도
AU59694/00A AU5969400A (en) 1999-07-05 2000-05-31 Novel antifungal agents and fungicides, method for the production thereof and their use
JP2001508359A JP2003504030A (ja) 1999-07-05 2000-05-31 新規抗真菌剤および殺菌剤、その製造および使用法
SK12-2002A SK122002A3 (en) 1999-07-05 2000-05-31 Novel antifungal agents and fungicides, method for the production thereof and their use
CA002372935A CA2372935A1 (en) 1999-07-05 2000-05-31 Novel antifungal agents and fungicides, method for the production thereof and their use
EP00945695A EP1196608A2 (de) 1999-07-05 2000-05-31 Antimycotika und fungizide aus williopsis californica und zygosaccharomyces bailii, verfahren zu deren herstellung und ihre verwendung
BR0012172-0A BR0012172A (pt) 1999-07-05 2000-05-31 Antimicóticos e fungicidas, processo para a sua preparação e seu emprego
NO20020003A NO20020003L (no) 1999-07-05 2002-01-02 Nye antimykotiske og fungiside midler, fremgangsmåte for fremstilling av disse og anvendelse av dem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19930959A DE19930959A1 (de) 1999-07-05 1999-07-05 Neue Antimycotika und Fungizide, Verfahren zu deren Herstellung und Verwendung
DE19930959.0 1999-07-05

Publications (2)

Publication Number Publication Date
WO2001002587A2 true WO2001002587A2 (de) 2001-01-11
WO2001002587A3 WO2001002587A3 (de) 2002-02-07

Family

ID=7913696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004972 WO2001002587A2 (de) 1999-07-05 2000-05-31 Neue antimycotika und fungizide, verfahren zu deren herstellung und ihre verwendung

Country Status (17)

Country Link
EP (1) EP1196608A2 (de)
JP (1) JP2003504030A (de)
KR (1) KR20020059581A (de)
CN (1) CN1361825A (de)
AR (1) AR029377A1 (de)
AU (1) AU5969400A (de)
BR (1) BR0012172A (de)
CA (1) CA2372935A1 (de)
CZ (1) CZ200249A3 (de)
DE (1) DE19930959A1 (de)
HU (1) HUP0201690A3 (de)
IL (1) IL147252A0 (de)
NO (1) NO20020003L (de)
PL (1) PL364765A1 (de)
SK (1) SK122002A3 (de)
TR (1) TR200200097T2 (de)
WO (1) WO2001002587A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467251B2 (ja) * 2008-08-12 2014-04-09 株式会社ソフィ β−1,3−1,6−グルカンの定量方法
PT105331A (pt) * 2010-10-12 2012-04-12 Cev Biotecnologia Das Plantas S A Conservante alimentar
CN107164248B (zh) * 2017-03-16 2020-11-10 中国水产科学研究院南海水产研究所 酵母菌dd12-7菌株及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525508A2 (de) * 1991-07-19 1993-02-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Antipathogenes Protein von Ustilago maydis, und seine Verwendung
US5670706A (en) * 1990-01-30 1997-09-23 Mogen International, N.V. Fungal resistant plants, process for obtaining fungal resistant plants and recombinant polynucleotides for use therein
US5783183A (en) * 1993-03-03 1998-07-21 Gist-Brocades, B.V. Cloning of the zymocin gene and use of zymocin in beverages

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670706A (en) * 1990-01-30 1997-09-23 Mogen International, N.V. Fungal resistant plants, process for obtaining fungal resistant plants and recombinant polynucleotides for use therein
EP0525508A2 (de) * 1991-07-19 1993-02-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Antipathogenes Protein von Ustilago maydis, und seine Verwendung
US5783183A (en) * 1993-03-03 1998-07-21 Gist-Brocades, B.V. Cloning of the zymocin gene and use of zymocin in beverages

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [Online] ACCESSION NUMBER AF091241, 29. September 1998 (1998-09-29) LAURINAVICHIUTE D. K. ET AL.: "Candida utilis beta-1,3 glucan transferase Bgl2p (BGL2) gene." XP002150657 *
MRSA V. ET AL.: "Purification and characterization of the saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase" JOURNAL OF BACTERIOLOGY, Bd. 175, Nr. 7, 1. April 1993 (1993-04-01), Seiten 2102-2106, XP002091793 ISSN: 0021-9193 in der Anmeldung erw{hnt *
RADLER F. ET AL.: "Investigation of a killer strain of Zygosaccharomyces bailii." JOURNAL OF GENERAL MICROBIOLOGY, Bd. 139, Nr. 3, 1993, Seiten 495-500, XP000952904 ISSN: 0022-1287 in der Anmeldung erw{hnt *
SCHMITT M. J. AND NEUHAUSEN F.: "Killer toxin-secreting double-stranded RNA mycoviruses in the yeast Hanseniaspora uvarum and Zygosaccharomyces bailii." JOURNAL OF VIROLOGY, Bd. 68, Nr. 3, 1994, Seiten 1765-1772, XP002157056 ISSN: 0022-538X in der Anmeldung erw{hnt *
SHAH D. M. ET AL.: "Resistance to diseases and insects in transgenic plants: progress and applications to agriculture" TRENDS IN BIOTECHNOLOGY, Bd. 13, Nr. 9, September 1995 (1995-09), Seiten 362-368, XP004207202 ISSN: 0167-7799 *
WALKER G. M. ET AL.: "INTERACTION BETWEEN KILLER YEASTS AND PATHOGENIC FUNGI" FEBS LETTERS, Bd. 127, Nr. 3, 1. April 1995 (1995-04-01), Seiten 213-222, XP000946950 ISSN: 0014-5793 *

Also Published As

Publication number Publication date
HUP0201690A3 (en) 2004-10-28
KR20020059581A (ko) 2002-07-13
NO20020003D0 (no) 2002-01-02
CZ200249A3 (cs) 2002-04-17
TR200200097T2 (tr) 2002-05-21
NO20020003L (no) 2002-02-28
IL147252A0 (en) 2002-08-14
CN1361825A (zh) 2002-07-31
AR029377A1 (es) 2003-06-25
AU5969400A (en) 2001-01-22
HUP0201690A2 (en) 2002-09-28
WO2001002587A3 (de) 2002-02-07
BR0012172A (pt) 2002-03-05
SK122002A3 (en) 2002-05-09
CA2372935A1 (en) 2001-01-11
JP2003504030A (ja) 2003-02-04
DE19930959A1 (de) 2001-01-25
EP1196608A2 (de) 2002-04-17
PL364765A1 (en) 2004-12-13

Similar Documents

Publication Publication Date Title
EP0307592B1 (de) Varianten des pankreatischen Rinder-Trypsininhibitors, deren Herstellung und Verwendung
DE69333110T2 (de) Mit dem cytotoxin von helicobacter pylori assoziiertes, immunodominantes antigen verwendbar in impfstoffen und zur diagnose
DE69936514T2 (de) Heliomycin-kodierendes gen und seine verwendung
JPH02500084A (ja) 殺菌性及び/又は静菌性ペプチド類、それらの単離方法、それらの生産及びそれらの応用
DK2627177T3 (en) Use of the chelating agent and the antimicrobial peptide compounds
EP2905288B1 (de) Synthetische artifizielle Peptide mit antimikrobieller Wirkung
EP3261435B1 (de) Pflanzenschutz- und/oder pflanzenwachstumsförderungssystem
EP1397384A2 (de) Antimikrobiell wirkendes peptid
DE60025544T2 (de) Protein, das die Spaltung von Beta-Carotin katalysiert
WO2001002587A2 (de) Neue antimycotika und fungizide, verfahren zu deren herstellung und ihre verwendung
EP1068232A2 (de) Humane antibiotische proteine
WO2002040512A2 (de) Humanes beta-defensin-3
DE60126602T2 (de) Neue collectine
FR2695392A1 (fr) Peptides possédant notamment des propriétés antibactériennes, leur procédé d'obtention, et leurs applications biologiques.
JP6396330B2 (ja) 植物病原性真菌に対するポリペプチド
Polacheck et al. The susceptibility of Cryptococcus neoformans to an antimycotic agent (G2) from alfalfa
DE60123401T2 (de) Gen 763 aus dem pflanzpathogenen pilz magnoporthe grisea und dessen verwendung zum nachweis neuer fungizide
DE69432975T2 (de) Tryptase hemmer
DE60307987T2 (de) Galectin aus milben
KR102311729B1 (ko) 유산균에서 분리한 항균 펩타이드 플랜타리신 및 이의 용도
AT408442B (de) Mutiertes ribosomales protein l3
EP1098985A1 (de) Gene der dead box proteinfamilie, deren expressionsprodukte und verwendung
EP2217262B1 (de) C-terminale ifapsoriasinfragmente als antimikrobielle peptide und deren verwendung in der behandlung von pseudomonas infektionen
DE19914817A1 (de) Wirkstoffe zur Bekämpfung von bakteriellen Infektionserkrankungen
CN117069823A (zh) 牦牛β防御素121蛋白及在抗烟曲霉中的应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00809677.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR BY CA CN CZ HU IL IN JP KR NO NZ PL RO SG SK TR UA US YU ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000945695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P-891/01

Country of ref document: YU

WWE Wipo information: entry into national phase

Ref document number: 516374

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/6/CHE

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2372935

Country of ref document: CA

Ref document number: 2372935

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020027000108

Country of ref document: KR

Ref document number: 59694/00

Country of ref document: AU

Ref document number: 122002

Country of ref document: SK

Ref document number: 2002/00097

Country of ref document: TR

Ref document number: PV2002-49

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 200200496

Country of ref document: ZA

AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR BY CA CN CZ HU IL IN JP KR NO NZ PL RO SG SK TR UA US YU ZA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 10019963

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV2002-49

Country of ref document: CZ

Ref document number: 2000945695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027000108

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000945695

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020027000108

Country of ref document: KR