DE19959002A1 - Verfahren zur Herstellung von verdichteten Teilchen - Google Patents

Verfahren zur Herstellung von verdichteten Teilchen

Info

Publication number
DE19959002A1
DE19959002A1 DE19959002A DE19959002A DE19959002A1 DE 19959002 A1 DE19959002 A1 DE 19959002A1 DE 19959002 A DE19959002 A DE 19959002A DE 19959002 A DE19959002 A DE 19959002A DE 19959002 A1 DE19959002 A1 DE 19959002A1
Authority
DE
Germany
Prior art keywords
acid
sodium
particles
die
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19959002A
Other languages
English (en)
Other versions
DE19959002C2 (de
Inventor
Henriette Weber
Wilfried Raehse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19959002A priority Critical patent/DE19959002C2/de
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PCT/EP2000/011963 priority patent/WO2001042407A2/de
Priority to DE50011037T priority patent/DE50011037D1/de
Priority to JP2001544284A priority patent/JP2003516467A/ja
Priority to AT00993323T priority patent/ATE302840T1/de
Priority to EP00993323A priority patent/EP1235896B1/de
Priority to ES00993323T priority patent/ES2246933T3/es
Priority to CA002328047A priority patent/CA2328047A1/en
Publication of DE19959002A1 publication Critical patent/DE19959002A1/de
Application granted granted Critical
Publication of DE19959002C2 publication Critical patent/DE19959002C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions

Abstract

Es wird ein Verfahren zur Herstellung von zur Einarbeitung in Wasch- und Reinigungsmittel geeigneten verdichteten Teilchen beansprucht, worin ein Gemisch aus festen und gegebenenfalls flüssigen Ausgangsstoffen der Kammer einer mit einer starren Ringmatrize versehenen Pelletiervorrichtung zugeführt wird, das Gemisch mittels einer drehbar in der Kammer angeordneten und mit Pressflächen an dem Innenmantel der Matrize in Gestalt von verdichteten Teilchen abgeschabt wird. Das Verfahren ermöglicht die Verarbeitung von temperaturempfindlichen Komponenten.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von verdichteten Teilchen, die zur Einarbeitung in Wasch- und Reinigungsmitteln geeignet sind, worin ein Gemisch aus den festen und flüssigen Ausgangsstoffen in einer Pelletiervorrichtung verpresst wird.
Auf dem Gebiet der festen und rieselfähigen Wasch- und Reinigungsmittel nehmen derzeit die kompaktierten beziehungsweise agglomerierten teilchenförmigen Mittel mit hohen Schüttgewichten den größten Anteil ein. Diese Mittel haben den Vorteil, dass sie aufgrund der hohen Verdichtung der Inhaltsstoffe hohe Schüttgewichte aufweisen und daher nur relativ kleine Verpackungen erforderlich sind. Die Herstellung dieser Waschmittelteilchen erfolgt z. B. über die Extrusion von Gemischen aus festen und flüssigen Inhaltsstoffen oder über Agglomerationsverfahren.
In der DE 39 26 253 wird ein Verfahren zur Herstellung von verdichteten Wasch- und Reinigungsmitteln in Granulatform offenbart, worin man ein gegebenenfalls eingemischte flüssige Inhaltsstoffe enthaltendes Feststoffgemisch unter Zusatz von wasserlöslichen, wasseremulgierbaren und/oder wasserdispergierbaren Plastifizier- und/oder Gleitmitteln zu einer homogenen, formgebend verpressbaren Masse aufarbeitet, diese Masse über Lochformen mit Öffnungsweiten der vorbestimmten Granulatdimension strangförmig verpresst, die austretenden verdichteten Materialstränge auf die vorbestimmte Granulatdimension ablängt und gegebenenfalls die plastischen Granulatteilchen anschließend formgebend abrundet und gegebenenfalls zu einem kornförmigen rieselfähigen Granulat trocknet.
In der DE 41 00 306 wird ein Verfahren zur Herstellung von Inhaltsstoffe von Wasch- und/oder Reinigungsmitteln enthaltenen Trockenkonzentraten in Form rieselfähiger und lagerbeständiger grobkörniger Presslinge offenbart, worin feinkörnige Inhaltsstoffe ohne ausgeprägte Haft- beziehungsweise Klebeeigenschaften mit feinkörnigen Inhaltsstoffen mit Haft- beziehungsweise Klebeeigenschaften als feinkörniges Gut unter solchen Bedingungen weitgehend homogen zu einem lockeren Schüttgut vermischt werden, unter denen noch keine ausgeprägte verfestigende Kleberfunktion auftritt, die gegebenenfalls verwendeten Flüssigkomponenten eingemischt und das Schüttgut bei möglichst weitgehendem Ausschluss von Scherkräften aus die Hauptmasse unter Einschluss mikrodisperser Luft zu Presslingen verpresst wird. Das Verpressen erfolgt mittels einer Matrizenpresse, insbesondere in einer Ringmatrizenpresse, wobei das Schüttgut auf die Oberfläche einer rotierenden, Bohrungen aufweisenden Matrize aufgebracht und mittels eines auf- oder geringfügig oberhalb der Matrizenpresse rotierenden Presswerkzeuges unter Verdichtung in die Bohrungen einwalzt und durch diese hindurch strangförmig verpresst und zu Granulaten abgelängt wird.
In Wasch- und Reinigungsmitteln sind in der Regel unterschiedliche teilchenförmige Komponenten enthalten, die jeweils in vorbestimmten Anteilen zum Fertigprodukt vermischt werden. Die einzelnen Bestandteile stammen aus unterschiedlichen Herstellungsverfahren.
Damit bei der Anwendung der teilchenförmigen Produkte der Anwender auch pro entnommener Dosiereinheit immer die gleichen Inhaltsstoffe in entsprechenden Mengenverhältnissen entnimmt, ist es erforderlich, dass die teilchenförmigen Wasch- und Reinigungsmittel aus Einzelteilchen bestehen, die ähnliche Formen und Dichten aufweisen. Anderenfalls träten durch Schütteln während des Transports etc. im Laufe der Zeit Entmischungserscheinungen auf, so dass die entnommene Menge nicht die gewünschte Zusammensetzung aufwiese.
Die in der Regel in Wasch- und Reinigungsmitteln enthaltenen Bleichaktivatoren stellen thermisch nicht belastbare Substanzen dar, deren Zersetzung sich durch Freisetzung von Essig bemerkbar macht.
Aus der DE 40 24 759 ist ein Verfahren zur Herstellung von Bleichaktivatoren in Granulatform bekannt, worin man feinteilige Bleichaktivatoren mit Tensidkomponenten vermischt, das Gemisch bei Temperaturen bis maximal 80°C, vorzugsweise zwischen 45 und 70°C zu einer strangförmig verpressbaren Masse homogenisiert und bei Anwendung erhöhter Drucke strangförmig extrudiert. Die Homogenisierung und das strangförmige Verpressen findet z. B. in einer Pelletpresse statt, deren Koller bei einer vorbestimmten Arbeitstemperatur gehalten wird.
Bei der im Stand der Technik beschriebenen Extrusion der Substanzen werden diese während der Verdichtung hohen Scherkräften und Drücken ausgesetzt. Die Verweilzeit kann durch den niedrigen Füllgrad und hohe Drehzahlen in der Apparatur klein gehalten werden, dadurch läßt sich aber die Zersetzung von empfindlichen Materialien, wie Bleichaktivatoren, nicht ganz vermeiden. Ferner führt eine zulange Verweilzeit auch zu einem verfrühten Aushärten des Materials im Extruder.
Auf der anderen Seite führt die Granulation in einem Mischer oder Granulierteller zu Teilchen mit geringer Abriebstabilität, was einen unerwünschten Feinanteil im Produkt erzeugt. Beim Verpressen der Materialien in einer Pelletpresse mit rotierender Matrize wird das zu verpressende Material über eine Förderschnecke in die Presse zugeführt, wobei die Verdichtung des Materials durch mittelbar über die rotierende Matrize angetriebene Walzen erfolgt, welche das Material verdichten und in die Öffnungen der umlaufenden Matrize pressen. Bei diesem Vorgang rutscht das Material häufig an der inneren Oberfläche der umlaufenden Matrize ab. Dieser Rückfluss verringert die Verdichtung des Materials und kann dessen Verweilzeit erhöhen.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Verfahren zur Herstellung von für die Einarbeitung in Wasch- und Reinigungsmittel geeigneten Teilchen zur Verfügung zu stellen, worin die eingetragene Energie derart verringert wird, dass auch temperaturempfindliche Teilchen verarbeitet werden können.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung von zur Einarbeitung in Wasch- und Reinigungsmittel geeigneten verdichteten Teilchen, worin ein Gemisch aus festen und gegebenenfalls flüssigen Ausgangsstoffen der Kammer einer mit einer starren Ringmatrize versehenen Pelletiervorrichtung zugeführt wird, das Gemisch mittels einer drehbar in der Kammer angeordneten und mit Pressflächen an dem Innenmantel der Matrize entlanglaufenden Rotors durch die Matrize gepresst und am Außenrand der Matrize in Gestalt von verdichteten Teilchen abgeschabt wird.
Überraschenderweise wurde festgestellt, dass, wenn man zur Herstellung von verdichteten Teilchen die zu verpressende Masse in einer Matrizenpresse mittels einem drehbar in der Kammer der Pelletiervorrichtung angeordneten Rotor, der Pressflächen aufweist, die am Innenmantel einer starren Matrize entlang laufen, verpresst, die Verweilzeit im Inneren der Presse gering ist und die Neigung zum Aushärten beziehungsweise Zersetzen des zu verarbeitenden Materials sich verringert. Ein besonderer Vorteil ist, dass das zu verpressende Material aufgrund der Pressflächen am Rotor nicht an der Innenwandung der Matrize durchrutscht, so dass die voranstehend beschriebenen Nachteile nicht auftreten.
Das erfindungsgemäße Verfahren ist besonders zur Verarbeitung von temperaturempfindlichen Materialien, wie Bleichaktivatoren, Enzymen, Parfümölen etc. geeignet.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der im Innenraum der Pelletiervorrichtung drehbar angeordnete und mit Pressflächen am Innenmantel der Matrize entlang laufende Rotor ein Flügelrad. Dieses Flügelrad weist besonders bevorzugt einen eigenen Antrieb auf, d. h. es wird nicht mittelbar über andere angetriebene Bestandteile in der Pelletiervorrichtung oder vor- beziehungsweise nachgeschalteten Vorrichtungen angetrieben.
Zur Einstellung der vorbestimmten Teilchendimension werden die aus der Matrize austretenden Pellets üblicherweise abgeschabt. In einer bevorzugten Ausführungsform sind um den Außenrand der Matrize sogenannte Abstreifmesser in einem vorbestimmten Abstand davon angeordnet, die um den Außenrand rotieren.
Die aus der Pelletiervorrichtung austretenden verdichteten Teilchen können nach dem Abstreifen in an sich bekannter Weise weiter verarbeitet werden. Zunächst werden sie, falls erforderlich, gekühlt. Als Kühlmedium kann beispielsweise gekühlte Luft eingesetzt werden. Zusätzlich oder alternativ können die erhaltenen verdichteten Teilchen mit feinstteiligen Feststoffen beaufschlagt werden, um die Rieselfähigkeit zu verbessern.
In einer besonders bevorzugten Ausführungsform werden die aus der Matrizenpresse erhaltenen verdichteten Teilchen anschließend einem weiteren Formgebungsverfahren unterworfen. Die hergestellten verdichteten Teilchen können beliebige Formen aufweisen, wobei Zylinder- oder Kugelformen besonders bevorzugt sind. Das Verrunden kann beispielsweise unmittelbar im Anschluss an das Abstreifen der Teilchen vom Außenmantel der Matrize erfolgen, solange die Teilchen noch plastisch verformbar sind, d. h. eine ausreichend hohe Temperatur aufweist. Das Verrunden kann in aus dem Stand der Technik bekannten Vorrichtungen erfolgen, beispielsweise in einem Marumerizer.
Die erfindungsgemäß hergestellten verdichteten Teilchen weisen vorzugsweise Schüttgewichte von wenigstens 500 g/l auf. Besonders bevorzugt sind Schüttgewichte im Bereich bis 1000 g/l, wobei Schüttgewichte zwischen 600 und 900 g/l besonders bevorzugt sind. Die Schüttgewichte können jeweils durch die vorgegebenen Verarbeitungsbedingungen in Abhängigkeit von den Stoffeigenschaften des Materialgemisches eingestellt werden.
Die Korngröße der hergestellten Teilchen kann in an sich bekannter Weise auf einen Bereich von 0,7 bis 3 mm eingestellt werden, z. B. durch die Lochgröße in der Matrizenpresse und durch den Abstand der Abstreifmesser. Verdichtete Teilchen mit Längen oberhalb von 3 mm können beispielsweise auf eine vorbestimmte Länge gebrochen und gegebenenfalls verrundet werden. Zylinderförmige Teilchen besitzen vorzugsweise eine Länge bis zu 2 mm, während bevorzugte kugelförmige, gegebenenfalls zusätzlich abgerundete Teilchen einen Teilchendurchmesser im Bereich von 1 mm bis 2 mm aufweisen können.
Das erfindungsgemäße Verfahren kann zur Herstellung von in Wasch- und Reinigungsmitteln einarbeitbaren verdichteten Teilchen beliebiger Inhaltsstoffe durchgeführt werden. Zur Durchführung des Verfahrens werden zunächst die festen und gegebenenfalls flüssigen Ausgangsstoffe vermischt.
Als Ausgangsstoffe können beliebige, üblicherweise als feste Bestandteile in Wasch- und Reinigungsmitteln enthaltene Inhaltsstoffe verarbeitet werden. Besonders geeignet ist das vorliegende Verfahren zur Verarbeitung von temperaturempfindlichen Substanzen, wie Bleichaktivatoren, Enzymen und Duftölkonzentraten.
Bleichaktivatoren werden eingesetzt, um die Bleichwirkung von Wasch- und Reinigungsmitteln bei Temperaturen unter 60°C zu verbessern. Beispiele für Bleichaktivatoren sind Verbindungen, die unter Perhydrolysebedingungen Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gege­ benenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen­ diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbeson­ dere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glycolurile, insbe­ sondere 1,3,4,6-Tetraacetylglycoluril (TAGU), N-Acylimide, insbesondere N-Nonanoyl­ succinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Isatosäureanhydrid und/oder Bernsteinsäureanhydrid, Glycolid, acy­ lierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglycoldiacetat, 2,5-Diacetoxy-2,5- dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungs­ weise deren in der europäischen Patentanmeldung EP 0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglucose (PAG), Penta­ acetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N- alkyliertes Glucamin bzw. Gluconolacton, Triazol bzw. Triazolderivate und/oder teilchenförmige Caprolactame und/oder Caprolactamderivate, bevorzugt N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Ebenso können Nitrilderivate wie Cyanopyridine, Nitrilquats und/oder Cyanamidderivate eingesetzt werden. Bevorzugte Bleichaktivatoren sind Natrium-4-(octanoyloxy)-benzolsulfonat, Undecenoyloxybenzolsulfonat (UDOBS), Natriumdodecanoyloxybenzolsulfonat (DOBS), Decanoyloxybenzoesäure (DOBA, OBC 10) und/oder Dodecanoyloxybenzolsulfonat (OBS 12) sowie N-Methylmorpholinum-acetonitril (MMA). Derartige Bleichaktivatoren sind in den erfindungsgemäß hergestellten verdichteten Teilchen vorzugsweise in Mengen von 40 bis 90 Gew.-%, besonders bevorzugt von 70 bis 90 Gew.-%, bezogen auf das fertige Teilchen, enthalten.
Zu den ebenfalls verarbeitbaren Komponenten zählen die Enzyme, dazu gehören Proteasen, Amylasen, Pullulanasen, Cellulasen, Cutinasen und/oder Lipasen, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect® OxP, Esperase® und/oder Savinase®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl®, Purafect® OxAm, Cellulasen wie Celluzyme®, Carezyme®, KAC® und/oder die aus den internationalen Patentanmeldungen WO 96/34108 und WO 96/34092 bekannten Cellulasen und/oder Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®. Die ver­ wendeten Enzyme können in Form ihrer wässerigen Lösungen, wie aufkonzentrierten und gereinigten Fermenterbrühen oder an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein.
Auch Farb- und Duftstoffe können im erfindungsgemäßen Verfahren verarbeitet werden. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang- Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Als feste Inhaltsstoffe können im erfindungsgemäßen Verfahren alle üblichen festen Komponenten verarbeitet werden. Diese können ebenfalls bereits in compoundierter Form, d. h. als vorgefertigte Gemische vorliegen. Beispiele für feste Inhaltsstoffe sind wasserlös­ lichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder und Cobuilder, Bleichmittel, anionische Tenside, Niotensidcoumpounds und Enzymcompounds.
Als wasserlösliche anorganische Buildermaterialien kommen insbesondere polymere Alkali­ phosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Tetranatriumdiphosphat, Dinatriumdihy­ drogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsal­ zen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittel­ qualität, insbesondere Zeolith A, P und gegebenenfalls X, bevorzugt. Mengen nahe der ge­ nannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Pa­ tentschrift DE 24 12 837 bestimmt werden kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kri­ stalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vor­ zugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1 : 1,1 bis 1 : 12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1 : 2 bis 1 : 2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1.y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für × 2, 3 oder 4 sind. Bevorzugte kri­ stalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate (Na2Si2O5.y H2O) bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren er­ halten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. δ-Natriumsilikate mit einem Modul zwischen 1,9 und 3,2 können gemäß den japanischen Patentanmeldungen JP 04/238 809 oder JP 04/260 610 hergestellt werden. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, herstellbar wie in den europäischen Patentanmeldungen EP 0 548 599, EP 0 502 325 und EP 0 452 428 beschrieben, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren be­ vorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschicht­ silikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. In einer bevorzugten Ausgestaltung erfindungsgemäßer Mittel setzt man ein granulares Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel in der internationalen Patentan­ meldung WO 95/22592 beschrieben ist oder wie es zum Beispiel unter dem Namen Nablon® 15 im Handel erhältlich ist. Falls als zusätzliche Buildersubstanz auch Alkali­ alumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 1 : 10 bis 10 : 1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichts­ verhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1 : 2 bis 2 : 1 und insbesondere 1 : 1 bis 2 : 1.
Als Zeolith kann beispielsweise feinkristalliner, synthetischer und gebundenes Wasser ent­ haltender Zeolith, wie Zeolith A, Zeolith P und Mischungen aus A und P eingesetzt werden. Als im Handel erhältlicher Zeolith P ist beispielsweise Zeolith MAP® (Handelsprodukt der Firma Crosfield) zu nennen.
Als weitere bevorzugt eingesetzte und besonders geeignete Zeolithe sind Zeolithe vom Fau­ jasit-Typ zu nennen. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring- Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeo­ lith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Cha­ bazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus β-Käfigen aufgebaut, die tetrahedral über D6R-Unterein­ heiten verknüpft sind, wobei die β-Käfige ähnlich den Kohlenstoffatomen im Diamanten an­ geordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren einge­ setzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Å auf, die Elementarzelle ent­ hält darüber hinaus 8 Kavitäten mit ca. 13 Å Durchmesser und läßt sich durch die Formel Na86(AlO2)86(SiO2)106].264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist. Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeoli­ then, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungs­ gemäß einsetzbar, wobei die Vorteile des erfindungsgemäßen Verfahrens besonders deut­ lich zu Tage treten, wenn mindestens 50 Gew.-% der Zeolithe Zeolithe vom vom Faujasit-Typ sind.
Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kom­ merziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien be­ schrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden For­ meln beschrieben werden:
Na86[(AlO2)86(SiO2)106].x H2O,
K86[(AlO2)86(SiO2)106].x H2O,
Ca40Na6[(AlO2)86(SiO2)106].x H2O,
Sr21Ba22[(AlO2)86(SiO2)106].x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Å aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens bevorzugt ein­ setzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S. p. A. unter dem Markennamen VEGO- BOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich und lassen sich beispielsweise durch die Formeln
Na56(AlO2)56(SiO2)136].x H2O,
K56[(AlO2)56(SiO2)136].x H2O,
in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 Å aufweisen, beschreiben.
Die Teilchengrößen der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Fauja­ sit-Typ liegt dabei im Bereich von 0,1 bis zu 100 µm, vorzugsweise zwischen 0,5 und 50 µm und insbesondere zwischen 1 und 30 µm, jeweils mit Standard-Teilchengrößebestimmungs­ methoden gemessen.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub­ stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkali­ metallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri­ phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Indu­ strie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbe­ sondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelz­ punkt 60°) und als Monohydrat (Dichte 2,04 gcm-3. Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Tempe­ ratur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH- Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primä­ res oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3 hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kalium­ polyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3 Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3 Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dode­ cahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 390% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphos­ phat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkali­ scher Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Na­ trium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dina­ triumphosphat auf <200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komple­ xiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kali­ umdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Ka­ liumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Ins­ besondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Na­ trium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-% -igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Ver­ wendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rah­ men der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkali­ umtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittel­ formkörpem insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren ver­ standen werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronen­ säure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fu­ marsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derarti­ ger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus die­ sen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil­ derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Rei­ nigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adi­ pinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alka­ limetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 glmol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen MW der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Stan­ dard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren reali­ stische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsan­ gaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Po­ lystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in die­ ser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders ge­ eignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.- % Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, be­ zogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vor­ zugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei ver­ schiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acryl­ säure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Mono­ mere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, de­ ren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyaspa­ raginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial­ dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgrup­ pen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcar­ bonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten wer­ den können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkataly­ sierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysac­ charids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwi­ schen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molma­ ssen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungspro­ dukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid, wobei ein an C6 des Saccharidrings oxidiertes Produkt besonders vorteilhaft sein kann.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindi­ succinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäu­ ren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und wel­ che mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonde­ rer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkan­ phosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Di­ ethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexana­ triumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Amino­ alkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dement­ sprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul­ fonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disul­ fonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende al­ kalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulf­ oxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von a-Sulfofettsäuren (Estersulfonate), z. B. die x-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäu­ rehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-. Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemi­ scher Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15- Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Pa­ tentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside. Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäuregly­ cerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sul­ fierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myri­ stinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradketti­ gen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durch­ schnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18- Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen auch Seifen in Betracht. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Pal­ mitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern-, Olivenöl- oder Talgfettsäuren, abgeleitete Seifengemische.
Die weiteren anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophos­ phate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perben­ zoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so dass reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleich­ mitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α- Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert ali­ phatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxy­ capronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapron­ säure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyaze­ lainsäure, Diperoxysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyl­ diperoxybutan-1,4-disäure, N,N-Terephthaloyl-di-(6-aminopercapronsäue) können eingesetzt werden.
In verdichteten Teilchen, die in Mitteln für maschinelle Geschirrspülen eingearbeitet werden, können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5- dimethylhydanthoin sind ebenfalls geeignet.
Beispiele für in fester Form vorliegende nichtionische Tenside sind Alkylglykoside, alkoxylierte Fettsäurealkylesther, Aminoxide, Polyhydroxyfettsäurenamide oder deren beliebigen Gemische.
Alkylglykoside weisen die allgemeine Formel RO(G)x auf, in der R einen primären geradket­ tigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleini­ ges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden einge­ setzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbeson­ dere Fettsäuremethylester.
Als Aminoxide sind beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N- dihydroxyethylaminoxid zu nennen. Die Menge der Aminoxide und der Fettsäurealkoholamide beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Polyhydroxyfettsäureamide haben die Formel I,
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasser­ stoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linea­ ren oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Am­ moniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel II,
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoff­ atomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C14-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Als flüssige Ausgangsstoffe werden in der Regel die in flüssiger Form vorliegenden nichtionischen Tenside eingesetzt. Ferner können auch Granulierhilfsmittel zugesetzt werden, wie Paraffine, Polyethylenglykole, Polyoxyethylenglykole und wässerige Lösungen von organischen Buildersubstanzen, wie wässerige Lösungen von Acrylsäure-Maleinsäure- Anhydrid-Copolymeren. Als weitere flüssige Komponenten können auch Duftöle oder wässerige Enzymlösungen eingesetzt werden. Flüssig im Sinne der vorliegenden Erfindung bedeutet, dass diese Stoffe bei Verarbeitungstemperatur flüssig sind.
Die flüssigen Komponenten werden im erfindungsgemäßen Verfahren üblicherweise in einer Menge von 2 bis 10 Gew.-%, vorzugsweise von 2 bis 8 Gew.-%, bezogen auf die fertigen Teilchen, eingesetzt.
Beispiele für flüssige Tenside sind die alkoxylierten Alkohole. Als alkoxylierte, vorteilhaf­ terweise ethoxylierte, insbesondere primäre Alkohole werden vorzugsweise solche mit 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO, 4 EO oder 7 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14- Alkohol mit 3 EO und C12-18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenvertei­ lung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw. PO-EO-Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO-Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.
Beispiele
Die in Tabelle 1 angegebenen Komponenten wurden in einem Lödige-Mischer vermischt und homogenisiert und anschließend über eine Feststoffdosierung in eine Matrizenpresse mit einem drehbar in der Kammer angeordneten und mit Pressflächen an dem Innenmantel der Matrize entlanglaufenden Rotor und einer starrem Ringmatrize zugeführt. Das austretende Produkt wurde auf die gewünschte Länge gebrochen und in einem Verrunder ca. 1 min. verrundet.
Tabelle 1
Tabelle 2
Tabelle 3
Es wurden jeweils formschöne Kompaktate erhalten, deren Abriebstabilität und Löseverhalten deutliche besser ist als bei verdichteten Teilchen, die nach bekannte Verfahren erhalten werden. In den erzeugten verdichteten TAED-Teilchen waren noch mehr als 95% der eingesetzten TAEDs nachweisbar. Während des Herstellungsverfahrens trat kein Essiggeruch auf.
Nach dem Stand der Technik werden Teilchen mit einem Abrieb < 30% und Rückstandswerten < 40% erhalten.
L-Test
Zur Bestimmung des Rückstandsverhaltens bzw. des Löslichkeitsverhaltens wurden in einem 2 l-Becherglas 8 g des zu testenden Mittels unter Rühren (800 U/min mit La­ borrührer/Propeller-Rührkopf 1,5 cm vom Becherglasboden entfernt zentriert) eingestreut und 1,5 Minuten bei 30°C gerührt. Der Versuch wurde mit Wasser einer Härte von 16°d durchgeführt. Anschließend wurde die Waschlauge durch ein Sieb (80 µm) abgegossen. Das Becherglas wurde mit sehr wenig kaltem Wasser über dem Sieb ausgespült. Es erfolgte eine 2fach-Bestimmung. Die Siebe wurden im Trockenschrank bei 40°C ± 2°C bis zur Gewichtskonstanz getrocknet und der Waschmittelrückstand ausgewogen. Der Rückstand wird als Mittelwert aus den beiden Einzelbestimmungen in Prozent angegeben. Bei Abweichungen der Einzelergebnisse um mehr als 20% voneinander werden üblicherweise weitere Versuche durchgeführt; dies war bei den vorliegenden Untersuchungen aber nicht erforderlich. Alle untersuchten Beispiele zeigten im Rahmen der Fehler mit dem Vergleichsbeispiel übereinstimmende Ergebnisse.
Abrieb
Die Bestimmung des Abriebs erfolgte, indem eine Tablette auf ein Sieb der Maschenweite 1,6 mm gelegt wurde. Dieses Sieb wurde dann in eine Retsch-Analysensiebmaschine eingesetzt. Die Tablette wurde durch Siebung über 2 Minuten bei einer Amplitude von 2 mm mechanisch beansprucht. Durch Verwieden der Tablette vor und nach der Beanspruchung läßt sich der Abrieb direkt ermitteln und ist in der Tabelle in % angegeben.

Claims (9)

1. Verfahren zur Herstellung von zur Einarbeitung in Wasch- und Reinigungsmitteln geeigneten verdichteten Teilchen, worin ein Gemisch aus festen und gegebenenfalls flüssigen Ausgangsstoffen der Kammer einer mit einer starren Ringmatrize versehenen Pelletiervorrichtung zugeführt wird, das Gemisch mittels eines drehbar in der Kammer angeordneten und mit Pressflächen an dem Innenmantel der Matrize entlanglaufenden Rotors durch die Matrize gepresst und am Außenrand der Matrize in Gestalt von verdichteten Teilchen abgeschabt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Rotor ein Flügelrad ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Abschaben aus der aus der Matrize austretenden verdichteten Teilchen mittels eines rotierenden Abstreifmessers erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die aus der Matrize austretenden Pellets in einem Rondiergerät verrundet werden.
5. Verfahren zur Herstellung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichent, dass die festen Ausgangsstoffe ausgewählt sind aus Gerüststoffen, Bleichmitteln, Bleichaktivatoren, Tensiden und Tensidcompounds, Enzymen und Enzymcompounds.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die flüssigen Ausgangsstoffe ausgewählt sind aus nichtionischen Tensiden, Paraffinen, Polyethylenglykolen, Polyoxyethylenglykolen, wässerigen Lösungen von organischen Buildersubstanzen, Duftölen oder Duftölkonzentraten sowie wässerigen Enzymlösungen.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Schüttgewicht in dem Bereich zwischen 500 und 1000 g/l, insbesondere im Bereich von 600 bis 900 g/l liegt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die hergestellten verdichteten Teilchen Zylinder- oder Kugelform aufweisen und eine Teilchenlänge beziehungsweise einen mittleren Teilchendurchmesser im Bereich von 0,7 bis 3 mm, vorzugsweise von 1 bis 2 mm besitzen.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die verdichteten Teilchen von 50 bis 98 Gew.-% Bleichaktivator und von 2 bis 50 Gew.-% Bindemittel ausgewählt aus nichtionischen Tensiden, anionischen Tensiden, Gerüststoffen und filmbildenden Polymeren enthalten.
DE19959002A 1999-12-08 1999-12-08 Verfahren zur Herstellung von verdichteten Teilchen Expired - Fee Related DE19959002C2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19959002A DE19959002C2 (de) 1999-12-08 1999-12-08 Verfahren zur Herstellung von verdichteten Teilchen
DE50011037T DE50011037D1 (de) 1999-12-08 2000-11-29 Verfahren zur herstellung von verdichteten teilchen
JP2001544284A JP2003516467A (ja) 1999-12-08 2000-11-29 圧縮粒子の製造法
AT00993323T ATE302840T1 (de) 1999-12-08 2000-11-29 Verfahren zur herstellung von verdichteten teilchen
PCT/EP2000/011963 WO2001042407A2 (de) 1999-12-08 2000-11-29 Verfahren zur herstellung von verdichteten teilchen
EP00993323A EP1235896B1 (de) 1999-12-08 2000-11-29 Verfahren zur herstellung von verdichteten teilchen
ES00993323T ES2246933T3 (es) 1999-12-08 2000-11-29 Procedimiento de elaboracion de particulas comprimidas.
CA002328047A CA2328047A1 (en) 1999-12-08 2000-12-08 Producing compacted particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19959002A DE19959002C2 (de) 1999-12-08 1999-12-08 Verfahren zur Herstellung von verdichteten Teilchen

Publications (2)

Publication Number Publication Date
DE19959002A1 true DE19959002A1 (de) 2001-06-28
DE19959002C2 DE19959002C2 (de) 2002-12-05

Family

ID=7931743

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19959002A Expired - Fee Related DE19959002C2 (de) 1999-12-08 1999-12-08 Verfahren zur Herstellung von verdichteten Teilchen
DE50011037T Expired - Lifetime DE50011037D1 (de) 1999-12-08 2000-11-29 Verfahren zur herstellung von verdichteten teilchen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50011037T Expired - Lifetime DE50011037D1 (de) 1999-12-08 2000-11-29 Verfahren zur herstellung von verdichteten teilchen

Country Status (7)

Country Link
EP (1) EP1235896B1 (de)
JP (1) JP2003516467A (de)
AT (1) ATE302840T1 (de)
CA (1) CA2328047A1 (de)
DE (2) DE19959002C2 (de)
ES (1) ES2246933T3 (de)
WO (1) WO2001042407A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148047A1 (ja) * 2008-06-02 2009-12-10 ライオン株式会社 脂肪酸アルキルエステルスルホナート金属塩フレーク及びその製造方法
CN106422974B (zh) * 2016-09-11 2019-11-12 张元才 组合式破碎造粒干燥机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988088A (ja) * 1982-11-12 1984-05-21 Nagase Seikagaku Kogyo Kk 酵素含有顆粒剤の製造方法
DE3624336A1 (de) * 1986-07-18 1988-01-28 Henkel Kgaa Verfahren zur herstellung von rieselfaehigen alkalischen reinigungsmitteln durch kompaktierende granulation
JPS63134045A (ja) * 1986-11-27 1988-06-06 Katsumi Takao 造粒装置
DK0486592T3 (da) * 1989-08-09 1994-07-18 Henkel Kgaa Fremstilling af kompakterede granulater til vaskemidler
DE4024759A1 (de) * 1990-08-03 1992-02-06 Henkel Kgaa Bleichaktivatoren in granulatform
DE4100306A1 (de) * 1991-01-08 1992-07-09 Henkel Kgaa Kornfoermige, leicht loesliche trockenkonzentrate von inhaltsstoffen aus wasch- und/oder reinigungsmitteln und verfahren zu ihrer herstellung
DE4143016A1 (de) * 1991-12-24 1993-07-01 Henkel Kgaa Bleichaktivatoren in granulatform (ii)
ES2136109T3 (es) * 1992-11-14 1999-11-16 Degussa Procedimiento para la produccion de granulados con forma esferica a partir de materiales solidos en forma de polvo.
DE4336548C2 (de) * 1992-11-14 1994-11-17 Degussa Verfahren zur Herstellung kugelförmiger Granulate aus pulverförmigen Feststoffen
JPH0889782A (ja) * 1994-09-21 1996-04-09 Taiheiyo Tokushu Chuzo Kk 造粒装置
DE19649119A1 (de) * 1996-11-27 1998-05-28 Huels Chemische Werke Ag Verfahren zur Granulierung von schmutzlösenden, amphiphilen Polymeren durch Preßagglomeration
DE19939806A1 (de) * 1999-08-21 2001-02-22 Cognis Deutschland Gmbh Schaumkontrollierte feste Waschmittel

Also Published As

Publication number Publication date
DE50011037D1 (de) 2005-09-29
ATE302840T1 (de) 2005-09-15
EP1235896B1 (de) 2005-08-24
WO2001042407A3 (de) 2001-12-06
EP1235896A2 (de) 2002-09-04
ES2246933T3 (es) 2006-03-01
JP2003516467A (ja) 2003-05-13
WO2001042407A2 (de) 2001-06-14
DE19959002C2 (de) 2002-12-05
CA2328047A1 (en) 2001-06-08

Similar Documents

Publication Publication Date Title
EP1192241B1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
EP0746599A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
DE19709411A1 (de) Waschmittelformkörper
DE3835918A1 (de) Verfahren zur herstellung von tensidhaltigen granulaten
EP1117759B1 (de) Granulationsverfahren
DE19941934A1 (de) Detergentien in fester Form
EP0877791B1 (de) Verfahren zur herstellung von wasch- oder reinigungsmittelformkörpern
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
EP1235896B1 (de) Verfahren zur herstellung von verdichteten teilchen
DE10062007B4 (de) Feste waschaktive Zubereitung mit verbessertem Einspülverhalten
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
DE4434500A1 (de) Verbessertes Extrusionsverfahren zur Herstellung von Waschmitteln
DE19950765A1 (de) Abriebverbesserte Wasch- oder Reinigungsmittelformkörper
WO2000053713A1 (de) Granulationsverfahren
EP1159392B2 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
EP1173538B1 (de) Leistungsgesteigerte reinigungsmitteltabletten für das maschinelle geschirrspülen
DE10048875A1 (de) Verfahren zur Herstellung von gefärbten Wasch- und Reinigungsmittelteilchen
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper
WO2000053716A1 (de) Wasch- und reinigungsmittelformkörper mit tensid-builderkombination
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
DE19915321A1 (de) Wasch- und Reinigungsmittelformkörper mit Desintegrationshilfsmittel
EP1103594A2 (de) Wasch- und Reinigungsmittel

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee