WO2001000547A1 - Procede de transalkylation et de dismutation de toluene et d'hydrocarbures aromatiques lourds c9 ainsi que l'utilisation d'un catalyseur - Google Patents

Procede de transalkylation et de dismutation de toluene et d'hydrocarbures aromatiques lourds c9 ainsi que l'utilisation d'un catalyseur Download PDF

Info

Publication number
WO2001000547A1
WO2001000547A1 PCT/CN2000/000168 CN0000168W WO0100547A1 WO 2001000547 A1 WO2001000547 A1 WO 2001000547A1 CN 0000168 W CN0000168 W CN 0000168W WO 0100547 A1 WO0100547 A1 WO 0100547A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
toluene
catalyst
carbon
Prior art date
Application number
PCT/CN2000/000168
Other languages
English (en)
French (fr)
Inventor
Dejin Kong
Wencai Cheng
Huaying Li
Wei Zou
Hongli Guo
Original Assignee
China Petro-Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petro-Chemical Corporation filed Critical China Petro-Chemical Corporation
Priority to EP00938465A priority Critical patent/EP1106592A4/en
Priority to TW089112662A priority patent/TW527416B/zh
Publication of WO2001000547A1 publication Critical patent/WO2001000547A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/123Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of only one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the disproportionation and transalkylation of toluene with carbon nine and above heavy aromatics, and in particular to a method for the disproportionation and transalkylation of toluene with carbon nine and above heavy aromatics to produce benzene and carbon eight aromatics.
  • the invention also relates to a catalyst used in the method. Background technique
  • Para-xylene in C-Aromatics is one of the main basic organic raw materials in the petrochemical industry, and has a wide range of uses in many chemical production fields such as chemical fiber, synthetic resins, pesticides, medicines, and plastics.
  • a typical para-xylene production method is as follows. First, catalytic reforming of naphtha to produce thermodynamically balanced ethylbenzene-containing xylenes, i.e., carbon octaarenes (C 8 A), and then through multi-stage cryogenic crystallization separation or molecular sieve to simulate a moving bed Adsorption separation technology separates para-xylene from isomer mixtures with similar boiling points.
  • C 8 A isomerization technology is often used to dissociate it into para-xylene.
  • toluene disproportionation or the disproportionation of toluene with carbon 9 and above heavy aromatics (C 9 + A) and transalkylation reaction to generate benzene and C 8 A and effective production of para-xylene through increased production of C 8 A the goal of.
  • C 9 A carbon nine aromatics
  • C 1Q + A heavy aromatics
  • Petroleum heavy aromatics are mainly derived from the by-products of the ethylene plant for the cracking of light oil; aromatics produced by the catalytic reforming of refineries; by-products of the toluene disproportionation and transalkylation unit. With the increase in the amount of heavy aromatics, the comprehensive utilization of heavy aromatics has become a matter of concern.
  • the processing of C 9 A utilizes mature methods and is widely used as a raw material for toluene disproportionation and transalkylation reactions. Manufacture of benzene and C 8 A.
  • Typical carbon ten and above heavy aromatics contain about 60-65% C 10 A and 40-35% Cu + A. It can be seen that the use of Cu + A will seriously affect carbon ten or more. Whether heavy aromatics can be fully utilized.
  • the first is to produce benzene and C 8 A through a toluene disproportionation and transalkylation process using a mixture of toluene and an appropriate amount of heavy aromatics as raw materials.
  • This method is a traditional process called the Tatoray process. Since 95% by weight of the heavy aromatics mentioned in the process are C 9 A, the relatively inexpensive C 1 () + A in the actual industrial combined aromatics unit has not been effectively utilized at all. In this process, although C 1Q A can exist in the raw materials, Cu + A cannot be processed, and it must be strictly controlled.
  • a content The sum of the contents of toluene and C 9 A aromatics is required to reach a range of 97% by weight or more, and the C 1D A content is allowed to be only 3% by weight or less.
  • the C 1Q A content in the raw material is higher than 3%, it will seriously affect the normal operation of the process.
  • the second process is to obtain the target product completely by lightening heavy aromatics.
  • Mo0 3 —Ni0 / Al 2 0 3 (13% by weight Mo, 5% by weight Ni) catalyst is used, and C 9 A—C 1 () + A (group by weight becomes: Benzene 0.813 ⁇ 4, toluene 0.26%, C 8 A 0.95%, C 9 A 80.96%, C 10 + A 15.23%) were used as raw materials, and the reaction was performed under the reaction conditions of 6MPa and 550 ° C. Contains 9.743 ⁇ 4 of benzene, 30.27% of toluene, 32.23% of C 8 A and 0.16% of non-aromatic hydrocarbons.
  • this second process method can handle high content of C 1 () + A
  • its target product is achieved by dealkylation of heavy aromatics to generate light hydrocarbons.
  • the system's light hydrocarbons will be Increase rapidly.
  • the unit generally treats light hydrocarbons as gas, and the excess is sent to the torch system for combustion. Obviously, this process will cause a lot of waste of resources.
  • the third process is a selective toluene disproportionation process that uses pure toluene as a raw material to selectively produce p-xylene.
  • This process mainly uses ZSM-5 zeolite as the active component.
  • ZSM-5 with mesoporous structure Zeolite catalysts have been commonly reported in recent years as selective disproportionation processes for toluene, such as USP5403800 (1995) and USP5633417 (1997).
  • the C 1Q A generated by the device itself And Cu + A cannot be used as raw material circulation, and is discharged out of the world through heavy aromatic tower kettle. Due to the limitation of catalyst performance, the technical specifications of the process are low. Typical operating conditions are: the weight of toluene and C 9 A in the reaction raw material The ratio is 80: 20 to 60: 40, the reaction pressure is 3.0 MPa (G), the molecular ratio of hydrogen to aromatics (referred to as hydrogen-to-hydrocarbon ratio) is not less than 6, usually 8-10, and the weight space velocity WHSV is 1.0- l.
  • Shr- 1 generally 1.1-1.3hr— (toluene + C 9 A) has a total conversion of 40-43%, usually 40-41%, and the selectivity of (benzene + C 8 A) does not exceed 94%.
  • Toluene disproportionation and transalkylation processes featuring mordenite catalysts have relatively many related reports and related patents, such as: US patents USP2795629, USP3551510, USP3701813, and USF3729521 describe alkylation catalysts, composition of reaction materials, and Reaction conditions. Catalysts used in the transalkylation process are USP2795629, USP3780122 and USP3849340. Because the above patents are affected by the performance of the catalyst, C 9 A and above heavy aromatics cannot be fully utilized, the yields of the target products are relatively low, and the economic and technical indicators are not economical.
  • USP4341914 discloses an improved Tatoray process method. Although this method can Partially utilize the C 1 () A generated by the reaction to recycle and introduce it into the reaction raw materials, but it only plays a role in inhibiting the reaction to generate C 1 () + A, thereby reducing the production of C 1Q + A and increasing benzene and Yield of octaaromatic hydrocarbons. In fact, this process does not make use of C 1 () + A. In addition, due to the limitation of catalyst performance, the process also has harsh conditions in the selection of raw materials, and the content of indane in the reaction raw materials must be strictly controlled so that it cannot be used. + Eight is used as a reaction raw material.
  • USP4665258 (1987) proposes a new and improved toluene disproportionation method, which is characterized by alumina-deficient mordenite catalyst.
  • the reaction can be carried out under relatively severe conditions.
  • the mordenite silica-alumina ratio of the catalyst used is greater than 30, preferably 40-60.
  • its activity and stability are not ideal, and the raw materials used do not involve C 1Q + A.
  • Japanese Patent Sho 49-46295 discloses a catalyst method for preparing fluorenylbenzene.
  • the catalyst is a mordenite as an active main body, supported by zirconium, and a promoter selected from silver, bismuth, copper, and antimony for disproportionation.
  • the patent does not mention whether heavy aromatics can be processed and the reaction performance for toluene disproportionation and transalkylation.
  • Chinese patent ZL89106793.0 discloses a method for synthesizing high-silica mordenite. It uses low-cost industrial materials such as water glass, inorganic acid, inorganic base, aluminum salt or aluminate to directly synthesize Si0 2 / High silica mordenite having a molecular ratio of Al 2 0 3 to 15-30, but the patent does not mention the reaction performance of the mordenite as a catalyst for toluene disproportionation and C 9 + A transalkylation.
  • Synthetic patents with large-pore structure zeolite as the catalytically active host include CN1108214A, CN1108213A, and CN1105646A.
  • these patents do not deal with the reaction performance for toluene disproportionation and transalkylation.
  • mordenite due to the three-dimensional pore structure and larger pore size of zeolite, the amount of C 1 () + A produced after the reaction is larger, which causes the selectivity of the target product to decrease. Therefore, when zeolite / 5 is used in toluene disproportionation and heavy aromatic transalkylation processes, it needs to be modified.
  • the purpose of the present invention is to overcome the existing technology that the device has a lower ability to process aromatic raw materials, has a poor ability to handle heavy aromatics of carbon ten and above, or is only lightened by dealkylation, resulting in an increase in the amount of light hydrocarbons in the system.
  • the waste of resources and the shortcomings of lower yields of benzene and C 8 A provide a process for disproportionation and transalkylation of toluene with carbon nine and above heavy aromatics.
  • the process of the present invention disproportionates with alkylation of toluene and C 9 A
  • carbon ten or more heavy aromatics are effectively converted into benzene and C 8 A.
  • the carbon ten or more heavy aromatics have a large processing capacity and high target product selection at high space velocity and high conversion rate. Sex.
  • Another object of the present invention is to provide a catalyst for the disproportionation and transalkylation of toluene with carbon nine and above heavy aromatics.
  • the use of the catalyst has a large capacity for treating carbon ten and above aromatics, that is, a high catalyst activity.
  • the transalkylation reaction can effectively convert carbon ten and above aromatics into benzene and carbon eight aromatics.
  • a process for the disproportionation and alkyl transfer of toluene with carbon nine and above heavy aromatics includes:
  • reaction temperature is 300 ⁇ 500 ° C, preferably 350 ⁇ 450 ° C- d)
  • reaction pressure is 1.0 ⁇ 5.0Mpa, preferably 2.0 ⁇ 3.5 MPa, and the hydrogen-hydrocarbon molecular ratio is 1 ⁇ 10, preferably 3 ⁇ 7;
  • the catalyst is a catalyst for the disproportionation and transalkylation of toluene and carbon nine or more heavy aromatics, which includes parts by weight:
  • the binder alumina is 10-60 parts.
  • the weight content of carbon ten or more heavy aromatics in the reaction raw materials of the present invention may be as high as 0-30%, preferably 3-20%, and more preferably 5-15 ° /. .
  • the hydrogen-type zeolite in the catalyst is selected from mordenite, beta zeolite, or a mixture thereof.
  • the preferred solution is selected from beta zeolite.
  • the preferred solution is based on parts by weight in the catalyst, and the preferred range is bismuth oxide or nickel oxide. 5 parts, more preferably in the range of 0.1 to 5 parts.
  • the molar ratio of the hydrogen-type zeolite Si0 2 / Al 2 0 3 is preferably 15 to 35.
  • the catalyst used in the process of the present invention includes, in parts by weight ,:
  • At least one oxide selected from lanthanum, silver or osmium 0 to 10 parts; preferably 0.1 to 5 parts;
  • the binder alumina is 10 ⁇ 60 parts.
  • the hydrogen zeolite used in the above technical scheme is selected from mordenite, P zeolite or a mixture thereof, and the preferred scheme is selected from beta zeolite; the preferred molar ratio of Si0 2 / Al 2 0 3 of the used hydrogen zeolite is The range is 15 ⁇ 35.
  • the preferred solution based on parts by weight, is a range of 0 to 5 parts containing bismuth oxide or nickel oxide, and a more preferred range is 0.:! ⁇ 5 servings.
  • the catalyst used in the present invention is obtained by impregnating, mixing or kneading an extruded bar after hydrogen type zeolite, alumina and the metal salt used, and then calcined at 350 ⁇ 600 ° C. The best way to implement the invention
  • a fixed bed reactor is used to investigate the disproportionation and transalkylation reaction performance of toluene and C 9 + A.
  • the reactor has an inner diameter of 0 25 mm, a length of 1200 mm, and is made of stainless steel. Electric heating, automatic temperature control.
  • the bottom of the reactor is filled with 0.5 mm glass beads as a support, the reactor is filled with 20 grams of catalyst, and the top is filled with 0.5 mm glass beads for preheating and vaporization of raw materials.
  • the raw materials toluene and C 9 + A are mixed with hydrogen and pass through the catalyst bed from top to bottom.
  • Disproportionation and transalkylation reactions occur, and lower aromatic hydrocarbons such as benzene and C 8 A are generated, as well as a small amount of methane, ethane, propane, butane.
  • Alkanes such as alkanes.
  • the raw materials toluene and C 9 + A are derived from the petrochemical aromatics unit.
  • the test data is calculated by the following formula. Reacted moles of toluene and C 9 A
  • the catalyst was prepared by the same method as in Example 1, and the mordenite was replaced with a zeolite having a Si0 2 / Al 2 0 3 molecular ratio of 15 to 40 with a Na 2 0 content of less than 0.15% by weight.
  • the weight content of molybdenum oxide was 0.1%, 1.0%, 2.03 ⁇ 4, 3.0%, and 5.0%, respectively.
  • the preparation method was the same as in Example 1, except that no ammonium molybdate was added to obtain the catalyst G.
  • the weight composition of C 9 A in the raw materials is: propylbenzene 3.45%, methyl ethylbenzene 33.14%, xylene 63.40%, C 10 + A weight composition is: diethylbenzene 3.33%, dimethylethylbenzene 26.96%, methyl propyl Benzene 2.323 ⁇ 4, tetra toluene 28.84%, methyl naphthalene 14.49%, dimethyl naphthalene 11.16%, and other Cu + A12.903 ⁇ 4.
  • the evaluation results are shown in Table 1. Evaluation results
  • the molybdenum-containing mordenite and zeolite catalysts prepared by the present invention show a higher activity than the catalysts without added molybdenum, regardless of the molybdenum content.
  • the catalyst was prepared in the same manner as in Examples 1 and 9. The ratio of molecular sieve to alumina was changed, and the dilute nitric acid solution of ammonium molybdate and nitric acid 4 was used instead of the dilute nitric acid solution of ammonium molybdate in Example 1, to obtain ⁇ 0 3 and Bi 2 0 3 with a weight content of 1.0. % And 0.5% of catalyst H.
  • catalysts L, N, 0, R, and S containing one or more metals of bismuth, nickel, lanthanum, silver, and rhenium were prepared. The activity evaluation apparatus, reaction conditions and raw material composition in Example 11 were used to evaluate the catalyst activity. The results are shown in Table 2.
  • M stands for mordenite; ** stands for? Zeolite.
  • the evaluation results show that the catalyst supported by molybdenum and one or more metal oxides of lanthanum, bismuth, nickel, silver, and thallium prepared by the present invention has good catalytic activity for toluene disproportionation and transalkylation reactions.
  • Table 3 Technical indicators of the process of the present invention under different reaction conditions
  • Example 13 14 15 16 17 Catalyst D E E, N Composition (weight)% of reaction raw materials:
  • Example 5 The catalyst E prepared in Example 5 was used to conduct toluene disproportionation and transalkylation reactions with different C 1Q + A contents of raw materials.
  • the ratio of toluene to C 9 + A in the raw materials and the composition of C 9 A and C 1Q + A were the same.
  • Example 11 the capability of treating carbon ten or more aromatics was examined. The remaining inspection conditions are the same as in Example 11. The inspection results are shown in Table 5.
  • the reaction raw material breaks the limit of pure toluene.
  • the catalyst of the present invention adopts the technical solution of adding molybdenum and other active components to zeolite, especially in mordenite Or?
  • Molybdenum oxide and nickel oxide or / and bismuth oxide are supported on the zeolite, and an oxide selected from lanthanum, silver or thorium is added compulsorily, so that the prepared catalyst has high catalytic activity, so that carbon in the reaction raw material
  • the content of ten or more aromatics can be as high as 303 ⁇ 4 (weight), and the selectivity of benzene plus C 8 A in the product is as high as 99.5%, which effectively converts carbon ten or more aromatics into benzene and C 8 A. With better results.
  • the catalyst used in the process of the present invention effectively increases the total acidity of the catalyst and modifies the strength of the acid by introducing molybdenum oxide and / or zeolite or a mixture thereof on the mordenite or / 9 zeolite, or a mixture thereof. Therefore, while improving the activity of the catalyst, the occurrence of side reactions is fully avoided, and the processing capacity of the catalyst and the selectivity of the target product are effectively improved, so that the method of the present invention has very good technical and economic indicators, and has a high space velocity and high conversion rate. It has high target product selectivity and good industrialization prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

