WO2000077150A1 - Lagerstabile brausetabletten - Google Patents

Lagerstabile brausetabletten Download PDF

Info

Publication number
WO2000077150A1
WO2000077150A1 PCT/EP2000/005043 EP0005043W WO0077150A1 WO 2000077150 A1 WO2000077150 A1 WO 2000077150A1 EP 0005043 W EP0005043 W EP 0005043W WO 0077150 A1 WO0077150 A1 WO 0077150A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
substance
weight
effervescent tablets
water
Prior art date
Application number
PCT/EP2000/005043
Other languages
English (en)
French (fr)
Inventor
Thomas Holderbaum
Hans Janke
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU52193/00A priority Critical patent/AU5219300A/en
Publication of WO2000077150A1 publication Critical patent/WO2000077150A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/349Organic compounds containing sulfur additionally containing nitrogen atoms, e.g. nitro, nitroso, amino, imino, nitrilo, nitrile groups containing compounds or their derivatives or thio urea

Definitions

  • the present invention is in the field of compact moldings which have cleaning-active properties.
  • the invention relates to moldings which contain a so-called effervescent system, including in particular the decalcifying tablets.
  • Detergent tablets are widely described in the prior art and are becoming increasingly popular with consumers because of the simple dosage. Tableted detergents and cleaning agents have a number of advantages over powdered ones: They are easier to dose and handle and, thanks to their compact structure, have advantages in terms of storage and transport. Detergent tablets are therefore also comprehensively described in the patent literature.
  • Effervescent tablets are widely described in the prior art, since the incorporation of gas-evolving systems often leads to better disintegration and dissolution times.
  • % of a solid organic acid in particular a 2: 3 mixture of citric acid and tartaric acid
  • binder PVP
  • lubricant 0.1 to 1% by weight of lubricant and additional amounts of colloidal silicon dioxide contains.
  • Storage stability or descaling tablets are not mentioned here either.
  • European patent application EP 687 464 (Allphamed Arzneistoff-Gesellschaft) describes an effervescent tablet, which can also be used in the form of detergent tablets, consisting of at least one active ingredient or combination of active ingredients, at least one binder, optionally carriers such as flavors, colorants, fragrances, plasticizers , Bleaching agents and effervescent additives, propylene glycol or glycerin being used as the binder. A method for producing these effervescent tablets is also claimed.
  • British patent application GB 2 096 162 (Warner-Lambert) describes an effervescent tablet containing 35 to 60% by weight of monopersulfate, up to 20% by weight (earth) alkali halide, 0.5 to 20% by weight perborate, 0 , 15 to 0.5% by weight of dye and potassium iodide and / or potassium bromide as indicator substances.
  • the object of the present invention was to minimize the problems described with effervescent tablets. Especially for effervescent tablets that are not made from completely water-free raw materials, alternative formulas should be found that deliver tablets that are characterized by high storage stability and a possibility of the absence of packaging. Certain substances have proven particularly suitable for this.
  • the present invention relates to effervescent tablets which contain one or more organic acids, one or more substances from the group of the carbonates and / or hydrogen carbonates and, if appropriate, further ingredients of detergents and cleaning agents and as stability improvers, based on the tablet weight 2 to 20% by weight % of one or more substances with a water absorption value of less than 0.5 g of water per 1 g of substance, the water absorption value of the substance being measured during a week of open storage at 30 ° C. and 80% relative atmospheric humidity.
  • the water absorption values of the substances which are added to the effervescent tablets in the context of the present invention can be determined experimentally by storing a balanced amount of the substance open at 30 ° C. and 80% relative atmospheric humidity for one week, then weighing it out and forming the difference in the mass values.
  • the water absorption values are given in grams of weight gain (water absorption) per gram of substance.
  • the stability improvers have a low water absorption capacity, rather it is additionally preferred to use substances which additionally have a large water-binding capacity.
  • the water binding capacity is the ability of a substance to absorb water in a chemically stable form and ultimately indicates how much water can be bound by a substance in the form of stable hydrates.
  • the dimensionless value of the water binding capacity (WBV) is calculated from:
  • n is the number of water molecules in the corresponding hydrate of the substance and M is the molar mass of the non-hydrated substance.
  • the substance (s) contained in the tablets with a water absorption value of less than 0.5 g of water per 1 g of substance have a water-binding capacity of more than 0.1 g of water per 1 g of substance.
  • the two parameters water absorption capacity and water binding capacity are not to be considered in isolation from one another in preferred embodiments of the present invention. It is particularly preferred to use substances for which the relationship
  • the substance (s) contained in the shaped bodies with a water absorption value of less than 0.5 g water per 1 g substance the difference from the value of the water absorption capacity (indicated in grams per gram substance) ) and the water binding capacity less than 0.1, preferably less than 0.05, particularly preferably less than 0.01 and in particular less than 0.
  • the water-binding capacity should always be greater than the water absorption capacity.
  • a number of substances are suitable as stability improvers, which should primarily meet the criterion "water absorption value ⁇ 0.5 g per 1 g substance".
  • carbonates in particular sodium carbonate (water absorption capacity 0.39 g per g)
  • phosphates in particular sodium tripolyphosphate (water absorption capacity 0.2 g per g)
  • sulfates in particular sodium sulfate (water absorption capacity 0 g per g)
  • citrates in particular sodium citrate (water absorption capacity 0 g per g)
  • hydrogen carbonates in particular sodium hydrogen carbonate (water absorption capacity 0 g per g).
  • Suitable substances here are again the phosphates, in particular sodium tripolyphosphate (water binding capacity 0.29), sulfates, in particular sodium sulfate (water absorption capacity 1.27) and citrates, in particular sodium citrate (water absorption capacity 0.138).
  • the stability improvers used satisfy the above-mentioned mathematical relationship "water absorption capacity [in g per g substance] - water binding capacity ⁇ 0.1, preferably ⁇ 0.05, particularly preferably ⁇ 0.01 and in particular ⁇ 0".
  • sulfates especially sodium sulfate
  • Particularly preferred effervescent tablets contain 2 to 20% by weight, preferably 3 to 15% by weight and in particular 4 to 10% by weight of phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate ( Sodium or potassium tripolyphosphate).
  • phosphate preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate ( Sodium or potassium tripolyphosphate).
  • alkali metal phosphates Of the large number of commercially available phosphates, the alkali metal phosphates, with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), are of the greatest importance in the detergent and cleaning agent industry.
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in tissues and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 like “3 , melting point 60 °) and as a monohydrate (density 2.04 like “ 3 ). Both salts are white, water-soluble powders, which lose water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it occurs when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt with a density of 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) J and is easily soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na ⁇ PO , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly “3 , water loss at 95 °), 7 mol. (Density 1.68 gladly “ 3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1.52 "3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and changes to diphosphate Na 4 P 2 O 7 when heated more.
  • Disodium hydrogenphosphate is lost by neutralizing phosphoric acid with soda solution Using phenolphthalein as an indicator Dikahumhydrogenphosphat (secondary or dibasic potassium phosphate), K, HPO 4 , is an amorphous, white salt, which is easily soluble in water.
  • Dikahumhydrogenphosphat secondary or dibasic potassium phosphate
  • K, HPO 4 is an amorphous, white salt, which is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals that like a dodecahydrate a density of 1.62 "3 and a melting point of 73-76 ° C (decomposition), as a decahydrate (corresponding to 19-20% P 2 O 5 ) a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% o P 2 O 5 ) have a density of 2.536 "3.
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder with a density of 2.56 "3 , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction. It arises, for example, when heating Thomas slag with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also given 880 °) and as decahydrate (density 1.815-1.836 like " 3 , melting point 94 ° with loss of water) .
  • Substances are colorless crystals that are soluble in water with an alkaline reaction.
  • Na 4 P 2 O 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying. The decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 "3 , which is soluble in water, the pH of which is 1%> solution at 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. A large number of terms are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and 32 g at 100 °; After heating the solution to 100 ° for two hours, hydrolysis produces about 8%> orthophosphate and 15%> diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate), is commercially available, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O). The potassium polyphosphates are widely used in the detergent and cleaning agent industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
  • these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • the effervescent tablets according to the invention contain a gas-releasing system of organic acids and carbonates / hydrogen carbonates.
  • the solid mono-, oligo- and polycarboxylic acids can be used as organic acids which release carbon dioxide from the carbonates / bicarbonates in aqueous solution. From this group, preference is again given to citric acid, tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid.
  • Organic sulfonic acids such as amidosulfonic acid can also be used.
  • a commercially available as an acidifier in the context of the present invention also preferably be used is Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31 wt .-%), glutaric acid (max.
  • Effervescent tablets containing 10 to 80% by weight, preferably 20 to 75% by weight and in particular 30 to 70% by weight of one or more organic acids from the group adipic acid, amidosulfonic acid, succinic acid, citric acid, fumaric acid, maleic acid, malonic acid, Oxalic acid and tartaric acid are preferred according to the invention.
  • the acids mentioned do not have to be used stoichiometrically to the carbonates or bicarbonates contained in the moldings. In view of the preferred field of use of the effervescent tablets according to the invention as decalcifying tablets, it is often even desirable to use the acid (s) in excess. Amidosulfonic acid is particularly preferred because of its good decalcifying action.
  • Amidosulfonic acid which is often also referred to as amidosulfuric acid, sulfamic or sulfamic acid, is commercially available in the form of colorless, odorless, non-flammable, non-hygroscopic, non-volatile, orthorhombic crystals and is technically made from urea, sulfur trioxide and sulfuric acid or from ammonia and Sulfur trioxide won.
  • An effervescent tablet preferred in the context of the present invention contains, based on the tablet weight, more than 40% by weight, preferably more than 50% by weight and in particular more than 60% by weight, of amidosulfonic acid.
  • the gas-developing effervescent system consists of carbonates and / or bicarbonates in addition to the organic acids mentioned.
  • the alkali metal salts are clearly preferred among representatives of this class of substances.
  • the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • the pure alkali metal carbonates or bicarbonates in question do not have to be used; rather, mixtures of different carbonates and hydrogen carbonates may be preferred.
  • Sodium carbonate often forms a white powder with a density of 2.532 "3 , with light soda ash with a bulk density of 0.5-0.55 kg / 1 and heavier soda ash with 1.0-1.1 kg / 1
  • Sodium carbonate forms three hydrates with water: sodium carbonate decahydrate (crystal soda), colorless, monoclinic, ice-like crystals with a density of 1.44 like "3 , melting point 32-34 °; sodium carbonate heptahydrate, Na 2 CO 3 -7H 2 O, rhombic crystals with a density of 1.51 like " 3 , melting point 32 -35 °; Sodium carbonate monohydrate, Na ⁇ CO ⁇ O, rhombic crystals of 2.25 density "3" , melting point 100 °.
  • Sodium bicarbonate is a white, alkaline-tasting, odorless, dry air-resistant powder (monoclinic crystals) with a density of 2.159 "3 , which decomposes into CO 2 , H 2 O and sodium carbonate when heated to over 65 °.
  • Potassium carbonate is a white, non-toxic, hygroscopic, granular with a density of 2,428 "3 , which forms various hydrates. If a large amount of carbon dioxide is introduced into concentrated potassium carbonate solution, the less soluble potassium hydrogen carbonate precipitates out. Otherwise, potassium carbonate shows in its properties are very similar to the closely related soda. Potassium carbonate 1,5-water (“potash hydrate”) is the stable phase of potassium carbonate in contact with the saturated solution in the range from 0 ° C to approx. 110 ° C and can can be obtained by crystallization from supersaturated potassium carbonate solutions.
  • the ion exchange process (starting materials: KC1 and (NH 4 ) 2 CO 3 ), the magnesia process (Engel-Precht process, Neustharifurter process; starting materials: KC1, MgC0 3 ) are of minor importance or only of historical interest '3 H 2 O and CO 2 ), the formate potash process (starting materials: potassium sulfate, calcium hydroxide and carbon monoxide), the Piesteritz process (starting materials: potassium sulfate and calcium cyanamide) and the Le Blanc process (starting materials: potassium sulfate, calcium carbonate and carbon ).
  • Trona a mixed salt of sodium carbonate and sodium hydrogen carbonate, which is also referred to as sodium sesquicarbonate or sodium carbonate sesquihydrate, can also be used according to the invention as the second component of the shower system.
  • Sodium carbonate sesquihydrate is found in nature as a mineral (Trona) and is described by the formula Na 2 CO 3 "NaHCO 3 '2 H 2 O. Large trona deposits are found, for example, in the USA (Green River / Wyoming), Kenya (Lake Magadi) and the Republic of Sudan (Dongola). While the deposits in Africa can be mined, the Trona is mined in the USA. Trona has a density of 2.17 "3 and a Mohs hardness from 2.5.
  • Trona is usually used to produce pure soda, but after the sodium sesquicarbonate process it can also be pure ' NaHCO 3 ' 2 H 2 O are produced, which is on the market. Pure sodium sesquicarbonate also forms from sodium bicarbonate by standing in humid air with carbon dioxide elimination or by introducing carbon dioxide into a sodium carbonate solution.
  • effervescent tablets based on the tablet weight, 5 to 30% by weight, preferably 10 to 25% by weight and in particular 12.5 to 20% by weight, of alkali metal carbonates and / or hydrogen carbonates are used, sodium carbonate being preferred.
  • the effervescent tablets according to the invention can contain further important ingredients of cleaning agents, in particular builders.
  • Effervescent tablets according to the invention which additionally contain one or more substances from the groups of builders, com Plexing agents, bleaches, bleach activators, enzymes, dyes and fragrances are preferred.
  • the effervescent tablets according to the invention can contain all builders commonly used in washing and cleaning agents, in particular thus zeolites, silicates and organic cobuilders.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + 1 'H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 'yH 2 O are preferred, with ⁇ -sodium disilicate being able to be obtained, for example, by the method described in international patent application WO-A-91/08171 .
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and especially up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Organic cobuilders which can be used in the effervescent tablets according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetal, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Usable organic builders are, for example, the sodium salts of the polycarboxylic acids mentioned above as part of the effervescent system.
  • these are the sodium salts of citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of poly carboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used.
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the investigated polymers. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard.
  • the molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates which have molar masses from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, can in turn be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also contain AUylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • AUylsulfonic acids such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid
  • biodegradable polymers composed of more than two different monomer units, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers .
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which it is disclosed in German patent application DE-A-195 40 086 that, in addition to cobuilder properties, they also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which are obtained by partial hydrolysis of starches can be.
  • the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, methods. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 as well as international patent applications WO 92 / 18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 and WO 95/20608.
  • An oxidized oligosaccharide according to German patent application DE-A-196 00 018 is also suitable.
  • a product oxidized at C 6 of the saccharide ring can be
  • Ethylenediamine-N, N '- disuccinate (EDDS) is preferably in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are 3 to 15% by weight in formulations containing zeolite and / or silicate.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or salts thereof, which may also be in lactone form and which have at least 4 carbon atoms and at least one hydroxyl group and maxi contain two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029.
  • phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • hydroxyalkane phosphonates l-hydroxyethane-l, l-diphosphonate (HEDP) is of particular importance as a cobuilder. It is preferably used as the sodium salt, the disodium salt reacting neutrally and the tetrasodium salt in an alkaline manner (pH 9).
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Cleaning agents according to the invention can also contain bleaching agents from the group of organic bleaching agents. Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • peroxyacids examples of which include alkylperoxyacids and arylperoxyacids.
  • Preferred representatives are (a) peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidopperoxycaproic acid [phthaloiminoperoxyhexanoic acid-percarboxylic acid (PAP)) , N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid, diperocysebac
  • Chlorine or bromine-releasing substances can also be used as bleaching agents in the effervescent tablets according to the invention.
  • Suitable materials which release chlorine or bromine include, for example, heterocyclic N-bromo- and N-chloramides, for example trichloroisocyanuric acid, tribromoisocyanuric acid,
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • Bleach activators that support the action of the bleach can also be part of the effervescent tablets.
  • Known bleach activators are compounds which contain one or more N- or O-acyl groups, such as substances from the class of anhydrides, esters, imides and acylated imidazoles or oximes. Examples are tetraacetylethylene diamine TAED, tetraacetylmethylene diamine TAMD and tetraacetylhexylene diamine TAHD, but also pentaacetylglucose PAG, 1,5-diacetyl-2,2-dioxo-hexahydro-1,3,5-triazine DADHT and isatoic anhydride ISA.
  • bleach catalysts can also be incorporated into the effervescent tablets.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N- containing tripod ligands and Co, Fe, Cu and Ru amine complexes can be used as bleaching catalysts.
  • the effervescent tablets can also contain enzymes.
  • Suitable enzymes in the base tablets are in particular those from the classes of hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of soiling such as protein, fat or starchy stains. Oxidoreductases can also be used for bleaching. Particularly suitable are bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Coprinus Cinereus and Humicola insolens as well as enzymatic active ingredients obtained from their genetically modified variants.
  • proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example from protease and amylase or protease and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes, but in particular protease and / or lipase enzymes containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular alpha-amylases, iso-amylases, pullulanases and pectinases.
  • the enzymes can be adsorbed on carriers or embedded in coating substances to protect them against premature decomposition.
  • Colorants and fragrances can be added to the effervescent tablets according to the invention in order to improve the aesthetic impression of the resulting products and, in addition to the performance, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • Individual fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.- Butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzylethyl ether, the aldehydes, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, and the ketones, for example, the ionones, ⁇ -Isomethyl ionone and methyl cedryl ketone, the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • perfume oils can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • these (or parts thereof) can be colored with suitable dyes.
  • Preferred dyes the selection of which does not pose any difficulty to the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity to the substrates to be treated with the compositions, such as glass, ceramics, plastic dishes or textiles not to stain them.
  • the effervescent tablets according to the invention can contain corrosion inhibitors to protect the objects to be treated, silver protection agents in particular being of particular importance.
  • the known substances of the prior art can be used.
  • silver protection agents selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular.
  • Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • active chlorine-containing agents are often found in cleaner formulations, which can significantly reduce the corroding of the silver surface.
  • oxygen and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds.
  • Salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce, are also frequently used.
  • transition metal salts which are selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • Zinc compounds can also be used to prevent corrosion on the wash ware.
  • the effervescent tablets of the invention can be prepared by per se known Ve ⁇ ressen teilchenfb get 'WAVY premixes.
  • the present invention therefore furthermore relates to a process for the preparation of effervescent tablets by pressing a particulate premix in a manner known per se, in which the premix to be compressed, based on its weight, is 2 to 20% by weight of one or more substances with a Water absorption value of less than 0.5 g of water per 1 g of substance is added, the water absorption value of the substance being measured during one week of open storage at 30 ° C. and 80% relative atmospheric humidity and then tableting the entire premix.
  • phosphate preferably alkali metal phosphate (s), particularly preferably pentasodium or Pentapotassium triphosphate (sodium or potassium tripolyphosphate), used.
  • phosphates preferably alkali metal phosphate (s), particularly preferably pentasodium or Pentapotassium triphosphate (sodium or potassium tripolyphosphate).
  • Another object of the present invention is the use of phosphates to improve the tablettability and the hardness and abrasion resistance of effervescent tablets.
  • the effervescent tablet formulations E and V were produced by tableting a mixture of the substances listed in the table below under air-conditioned conditions (maximum 30%) relative air humidity.
  • sodium tripolyphosphate was added as a stability improver, while comparative example V did not contain any stability improver.
  • the tablets were placed in blister packs immediately after manufacture and sealed airtight.
  • the peel-push film (the film through which the tabs are pressed before use) had a water vapor permeability of 1.2 g per square meter per day, while the water vapor permeability of the thermoformed film was 0.6 g per square meter per day.
  • the tablets according to the invention were stored for a period of one month without any gas formation being observed.
  • the tablets of comparative example V already showed highly inflated packaging after a few hours of storage, which indicated the formation of gas and inadequate storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

Lagerstabile Brausetabletten enthalten ein oder mehrere organische Säuren, ein oder mehrere Stoffe aus der Gruppe der Carbonate und/oder Hydrogencarbonate sowie gegebenenfalls weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln und als Stabilitätsverbesserer bezogen auf das Tablettengewicht 2 bis 20 Gew.-% einer oder mehrerer Substanzen mit einem Wasseraufnahmewert von unter 0,5 g Wasser pro 1 g Substanz, wobei der Wasseraufnahmewert der Substanz während einer Woche offener Lagerung bei 30 °C und 80 % relativer Luftfeuchtigkeit gemessen wird.

Description

"Lagerstabile Brausetabletten'
Die vorliegende Erfindung liegt auf dem Gebiet der kompakten Formkörper, die reinigungsaktive Eigenschaften aufweisen. Insbesondere betrifft die Erfindung Formkörper, die ein sogenanntes Brausesystem enthalten, hierunter besonders die Entkalkertabletten.
Wasch- und Reimgungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Wasch- und Reinigungsmittel haben gegenüber pulverförmigen eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Auch in der Patentliteratur sind Wasch- und Reinigungsmittelformkörper folglich umfassend beschrieben. Ein Problem, das insbesondere bei Formkörpern, die Brausesysteme beinhalten, immer wieder auftritt, ist die ungenügend gute Lagerstabilität, da die Formkörper dazu neigen, aus der Luft Feuchtigkeit aufzunehmen und sich dabei mehr oder weniger Stark zu zersetzen. Bislang werden Brausetabletten daher sofort nach der Herstellung luftdicht verpackt oder mit hohem technischem Aufwand aus wasserfreien Substanzen hergestellt, wo der Einsatz von üblichen technischen Qualitäten wirtschaftlicher wäre.
Brausetabletten sind im Stand der Technik breit beschrieben, da die Inkorporation gasentwickelnder Systeme oft zu besseren Zerfalls- und Lösezeiten führt.
So beschreibt die internationale Patentanmeldung WO 97/43366 (Procter & Gamble) eine , Waschmittelzusammensetzung mit verbesserter Einspülbarkeit, auch in Form eines Waschmittelstücks oder einer Tablette, die 0,5 bis 60 Gew.-% Aniontensid, 0,01 bis 30 Gew.-% kationisches Tensid sowie ein Brausesystem aus Säure und Alkali enthält. Das Problem der ungenügend guten Lagerstabilität oder Entkalkertabletten werden in dieser Schrift nicht erwähnt. Die internationale Patentanmeldung WO 87/02052 (Ockhuizen et al.) beschreibt ein Wasch- und Reinigungsmittel in Form einer Brausetablette, das 2 bis 6 Gew.-% eines Waschmittelkonzentrats, 40 bis 60 Gew.-% Hydrogencarbonat, 33 bis 53 Gew.-% einer festen organischen Säure (insbesondere eine 2 : 3 Mischung aus Citronensäure und Weinsäure), 1,5 bis 2,5 Gew.-% Bindemittel (PVP), 0,1 bis 1 Gew.-% Gleitmittel sowie zusätzliche Mengen an kolloidalem Siliciumdioxid enthält. Auch hier werden Lagerstabilität oder Entkalkertabletten nicht erwähnt.
Die europäische Patentanmeldung EP 687 464 (Allphamed Arzneimittel-Gesellschaft) beschreibt eine Brausetablette, welche auch in Form von Waschmitteltabletten eingesetzt werden kann, bestehend aus mindestens einem Wirkstoff oder einer Wirkstoffkombination, mindestens einem Bindemittel, ggf. Trägerstoffen wie Aromen, Farbstoffen, Duftstoffen, Weichmachern, Bleichmitteln und Brausezusätzen, wobei als Bindemittel Propylenglykol oder Glycerin verwendet wird. Ebenfalls beansprucht wird ein Verfahren zur Herstellung dieser Brausetabletten.
Die britische Patentanmeldung GB 2 096 162 (Warner-Lambert) beschreibt eine Brausetablette, die 35 bis 60 Gew.-% Monopersulfat, bis zu 20 Gew.-% (Erd)alkalihalogenid, 0,5 bis 20 Gew.-% Perborat, 0,15 bis 0,5 Gew.-% Farbstoff sowie Kaliumjodid und/oder Kali- umbromid als Indikatorsubstanzen enthält.
Eine Duftstoff enthaltene Brausetablette, die zudem Sorbit als Trägermaterial sowie Car- bonat und/oder Bicarbonat und eine organische Säure als gasentwickelndes System enthält, wird in der deutschen Patentanmeldung DE 4 133 862 (Henkel) offenbart
Der vorliegenden Erfindung lag die Aufgabe zugrunde, die geschilderten Probleme bei Brausetabletten zu minimieren. Insbesondere für Brausetabletten, die nicht aus völlig wasserfreien Rohstoffen hergestellt werden sollten Rezepturalternativen aufgefunden werden, die Tabletten liefern, welche sich durch hohe Lagerstabilität und durch eine Möglichkeit des Verzichts auf Verpackungen auszeichnen. Hierzu haben sich bestimmte Substanzen als besonders geeignet erwiesen.
Gegenstand der vorliegenden Erfindung sind Brausetabletten, die ein oder mehrere organische Säuren, ein oder mehrere Stoffe aus der Gruppe der Carbonate und/oder Hydrogen- carbonate sowie gegebenenfalls weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln und als Stabilitätsverbesserer, bezogen auf das Tablettengewicht 2 bis 20 Gew.-% einer oder mehrerer Substanzen mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz enthalten, wobei der Wasseraufhahmewert der Substanz während einer Woche offener Lagerung bei 30 °C und 80 % relativer Luftfeuchtigkeit gemessen wird.
Die Wasseraufnahmewerte der Substanzen, die im Rahmen der vorliegenden Erfindung den Brausetabletten zugesetzt werden, kann experimentell durch einwöchiges offenes Lagern einer ausgewogenen Menge der Substanz bei 30°C und 80% relativer Luftfeuchtigkeit, anschließendes Auswiegen und Differenzbildung der Massenwerte ermittelt werden. Die Wasseraufhahmewerte werden in Gramm Gewichtszunahme (Wasseraufhahme) pro Gramm Substanz angegeben.
Es ist im Rahmen der vorliegenden Erfindung nicht nur bevorzugt, daß die Stabilitätsverbesserer ein geringes Wasseraufnahmevermögen besitzen, vielmehr ist es zusätzlich bevorzugt, Substanzen einzusetzen, die zusätzlich ein großes Wasserbindevermögen aufweisen. Das Wasserbindevermögen ist die Fähigkeit einer Substanz, Wasser in chemisch stabiler Form aufzunehmen und gibt letztlich an, wieviel Wasser in Form von stabilen Hydraten von einer Substanz gebunden werden kann. Der dimensionslose Wert des Wasserbindevermögens (WBV) errechnet sich dabei aus:
« • 18
WBV =
M
wobei n die Zahl der Wassermoleküle im entsprechenden Hydrat der Substanz und M die Molmasse der nicht hydratisierten Substanz ist. Damit ergibt sich beispielsweise für das Wasserbindevermögen von wasserfreiem Natriumcarbonat (Bildung von Natriumcarbonat- Monohydrat) ein Wert von
1 - 18
WBV =- = 0,17 . 2 - 23 + 12 + 3 - 16
In bevorzugten Brausetabletten weisen die in den Formkörpern enthaltene(n) Substanz(en) mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz ein Wasserbindevermögen von mehr als 0,1 g Wasser pro 1 g Substanz auf.
Die beiden Parameter Wasseraufnahmevermögen und Wasserbindevermögen sind in bevorzugten Ausführungsformen der vorliegenden Erfindung nicht voneinander isoliert zu betrachten. Es ist insbesondere bevorzugt, Substanzen einzusetzen, für die die Beziehung
Wasseraufnahmevermögen [in g pro g Substanz] - Wasserbindevermögen < 0,1
gilt. In im Rahmen der vorliegenden Erfindung bevorzugten Brausetabletten beträgt für die in den Formkörpern enthaltene(n) Substanz(en) mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz die Differenz aus dem Wert des Wasseraufnahmevermögens (angegeben in Gramm pro Gramm Substanz) und dem Wasserbindevermögen weniger als 0,1, vorzugsweise weniger als 0,05, besonders bevorzugt weniger als 0,01 und insbesondere weniger als 0.
In anderen Worten sollte für die erfindungsgemäß in den Brausetabletten enthaltenen Stabilitätsverbesserer in besonders bevorzugten Ausführungsformen der vorliegenden Erfindung das Wasserbindevermögen stets größer als das Wasseraufnahmevermögen sein.
Als Stabilitätsverbesserer eignet sich eine Reihe von Substanzen, die in erster Linie dem Kriterium "Wasseraufhahmewert < 0,5 g pro 1 g Substanz" genügen soll. Neben Carbona- ten, insbesondere Natriumcarbonat (Wasseraufnahmevermögen 0,39 g pro g) bieten sich beispielsweise Phosphate, insbesondere Natriumtripolyphosphat (Wasseraufhahmevermö- gen 0,2 g pro g), Sulfate, insbesondere Natriumsulfat (Wasseraufnahmevermögen 0 g pro g), Citrate, insbesondere Natriumeitrat (Wasseraufnahmevermögen 0 g pro g) und Hydro- gencarbonate, insbesondere Natriumhydrogencarbonat (Wasseraufnahmevermögen 0 g pro g) an.
Besonders bevorzugte Stabilitätsverbesserer genügen weiterhin dem Kriterium "Wasserbindevermögen > 0,1". Geeignete Substanzen sind hier wiederum die Phosphate, insbesondere Natriumtripolyphosphat (Wasserbindevermögen 0,29), Sulfate, insbesondere Natriumsulfat (Wasseraufnahmevermögen 1,27) und Citrate, insbesondere Natriumeitrat (Was- seraufhahmevermögen 0,138) an.
In den insbesondere bevorzugten erfindungsgemäßen Brausetabletten genügen die eingesetzten Stabilitätsverbesserer der vorstehend genannten mathematischen Beziehung "Wasseraufnahmevermögen [in g pro g Substanz] - Wasserbindevermögen < 0,1, vorzugsweise < 0,05, besonders bevorzugt < 0,01 und insbesondere < 0". Mit den vorstehend genannten Werten ergeben sich als besonders bevorzugte Stabilitätsverbesserer insbesondere Hydro- gencarbonate, speziell Natriumhydrogencarbonat (WAV - WBV = 0 - 0 = 0), Phosphate, insbesondere Natriumtripolyphosphat (WAV - WBV = 0,2 - 0,29 = -0,09), Citrate, insbesondere Trinatriumcitrat (WAV - WBV = 0 - 0,138 = - 0,138) und Sulfate, insbesondere Natriumsulfat (WAV - WBV = 0 - 1,27 = -1,27).
Besonders bevorzugte Brausetabletten enthalten als Stabilitätsverbesserer 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat).
Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung. Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihy- drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)J und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na^PO,,, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikahumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K,HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gern"3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40%o P2O5) eine Dichte von 2,536 gern"3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium- Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH- Wert der l%>igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3OI0 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlös- liches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8%> Orthophosphat und 15%> Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. hnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH -» Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Neben den Stabihtätsverbesserem enthalten die erfindungsgemäßen Brausetabletten ein gasfreisetzendes System aus organischen Säuren und Carbonaten/Hydrogencarbonaten.
Als organische Säuren, die aus den Carbonaten/Hydrogencarbonaten in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise die festen Mono-, Oligo- und Polycarbonsäu- ren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Po- lyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipin- säure (max. 33 Gew.-%). Brausetabletten, die 10 bis 80 Gew.-%, vorzugsweise 20 bis 75 Gew.-% uns insbesondere 30 bis 70 Gew.-% einer oder mehrerer organischer Säuren aus der Gruppe Adipinsäure, Amidosulfonsäure, Bernsteinsäure, Citronensäure, Fumarsäure, Maleinsäure, Malonsäure, Oxalsäure und Weinsäure, enthalten, sind erfindungsgemäß bevorzugt.
Die genannten Säuren müssen nicht stöchiometrisch zu den in den Formkörpern enthaltenen Carbonaten bzw. Hydrogencarbonaten eingesetzt werden. Im Hinblick auf das bevorzugte Einsatzgebiet der erfindungsgemäßen Brausetabletten als Entkalkertabletten ist es oft sogar gewünscht, die Säure(n) im Überschuß einzusetzen. Besonders bevorzugt ist hierbei aufgrund ihrer guten Entkalkerwirkung die Amidosulfonsäure. Amidosulfonsäure, die oft auch als Amidoschwefelsäure, Sulfamin- oder Sulfamidsäure bezeichnet wird, gelangt in Form farbloser, geruchfreier, unbrennbarer, nicht hygroskopischer, nicht flüchtiger, orthor- hombischer Kristalle in den Handel und wird technisch aus Harnstoff, Schwefeltrioxid und Schwefelsäure oder aus Ammoniak und Schwefeltrioxid gewonnen.
Eine im Rahmen der vorliegenden Erfindung bevorzugte Brausetablette enthält, bezogen auf das Tablettengewicht, mehr als 40 Gew.-%, vorzugsweise mehr als 50 Gew.-% und insbesondere mehr als 60 Gew.-% Amidosulfonsäure.
Das gasentwickelnde Brausesystem besteht in den erfindungsgemäßen Brausetabletten neben den genannten organischen Säuren aus Carbonaten und/oder Hydrogencarbonaten. Bei den Vertretern dieser Stoffklasse sind aus Kostengründen die Alkalimetallsalze deutlich bevorzugt. Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten wiederum sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein. Natriumcarbonat bildet ein weißes, Pulver der Dichte 2,532 gern"3, wobei man zwischen leichter calcinierter Soda mit einem Schüttgewicht von 0,5-0,55 kg/1 und schwerer calci- nierter Soda mit 1,0-1,1 kg/1 unterscheidet. Natriumcarbonat bildet mit Wasser drei Hydrate: Natriumcarbonat-Decahydrat (Kristallsoda),
Figure imgf000011_0001
farblose, monokline, eisartig aussehende Kristalle der Dichte 1,44 gern"3, Schmelzpunkt 32-34°; Natriumcarbo- nat-Heptahydrat, Na2CO3-7H2O, rhombische Kristalle der Dichte 1,51 gern"3, Schmelzpunkt 32-35°; Natriumcarbonat-Monohydrat, Na^CO^^O, rhombische Kristalle der Dichte 2,25 gern"3, Schmelzpunkt 100°.
Natriumhydrogencarbonat ist ein weißes, alkalisch schmeckendes, geruchfreies, an trockener Luft beständiges Pulver (monokline Kristalle) der Dichte 2,159 gern"3, das beim Erwärmen auf über 65° in CO2, H2O und Natriumcarbonat zerfällt.
Kaliumcarbonat (Pottasche) ist ein weißes, ungiftiges, hygroskopisches, körniges der Dichte 2,428 gern"3, das verschiedene Hydrate bildet. Leitet man in konz. Kaliumcarbonat- Lösung viel Kohlendioxid ein, so fällt das schwerer lösliche Kaliumhydrogencarbonat aus. Im übrigen zeigt Kaliumcarbonat in seinen Eigenschaften große Ähnlichkeit mit der nahe verwandten Soda. Kaliumcarbonat- 1,5-Wasser ("Pottasche-Hydrat") ist die stabile Phase des Kaliumcarbonats im Kontakt mit der gesättigten Lösung im Bereich von 0°C bis ca. 110°C und kann durch Kristallisation aus übersättigten Kaliumcarbonat-Lösungen gewonnen werden. Es kristallisiert in glasglänzenden, praktisch staubfreien Kristallen, hat eine Dichte von 2,155 gern"3 und verliert sein Kristallwasser bei Temperaturen von 130 bis 160°C vollständig. Die meisten großtechnischen Herstellungsverfahren für Kaliumcarbonat führen zunächst zum Kaliumcarbonat-l,5-Wasser, das in Drehrohröfen bei 200 bis 350°C zu 98 bis 100%igem Kaliumcarbonat calciniert wird. Unterbleibt diese Calcinierung, wird das auskristallisierte Kaliumcarbonat- 1,5 -Hydrat bei 1 10 bis 120°C getrocknet und als Pottasche-Hydrat verkauft. Technisch gängige Herstellungsverfahren für die genannten Produkte sind beispielsweise das Verfahren mit kontinuierlicher Kristallisation (Ausgangsstoffe: KOH und CO2), das Fließbett-Verfahren (Ausgangsstoffe: KOH und CO2), das Amin- Verfahren (KOH/CO, in Gegenwart von Isopropylamin: Mines de Potasse d'Alsace oder KOH/CO2 in Gegenwart von Triethylamin: Kali-Chemie AG) oder das Nephelin- Aufschlußverfahren (hauptsächlich ehemalige UdSSR). Von untergeordneter Bedeutung oder nur noch von historischem Interesse sind das Ionenaustauscher-Verfahren (Ausgangsstoffe: KC1 und (NH4)2CO3), das Magnesia-Verfahren (Engel-Precht- Verfahren, Neustaß- furter Verfahren; Ausgangsstoffe: KC1, MgC03 ' 3 H2O und CO2), das Formiat-Pottasche- Verfahren (Ausgangsstoffe: Kaliumsulfat, Calciumhydroxid und Kohlenmonoxid), das Piesteritz- Verfahren (Ausgangsstoffe: Kaliumsulfat und Calciumcyanamid) sowie das Le Blanc Verfahren (Ausgangsstoffe: Kaliumsulfat, Calciumcarbonat und Kohlenstoff).
Erfindungsgemäß einsetzbar ist als zweite Komponente des Brausesystems auch Trona, ein Mischsalz aus Natriumcarbonat und Natriumhydrogencarbonat, das auch als Natriumses- quicarbonat oder Natriumcarbonat-Sesquihydrat bezeichnet wird. Natriumcarbonat- Sesquihydrat findet sich in der Natur als Mineral (Trona) und wird durch die Formel Na2CO3 " NaHCO3 ' 2 H2O beschrieben. Große Trona- Vorkommen befinden sich beispielsweise in den USA (Green River/Wyoming), Kenia (Magadi-See) und der Republik Sudan (Dongola). Während die Vorkommen in Afrika im Tagebau ausgebeutet werden können, wird die Trona in den USA bergmännisch gewonnen. Trona hat eine Dichte von 2,17 gern"3 und eine Mohs'sche Härte von 2,5. Üblicherweise dient Trona zur Gewinnung reiner Soda, nach dem Natriumsesquicarbonat-Prozeß kann aber auch reines
Figure imgf000012_0001
' NaHCO3 ' 2 H2O hergestellt werden, das in den Handel gelangt. Reines Natriumsesquicarbonat bildet sich auch aus Natriumhydrogencarbonat durch Stehenlassen an feuchter Luft unter Kohlendioxid-Abspaltung oder durch Einleiten von Kohlendioxid in eine Natriumcarbonatlösung.
In bevorzugten Brausetabletten werden, bezogen auf das Tablettengewicht, 5 bis 30 Gew.- %, vorzugsweise 10 bis 25 Gew.-% und insbesondere 12,5 bis 20 Gew.-% Alkalimetallcarbonate und/oder -hydrogencarbonate eingesetzt, wobei Natriumcarbonat bevorzugt ist.
Die erfindungsgemäßen Brausetabletten können neben dem Brausesystem, den zusätzlichen organischen Säuren und den Stabilitätsverbesserern weitere wichtige Inhaltsstoffe von Reinigungsmitteln, insbesondere Gerüststoffe, enthalten.. Erfindungsgemäße Brausetabletten, die zusätzlich einen oder mehrere Stoffe aus den Gruppen der Gerüststoffe, Kom- plexbildner, Bleichmittel, Bleichaktivatoren, Enzyme, Färb- und Duftstoffe enthalten, sind dabei bevorzugt.
In den erfindungsgemäßen Brausetabletten können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate und organische Cobuilder.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 'H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A- 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si2O5 ' yH2O bevorzugt, wobei ß-Natrium- disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na^ : SiO2 von 1 :2 bis 1:3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor- phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nN^O (l-n)K2O Al2O3 (2 - 2,5)SiO2 ' (3,5 - 5,5) H2O
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Als organische Cobuilder können in den erfindungsgemäßen Brausetabletten insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyace- tale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise auch die Natriumsalze der vorstehend als Bestandteil des Brausesystems genannten Polycarbonsäuren. Beispielsweise sind dies die Natriumsalze von Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Ni- trilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Poly- carbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu- re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol. Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch AUylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas- paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial- dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde- hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata- lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly- saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu- cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia- mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly- cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti- gen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon- säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maxi- mal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das l-Hydroxyethan-l,l-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyro- phosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Per- benzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandi- säure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylpero- xide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Per- oxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäu- ren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α- Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert ali- phatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimido- peroxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamido- peroxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxy- phthalsäuren, 2-Decyldiperoxybutan-l ,4-disäure, N,N-Terephthaloyl-di(6-aminopercapron- säue) können eingesetzt werden.
Als Bleichmittel in den erfindungsgemäßen Brausetabletten können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N- Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure,
Dibromisocyanursäure und oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor- 5,5-dimethylhydanthoin sind ebenfalls geeignet.
Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, können ebenfalls Bestandteil der Brausetabletten sein. Bekannte Bleichaktivatoren sind Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraa- cetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhexylen- diamin TAHD, aber auch Pentaacetylglucose PAG, l,5-Diacetyl-2,2-dioxo-hexahydro- 1,3,5-triazin DADHT und Isatosäureanhydrid ISA.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Brausetabletten eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Selbstverständlich können die Brausetabletten auch Enzyme enthalten. Als Enzyme kommen in den Basisformkörpern insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhy- drolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfl eckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Strep- tomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amy- lase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha- Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
Färb- und Duftstoffe können den erfindungsgemäßen Brausetabletten zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethy- lether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C- Atomen, Citral, Citronel- lal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeo- nal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Ter- pineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfumöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Linden- blütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können diese (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unemp- findlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandelnden Substraten wie Glas, Keramik, Kunststoffgeschirr oder Textilien, um diese nicht anzufärben.
Die erfindungsgemäßen Brausetabletten können zum Schütze der zu behandelnden Gegenstände Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyro- gallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)- Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Die erfindungsgemäßen Brausetabletten lassen sich durch an sich bekanntes Veφressen teilchenfb'rmiger Vorgemische erhalten. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von Brausetabletten durch Verpressen eines teilchenförmigen Vorgemischs in an sich bekannter Weise, bei dem man dem zu verpressenden Vorgemisch, bezogen auf sein Gewicht 2 bis 20 Gew.-% einer oder mehrerer Substanzen mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz zumischt, wobei der Wasseraufhahmewert der Substanz während einer Woche offener Lagerung bei 30 °C und 80 % relativer Luftfeuchtigkeit gemessen wird und anschließend das gesamte Vorgemisch tablettiert.
Zur Herstellung der tablettierfähigen Vorgemische werden die Inhaltsstoffe in einem Mischer vermischt. Nach dem Austrag der Mischung aus dem Mischer kann diese der Tablettierung zugeführt werden. Bezüglich bevorzugter Ausgestaltungen des erfindungsgemäßen Verfahren (bevorzugte Stabilitätsverbesserer, Mengen der eingesetzten Stoffe usw.) gilt analog das vorstehend für die erfindungsgemäßen Brausetabletten Gesagte. In besonders bevorzugten erfindungsgemäßen Verfahren werden als Stabilitätsverbesserer 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), eingesetzt. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Phosphaten zur Verbesserung der Tablettierbarkeit sowie der Härte und Abriebstabilität von Brausetabletten.
Die neuartige Verwendung dieser Stoffe führt zu Vorteilen bei der Lagerstabilität und anderen physikalischen Eigenschaften der Tabletten, wie die nachstehenden Beispiele zeigen.
Beispiele:
Die Brausetabletten-Rezepturen E und V wurden hergestellt, indem eine Mischung der in der nachstehenden Tabelle genannten Stoffe unter klimatisierten Bedingungen (maximal 30%) relative Luftfeuchtigkeit) tablettiert wurde. Beim erfindungsgemäßen Beispiel E wurde als Stabilitätsverbesserer Natriumtripolyphosphat zugegeben, während das Vergleichsbeispiel V keinen Stabilitätsverbesserer enthielt.
Figure imgf000024_0001
Die Tabletten wurden direkt nach der Herstellung in Blisterveφackungen eingelegt und luftdicht versiegelt. Dabei wies die Peel-Push-Folie (die Folie, durch die die Tabs vor der Benutzung durchgedrückt werden) eine Wasserdampfdurchlässigkeit von 1,2 g pro Quadratmeter pro Tag auf, während die Wasserdampfdurchlässigkeit der Tiefziehfolie 0,6 g pro Quadratmeter pro Tag betrug.
Die erfindungsgemäßen Tabletten wurden über einen Zeitraum von einem Monat gelagert, ohne daß eine Gasbildung zu beobachten war. Die Tabletten des Vergleichsbeispiels V wiesen bereits nach wenigen Stunden Lagerung stark aufgeblähte Veφackungen auf, woran sich die Gasbildung und ungenügende Lagerstabilität erkennen ließ.

Claims

Patentansprüche:
1. Brausetabletten, enthaltend ein oder mehrere organische Säuren, ein oder mehrere Stoffe aus der Gruppe der Carbonate und oder Hydrogencarbonate sowie gegebenenfalls weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß sie als Stabilitätsverbesserer bezogen auf das Tablettengewicht 2 bis 20 Gew.-%> einer oder mehrerer Substanzen mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz enthalten, wobei der Wasseraufhahmewert der Substanz während einer Woche offener Lagerung bei 30 °C und 80 %> relativer Luftfeuchtigkeit gemessen wird.
2. Brausetabletten nach Anspruch 1, dadurch gekennzeichnet, daß die in den Formköφern enthaltene(n) Substanz(en) mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz ein Wasserbindevermögen von mehr als 0,1 g Wasser pro 1 g Substanz aufweisen.
3. Brausetabletten nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß für die in den Formköφern enthaltene(n) Substanz(en) mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz die Differenz aus dem Wert des Wasseraufnahmevermögens (angegeben in Gramm pro Gramm Substanz) und dem Wasserbinde- vermögen weniger als 0,1, vorzugsweise weniger als 0,05, besonders bevorzugt weniger als 0,01 und insbesondere weniger als 0 beträgt.
4. Brausetabletten nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Stabilitätsverbesserer 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-%> und insbesondere 4 bis 10 Gew.-% Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), enthalten.
5. Brausetabletten nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie 10 bis 80 Gew.-%, vorzugsweise 20 bis 75 Gew.-% uns insbesondere 30 bis 70 Gew.-% einer oder mehrerer organischer Säuren aus der Gruppe Adipinsäure, Amidosulfonsäu- re, Bernsteinsäure, Citronensäure, Fumarsäure, Maleinsäure, Malonsäure, Oxalsäure und Weinsäure, enthalten.
6. Brausetabletten nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie bezogen auf das Tablettengewicht mehr als 40 Gew.-%, vorzugsweise mehr als 50 Gew.-%> und insbesondere mehr als 60 Gew.-%> Amidosulfonsäure enthalten.
7. Brausetabletten nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie bezogen auf das Tablettengewicht 5 bis 30 Gew.-%, vorzugsweise 10 bis 25 Gew.-% und insbesondere 12,5 bis 20 Gew.-% Alkalimetallcarbonate und/oder -hydrogencarbonate enthalten, wobei Natriumcarbonat bevorzugt ist.
8. Brausetabletten nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie zusätzlich einen oder mehrere Stoffe aus den Gruppen der Gerüststoffe, Komplexbildner, Bleichmittel, Bleichaktivatoren, Enzyme, Färb- und Duftstoffe enthalten.
9. Verfahren zur Herstellung von Brausetabletten durch Veφressen eines teilchenförmi- gen Vorgemischs in an sich bekannter Weise, dadurch gekennzeichnet, daß man dem zu veφressenden Vorgemisch, bezogen auf sein Gewicht 2 bis 20 Gew.-% einer oder mehrerer Substanzen mit einem Wasseraufhahmewert von unter 0,5 g Wasser pro 1 g Substanz zumischt, wobei der Wasseraufhahmewert der Substanz während einer Woche offener Lagerung bei 30 °C und 80 % relativer Luftfeuchtigkeit gemessen wird und anschließend das gesamte Vorgemisch tablettiert.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als Stabilitätsverbesserer 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), eingesetzt werden.
1. Verwendung von Phosphaten zur Verbesserung der Tablettierbarkeit sowie der Härte und Abriebstabilität von Brausetabletten.
PCT/EP2000/005043 1999-06-10 2000-06-02 Lagerstabile brausetabletten WO2000077150A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU52193/00A AU5219300A (en) 1999-06-10 2000-06-02 Effervescent tablets with a long shelf-life

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999126376 DE19926376A1 (de) 1999-06-10 1999-06-10 Lagerstabile Brausetabletten
DE19926376.0 1999-06-10

Publications (1)

Publication Number Publication Date
WO2000077150A1 true WO2000077150A1 (de) 2000-12-21

Family

ID=7910730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005043 WO2000077150A1 (de) 1999-06-10 2000-06-02 Lagerstabile brausetabletten

Country Status (4)

Country Link
AU (1) AU5219300A (de)
CA (1) CA2311482A1 (de)
DE (1) DE19926376A1 (de)
WO (1) WO2000077150A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1272602B2 (de) 2000-04-14 2009-10-28 Reckitt Benckiser N.V. Wasserenthärter in form eines brausepulvers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118296A1 (de) * 2015-07-16 2017-01-18 Clearwhite GmbH Reinigungstablette für karaffen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217234A (en) * 1978-02-16 1980-08-12 Werner Krisp Denture cleansing tablet and method of manufacturing the same
DE3535516A1 (de) * 1985-10-04 1987-04-09 Fritz Buchner Tablettenfoermiges wasch- und reinigungsmittel, verfahren zu seiner herstellung und seine verwendung
CA2040307A1 (en) * 1991-04-12 1992-10-13 Yogesh Sennik Effervescent detergent tablets
WO1997043366A1 (en) * 1996-05-17 1997-11-20 The Procter & Gamble Company Detergent composition
JPH10204500A (ja) * 1997-01-20 1998-08-04 Soft Kyukyu Corp:Kk 発泡錠剤洗浄剤
WO2000004117A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217234A (en) * 1978-02-16 1980-08-12 Werner Krisp Denture cleansing tablet and method of manufacturing the same
DE3535516A1 (de) * 1985-10-04 1987-04-09 Fritz Buchner Tablettenfoermiges wasch- und reinigungsmittel, verfahren zu seiner herstellung und seine verwendung
CA2040307A1 (en) * 1991-04-12 1992-10-13 Yogesh Sennik Effervescent detergent tablets
WO1997043366A1 (en) * 1996-05-17 1997-11-20 The Procter & Gamble Company Detergent composition
JPH10204500A (ja) * 1997-01-20 1998-08-04 Soft Kyukyu Corp:Kk 発泡錠剤洗浄剤
WO2000004117A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1272602B2 (de) 2000-04-14 2009-10-28 Reckitt Benckiser N.V. Wasserenthärter in form eines brausepulvers

Also Published As

Publication number Publication date
DE19926376A1 (de) 2000-12-14
AU5219300A (en) 2001-01-02
CA2311482A1 (en) 2000-12-10

Similar Documents

Publication Publication Date Title
EP1299513B1 (de) Maschinelles geschirrspülmittel
DE10019936A1 (de) Wasch- und Reinigungsmittel
DE19957262A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
WO2000077150A1 (de) Lagerstabile brausetabletten
WO2000066699A1 (de) Brausetabletten mit tablettierhilfsmittel und verfahren zu ihrer herstellung
DE19957504A1 (de) Reinigungsmittelkomponente
EP1210404B1 (de) Reinigungsmittelkomponente mit feinteiligen feststoffen
DE20014919U1 (de) Teilchenförmige maschinelle Geschirrspülmittel mit Klarspüleffekt
EP1173538B1 (de) Leistungsgesteigerte reinigungsmitteltabletten für das maschinelle geschirrspülen
DE10125441A1 (de) Verfahren und benötigte Zusätze zur Erhöhung der Stabilität von Tabletten
DE10049657C2 (de) Maschinelles Geschirreinigungsverfahren und maschinelle Geschirrspülmittel mit verbessertem Korrosionsschutz
DE10130762C2 (de) Zusammengesetzte Waschmitteltablette
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
DE19960096A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper
DE20106897U1 (de) Wirkstofftrennung in mehrphasigen Reinigungsmittelformkörpern
WO2001072949A1 (de) Teilchenförmige maschinelle geschirrspülmittel mit klarspüleffekt
DE19957505A1 (de) Reinigungsmittelkomponente mit feinteiligen Feststoffen
WO2001042417A1 (de) Mehrphasige reinigungsmitteltabletten
DE19958471A1 (de) Wasch- und Reingigungsmittel
WO2000065016A1 (de) Leistungsgesteigerte teilchenförmige reinigungsmittel für das maschinelle geschirrspülen
DE10063430A1 (de) Reinigungsmittelkomponente für den Einsatz in maschinellen Geschirrspülmitteln
DE10134310A1 (de) Mehrphasiger Formkörper mit schneller Löslichkeit
DE19959002A1 (de) Verfahren zur Herstellung von verdichteten Teilchen
WO2000078910A1 (de) Pressverfahren für wasch- und reinigungsmitteltabletten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN CZ HU ID IL IN JP KR MX PL RO RU SG SI SK TR UA ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP