WO2000077601A1 - The heat-radiator of a portable computer's cpu - Google Patents

The heat-radiator of a portable computer's cpu Download PDF

Info

Publication number
WO2000077601A1
WO2000077601A1 PCT/CN2000/000150 CN0000150W WO0077601A1 WO 2000077601 A1 WO2000077601 A1 WO 2000077601A1 CN 0000150 W CN0000150 W CN 0000150W WO 0077601 A1 WO0077601 A1 WO 0077601A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
microprocessor
heat
fan
air
Prior art date
Application number
PCT/CN2000/000150
Other languages
English (en)
French (fr)
Inventor
Jiung-Jung Wang
Original Assignee
Wang Jiung Jung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 99213741 external-priority patent/CN2399696Y/zh
Priority claimed from CN 99214288 external-priority patent/CN2410677Y/zh
Priority claimed from CN 99214382 external-priority patent/CN2394251Y/zh
Application filed by Wang Jiung Jung filed Critical Wang Jiung Jung
Priority to JP2001503594A priority Critical patent/JP2003502749A/ja
Priority to EP00936595A priority patent/EP1239359A4/en
Priority to AU52052/00A priority patent/AU5205200A/en
Priority to US09/926,473 priority patent/US6570760B1/en
Publication of WO2000077601A1 publication Critical patent/WO2000077601A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Cooling device for central microprocessor of portable computer
  • the invention relates to a heat dissipation device for a central microprocessor, and is particularly directed to a portable computer that is tending to be lighter, thinner and shorter with a high space utilization ratio, and can improve the central microprocessor chip (hereinafter (Microprocessor)
  • Microprocessor A heat dissipation device for the central microprocessor of a portable computer.
  • the present invention also designs a heat sink and a heat sink for the heat sink, which can expand the heat sink area and have a better heat sink effect.
  • the aluminum heat sink and cooling fan with high thermal efficiency and large thickness are usually used
  • the heat dissipation device is composed to cool the microprocessor, and even if it is barely feasible, not only the thickness of the entire host needs to match the sudden increase, but also the cooling fan will be hindered by the keyboard above, and it will not be able to directly draw outside cold air for cooling the radiator and
  • the microprocessor can only use natural heat dissipation methods such as a heat-dissipating aluminum plate or heat pipe without heat-dissipating fans and a small heat-dissipating area, which results in poor heat-dissipating performance.
  • the current heat sink used in the heat sink of the computer's central microprocessor has a poor heat dissipation effect.
  • the reason is that the heat sink area of the heat sink itself is insufficient, and the heat sink area formed by only a few fins is still It is not enough, so even if a set of cooling fans is added, the effect of the cooling area is not enough.
  • FIG. 1 is a three-dimensional exploded schematic view of a known microprocessor heat sink, which is mainly composed of a heat sink 2 fixed above the microprocessor 11 and then using a plurality of fixing bolts 5 to lock the heat sink along the screw holes of the fan 3
  • the convection groove 23 formed between the two fins 22 of the sheet 2 may be sufficient.
  • the known heat dissipation device of the microprocessor 11 that when the computer mainframe starts to operate, the temperature inside the casing of the computer is definitely higher than the temperature outside the casing. Therefore, whether the fan 3 adopts a cooling method of exhaust air or air supply, the microprocessing The device 11 operates under a high temperature state, and its heat dissipation effect will be greatly reduced.
  • the heat dissipation effect of the microprocessor 11 is not ideal, and the normal service life of the microprocessor 11 is damaged. Therefore, the known microprocessor heat sink cannot effectively and quickly reduce the high temperature emitted by the microprocessor.
  • a main object of the present invention is to provide a heat dissipation device for a central processing unit of a portable computer with higher heat dissipation efficiency.
  • a solution of the present invention is to install a motherboard with a microprocessor, a radiator, and a cooling fan in an upside-down manner in the host, so that the cooling fan can be adjacent to the host.
  • the preset air inlet of the bottom case according to which the microprocessor can not only use a heat sink and a cooling fan with high heat dissipation efficiency, but also be able to smoothly take external air from the bottom directly without being hindered by the keyboard above. Cooling and cooling can improve the overall cooling efficiency of the central microprocessor.
  • Another object of the present invention is to provide an improved structure of a heat sink for the above heat sink, which can be used as another solution to solve the above-mentioned main object of the present invention, which is mainly by increasing the heat dissipation area in the heat sink, The heat dissipation effect is increased, and the high temperature can be quickly discharged by changing the position of the suction fan.
  • the heat dissipation method is to introduce the air outside the main body casing or direct the temperature of the microprocessor out of the casing, so that the high and low temperature difference can quickly reduce the temperature of the microprocessor, improve the cooling effect of the microprocessor, and ensure the use of related components. life.
  • Another object of the present invention is to provide an improved structure of the above-mentioned heat dissipation device, which is mainly extended by the total length of the heat sink and is sleeved with a wind box that can transmit airflow to the main body casing, and directly introduces air outside the casing or The high temperature of the microprocessor is pulled out of the housing of the host, so that the high temperature of the microprocessor can be quickly discharged and reduced.
  • the heat dissipation device of this structure can change the position where the suction fan is provided on the main body casing.
  • a main board is installed in the host, a microprocessor socket is provided on the main board for the microprocessor to insert, and the micro processing A radiator and a cooling fan are sequentially installed on the device;
  • main board is fixed inside the host upside down, so that the microprocessor, the radiator and the cooling fan are inverted on the bottom of the main board, so that the cooling fan can abut the preset air intake of the corresponding place of the main chassis. Holes to facilitate direct extraction of outside air for rapid heat dissipation from the heat sink and microprocessor.
  • a keyboard composed of a bottom plate, a circuit board, and a plurality of keys is additionally provided on the top of the computer host, and the inverted host board is fixed together with the circuit board of the keyboard at the same place.
  • a liquid crystal display screen is disposed on the top of the computer host, and the inverted motherboard is fixed at the bottom of the liquid crystal display screen.
  • the bottom case of the computer main body may be formed with a protruding portion having an air inlet hole according to a protruding degree of the bottom case of the computer main body relative to the cooling fan.
  • the bottom case of the computer main body is a flat plate surface.
  • the structure of the heat sink of the heat sink of the portable computer central microprocessor of the present invention is that two corresponding sides of the heat sink are set as open faces, and the open face on either side can be set by a fan. While the remaining four sides are set as closed surfaces, wherein the contact seat which is in contact with the heating element is provided with a plurality of fins along its vertical direction, and the two fins form a concave and convex opposite, and the two fins between the concave and convex are Convection tank with proper clearance for high temperature flow.
  • one or more heat sink holes penetrating into the convection groove may be provided at appropriate positions on the top surface of the heat sink. In the future, the high temperature exhausting the heat sink will not be discharged from the heat sink by the heat sink holes.
  • one or more heat sinks passing through the convection tank may be provided at appropriate positions on the top surface of the heat sink. In the future, the high temperature of the heat sink will not be discharged from the heat sink to disperse the heat sink.
  • the fans can also be placed on the two open surfaces of the heat sink at the same time, and the fan forms a heat-moving line that enters and discharges air.
  • one or more heat sink holes penetrating into the convection tank and one or more heat sink holes penetrating into the convection tank may also be provided at appropriate positions on the top surface of the heat sink.
  • the heat sink immediately ejects the higher temperature out of the heat sink.
  • the structure of the heat sink of the present invention can also be used in place of a known heat sink in other electronic heat sinks.
  • An improved structure of the heat sink of the portable microprocessor central microprocessor of the present invention is to appropriately extend the length of the heat sink of the microprocessor to the vicinity of the housing of the host, and use a funnel-shaped bellows to fan the fan. It is erected in it to directly extract the air outside the main body casing or exhaust the high temperature inside the casing to reduce the high temperature generated by the microprocessor itself due to high and low temperature. It includes:
  • a heat sink of the present invention is placed above a microprocessor, wherein two corresponding sides are open, and the remaining faces are closed.
  • a plurality of fins are provided along the vertical direction of the contact seat, and two fins A proper gap is left between the films for a pair of flow grooves;
  • a fan which is a heat sink that can be drawn or sucked
  • An air box is a pipe body capable of transmitting airflow.
  • One of the open ports is an external air port and a supply port is provided in the air port.
  • Fan placement slot for fan placement the other end is the inner air vent, which is sleeved with one end of the heat sink, and a positioning baffle is extended above and below the outer air outlet, and a plurality of openings are provided at appropriate positions on the board.
  • the positioning screw hole is connected by first fixing the heat sink to the microprocessor, then pressing the fan from the outer air outlet of the bellows into the fan placement slot, and then attaching the bellows air outlet to one end of the heat sink. Finally, the outer air outlet of the bellows and the positioning holes of the upper and lower positioning baffles are aligned with the fan opening and the fixing screw of the main body casing, and then the two are locked and fastened by the fixing bolts.
  • the fins provided in the heat sink may also be provided only on the vertical surface of the microprocessor, and the processed part becomes a hollow airflow channel.
  • a bellows can also be directly punched on the host casing to make it integrally formed with the host casing.
  • FIG. 1 is a perspective exploded view of a conventional microprocessor heat sink.
  • FIG. 2 is a bottom exploded perspective view of an embodiment of a heat sink of the present invention.
  • FIG. 3 is a schematic sectional side view of a heat sink according to an embodiment of the present invention.
  • FIG. 4 is a schematic sectional side view of another embodiment of a heat sink according to the present invention.
  • FIG. 5 is a schematic perspective view of a heat sink of the present invention.
  • FIG. 6 is a schematic perspective view of an embodiment in which a heat sink and a fan are combined according to the present invention.
  • FIG. 7 is a schematic diagram of a heat dissipation effect of the present invention.
  • FIG. 8 is a schematic perspective view of another embodiment of a heat sink of the present invention.
  • FIG. 9 is a schematic perspective view of another embodiment of a heat sink of the present invention.
  • FIG. 10 is an exploded perspective view of the heat sink of the present invention.
  • FIG. 11 is a schematic perspective view of a heat sink of the present invention.
  • Fig. 12 is a side view of the heat sink of the present invention.
  • FIG. 13 is a top view of a heat sink of the present invention.
  • FIG. 14 is a schematic exploded perspective view of another embodiment of a heat sink of the present invention.
  • FIG. 15 is a schematic exploded perspective view of another embodiment of a heat sink of the present invention.
  • 1 host, 10—bottom plate, 100—air inlet, 101—projection, 102—pad, 11—microprocessor, 12—keyboard, 120—bottom plate, 121—circuit board, 122—button , 13_ Motherboard, 14—LCD display screen, 2—Heat sink (radiator), 21—Contact base, 22—Fin, 23—Convection tank, 3—Fan, 4—Air box, 41—Outer air outlet, 42 —Inner air outlet, 43—Fan placement slot, 44—Positioning plate, 45—Positioning screw Holes, 5—fixing bolts, 6—host housing, 61—fixing screw holes, 62—fan ports, 63—wind boxes.
  • FIG. 2 and FIG. 3 are related reference drawings of Embodiment 1 of a heat dissipation device for a central microprocessor of a portable computer according to the present invention.
  • the portable computer main body 1 is provided on its top surface with metal.
  • the keyboard 12 composed of the bottom plate 120, the circuit board 121 and the plurality of keys 122 or the touch-sensitive liquid crystal display screen 14 shown in FIG. 3, and the interior is mainly provided with an all-in-one board assembly (all in one).
  • the printed circuit board of the main board 13 is provided with at least a microprocessor socket 21 for a microprocessor 11 to be inserted thereon, and an aluminum extrusion type is successively installed on the surface of the microprocessor 11 Radiator 2 and cooling fan 3.
  • the motherboard 13 on which the microprocessor 11, the radiator 2 and the cooling fan 3 are mounted is installed in the host 1 in an upside-down manner relative to the motherboard of a known portable computer.
  • the cooling fan 3 can be adjacent to the air inlet hole 100 preset by the bottom case 10 of the host 1, and the bottom case 10 at the air inlet hole 100 can present a flat plate surface, or as shown in the figures With the increase of the cooling fan 3, a protruding portion 101 is formed as a partial protrusion according to the actual situation, so that the other parts of the bottom case 10 can be relatively retracted and lifted up against the main board 13 to reduce space occupation.
  • a pad 102 is provided in a balanced manner, which is slightly larger than the height of the protruding portion 101 so that the host 1 can be placed stably and allows the air inlet hole 100 to breathe.
  • the pad 102 can be provided separately or as shown in the figure.
  • the microprocessor 11 adopts the same high-efficiency thermal method as that of a general desktop personal computer central processor, that is, an aluminum extruded radiator 2 and a cooling fan 3, not only can the radiator 2 have most cooling fins It has a larger heat dissipation area for sufficient contact with the air, and can use the cooling fan 3 to increase the frequency of air hitting the radiator 2. It is especially important that the cooling fan 33 is provided by the motherboard 13 It is upside down, so it can easily and directly suck the outside air from the air inlet 100 of the bottom case 10 for the cooling radiator 2 and the microprocessor 11 without being obstructed by the upper keyboard 12, so its heat dissipation effect will be more well-known.
  • the cooling method of the computer is better.
  • the motherboard 13 and the circuit board 121 of the keyboard 12 can share the keyboard bottom plate 120, that is, the motherboard 13 and the keyboard circuit board 121 are both disposed on the shared bottom plate 120, so that the internal space of the host 1 can be used as More efficient and streamlined configuration arrangement; or as shown in FIG. 4, the motherboard 13 is directly installed in the liquid crystal
  • the bottom of the display screen 14 can also effectively simplify the space utilization and assembly process.
  • FIG. 5 is a schematic perspective view of a heat sink of the present invention.
  • the heat sink 2 mainly includes a contact base 21, and a plurality of fish-bone fins 22 are arranged on the contact base 21, and two fins 22 A convection groove 23 forming a convection space.
  • a plurality of fish-bone fins 22 are provided along the vertical direction of the contact base 21, and the two fins 22 are A pair of flow grooves 23 are formed in a concave-convex shape, and an appropriate gap is left between the concave-convex portions.
  • This structure has a large heat dissipation area, which greatly improves the heat dissipation efficiency. In terms of heat dissipation area, it is much larger than the known heat dissipation area and can conduct high temperature more quickly.
  • FIGS. 6 and 7 are three-dimensional schematic diagrams of the third embodiment of the heat sink and the fan tower of the present invention and the heat dissipation effect of the heat sink of the present invention.
  • the fan 3 is particularly fixed to an open side of the heat sink 2 by a plurality of fixing screws 5. Therefore, the heat generated when the fan 3 is connected below the heat sink 2 When the body (microprocessor) 1 1 starts to generate high temperature, its high temperature will be quickly transmitted to the contact seat 21 of the heat sink 2. Due to the greatly increased heat dissipation area, the high temperature generated by the heating body 11 will conduct more smoothly.
  • the high temperature generated by the heating element 11 will be conducted by the contact seat 21 of the heat sink 2 to the fish-bone-shaped fins 22, and immediately dissipate between the convection grooves 23, and then the fan 3 will put the convection grooves 23 inside.
  • the high temperature quickly and smoothly pumps out the discrete heat sink 2.
  • Fans 3 can also be installed on the two open surfaces of the heat sink 2 at the same time.
  • the fans 3 are in the form of an air inlet and a row of air, so that the high-temperature air flow in the heat sink 2 can flow more smoothly, and a better heat dissipation effect can be obtained.
  • the present invention rapidly conducts the high temperature of the heating element 11 through a large heat radiation area, so as to facilitate the continuous high temperature conduction.
  • FIG. 8 is a schematic perspective view of a preferred embodiment 4 of a heat sink of the present invention. It is mainly to open more than one heat dissipation hole 114 penetrating into the convection groove 23 at an appropriate position on the top surface of the heat sink 2. The higher temperature is immediately discharged out of the heat sink 2.
  • FIG. 9 is a schematic diagram of a preferred embodiment 5 of a heat sink of the present invention. It is mainly to provide more than one heat sink 115 penetrating into the convection groove 23 at an appropriate position on the top surface of the heat sink 2. High temperature Drain the heat sink immediately.
  • heat dissipation holes 114 and the heat dissipation grooves 115 can also be provided on the top surface of the heat sink 1 at the same time to improve the heat dissipation effect.
  • the present invention increases the heat dissipation area of the heat sink itself, and changes the direction and position of the fan that assists heat dissipation, so that high temperature can be quickly and smoothly discharged. Therefore, the present invention has completely eliminated the disadvantages of the known heat sinks, such as insufficient heat dissipation area and poor heat dissipation effect.
  • FIG. 10 is an exploded perspective view of another heat sink of a microprocessor according to the present invention.
  • the heat sink mainly includes a heat sink 2, a fan 3, and a wind box 4.
  • a heat sink 2 is a heat-dissipating material, which is placed above the microprocessor 11, and two corresponding sides thereof are open. The other four sides are closed, and a plurality of fins 22 are provided along the vertical direction of the contact seat 21, and a proper gap is provided between the two fins 22 as a pair of flow grooves 23.
  • a fan 3 is a heat sink that can be drawn or sucked.
  • An air box 4 is a pipe body capable of transmitting airflow.
  • One of the open ports is an external air port 41, and a fan placing slot 43 for the fan 3 is disposed in the air port, and the other end is an internal air port 42.
  • the port In order to be sleeved with one end of the heat sink 2, a positioning baffle 44 extends above and below the outer air outlet 41, and a positioning screw hole 45 is provided at each position of the plate.
  • FIG. 11 is a schematic perspective view of the above-mentioned microprocessor heat sink of the present invention.
  • the special structure of the present invention can be found in the figure.
  • the length of the heat sink 2 is appropriately extended to enable it to communicate with the wind box 4. Socketing allows the heat sink 2 not only to maintain the heat dissipation function but also to serve as a heat dissipation duct, so the high temperature generated by the microprocessor 11 will be quickly and directly discharged from the host housing 6 by the device.
  • the overall heat dissipation area is further enlarged, and the heat dissipation effect of the heat sink 2 is better.
  • FIGS. 12 and 13 Please refer to FIGS. 12 and 13 for the side view and the top view of the microprocessor heat sink of the present invention. From the illustration, the entire heat dissipation area of the heat sink 2 is greatly increased, but the overall height is not increased or decreased. A big breakthrough, and the size design of fan 3 also breaks away from the limitation range that microprocessor 1 must have, making fan 3 The range of size and power design is wider.
  • FIG. 14 is a three-dimensional exploded schematic view of Embodiment 7 of the microprocessor heat sink according to the present invention.
  • the fins 22 provided in the heat sink in the heat sink may also be provided only on the vertical surface of the microprocessor 1.
  • the extended part becomes a hollow airflow channel.
  • FIG. 15 is an exploded perspective view of Embodiment 8 of the microprocessor heat sink of the present invention.
  • an air box 63 can also be directly punched on the host casing 6 so that it is integrally formed with the host casing 6.
  • the above-mentioned invention has changed the traditional heat dissipation structure of the microprocessor.
  • the importance of the microprocessor in the computer is equivalent to the central view of the human body. Therefore, in order to maintain the normal operation of the microprocessor, it will not be damaged due to overheating. Only the heat dissipation function of its heat dissipation structure can be strengthened.
  • the heat dissipation of the microprocessor is completely carried out in a high-temperature housing. Since the computer host emits a lot of high-temperature components during use, no matter how the power of the fan is increased, its operating environment is always at a high temperature. No matter how to draw and supply air, it still belongs to a high temperature cycle, so it still cannot effectively reduce the high temperature of the microprocessor.
  • the technical content and methods disclosed by the present invention have completely solved the bottlenecks encountered by known heat sinks, not only increasing the heat dissipation area, but also exhausting the high temperature accumulated around the microprocessor outside the housing or lowering the room temperature outside the housing. Introduce it to effectively lower the temperature.
  • the length of the heat sink is extended to the main body casing, and a fan capable of transmitting airflow is used to set the fan therein, the air outside the main body casing is directly extracted or the high temperature exhausted from the casing is reduced by the difference between high and low temperatures. Due to the high temperature generated by the processor itself, the heat dissipation effect is better.
  • the heat dissipation device of the central microprocessor of the portable computer of the present invention can also adopt other forms to promote the heat dissipation of the heat dissipation device.
  • the keyboard and the LCD screen described in this case may also be removed, and the cold air blown by the fan toward the central processing unit does not have to be blown from the bottom to the top, but may also be blown from the top to the bottom. Or from left to right.
  • the orientation of the computer will be fixed, and the direction of the fan blowing will only be able to extract the cold air below to the microprocessor.
  • the computer can be arbitrarily arranged.
  • the fan can extract cold air from different directions and place it in the central processor to achieve heat dissipation.
  • the fan is directly attached to any side of the heat sink and the housing of the host, so that the fan can Straight Connect the cold air outside the main casing to the radiator for the microprocessor to quickly dissipate heat.
  • the fan may be disposed on either side of the host casing, so that the cold air of the fan may be directly on the radiator from the outside of the host casing for the microprocessor to quickly dissipate heat.
  • the heat sink used in the heat sink can be the heat sink described in Embodiments 2, 3, 4, and 5, and the fan is disposed on the open surface on one side of the heat sink.
  • the heat dissipation device described in 6, 7, and 8 may be adopted.
  • the heat dissipation device of the central processing unit of the portable computer of the present invention and the heat sink and the heat sink used in the heat dissipation device can effectively increase the heat dissipation area and more easily pull off the high temperature to achieve better heat dissipation effect.
  • the radiating fins and heat sinks designed by the present invention can also be used as heat radiating devices of other heating electrical components, and at the same time, they can receive very ideal heat radiating effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

可携式电脑中央微处理器的散热装置 技术领域
本发明涉及一种中央微处理器的散热装置, 特别是针对在讲究高空间利用率而 趋向于体形轻薄短小化的可携式电脑中所使用的, 并能提高其中央微处理器晶片(以 下称微处理器)散热效率的一种可携式电脑中央微处理器的散热装置。 另外, 本发明 也为该散热装置设计一种散热片和散热器, 可扩大散热面积, 具有更佳的散热效果。 背景技术
一般可携式电脑的主机为达到更轻巧而易携带, 其厚度均趋向于扁薄化, 也因 此其内部空间须作最有效的利用, 该可携式电脑主机内的主机板顶面适当处设置有 微处理器插座以供微处理器插置, 而该微处理器由于运作时会产生高热, 故需另配 置有适当散热装置。 但是由于紧邻主机板上方即设置有键盘, 因此不但其间空间狭 窄并无法如一般桌上型个人电脑的微处理器通常采用的热效率较高但厚度也较大的 铝挤型散热器以及散热风扇所组成的散热装置以供其微处理器散热, 且即使勉强可 行, 不但整个主机厚度需配合突增, 且散热风扇也会受到上方键盘的阻碍而根本无 法直接吸取外界冷空气以供冷却散热器与微处理器, 而仅能借用无散热风扇、 散热 面积较小而致散热效能较不佳的散热铝板或热导管 (heat pipe ) 等方式自然散热。 因此无法快速且大量带走热量, 尤其是面对处理速度愈快而产热温度愈高的新一代 中央微处理器而言, 若无法适当克服与解决散热问题, 则其将造成软硬体运作上的 障碍而影响可携式电脑的发明。
另外, 目前电脑中央微处理器的散热装置所使用的散热片, 其散热效果并不甚 理想, 究其原因发现散热片本身的散热面积不足, 仅仅单靠数片鳍片所形成的散热 面积仍嫌不够, 因此在散热面积不够下即使加上一组散热风扇所产生的效果还是有 限。
例如, 图 1 为公知微处理器散热装置的立体分解示意图, 其主要是在于微处理 器 11的上方固接一散热片 2, 再利用复数个固定螺栓 5顺着风扇 3的螺孔锁入散热 片 2的两鳍片 22间所形成的对流槽 23内即可。
由公知微处理器 11 散热装置中可发现当电脑主机开始运转时, 主机壳内的温 度绝对高于壳体外的温度, 因此不管风扇 3 是采取抽风式或送风式的散热方式, 该 微处理器 11均存在于一高温状态下运作, 其散热效果将大打折扣, 因此在长时间使 用下微处理器 11的散热效果并不甚理想, 更有损微处理器 11的正常使用寿命。 因此, 公知微处理器散热装置并无法有效且迅速的降低微处理器所散发出的高 温。
发明内容
为了解决公知技术所存在的上述问题, 本发明的主要目的是提供一种具有更高 散热效率的可携式电脑中央微处理器的散热装置。
为了实现本发明的上述目的, 本发明的一种解决方案是将装设有微处理器、 散 热器与散热风扇的主机板以上下倒置方式装设在主机内, 使散热风扇能因此邻接于 主机底壳所预设的进气孔, 据此该微处理器不但能采用散热效率较高的散热器与散 热风扇, 且更能不受上方键盘所阻碍而顺利自底部直接轴取外界空气供作冷却散热 用而能借以提升中央微处理器的整体散热效率。
本发明的另一目的是提供一种用于上述散热装置的散热片的改进结构, 它可作 为解决本发明上述主要目的的另一种解决方案, 其主要是由增加散热片中的散热面 积, 使其散热效果增加, 并由改变抽送风扇的位置使高温得以迅速排出。 其散热方 式是将主机壳体外的空气引入或将微处理器的温度直接引出壳体外, 借此高低温差 迅速将微处理器的温度降低, 提升微处理器的降温效果, 并确保相关元件的使用寿 命。
本发明还有一个目的是提供一种上述散热装置的改进结构, 其主要是由散热片 的总长延伸并套接一接于主机壳体上可传送气流的风箱, 直接将壳体外的空气引入 或将微处理器的高温抽离出主机壳体外, 使微处理器的高温得以迅速排出及降低。 这种结构的散热装置可以改变在主机壳体上设置抽送风扇的位置。
具体地说, 本发明的一种可携式电脑中央微处理器的散热装置, 其中主机内装 设有主机板, 主机板上设有微处理器插座以供微处理器插设, 且该微处理器上依序 装设有散热器以及散热风扇;
其特征在于, 所述的主机板是上下倒置地固定于主机内, 使微处理器、 散热器 与散热风扇倒置于主机板底面, 促使散热风扇能邻接于主机底壳对应处所预设的进 气孔, 以利于直接吸取外界空气使供散热器与微处理器快速散热。
在上述本发明所述的散热装置中, 所述的电脑主机顶部另设有由底板、 电路板 以及复数按键所组成的键盘, 而所述倒置的主机板则与键盘的电路板共同固定在所 述键盘的底板上。 在上述本发明所述的散热装置中, 所述的电脑主机顶部设置有液晶显示萤幕, 而所述倒置的主机板则固定在该液晶显示萤幕底部。
另外, 在上述本发明所述的散热装置中, 所述的电脑主机底壳相对于散热风扇 可因应其凸出程度而成型具有进气孔的凸出部。
还有, 在上述本发明所述的散热装置中, 所述的的电脑主机底壳为一平直板面。 本发明的一种可用于上述可携式电脑中央微处理器的散热装置的散热片的结 构, 是将散热片的两对应侧面设为开放面, 而任何一侧的开放面皆可为风扇设置处, 而其余四面则设为封闭面, 其中与发热体接触的接触座则设有沿其垂直方向的复数 组鳍片, 而两鳍片间成一凹凸相对状, 其中两鳍片凹凸之间则留有适当间隙供高温 流动的对流槽。
在上述所述的散热片的结构中, 亦可于散热片顶面的适当位置开设一个以上贯 穿至对流槽内的散热孔将来不及排出散热片的高温由散热孔排离散热片外。
在上述所述的散热片的结构中, 亦可于散热片顶面的适当位置开设一条以上贯 穿至对流槽内的散热槽将来不及排出散热片的高温由散热槽排离散热片外。
在上述所述的散热片的结构中, 风扇亦可同时置放于散热片两开放面上, 而风 扇成一进风一排风的散热动线。
在上述所述的散热片的结构中, 亦可于散热片顶面的适当位置同时开设一个以 上贯穿至对流槽内的散热孔及一条以上贯穿至对流槽内的散热槽, 并由散热孔及散 热条将较高温立即排出散热片外。
本发明的上述散热片的结构也可以在其它电子设置的散热装置中代替公知的散 热片使用。
本发明的一种可用于上述可携式电脑中央微处理器的散热装置的改进结构, 是 将微处理器的散热片长度予以适当延长至主机壳体附近, 并利用一漏斗状的风箱将 风扇立设于其中, 直接抽取主机壳体外的空气或排出壳体内的高温借高低温着来降 低微处理器本身因使用所产生的高温, 其包含有:
一本发明上述散热片置放于微处理器的上方, 其中两对应侧面呈开放面, 而其 余面则呈封闭状, 并于沿接触座的垂直方向设有复数组的鳍片, 而两鳍片间则留有 适当的间隙为一对流槽;
一风扇其为一可抽或吸的散热装置;
一风箱为一可传送氣流的管体, 其中一开放口为外风口并于该风口内设有一供 风扇置放的风扇置放槽, 另一端则为内风口, 该风口与散热片的一端进行套接, 而 外风口上、 下方延伸有一定位挡板, 并于该板的适当位置各开设有若干的定位螺孔; 其接合是先将散热片固接于微处理器上方, 再将风扇由风箱的外风口压入风扇 置放槽内, 再把风箱的风口套接于散热片的一端上, 最后再将风箱其外风口及上下 定位挡板的定位孔与主机壳体的风扇口及固定螺地准后, 再利用固定螺栓将两者锁 紧固接。
在上述所述的散热装置的改进结构中, 散热片内所设的鳍片亦可仅设于微处理 器的垂直面上, 而处理的部分是成为中空的气流通道。
在上述所述的散热装置的改进结构中, 亦可于主机壳体上直接冲压一风箱, 使 其与主机壳体为一体成型。
附图概述
图 1为公知微处理器散热装置的立体分解示意图。
图 2为本发明的散热装置实施例的仰视的分解立体示意图。
图 3为本发明的散热装置实施例的组合侧视剖面示意图。
图 4为本发明另一散热装置实施例的组合侧视剖面示意图。
图 5为本发明的散热片的立体示意图。
图 6为本发明的散热片与风扇搭配的实施例的立体示意图。
图 7为本发明的散热效果示意图。
图 8为本发明的散热片另一实施例的立体示意图。
图 9为本发明的散热片另一实施例的立体示意图。
图 10为本发明散热装置的立体分解示意图。
图 11为本发明散热装置的立体示意图。
图 12为本发明散热装置的侧视图。
图 13为本发明散热装置的俯视图。
图 14为本发明散热装置另一实施例的立体分解示意图。
图 15为本发明散热装置另一实施例的立体分解示意图。
图中, 1—主机, 10—底板, 100—进气孔, 101—凸出部, 102—垫块, 11一微 处理器, 12—键盘, 120—底板, 121—电路板, 122—按键, 13_主机板, 14—液晶 显示萤幕, 2—散热片 (散热器), 21—接触座, 22—鳍片, 23—对流槽, 3—风扇, 4一风箱, 41一外风口, 42—内风口, 43—风扇置放槽, 44一定位档板, 45—定位螺 孔, 5—固定螺栓, 6—主机壳体, 61—固定螺孔, 62—风扇口, 63—风箱。
本发明的最佳实施方式
下面结合附图, 通过实施例对本发明的技术给予进一步说明。
实施例 1
请参阅图 2、 3 所示, 为本发明可携式电脑中央微处理器的散热装置的实施例 1的相关参考图式, 其中该可携式电脑主机 1于其顶面装设有由金属底板 120、 电路 板 121 与复数按键 122所组成的键盘 12或者是如图 3所示的触控式液晶显示萤幕 14, 而内部 则主要装设有全合一单板组装 (all in one ) 的主机板 13的印刷电路 板, 该主机板 13上至少设置有一微处理器插座 21以供一微处理器 11插组其上, 而 该微处理器 11表面上则依续装设有铝挤型散热器 2以及散热风扇 3。 其中值得注意 的是, 该载置有微处理器 11、 散热器 2与散热风扇 3的主机板 13是相以于公知可 携式电脑的主机板采上下颠倒的方式装设于主机 1 内, 而使所述的散热风扇 3能邻 接于主机 1底壳 10所预设的进气孔 100, 且该进气孔 100处的底壳 10可以是呈现 一平直板面,或者是各图中所示配合散热风扇 3的增加而视实际情况作局部的凸出而 形成有凸出部 101,使底壳 10其它部分可因此相对内缩抬升而紧靠于主机板 13以减 少空间的占用,且可平衡地设置有略大于凸出部 101高度而能使主机 1置放平稳并供 进气孔 100透气的垫块 102, 而该垫块 102 则可以另外设置, 或是如图中所示当主 机板 13上有高度较高的其它电子元件时可配合其高度而顺势凸出, 例如存储器等。
因此, 由于微处理器 11 采用了与一般桌上型个人电脑中央处理器相同的高效 率热方式, 即采用铝挤型散热器 2与散热风扇 3, 因此不但能用散热器 2具有多数 散热鳍片而具有更大的散热面积以供与空气充分接触的特性, 且更能利用散热风扇 3而造成空气撞击散热器 2的频率提高, 尤其更重要的是, 该散热风扇 33是由主机 板 13的倒置,因此不受上方键盘 12的阻碍而可轻易且直接地自底壳 10的进气孔 100 吸取外界空气供作冷却散热器 2与微处理器 11, 所以其散热效果将较公知的可携式 电脑的散热方式为佳。
此外, 因为应主机板 13 倒置后其原设于顶面而微凸出的各电子元件均反而成 为底面而朝下凸出, 而使无电子元件设置而呈现平面状的底面反而成为顶面, 以及 为便利于简化组装作业, 该主机板 13可与键盘 12的电路板 121共用键盘底板 120, 即主机板 13与键盘电路板 121均设置在该共用的底板 120上, 使主机 1内部空间作 更有效率且更精简的配置安排; 或者是如图 4所示, 将该主机板 13直接装设在液晶 显示萤幕 14底部, 同样也能有效简化空间利用与组装过程。
实施例 2
请参阅图 5, 为本发明散热片的立体示意图, 其散热片 2主要包含有接触座 21, 并于接触座 21上设有复数组呈鱼骨状的鳍片 22, 而两鰭片 22间形成一对流空间的 对流槽 23。
该散热片 2其中的两对应侧面为开放面, 而其余四面则呈封闭状, 并于沿接触 座 21的垂直方向设有复数组呈鱼骨状的鳍片 22, 而两鳍片 22间是成一凹凸相对状, 而凹凸间则留有适当的间隙为一对流槽 23。
这样结构散热面积大, 使散热效率大大提高, 单就散热面积而言, 远比公知的 散热面积更大, 可以更迅速的传导高温。
实施例 3
请参阅图 6、 7, 为本发明散热片与风扇塔配的实施例 3 立体示意图及本发明 散热片的散热效果示意图。 由图示中可发现为配合本发明的特殊结构, 特别将风扇 3 由复数个的固定螺丝 5将风扇 3固接于散热片 2的一开放侧面上, 因此当接于散 热片 2下方的发热体 (微处理器) 1 1 开始产生高温时, 其高温会迅速传导至散热片 2 的接触座 21 上, 由于散热面积大为增加, 所以由发热体 11 所产生的高温其传导 将更为畅顺, 因此发热体 11所产生的高温会由散热片 2的接触座 21传导至呈鱼骨 状的鳍片 22上, 并立即散出于对流槽 23间, 再由风扇 3将对流槽 23内高温迅速且 顺畅的抽离散热片 2外。
其中也可同时于散热片 2的两开放面置设风扇 3, 其为一进风一排风状, 使散 热片 2内的高温气流的流动更为流畅, 而得更佳的散热效果。
因此本发明是借由较大的散热面积迅速将发热体 11 的高温传导出来, 以利持 续不断的髙温传导。
实施例 4
请参阅图 8, 为本发明散热片的较佳实施例 4 的立体示意图, 其主要为于散热 片 2顶面的适当位置开设一个以上贯穿至对流槽 23内的散热孔 114, 其主要为将较 高温立即排出散热片 2之外。
实施例 5
请参阅图 9, 为本发明散热片的较佳实施例 5 的示意图, 其主要为于散热片 2 顶面的适当位置开设一条以上贯穿至对流槽 23内的散热槽 115, 其主要为将较高温 立即排出散热片之外。
而上述散热孔 114及散热槽 115也可以用同时设置于散热片 1的顶面上, 使其 提高散热效果。
因此, 本发明由于增加散热片本身的散热面积, 并改变辅助散热的风扇其置放 方向及位置, 使高温更可迅速且畅顺的排离。 因此本发明已将公知散热片的缺点如 散热面积不足及散热效果不佳完全排除。
实施例 6
请参阅图 10, 为本发明另一种微处理器的散热装置的立体分解示意图, 其散 热装置主要包含有散热片 2、 风扇 3及风箱 4。
一散热片 2 为一散热材质, 其置放于微处理器 11 上方, 其中两对应侧面呈开 放面。 而其余四面则呈封闭状, 并于沿接触座 21 的垂直方向设有复数组的鳍片 22, 而两鰭片 22间留有适当间隙为一对流槽 23。
一风扇 3其为一可抽或吸的散热装置。
一风箱 4 为一可传送气流的管体, 其中一开放口为外风口 41, 并于该风口内 设有一供风扇 3置放的风扇置放槽 43, 另一端则为内风口 42, 该口为与散热片 2的 一端进行套接, 而外风口 41 上、 下方延伸有一定位挡板 44, 并于该板的适当位置 各幵设一定位螺孔 45。
其接合为先将散热片 2固接于微处理器上方, 再将风扇 3由风箱 4的外风口 41 压入风扇置放槽 43内, 再把风箱 4的内风口 42套接于散热片 2的一端上, 最后再 将风箱 4其外风口 41及上下定位挡板 44的定位螺孔 45与主机壳体 6的风扇口 62 及固定螺孔 61对准后, 再利用固定螺栓 5将两者锁紧固接。
请参阅图 11, 为上述本发明微处理器散热装置的立体示意图, 由图示中可发 现本发明的特殊结构, 是特别将散热片 2 的长度予以适度的延长, 使其能够与风箱 4 进行套接, 让散热片 2 不仅保有散热功能外并可兼具成为一散热风管, 因此由微 处理器 11所产生的高温将由本装置迅速且直接的将排离主机壳体 6外。
除此之外散热片 2因长度有适度的延长, 进而使整体的散热面积更加扩大, 使 散热片 2的散热功效更佳。
请参阅图 12、 13 , 为上述本发明微处理器散热装置侧视图及俯视图, 由图示 中散热片 2 的整个散热面积大为提高, 但整体高度反而不增反减, 为设计上的一大 突破, 且风扇 3 的大小设计亦跳脱与微处理器 1 必须为相仿的局限范围, 使风扇 3 的大小及功率设计的领域更为宽广。
实施例 7
请参阅图 14, 为本发明微处理器散热装置的实施例 7 的立体分解示意图, 本 散热装置中的散热片内所设的鳍片 22也可仅设于微处理器 1的垂直面上, 而延伸的 部分成为中空的气流通道。
实施例 8
请参阅图 15, 为本发明微处理器散热装置的实施例 8 的立体分解示意图。 本 散热装置中也可于主机壳体 6上直接冲压一风箱 63, 使其与主机壳体 6为一体成型。
因此, 上述本发明已将传统的微处理器的散热结构作一番改变, 微处理器在电 脑中的重要性是相当于人体的中枢视经, 因此一部电脑的操作是否顺畅, 其占有相 当的重要性, 所以为保持微处理器的正常运作, 不会因过热而导致其损毁, 唯有加 强其散热结构的散热功能。 但是, 公知微处理器的散热完全在一高温壳体内进行, 由于电脑主机内于使用中会散发高温的元件相当多, 因此不管风扇的功率如何加大, 其运转环境始终处于一高温状态下, 再如何抽、 送风仍属于一高温循环, 所以仍然 无法有效降低微处理器的高温。
由上述本发明所揭露的技术内容及手段, 业已完全解决公知散热装置所遇到的 瓶颈, 不仅增加散热面积, 更将积存在微处理器周围的高温排出壳体外或将壳体外 较低的室温引入使其有效的降低温度。
因此, 本发明由于将散热片长度加以延长至主机壳体, 并利用一可传送气流的 风箱将风扇立设于其中, 直接抽取主机壳体外的空气或排出壳体内的高温由高低温 差来降低微处理器本身因使用所产生的高温, 使其散热效果更佳。
另外, 本发明的可携式电脑中央微处理器的散热装置, 也可采用其它的形式达 到促进散热装置的热散失。 例如, 在实施例 1 中, 也可将该案内所述的键盘及液晶 显示萤幕拿除, 使的风扇吹向中央处理器的冷空气并不一定要由下往上吹, 亦可由 上往下或由左往右等方式。 因若有键盘或液晶显示器萤幕的存在, 那电脑摆设的方 向势必固定, 风扇吹风的方向势必仅能抽取下方的冷空气至微处理器。 若无上述结 构标示电脑摆设方向, 则电脑即可任意摆设, 该风扇可抽取不同方向的冷空气置中 央处理器中, 达到散热效果。
具体地说, 在上述可携式电脑中央微处理器的散热装置, 微处理器顶部不设键 盘或显示萤幕, 而将风扇直接贴合在散热器与主机外壳的任一侧面上, 使风扇可直 接抽取主机壳外的冷空气至散热器上, 以供微处理器快速散热。
另外, 上述散热装置中, 风扇可设置在主机外壳任一侧, 使风扇的冷空气可由 主机壳外直接在散热器上, 以供微处理器快速散热。
另外, 上述散热装置中, 散热装置所用散热片可采用实施例 2、 3、 4、 5 所述 的散热片, 风扇设置在散热片一侧的开放面上。
另外, 上述散热装置中, 散热装置可采用 6、 7、 8所述的散热装置。
工业应用性
综上所述, 本发明的可携式电脑中央微处理器的散热装置, 及该散热装置所用 的散热片和散热器, 可有效增加散热面积及更易于抽离高温, 达到更好的散热效果。 另外, 本发明所设计的散热片和散热器也可用作其它发热电器原件的散热装置, 同 时可以收到十分理想的散热效果。

Claims

权 利 要 求
1 . 一种可携式电脑中央微处理器的散热装置, 其中主机内装设有主机板, 主 机板上设有微处理器插座以供微处理器插设, 且该微处理器上依序装设有散热器以 及散热风扇;
其特征在于, 所述的主机板是上下倒置地固定于主机内, 使微处理器、 散热器 与散热风扇倒置于主机板底面, 促使散热风扇能邻接于主机底壳对应处所预设的进 气孔, 以利于直接吸取外界空气使供散热器与微处理器快速散热。
2. 根据权利要求 1 所述的散热装置, 其特征在于, 所述电脑主机顶部另设有 由底板、 电路板以及复数按键所组成的键盘, 而所述倒置的主机板则与键盘的电路 板共同固定在所述键盘的底板上。
3. 根据权利要求 1 所述的散热装置, 其特征在于, 所述的电脑主机顶部设置 有液晶显示萤幕, 而所述倒置的主机板则固定在该液晶显示萤幕底部。
4. 根据权利要求 1 所述的散热装置, 其特征在于, 所述的电脑主机底壳相对 于散热风扇可因应其凸出程度而成型有具进气孔的凸出部。
5. 根据权利要求 1 所述的散热装置, 其特征在于, 所述的的电脑主机底壳为 一平直板面。
6. 一种散热装置的散热片, 其特征是将散热片的两对应侧面设为开放面, 而 任何一侧的开放面皆可为风扇设置处, 而其余四面则设为封闭面, 其中与发热体接 触的接触座则设有沿其垂直方向的复数组鳍片, 而两鳍片间成一凹凸相对状, 其中 两鳍片凹凸之间则留有适当间隙供高温流动的对流槽。
7. 根据权利要求 6 所述的散热片, 其特征在于, 散热片顶面开设一个以上贯 穿至对流槽内的散热孔将来不及排出散热片的高温藉由散热孔排离散热片。
8. 根据权利要求 6 所述的散热片, 其特征在于, 散热片顶面开设一条以上贯 穿至对流槽内的散热槽将来不及排出散热片的高温由散热槽排离散热片外。
9. 根据权利要求 6 所述的散热片, 其特征在于, 风扇同时置放于散热片两开 放面上, 而风扇成一进风一排风的散热动线。
10. 根据权利要求 7或 8所述的散热片, 其特征在于, 散热片顶面同时开设一 个以上贯穿至对流槽内的散热孔及一条以上贯穿至对流槽内的散热槽, 并由散热孔 及散热条将较高温立即排出散热片外。
11. 一种微处理器的散热装置, 其特征在于, 其是将微处理器的散热片长度予 以适当延长至主机壳体附近, 并利用一风箱将风扇立设于其中, 直接抽取主机壳体 外的空气或排出壳体内的高温, 由高低温差来降低微处理器本身因使用所产生的高 温, 其包含有:
一散热片置放于微处理器的上方, 其中两对应侧面呈开放面, 而其余面则呈封 闭状, 并于沿接触座的垂直方向设有复数组的鳍片, 而两鳍片间则留有适当的间隙 为一对流槽;
一风扇其为一可抽或吸的散热装置;
一风箱为一可传送氣流的管体, 其中一开放口为外风口并于该风口内设有一供 风扇置放的风扇置放槽, 另一端则为内风口, 该风口与散热片的一端进行套接, 而外风口上、 下方延伸有一定位挡板, 并于该板的适当位置各开设有若干的定位螺 孔;
其接合是先将散热片固接于微处理器上方, 再将风扇由风箱的外风口压入风扇 置放槽内, 再把风箱的风口套接于散热片的一端上, 最后再将风箱其外风口及上下 定位挡板的定位孔与主机壳体的风扇口及固定螺地准后, 再利用固定螺栓将两者锁 紧固接。
12. 根据权利要求 11 所述的散热装置, 其特征在于散热片内所设的鳍片仅设 于微处理器的垂直面上, 而延伸的部分成为中空的气流通道。
13. 根据权利要求 11 所述的散热装置, 其特征在于主机壳体上直接冲压一风 箱, 使其与主机壳体为一体成型。
14. 一种可携式电脑中央微处理器的散热装置, 其中主机内装设有主机板, 主 机板上设有微处理器插座以供微处理器插设, 且该微处理器上依序装设有散热器以 及散热风扇;
其特征在于, 微处理器顶部不设键盘或显示萤幕, 而将风扇直接贴合在散热器 与主机外壳的任一侧面上, 使风扇可直接抽取主机壳外的冷空气至散热器上, 以供 微处理器快速散热。
15. 根据权利要求 14 所述的散热装置, 其特征在于, 风扇可设置在主机外壳 任一侧, 使风扇的冷空气可由主机壳外直接在散热器上, 以供微处理器快速散热。
16. 根据权利要求 1 或 14所述的散热装置, 其特征在于, 散热装置所用散热 片是采用权利要求 ^10 中任何一项所述的散热片, 风扇设置在散热片一侧的开放 面上。
17. 根据权利要求 1 或 14所述的散热装置, 其特征在于, 散热装置是采用权 利要求 11、 12或 13所述的散热装置。
PCT/CN2000/000150 1999-06-11 2000-06-09 The heat-radiator of a portable computer's cpu WO2000077601A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001503594A JP2003502749A (ja) 1999-06-11 2000-06-09 携帯式コンピュータのcpuの放熱装置
EP00936595A EP1239359A4 (en) 1999-06-11 2000-06-09 THERMAL DISSIPATOR FOR A CENTRAL UNIT OF A PORTABLE COMPUTER
AU52052/00A AU5205200A (en) 1999-06-11 2000-06-09 The heat-radiator of a portable computer's cpu
US09/926,473 US6570760B1 (en) 1999-06-11 2000-06-09 CPU cooling arrangement for portable computer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN 99213741 CN2399696Y (zh) 1999-06-11 1999-06-11 散热片的改良结构
CN99213741.1 1999-06-11
CN 99214288 CN2410677Y (zh) 1999-06-21 1999-06-21 微处理器的散热装置
CN99214288.1 1999-06-21
CN 99214382 CN2394251Y (zh) 1999-06-25 1999-06-25 具有新型散热结构的可携式电脑
CN99214382.9 1999-06-25

Publications (1)

Publication Number Publication Date
WO2000077601A1 true WO2000077601A1 (en) 2000-12-21

Family

ID=27179269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000150 WO2000077601A1 (en) 1999-06-11 2000-06-09 The heat-radiator of a portable computer's cpu

Country Status (6)

Country Link
US (1) US6570760B1 (zh)
EP (1) EP1239359A4 (zh)
JP (1) JP2003502749A (zh)
KR (1) KR100561328B1 (zh)
AU (1) AU5205200A (zh)
WO (1) WO2000077601A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326966A (zh) * 2021-12-24 2022-04-12 云南大学 基于循环冷却气流的计算机主机机箱装置和使用方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1343362A1 (en) * 2002-03-07 2003-09-10 Hewlett-Packard Company (a Delaware corporation) Cooling system for elecronic devices
KR100832492B1 (ko) * 2002-08-16 2008-05-26 엘지전자 주식회사 인터넷 냉장고용 메인컨트롤러의 방열 및 전자파차폐구조
US6930882B2 (en) * 2003-04-07 2005-08-16 Dell Products L.P. Processor shroud adaptor for multiple CPU locations
US20050047093A1 (en) * 2003-08-29 2005-03-03 Hewlett-Packard Company Direct plugging CPU cooling fan
US20050174732A1 (en) * 2004-02-06 2005-08-11 Fang-Cheng Lin Main unit of a computer
US20050201056A1 (en) * 2004-03-11 2005-09-15 Hao-Cheng Lin Heat-dissipating device for a computer casing
TWM259219U (en) * 2004-06-04 2005-03-11 Enlight Corp Heat dissipation structure of computer host interior
CN2706794Y (zh) * 2004-06-11 2005-06-29 鸿富锦精密工业(深圳)有限公司 导风装置
CN100340946C (zh) * 2004-09-30 2007-10-03 华硕电脑股份有限公司 可承载cpu接脚保护盖的散热器
US7178587B2 (en) * 2004-12-20 2007-02-20 Asia Vital Component Co., Ltd. Heat-dissipating module
TWM277990U (en) * 2005-04-08 2005-10-11 High Tech Comp Corp Transmission device capable of cooling a handheld electronic device
US7443671B2 (en) * 2005-10-31 2008-10-28 Hewlett-Packard Development Company, L.P. Axial duct cooling fan
CN100451917C (zh) * 2006-02-15 2009-01-14 艾比富热传有限公司 外挂式计算机散热器
US7532471B2 (en) * 2007-05-01 2009-05-12 Enermax Technology Corporation Fan fastening structure for computer housing
CN201097303Y (zh) * 2007-08-06 2008-08-06 鸿富锦精密工业(深圳)有限公司 具导风罩的散热组合
KR101425680B1 (ko) * 2007-11-15 2014-07-31 엘지전자 주식회사 휴대용 컴퓨터의 방열구조
US7660111B2 (en) 2007-11-29 2010-02-09 International Business Machines Corporation Removable cooling duct with interlocking dovetail connections for an air tight thermal seal
CN201138463Y (zh) * 2007-12-27 2008-10-22 鸿富锦精密工业(深圳)有限公司 具有导风罩的电脑系统
JP2010177623A (ja) * 2009-02-02 2010-08-12 Nec Corp ヒートシンク、冷却構造及び発熱源の冷却方法
CN101835363B (zh) * 2009-03-10 2013-06-05 鸿富锦精密工业(深圳)有限公司 散热结构
CN201438284U (zh) * 2009-03-17 2010-04-14 鸿富锦精密工业(深圳)有限公司 电脑壳体
CN101848621B (zh) * 2009-03-24 2012-06-20 鸿富锦精密工业(深圳)有限公司 散热器
CN102014597A (zh) * 2011-01-18 2011-04-13 张家港市紫光电焊机有限公司 散热器
CN103034304B (zh) * 2011-09-29 2018-01-09 升业科技股份有限公司 薄型笔记本电脑用散热结构
JP2013251452A (ja) * 2012-06-01 2013-12-12 Panasonic Corp 電子機器
CN105684565B (zh) 2014-09-16 2017-08-29 深圳市大疆创新科技有限公司 散热装置及采用该散热装置的uav
CN105704980B (zh) * 2014-11-27 2018-02-23 英业达科技有限公司 讯号输入装置
CN105575271A (zh) * 2015-12-20 2016-05-11 合肥艾斯克光电科技有限责任公司 一种室外led显示屏的散热方法
CN107577308B (zh) * 2017-08-22 2024-05-17 安庆师范大学 一种便于安装的计算机散热器
TWD203264S (zh) * 2019-08-27 2020-03-11 宏碁股份有限公司 氣流導引結構
CN113885670B (zh) * 2021-10-20 2023-08-11 上策信息技术有限公司 一种基于计算机读取用软件测试装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272599A (en) * 1993-03-19 1993-12-21 Compaq Computer Corporation Microprocessor heat dissipation apparatus for a printed circuit board
US5353863A (en) * 1994-03-07 1994-10-11 Yu Chi T Pentium CPU cooling device
US5513070A (en) * 1994-12-16 1996-04-30 Intel Corporation Dissipation of heat through keyboard using a heat pipe
US5682948A (en) * 1995-03-24 1997-11-04 Alusuisse Technology & Management Ltd. Heat exchanger for cooling semi-conductor elements or the like
CN1167934A (zh) * 1996-01-30 1997-12-17 三星电子株式会社 表面补充散热装置
US5805417A (en) * 1995-10-13 1998-09-08 Hitachi, Ltd. Heat dissipation structure in a portable computer including a heat dissipation block extending from a heat dissipation plate through a first circuit board to a CPU on a second circuit board

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042257A (en) * 1989-05-01 1991-08-27 Kendrick Julia S Double extruded heat sink
US5309983B1 (en) * 1992-06-23 1997-02-04 Pcubid Computer Tech Low profile integrated heat sink and fan assembly
JP2901867B2 (ja) * 1993-03-19 1999-06-07 富士通株式会社 ヒートシンク及びヒートシンクの取付構造
US5375655A (en) * 1993-03-31 1994-12-27 Lee; Yong N. Heat sink apparatus
US5424913A (en) * 1994-01-11 1995-06-13 Dell Usa, L.P. Heat sink/component access door for portable computers
TW265430B (en) * 1994-06-30 1995-12-11 Intel Corp Ducted opposing bonded fin heat sink blower multi-microprocessor cooling system
GB2298520B (en) * 1995-03-03 1999-09-08 Hong Chen Fu In Heat sink device for integrated circuit
US5850691A (en) * 1995-07-20 1998-12-22 Dell Usa, L. P. Method for securing an electronic component to a pin grid array socket
US5684676A (en) * 1995-12-06 1997-11-04 Lin; Chuen-Sheng Clip for securing heat dissipator to computer central processing unit
US5748445A (en) * 1996-08-27 1998-05-05 General Resources Corporation Heat sink and circuit enclosure for high power electronic circuits
JPH10228335A (ja) * 1997-02-14 1998-08-25 Hitachi Ltd 情報処理装置
JP3317872B2 (ja) * 1997-04-14 2002-08-26 日本電気株式会社 携帯型情報処理装置の冷却構造
US5867365A (en) * 1997-06-10 1999-02-02 Chiou; Ming Chin CPU heat sink assembly
US6113485A (en) * 1997-11-26 2000-09-05 Advanced Micro Devices, Inc. Duct processor cooling for personal computer
DE29801275U1 (de) * 1998-01-27 1998-05-07 Wang Daniel Kühlvorrichtung für eine zentrale Verarbeitungseinheit
US6094347A (en) * 1999-01-08 2000-07-25 Intel Corporation Airflow heat exchanger for a portable electronic device and port replicator, docking station, or mini-docking station

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272599A (en) * 1993-03-19 1993-12-21 Compaq Computer Corporation Microprocessor heat dissipation apparatus for a printed circuit board
US5353863A (en) * 1994-03-07 1994-10-11 Yu Chi T Pentium CPU cooling device
US5513070A (en) * 1994-12-16 1996-04-30 Intel Corporation Dissipation of heat through keyboard using a heat pipe
US5682948A (en) * 1995-03-24 1997-11-04 Alusuisse Technology & Management Ltd. Heat exchanger for cooling semi-conductor elements or the like
US5805417A (en) * 1995-10-13 1998-09-08 Hitachi, Ltd. Heat dissipation structure in a portable computer including a heat dissipation block extending from a heat dissipation plate through a first circuit board to a CPU on a second circuit board
CN1167934A (zh) * 1996-01-30 1997-12-17 三星电子株式会社 表面补充散热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1239359A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326966A (zh) * 2021-12-24 2022-04-12 云南大学 基于循环冷却气流的计算机主机机箱装置和使用方法

Also Published As

Publication number Publication date
EP1239359A4 (en) 2007-12-12
KR100561328B1 (ko) 2006-03-16
EP1239359A1 (en) 2002-09-11
AU5205200A (en) 2001-01-02
JP2003502749A (ja) 2003-01-21
US6570760B1 (en) 2003-05-27
KR20020009633A (ko) 2002-02-01

Similar Documents

Publication Publication Date Title
WO2000077601A1 (en) The heat-radiator of a portable computer's cpu
JP2002368467A (ja) 発熱体を内蔵する電子機器およびこの電子機器に用いる冷却装置
WO2021115005A1 (zh) 电子设备
TWI475363B (zh) 具有散熱結構之電子裝置
US7023696B2 (en) Cooling device and electric or electronic apparatus employing the same
JP2001015969A (ja) 冷却装置
TWM289499U (en) Improved heat dissipating structure of portable computer
US20040095719A1 (en) Miniature computer and method for heat sink
CN210864590U (zh) 一种辅助散热式一体机
CN212411147U (zh) 小空间高性能散热模组及平板电脑
JP2000130399A (ja) 冷却ファン
JP2880646B2 (ja) ファン付きヒートシンク
CN218383869U (zh) 一种电脑机箱散热系统
JP4422390B2 (ja) 電子素子の冷却装置
JP3827594B2 (ja) Cpu冷却装置
CN220491249U (zh) 一种一体机底座及具有其的一体机
JP3074274U (ja) 一体式放熱装置
CN214536551U (zh) 移动空调器
TWI832283B (zh) 散熱結構
WO2011006301A1 (zh) 笔记本式计算机及其主机盒与主板
TWI273379B (en) Heat sink module
CN218163426U (zh) 一种电子调速器冷却散热装置
KR20030096790A (ko) 컴퓨터 cpu의 방열장치 및 방열방법
JP3225738U (ja) 電子機器
TWI300894B (en) Thermal module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09926473

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000936595

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 503594

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017015956

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017015956

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000936595

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017015956

Country of ref document: KR