一种甲苯与碳九及其以上重质芳烃歧化和烷基转移工艺
及其使用的催化剂 技术领域
本发明涉及甲苯与碳九及其以上重质芳烃歧化和烷基转移工艺, 具 体地说涉及甲苯与碳九及其以上重质芳烃歧化和烷基转移生产苯和碳八 芳烃的方法。
本发明还涉及该方法所使用的催化剂。 背景技术
碳八芳烃中的对二甲苯是石化工业主要的基本有机原料之一, 在化 纤、 合成树脂、 农药、 医药、 塑料等众多化工生产领域有着广泛的用途。 典型的对二甲苯生产方法如下,首先由石脑油催化重整生成热力学平衡 的含乙苯的二甲苯即碳八芳烃 (C8A) ,然后通过多級深冷结晶分离或分 子筛模拟移动床吸附分离技术, 将对二甲苯从沸点与之相近的异构体混 合物中分离出来。 而对于邻位和间位的二甲苯及乙苯的处理, 往往采用 C8A 异抅化技术, 使之异抅化为对二甲苯。 为了增产对二甲苯, 利用甲 苯歧化或甲苯与碳九及其以上重质芳烃 (C9 + A) 歧化与烷基转移反应生 成苯和 C8A, 通过增产 C8A达到有效增产对二甲苯的目的。
人们通常把碳九芳烃 (C9A) 、 碳十及其以上重芳烃 (C1Q + A) 统称 为重质芳烃。 石油重芳烃主要来源于轻油裂解生产乙烯裝置的副产品; 炼油厂催化重整生产的芳烃; 甲苯歧化与烷基转移装置的副产品。 随着 重质芳烃量的增多, 重质芳烃的综合利用成为人们关心的问题, 其中 C9A 的加工利用已有成熟的方法, 较广泛地用作甲苯歧化与烷基转移反应的 原料, 用来制造苯和 C8A。 由于目前芳烃联合装置的副产物 C1Q + A馏份的 组成复杂, 除含有 5〜20¾ (重量)的甲乙苯、 三甲苯等 C9A和茚满 (IND) 外, 还含有几十种碳十芳烃 (C1QA) 以及碳十一及其以上重质芳烃 (Cu +A) 組份, 如四甲苯、 二甲基乙基苯、 二乙苯、 甲基萘、 二甲基萘等, 組成 复杂, 沸点高, 目前较少应用。 同时这些组份用作汽油或柴油的掺合組 份都不合适, 只能部分用作溶剂油, 部分经分出其中的均四甲苯后, 其 余大部分作为燃料烧掉, 没有得到充分的利用 。 据估计一个年产 22 .5 万吨对二甲苯的芳烃联合裝置, 由于原料油的不同, 加工过程的不同, 每年产生的 C1Q + A为 1〜3万吨, 这是一种宝贵的资源, 而目前的芳烃联 合装置对此还没有适当的处理及利用方法。
在早期的相关工艺、 催化剂专利及文献中都采取严格限制茚满含 量, 来提高甲苯歧化和烷基转移催化剂的目的产物选择性、 延长运转操 作时间。 由于茚满的沸点介于 C9A和 C1QA之间, 从而直接导致早期的工 艺无法利用 C1QA。 随着催化剂技术的发展, 目前可以采用反应原料中混 入一定含量的 C1QA的方法来提高目的产物的收率, 以弥补追求高转化率、 高空速下, 产物收率偏低的不足, 但仍然不能利用 Cu + A。 反应原料中 Cu + A 的引入将严重影响其所使用的催化剂的稳定性, 从而无法在工艺 上实现稳定操作。由于 C1QA的组份复杂, 馏程范围宽, 相当一部分的 ς。Α 的沸点超过了 Cu +A的沸点, 在分离 C1QA 时必须严格控制重质芳烃塔的 操作条件。 因此, 为了避免 Cu + A进入反应原料, 实际上 C1QA中只有 20 - 30 %左右得以利用, 而大约 80 - 70 %的 C10A 随 (^ + Α从重芳烃 塔塔底排出。
典型的碳十及其以上重质芳烃中含有大约 60 - 65 %的 C10A及 40 - 35 % 的 Cu +A, 可以看出, 能否利用 Cu +A将严重影响到碳十以上重质芳烃能否 充分得以利用。
由于苯和 C8A 的用途相对较广, 其价格也相对较高, 同时大量的 C10 + A 尚未得到充分利用, 因此甲苯与碳九及其以上重质芳烃歧化和 烷基转移反应生产苯和 C8A越来越受到了人们的关注。
目前通过甲苯和 /或碳九及其以上重质芳烃歧化和烷基转移反应生 产苯和 C8A的方法主要有以下三种: 第一种是以甲苯和适量重质芳烃的混合物为原料, 通过甲苯歧化和 烷基转移过程生产苯和 C8A。 该方法是传统的工艺过程即 Tatoray工艺。 由于该工艺中所言及的重质芳烃中 95% (重量) 都是 C9A, 因此实际工业 联合芳烃装置中价格相对低廉的 C1() +A 根本未得以有效利用。 该工艺方 法中, 虽然原料中 C1QA可以存在, 但不能处理 Cu+A, 并且还必须严格控 制 ς。Α含量: 甲苯和 C9A芳烃的含量之和要求达到 97% (重量) 或更高 的范围, 允许 C1DA 的含量仅为 3% (重量)或更低。 当原料中 C1QA含量高 于 3 %时, 将严重影响到该工艺的正常操作。
在美囯专利 USP4172813中, 以重量百分数计 3%W03、 5%Mo03—60%丝 光沸石一 40% A1203为催化剂, 使重质重整液发生选择加氢脱烷基与烷基 转移反应。 其反应溫度为 315〜538 °C, 反应压力为 150〜500Psig , 反 应原料含非芳烃 0.5% , C8A 0.4% , 甲苯 28.3% , 三甲苯 46.6% , 甲乙苯 11 .6% , 茚满加丙苯 2. 1%, 四甲苯 10.1% , Cu + A仅为 0.4¾。 其目的产物 主要是通过重质芳烃的脱烷基反应生成轻质芳烃来实现的。 该工艺中生 成了大量的非芳烃, 芳烃收率较低。
第二种工艺过程是完全通过重质芳烃轻质化来获得目的产物。 如在 特公昭 51-29131 专利中, 用 Mo03—Ni0/Al203( 13 重量%Mo、 5 重量%Ni) 催化剂, 以 C9A— C1() + A (重量百分组成为: 苯 0.81¾, 甲苯 0.26%, C8A 0.95% , C9A 80.96% , C10 + A 15.23%)为原料, 在 6MPa 和 550 °C反应条件 下反应, 反应产物组成中以重量百分比计为含苯 9.74¾、 甲苯 30.27%、 C8A 32.23%以及非芳烃 0.16%。 这第二种工艺方法虽然能够处理高含量 的 C1() +A, 但其目的产物是通过重质芳烃的脱烷基反应生成轻质烃类实现 的, 这样, 系统的轻烃量就会大量增加。 目前装置对轻烃的普遍处理方 式是用作燃气, 多余的送至火炬系统进行燃烧。 很明显, 该工艺会造成 大量的资源浪费。
第三种工艺是以纯甲苯为原料选择性地生产对二甲苯的选择性甲苯 歧化工艺。 该工艺主要以 ZSM- 5沸石为活性组份。 具有中孔结构的 ZSM-5 沸石催化剂, 近年来常见的报道多为应用于甲苯的选择性歧化过程, 如 USP5403800(1995)、 USP5633417( 1997)。
上述几种工艺都是临氢和固定床反应工艺。 氢气的存在是为了抑制 催化剂的结焦、 延长催化剂的操作周期和保护催化剂。
在相同的工况条件下, 通常反应原料中碳九及其以上重质芳烃 (C9 +A) 的含量越高, 尤其是 C1Q +A 的含量越高, 催化剂越容易结焦, 因 此, 传统的工艺中对反应原料中的 C1() +A都严格限制。
目前以甲苯与碳九及其以上重质芳烃为原料, 通过歧化和烷基转移 反应生产苯和 C8A 的裝置大多使用传统的 Tatoray 工艺。 该工艺通常是 在临氢条件下, 以甲苯和 CgA 为原料, 使用固定床反应器, 在丝光沸石 催化剂存在下反应生成(^〜(^。芳烃和 ς〜ς烷烃以及少量 Cu+A。 反应 流出物中的甲苯和 C9A 经分离后进行循环, 与界区外来的新鲜甲苯和新 鲜 CgA 汇合作为反应器进料。 由于受催化剂性能的制约, 装置本身生成 的 C1QA及 Cu+A不能用作原料循环, 通过重质芳烃塔釜排出界外。 由于 受催化剂性能的限制, 工艺的技术指标较低, 典型的操作条件为: 反应 原料中甲苯与 C9A的重量比为 80: 20至 60: 40, 反应压力为 3.0MPa(G), 氢气与芳烃的分子比 (简称氢烃比) 不小于 6, 通常为 8-10, 重量空 速 WHSV 为 1.0- l.Shr-1, 一般为 1.1- 1.3hr— (甲苯 + C9A) 的总转 化率为 40-43%, 通常为 40-41% , (苯 + C8A) 的选择性不超过 94%。
以丝光沸石催化剂为特征的甲苯歧化和烷基转移工艺, 有关的报道 和相关的专利也相对较多, 如: 美国专利 USP2795629、 USP3551510、 USP3701813 和 USF3729521 中描述了烷基转移催化剂、 反应物料組成和 反应条件。 用于烷基转移工艺的催化剂专利有 USP2795629、 USP3780122 和 USP3849340。 以上专利由于受催化剂性能的影响, 实际上不能充分利 用 C9A 及其以上重质芳烃, 目的产物的收率都比较低, 经济技术指标不 经济。
USP4341914公开了一种改进的 Tatoray工艺方法。 该方法虽然可以 部分地利用反应本身生成的 C1()A进行循环, 引入反应原料中, 但其只是 起到抑制生成 C1() + A 反应的作用, 从而降低 C1Q + A 的生产量, 提高苯和 碳八芳烃的收率。 实际上, 该工艺并没有能够利用 C1() + A。 除此以外, 由于催化剂性能的限制, 该工艺在原料的选择上也有苛刻的条件, 必须 严格控制反应原料中茚满的含量, 从而使其无法将^。 +八用作反应原料。
USP4665258( 1987)提出了一种新的经改进的甲苯歧化方法, 以缺铝 丝光沸石催化剂为特征。 其反应可在相对苛刻的条件下进行。 所用催化 剂的丝光沸石硅铝比大于 30, 最好为 40〜60。 但其活性和稳定性不够 理想, 且所用原料没有涉及 C1Q+A。
日本专利昭 49-46295 中公开了一种制备垸基苯的催化剂方法, 其 催化剂是以丝光沸石为活性主体, 负载锆以及选自银、 铋、 铜、 锑的助 催化剂进行歧化反应。 该专利中没有涉及到是否可加工重质芳烃以及用 于甲苯歧化与烷基转移的反应性能。
中国专利 ZL89106793.0 中公开了一种高硅丝光沸石的合成方法, 它 是用廉价的水玻璃、 无机酸、 无机碱、 铝盐或铝酸盐等工业原料在氨存 在下直接合成 Si02/Al203分子比为 15〜30 的高硅丝光沸石, 但该专利没 有提到该丝光沸石作为甲苯歧化与 C9+A烷基转移催化剂时的反应性能。
具有大孔结构的 ? 沸石作为催化活性主体的合成专利有 CN1108214A、 CN1108213A 和 CN1105646A 等。 但这些专利没有涉及到用 于甲苯歧化与烷基转移时的反应性能。 与丝光沸石相比, 由于 ?沸石的 三维孔道结构及较大的孔径, 反应后生成 C1() +A 的量较大, 从而造成了 目的产物的选择性下降。 因此, 在 /5沸石用于甲苯歧化和重质芳烃烷基 转移工艺时, 需要对其进行改性。
在石油化工行业中, 各种工艺技术的核心是催化剂技术。 一条已经 十分成熟的工艺路线, 往往会因为一个新催化剂的工业化而更改。 一项 石油化工工艺的开发和完善归根到底是由于相关催化剂的开发成功和其 性能的不断提高所推动的。 为了提高歧化装置加工甲苯和 C9A 的能力、 降低裝置的能耗和物耗、 达到规模经济的工况要求, 人们相继开发了高 空速和高转化率的甲苯歧化与烷基转移催化剂。 但是, 随着催化剂转化 率的提高, 生成的 C1Q + A 的量也增加了, 从而导致了目的产物选择性的 下降。 发明的公开
本发明的目的是为了克服现有工艺技术中, 装置处理芳烃原料能力 较低, 对碳十及其以上重质芳烃处理能力差或仅通过脱烷基轻质化, 造 成系统轻烃量增加, 资源浪费以及苯和 C8A 收率较低的缺点, 提供一种 甲苯与碳九及其以上重质芳烃歧化和烷基转移工艺, 本发明工艺在进行 甲苯和 C9A 发生歧化与烷基转移反应的同时, 将碳十及其以上重质芳烃 有效地转变成苯与 C8A, 碳十及其以上重质芳烃处理能力大, 在高空速、 高转化率下具有高的目的产物选择性。
本发明的另一目的是提供一种甲苯与碳九及其以上重质芳烃歧化和 烷基转移催化剂, 使用该催化剂具有对碳十及其以上芳烃处理能力大即 催化剂活性高, 同时通过歧化和烷基转移反应能将碳十及其以上芳烃有 效地转变成苯与碳八芳烃的特点。
根据本发明的一方面, 一种甲苯与碳九及其以上重质芳烃歧化和烷 基转移工艺, 包括:
a) 以 甲苯和碳九及其 重质芳烃为反应原料, 其中 甲 苯: C9 +A=95:5〜5:95 (重量 /重量) , 优选为 90:10〜30:70 (重量 /重量) , 更优选为 80:20〜40:60 (重量 /重量) ; 反应原料中 C1Q +A含量为 0〜30 %
(重量) , 其中, C9+A 为碳九及其以上重质芳烃, C1() +A 为碳十及其以上 重质芳烃;
b) 使用固定床反应器, 重量空速为 0.8〜8.0 小时- 优选为 1.5〜4.5小时— 1
c) 反 应 温度 300〜500°C, 优选为 350〜450°C - d)临氢条件下, 反应压力 1.0~ 5.0Mpa, 优选为 2.0 ~ 3.5 MPa, 氢 烃分子比为 1 ~ 10, 优选为 3 ~ 7;
e)催化剂为曱苯与碳九及其以上重质芳烃歧化和烷基转移催化剂, 其中以重量份数计包括:
1) Si02/Al203摩尔比为 10~50的氢型沸石 20~90份; 和载于沸石 上的
2)钼的氧化物 0.05 ~ 10份; 优选 0.1 ~ 5份;
3)至少一种选自镍或铋的氧化物 0~ 10份; 优选 0~ 5 份; 更优选 0.1 ~ 5份;
4)至少一种选自镧、 银或铼的氧化物 0~ 10份; 优选 0.1 -5份;
5)粘结剂氧化铝为 10- 60份。
本发明的反应原料中碳十及其以上重质芳烃的重量含量可高达 0~ 30% , 优选为 3-20% , 更优选为 5 ~ 15°/。。 催化剂中氢型沸石选自 丝光沸石、 β沸石或其混和物, 优选方案为选自 β沸石; 催化剂中以重 量份数计, 优选方案为含有铋氧化物或镍氧化物的优选范围为 0~ 5份, 更优选范围为 0.1 ~ 5份。 氢型沸石 Si02/Al203摩尔比优选为 15~ 35。
根据本发明的另一方面, 本发明工艺所使用的催化剂, 以重量份数 计包括:
1) Si02/Al203摩尔比为 10-50的氢型沸石 20~ 90份; 和载于沸石 上的
2) 钼的氧化物 0.05 ~ 10份; 优选 0.1 ~ 5份;
3) 至少一种选自镍或铋的氧化物 0~ 10份; 优选 0~ 5份; 更优选 0.1 ~ 5份;
4) 至少一种选自镧、 银或铼的氧化物 0 ~ 10份; 优选 0.1 ~ 5份;
5) 粘结剂氧化铝为 10 ~ 60份。
上述技术方案中所用的氢型沸石选自丝光沸石、 P沸石或其混和 物, 优选方案为选自 β沸石; 所用氢型沸石的 Si02/Al203摩尔比优选范 围为 15〜35。 上述技术方案中, 以重量份数计, 优选方案为含有铋氧化 物或镍氧化物的优选范围为 0〜5份, 更优选范围为 0.:!〜 5份。
本发明所使用的催化剂是通过氢型沸石、 氧化铝及所使用的金属盐 经浸渍或混合或捏合挤条后经 350〜600 °C焙烧制得的。 实现本发明的最佳方式
本发明使用固定床反应器进行甲苯与 C9+A的歧化与烷基转移反应性 能考察, 反应器内径 0 25 毫米, 长度 1200 毫米, 不锈钢材质。 采用电 加热, 温度自动控制。 反应器底部充填 0 5 毫米玻璃珠作为支撑物, 反 应器内充填催化剂 20克, 上部充填 0 5毫米玻璃珠, 供作原料预热和汽 化之用。 原料甲苯和 C9+A 与氢气混合, 自上而下通过催化剂床层, 发生 歧化与烷基转移反应, 生成苯、 C8A 等较低級芳烃, 以及少量甲烷、 乙 烷、 丙烷、 丁烷等烷烃。
原料甲苯和 C9+A来源于石油化工芳烃联合装置, 试验数据按下式计算。 反应掉的甲苯和 C9A的摩尔数
(甲苯 + C9A)的总转化率 = X 100% 进反应器的甲苯和 C9A的摩尔数 生成的苯和 C8A的摩尔数
(苯 + C8A)的选择性= X 100% 反应掉的甲苯和 C9A的摩尔数 反应掉的 Cl f1+A的重量
C1() +A的转化率=
进反应器的 C1Q+A的重量
下面通过对实施例的描述, 进一步说明但不限制本发明 【实施例 1〜5
用 Na20含量小于 0.15% (重量)、 Si02/Al203分子比 15〜35的铵型丝 光沸石粉末 66.7克与 Na20含量小于 0. 15% (重量)的 -A1203 . H20 57. 1 克均匀混合, 然后用化学纯钼酸铵配成水溶液进行浸渍。 浸渍后的粉末 再加化学纯稀硝酸溶液, 充分捏合均匀, 进行挤条成型、 焙烧制成催化 剂。 改变钼酸铵的用量制得氧化钼重量含量分别为 0.1%、 1 .0%、 2.0%、 3.0% . 5.0%的不同催化剂 A、 B、 C . D、 E。
【实施例 6〜10】
用实施例 1 中相同的方法制备催化剂, 用 Na20重量含量小于 0. 15% 的 Si02/Al203分子比为 15〜40的 ?沸石代替丝光沸石。 制得氧化钼重量 含量分别为 0. 1%、 1 .0%、 2.0¾ . 3.0% . 5.0%的催化别 、 、 ^、 、 。
【对比例 1】
制备方法同实施例 1, 只是不加钼酸铵, 制得催化剂 G。
【实施例 11】
用实施例 1〜: L0制得的含钼催化剂 A〜E、 八1〜£1和对比例 1制得的 催化剂 G, 在固定床反应评价装置上进行甲苯歧化与烷基转移反应活性 考察。 催化剂装瑱量为 20克, 重量空速为 2.5小时- 反应温度 390°C , 反应压力 3.0MPa (G) , 氢烃分子比 3.5, 原料为甲苯: C9+A = 60: 40(重 量 /重量), 其中, C9 +A 中含 12.5% (重量) C1Q+A。 其中原料中 C9A 重量組 成为: 丙苯 3.45%、 甲乙苯 33.14%、 三甲苯 63.40% , C10 +A 重量組成为: 二乙苯 3.33%、 二甲基乙苯 26.96%、 甲基丙苯 2.32¾、 四甲苯 28.84%、 甲基萘 14.49%、 二甲基萘 11 . 16%、 其它 Cu+A12.90¾, 评价结果如表 1。 评价结果
Figure imgf000011_0001
本发明制得的含钼丝光沸石、 ?沸石催化剂, 不论其钼含量的高低、 与不加钼的催化剂相比, 都呈现了较高的活性。
【实施例 12】
用实施例 1和 9 中相同的方法制备催化剂。 改变分子筛与氧化铝的 比例, 用钼酸铵、 硝酸 4必的稀硝酸溶液代替实施例 1 中的钼酸铵稀硝酸 溶液, 制得 ^03和 Bi203重量含量分别为 1 .0%和 0 .5%的催化剂 H。 用类 似的方法制得含铋、 镍、 镧、 银、 铼中一种或几种金属的催化剂 L、 N、 0、 R、 S。 用实施例 11 中的活性评价装置和反应条件及原料组成进行催 化剂活性评价, 结果如表 2。
Figure imgf000012_0001
M代表丝光沸石; ** 代表 ?沸石。 评价结果表明本发明制得的负载钼以及镧、 铋、 镍、 银、 铼中一种 或几种金属氧化物的催化剂, 对甲苯歧化与烷基转移反应具有良好的催 化活性。
【实施例 13 - 22】
用上述实施例中的催化剂, 用实施例 11的反应原料, 适当调整甲笨和 C9 + A 组份的含量, 并加入茚满 (IND) , 改变其它评价条件, 反应 结果见表 3和表 4。
表 3 : 不同反应条件下本发明工艺的技术指标 实施例 13 14 15 16 17 催化剂 D E E, N 反应原料組成(重量)%:
甲苯 90.0 75.0 60.0 56.0 40.0
C9A 5.0 10.0 36.3 35.0 48.0
IND 0.4 0.8 0.6 0.6 0.7
C10 + A 4.6 14.2 3. 1 8.4 11 .3 总量 100.0 100.0 100.0 100.0 100.0 重量空速, (whsv) hr— 1 4.5 4.0 3.0 2.5 1 .5 反应压力, MPa(G) 3.5 2.5 2.8 3.0 2. 1 氢烃分子比, mol/mol 3.1 4.0 5.0 5.5 8.0 反应温度, °C 450 440 380 390 330 反应结果: %
(甲苯 + C9A) 总转化率 40.0 40.2 42.0 46.0 43.3 ς。+Α转化率 40. 1 35.0 6.1 32.0 40.0
(苯 + C8A) 的选择性 97.0 99.5 95. 1 96.0 98.0
表 4 : 不同反应条件下本发明工艺的技术指标
Figure imgf000014_0001
【实施例 23】
用实施例 5 制得的催化剂 E 分别用不同 C1Q+A含量的原料进行甲苯 歧化和烷基转移反应, 其中原料中甲苯与 C9+A的比例及 C9A和 C1Q +A组成 同实施例 11, 考察其处理碳十及碳十以上芳烃的能力。 其余考察条件同 实施例 11, 考察结果见表 5。
表 5 考察结果
Figure imgf000014_0002
100克反应产物中(: 及(:5以下烃的生成量。 表 5 数据表明采用本发明的工艺可以处理含较高 C1Q+A 量的原料, 从表 5中可以看出, 随着原料中 C1Q +A含量的增加, 目的产物(苯 +C8A)的 选择性增加, 而生成的轻烃量基本不变, 说明转化掉的 C1Q+A 主要是通 过烷基转移过程, 转化成苯和 C8A等目的产物。 工业应用性
采用本发明的方法, 由于所使用的催化剂的优异性能, 具有了甲苯 和碳九及其以上重质芳烃发生烷基转移的功能, 生成了大量的 C8A, 另 外甲苯本身再发生歧化反应, 生成苯和 C8A, 从而使产物成份中大量生 成了 目的产物笨和 C8A。 因此本发明工艺中主要是发生歧化和烷基转移 反应, 而不是加氢脱烷基反应, 从而避免了生成大量轻质烃、 造成原料 浪费问题。
本发明所使用的催化剂由于同时具有歧化和烷基转移功能, 使反应 原料打破了纯甲苯的限制, 另外本发明催化剂采用在沸石中加入钼及其 它活性组份的技术方案, 尤其是在丝光沸石或 ?沸石上负载氧化鉬和氧 化镍或 /和氧化铋以及非强制性加入的选自镧、 银或铼的氧化物, 更使 制得的催化剂具备了高催化活性, 从而使反应原料中碳十及其以上芳烃 的含量可高达 30¾ (重量), 同时产物中苯加 C8A的选择性高达 99 .5%, 使 碳十及其以上芳烃有效地转变成了苯和 C8A, 取得了较好的效果。 本发 明工艺中所使用的催化剂, 通过在丝光沸石或 /9沸石或其混合物上引入 负载氧化钼和氧化镍或 /和氧化鉍, 有效地提高催化剂的酸总量以及调 变了酸的强度, 从而在提高催化剂活性的同时, 充分避免副反应的发生, 有效地提高了催化剂的处理能力和目的产物的选择性, 从而使本发明方 法具有非常好的技术经济指标, 在高空速、 高转化率下具有高的目的产 物选择性, 具有很好的工业化前景。
本发明不限于以上实施方式, 本领域技术人员可根据本发明做出各 种改变和变形, 只要不脱离本发明的精神, 均应属于本发明的范围。

Claims

权利要求
1. 一种甲苯与碳九及其以上重质芳烃歧化和烷基转移工艺, 其特征在于, 包括:
a) 以甲苯和碳九及其以上重质芳烃为反应原料, 其中甲苯: C9 +A二 95:5〜5:95 (重量 /重量) , 反应原料中 C1() +A含量为 0〜30% (重量) , 其中 Cg+A为碳九及其以上重质芳烃, C1(J +A为碳十及其以上重质芳烃; b) 重量空速为 0.8〜8.0小时- 1
c) 反应温度 300〜500°C;
d) 临氢条件下, 反应压力 1.0〜5.0MPa(G), 氢烃分子比为 1〜: 10; e) 催化剂为甲苯与碳九及其以上重质芳烃歧化和烷基转移催化剂, 其中以重量份数计包括:
1) Si02/Al203摩尔比为 10〜50的氢型沸石 20〜90份; 和载于沸石 上的
2) 钼的氧化物 0.05〜10份;
3) 至少一种选自镍或 4必的氧化物 0〜10份;
4) 至少一种选自镧、 银或铼的氧化物 0〜10份;
5) 粘结剂氧化铝为 10〜60份。
2. 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于,
a)所述甲苯与碳九及其以上重质芳烃的比例为甲苯: C9+A = 90: 10〜 30:70 (重量 /重量) , 反应原料中 ς。+Α含量为 3〜20% (重量) ;
b) 所述重量空速为 1.5〜4.5小时 -1
c) 所述反应温度为 350°C〜450°C;
d) 所述反应压力为 2.0〜3.5MPa,氢烃分子比为 3〜7。
3. 根据杈利要求 2 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, a)所述甲苯与碳九及其以上重质芳烃的比例为甲苯: C9+A = 80 : 20〜40 : 60 (重量 /重量) ; 反应原料中 C1Q+A含量为 5〜:5 % (重量)。
4. 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中氢型沸石选自丝光沸石、 3沸石或其混和物。
5 - 根据杈利要求 4 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述氢型沸石选自 /5沸石。
6. 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中以重量份数计钼的氧化物量为 0. 1〜5份。
7 - 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中以重量份数计, 含至少一种选自镍或铋的氧 化物 0〜5份。
8. 根据杈利要求 7 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中以重量份数计, 含至少一种选自镍或铋的氧 化物 0. 1〜5份。
9 - 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中以重量份数计, 含镍氧化物 0〜5份。
10. 根据杈利要求 9 所述甲苯与碳九及其以上重质芳烃歧化和烷 基转移工艺,
其特征在于, 所述催化剂中以重量份数计, 含镍氧化物 0.1〜5份。
11 . 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中以重量份数计, 含铋氧化物 0〜5份。
12 . 根据杈利要求 11 所述甲苯与碳九及其以上重质芳烃歧化和烷 基转移工艺,
其特征在于, 所述催化剂中以重量份数计, 含铋氧化物 0. 1〜5份。
13 . 根据杈利要求 1 所述甲苯与碳九及其以上重质芳烃歧化和烷基 转移工艺,
其特征在于, 所述催化剂中以重量份数计, 至少一种选自镧、 银或铼的 氧化物 0. 1〜5份。
14 . 一种用于杈利要求 1所述工艺的催化剂,
其特征在于, 以重量份数计包括:
1 ) Si02/Al203摩尔比为 10〜50的氢型沸石 20〜90份; 和载于沸石 上的
2) 4目的氧化物 0.05〜10份;
3) 至少一种选自镍或铋的氧化物 0〜10份;
4) 至少一种选自镧、 银或铼的氧化物 0〜10份;
5) 粘结剂氧化铝为 10〜60份。
15 - 根据杈利要求 14所述的催化剂,
其特征在于, 所述氢型沸石的 Si02/Al203摩尔比为 15〜35。
16. 根据杈利要求 14所述的催化剂,
其特征在于, 所述氢型沸石选自丝光沸石、 沸石或其混和物。
17 - 根据杈利要求 16所述的催化剂,
其特征在于, 所述氢型沸石选自 ?沸石。
18. 根据杈利要求 14所述的催化剂,
其特征在于, 以重量份数计钼的氧化物量为 0.1〜5份。
19. 根据杈利要求 14所述的催化剂,
其特征在于, 以重量份数计, 催化剂中含至少一种选自镍或铋的氧化 物 0〜5份。
20 - 根据杈利要求 14所述的催化剂,
其特征在于,以重量份数计,催化剂中含至少一种选自镍或铋的氧化物 0.1~5份。
21 . 根据杈利要求 14所述的催化剂,
其特征在于, 以重量份数计, 催化剂中含镍氧化物 0〜5份。
22 - 根据杈利要求 21所述的催化剂,
其特征在于, 以重量份数计, 催化剂中含镍氧化物 0. 1〜5份。
23. 根据杈利要求 14所述的催化剂,
其特征在于, 以重量份数计, 催化剂中含铋氧化物 0〜5份。
24. 根据杈利要求 23所述的催化剂,
其特征在于, 以重量份数计, 催化剂中含铋氧化物 0. 1〜5份。
25 - 根据杈利要求 14所述的催化剂,
其特征在于,以重量份数计, 至少一种选自镧、银或铼的氧化物 0.:!〜 5份。
PCT/CN2000/000168 1999-06-24 2000-06-21 Procede de transalkylation et de dismutation de toluene et d'hydrocarbures aromatiques lourds c9 ainsi que l'utilisation d'un catalyseur WO2001000547A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00938465A EP1106592A4 (en) 1999-06-24 2000-06-21 PROCESS FOR TRANSALKYLATION AND DISMUTATION OF TOLUENE AND C9 + HEAVY AROMATIC HYDROCARBONS AND THE USE OF A CATALYST
TW089112662A TW527416B (en) 1999-06-24 2000-06-27 Processes and catalysts for the disproportion and conversion of toluene containing heavy aromatic hydrocarbons with nine and more than nine carbon atoms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99113812.0 1999-06-24
CNB991138120A CN1136050C (zh) 1999-06-24 1999-06-24 甲苯与碳九及其以上重质芳烃歧化和烷基转移催化剂

Publications (1)

Publication Number Publication Date
WO2001000547A1 true WO2001000547A1 (fr) 2001-01-04

Family

ID=5276962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000168 WO2001000547A1 (fr) 1999-06-24 2000-06-21 Procede de transalkylation et de dismutation de toluene et d'hydrocarbures aromatiques lourds c9 ainsi que l'utilisation d'un catalyseur

Country Status (5)

Country Link
EP (1) EP1106592A4 (zh)
CN (1) CN1136050C (zh)
RU (1) RU2217402C2 (zh)
TW (1) TW527416B (zh)
WO (1) WO2001000547A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439447A (zh) * 2019-08-30 2021-03-05 中国石油化工股份有限公司 一种重芳烃轻质化催化剂及其制备方法与应用
CN113492016A (zh) * 2020-04-03 2021-10-12 宁波中金石化有限公司 一种甲苯歧化与烷基转移双组份催化剂及其制备方法
CN114478180A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种重质芳烃轻质化方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164541C (zh) 2001-10-22 2004-09-01 中国石油化工股份有限公司 甲苯选择性歧化和甲苯与碳九及其以上芳烃歧化与烷基转移方法
WO2003076372A1 (fr) * 2002-03-13 2003-09-18 China Petroleum & Chemical Corporation Transalkylation du benzene et d'hydrocarbures aromatiques c9+
DE60309707T2 (de) * 2002-06-28 2007-09-20 Haldor Topsoe A/S Verwendung eines zeolith beta enthaltender katalysators in kohlenwasserstoffumwandlungsverfahren
US7148391B1 (en) * 2002-11-14 2006-12-12 Exxonmobil Chemical Patents Inc. Heavy aromatics processing
US7361798B2 (en) 2003-10-03 2008-04-22 Exxonmobil Chemical Patents Inc. Production of dialkylbenzenes
US20070049780A1 (en) * 2005-08-30 2007-03-01 Schwartz Hilary E Methods of making xylene isomers
CN101045668B (zh) * 2006-03-27 2010-12-01 中国石油化工股份有限公司 碳九及其以上重质芳烃高选择性生产碳八芳烃的方法
US9308497B2 (en) 2010-10-04 2016-04-12 Basf Corporation Hydrocarbon selective catalytic reduction catalyst for NOx emissions control
CN115532306B (zh) * 2021-06-30 2024-01-30 中国石油化工股份有限公司 一种用于烷基转移的复合催化剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551509A (en) * 1969-02-10 1970-12-29 Sinclair Oil Corp Moving bed process using sieve catalyst to make xylenes by toluene disproportionation and transalkylation with c9-c10 alkylbenzenes
US5866741A (en) * 1997-07-23 1999-02-02 Phillips Petroleum Company Transalkylation/hydrodealkylation of a C9 + aromatic compounds with a zeolite
CN1217369A (zh) * 1997-11-13 1999-05-26 中国石油化工集团公司 甲苯与重质芳烃的歧化与烷基转移工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW482751B (en) * 1997-06-06 2002-04-11 China Petro Chemical Technolog Catalysts and processes for the conversion of aromatic hydrocarbons and uses thereof in the production of aromatic hydrocarbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551509A (en) * 1969-02-10 1970-12-29 Sinclair Oil Corp Moving bed process using sieve catalyst to make xylenes by toluene disproportionation and transalkylation with c9-c10 alkylbenzenes
US5866741A (en) * 1997-07-23 1999-02-02 Phillips Petroleum Company Transalkylation/hydrodealkylation of a C9 + aromatic compounds with a zeolite
CN1217369A (zh) * 1997-11-13 1999-05-26 中国石油化工集团公司 甲苯与重质芳烃的歧化与烷基转移工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1106592A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439447A (zh) * 2019-08-30 2021-03-05 中国石油化工股份有限公司 一种重芳烃轻质化催化剂及其制备方法与应用
CN112439447B (zh) * 2019-08-30 2023-05-05 中国石油化工股份有限公司 一种重芳烃轻质化催化剂及其制备方法与应用
CN113492016A (zh) * 2020-04-03 2021-10-12 宁波中金石化有限公司 一种甲苯歧化与烷基转移双组份催化剂及其制备方法
CN113492016B (zh) * 2020-04-03 2023-10-13 宁波中金石化有限公司 一种甲苯歧化与烷基转移双组份催化剂及其制备方法
CN114478180A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种重质芳烃轻质化方法
CN114478180B (zh) * 2020-10-27 2024-05-17 中国石油化工股份有限公司 一种重质芳烃轻质化方法

Also Published As

Publication number Publication date
EP1106592A4 (en) 2002-08-21
TW527416B (en) 2003-04-11
CN1287884A (zh) 2001-03-21
RU2217402C2 (ru) 2003-11-27
EP1106592A1 (en) 2001-06-13
CN1136050C (zh) 2004-01-28

Similar Documents

Publication Publication Date Title
KR101162796B1 (ko) 여러고리 방향족 화합물의 크실렌으로의 촉매 전환
US7393989B2 (en) Shaped catalysts for transalkylation of aromatics for enhanced xylenes production
CN101811063B (zh) 碳九及其以上重质芳烃轻质化及烷基转移催化剂
CN101172924B (zh) 高选择性芳烃烷基转移和脱烷基增产二甲苯反应方法
CN101045208B (zh) 碳九及其以上重质芳烃脱烷基与烷基转移催化剂
US9221037B2 (en) Multimetal zeolites based catalyst for transalkylation of heavy reformate to produce xylenes and petrochemical feedstocks
US20130261365A1 (en) Process for the Production of Xylenes and Light Olefins from Heavy Aromatics
RU2354640C2 (ru) Способ превращения смесей, содержащих ароматические углеводороды c9 в изомеры ксилола
CN101768039B (zh) 碳九及其以上重质芳烃轻质化及烷基转移方法
CN100553775C (zh) 选择性脱烷基和芳烃烷基转移反应催化剂
EP0884103B1 (en) Catalyst based on high-silica zeolite and bismuth and its use for the conversion of aromatic hydrocarbons
CN100506378C (zh) 低乙苯副产物的芳烃烷基转移和脱烷基反应催化剂
CN100553777C (zh) 高选择性的芳烃烷基转移和脱烷基反应催化剂
CN101190866B (zh) 低乙苯副产物的芳烃烷基转移和脱烷基反应方法
WO2001000547A1 (fr) Procede de transalkylation et de dismutation de toluene et d'hydrocarbures aromatiques lourds c9 ainsi que l'utilisation d'un catalyseur
CN1123629C (zh) 甲苯与碳九及其以上重质芳烃歧化和烷基转移工艺
CN101172251B (zh) 增产二甲苯的芳烃烷基转移和脱烷基催化剂
CN1058476C (zh) 制备乙苯或其取代衍生物的方法
KR100747685B1 (ko) 톨루엔 및 중방향족의 불균화 및 트렌스알킬화를 위한 방법 및 촉매
CN1752058A (zh) 重质芳烃加氢脱烷基与烷基转移的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/275KOL

Country of ref document: IN

Ref document number: IN/PCT/2001/275/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000938465

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000938465

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000938465

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP