WO2000071479A1 - Procede de maintien de la qualite d'une preforme de fibre optique et procede de conservation - Google Patents

Procede de maintien de la qualite d'une preforme de fibre optique et procede de conservation Download PDF

Info

Publication number
WO2000071479A1
WO2000071479A1 PCT/JP2000/003309 JP0003309W WO0071479A1 WO 2000071479 A1 WO2000071479 A1 WO 2000071479A1 JP 0003309 W JP0003309 W JP 0003309W WO 0071479 A1 WO0071479 A1 WO 0071479A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
preform
base material
fiber preform
air
Prior art date
Application number
PCT/JP2000/003309
Other languages
English (en)
French (fr)
Inventor
Yukio Kohmura
Yasuhiro Naka
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Publication of WO2000071479A1 publication Critical patent/WO2000071479A1/ja
Priority to US09/768,055 priority Critical patent/US20010037662A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01202Means for storing or carrying optical fibre preforms, e.g. containers

Definitions

  • the present invention relates to a method for maintaining the quality of an optical fiber preform suitable for suppressing adhesion of foreign matter such as dust to the optical fiber preform before heating and melting the optical fiber preform.
  • the present invention relates to an optical fiber preform storage device suitable for storing an optical fiber preform before a drawing step.
  • Optical fins are prepared by synthesizing a porous glass preform for an optical fiber consisting of a core and a clad by, for example, the VAD (vapour-phase axial deposition) method, and then dehydrating and sintering it. It is produced by a drawing process in which an outer diameter suitable for drawing is drawn to obtain a preform for an optical fiber (preform), which is heated and melted in a drawing furnace and drawn from the tip of the preform.
  • the single-mode optical fiber manufactured in this manner is composed of, for example, a core having an outer diameter of 10 ⁇ m and a cladding having an outer diameter of 125 m provided around the core.
  • the tensile strength of the manufactured optical fiber is required to be, for example, 5 kgf or more. For this reason, for example, an optical fiber with a low tensile strength of 1 kgf or less is broken in the screening test process performed after drawing the optical fiber.
  • the non-breaking length becomes short.
  • the reason why the non-rupture length of such an optical fiber is shortened that is, the reason why an optical fiber having reduced tensile strength is manufactured is, for example, that the inside of the optical fiber is present.
  • Foreign matter present, foreign matter adhering to the surface of the optical fiber, resin coating failure, etc. can be considered. In particular, foreign matter adhering to the surface of the optical fiber is often the main cause.
  • the preform before drawing is high purity glass and has very high electrical insulation.
  • the preform is usually stored in a clean room, but even a clean room contains dust, and when the dust comes into contact with the preform, static electricity is generated on the surface of the preform. The longer the storage time in the clean room, the longer the amount of dust attached to the preform increases.
  • the preform to which the dust adheres is transported to the drawing furnace with the dust adhered, and is melted by being heated to a high temperature, and as a result, is drawn.
  • Japanese Patent Application Laid-Open No. 60-215543 discloses that in a preform drawing step, an ion wind is blown to the preform immediately before drawing.
  • a gas inlet tube is provided in a furnace furnace tube, and an ion wind is suspended above the preform through the gas inlet tube. It is configured to spray.
  • the expected effect cannot be obtained if the preform has been stored for a long time in an environment where foreign matter adheres to the preform after production. That is, there is a disadvantage that the foreign matter is not sufficiently removed even if the preform on which the foreign matter is attached is introduced into the heating furnace and then the ion wind is blown onto the surface of the preform.
  • the structure of the heating furnace is relatively complicated, and ion-air gas is introduced into the heating furnace.
  • the provision of pipes has disadvantages in that there are many structural restrictions and equipment costs increase. Disclosure of the invention
  • An object of the present invention is to suppress the occurrence of breakage of an optical fiber during a screening test after drawing due to foreign matter adhering to the surface of an optical fiber preform, and to increase the non-break length of the optical fiber. It is an object of the present invention to provide a method for maintaining the quality of a base material for an optical fiber.
  • Another object of the present invention is to suppress occurrence of breakage of an optical fiber in a screening test after drawing due to foreign matter adhering to the surface of an optical fiber base material, and to prevent non-rupture of an optical fiber.
  • An object of the present invention is to provide an optical fiber preform storage device that can be extended.
  • an optical fiber for holding an optical fiber preform in an ionized gas before introducing the optical fiber preform into a drawing heating furnace after forming the optical fiber preform.
  • a method of maintaining the quality of a base material is provided.
  • the step of holding the optical fiber base material in an ionized gaseous body includes: a storage step of storing the optical fiber base material in a predetermined storage location; and It is possible to adopt a mode in which the transfer is performed in a transfer step of transferring from the storage location to the heating furnace.
  • a mode in which the clean air is ionized and blown onto the optical fiber base material can be adopted.
  • a configuration in which ionized clean air is blown from the upper portion to the lower portion of the suspended optical fiber preform can be employed.
  • the optical fiber base material is held between two discharge electrodes of an ion generator having two discharge electrodes.
  • an ion generator having two discharge electrodes is arranged on a transport path of the optical fiber preform to the heating furnace, and the optical fiber preform passes between the two discharge electrodes.
  • an optical fiber preform storage device for storing an optical fiber preform before being introduced into a wire drawing heating furnace, wherein the optical fiber preform is stored therein.
  • a storage device for an optical fiber preform having an accommodation room for accommodating, and an ionized gas supply means provided in the accommodation room and supplying an ionized gas body around the optical fiber preform is provided.
  • the ionized gas supply means may adopt a form in which clean air is ionized and blown onto the optical fiber base material.
  • the ionized gas supply means may employ a configuration in which substantially the same amount of positively and negatively ionized air is blown onto the optical fiber preform.
  • the ionized gas supply unit may be configured to include an ion generating device having two discharge electrodes sandwiching the optical fiber base material. .
  • the ion generator may be configured to ionize substantially the same amount of air into plus and minus.
  • the surface of the optical fiber preform is electrically neutralized by holding the optical fiber preform in the ionized gas.
  • the surface of the optical fiber preform which is an insulator
  • charge is exchanged on the surface of the insulator, so that the surface becomes positive or negative.
  • the electric charge is difficult to move due to the electric resistance of the insulating material, so the charged state continues, dust is easily attracted by static electricity, and foreign matter such as dust easily adheres to the surface of the optical fiber base material.
  • the preform before being introduced into the drawing heating furnace is made as free of foreign matter as possible, such as dust, and the preform is drawn in the drawing heating furnace to produce an optical fiber.
  • the frequency of breakage of the optical fiber due to foreign matter can be suppressed.
  • FIG. 1 is a configuration diagram of an optical fiber preform storage device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating an embodiment of an optical fiber preform storage device.
  • FIG. 3 is a configuration diagram showing still another embodiment of an optical fiber preform storage device.
  • FIG. 4 is a view for explaining one embodiment of the method for maintaining the quality of the optical fiber preform according to the present invention.
  • FIG. 5 is a view for explaining another embodiment of the method for maintaining the quality of the optical fiber base material according to the present invention.
  • FIG. 6 is a process chart for explaining an example of an optical fiber manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram of an optical fiber preform storage device according to an embodiment of the present invention.
  • a porous glass preform for an optical fiber composed of a core and a clad is synthesized by, for example, a VAD (vapour-phase axial deposition) method (process PR 1).
  • porous glass preform for optical fiber is dehydrated and sintered, and if necessary, is stretched to have an outer diameter suitable for drawing to obtain a preform (process PR 2).
  • the preform is stored in a predetermined place (process PR 3). This preform is often stored, for example, for a few hours to two days.
  • the preform stored in the storage device is transported to a heating furnace for drawing (process PR 4). Note that the storage device of the preform for optical fiber according to the present embodiment is used as the storage device.
  • the preform is heated and melted in a heating furnace for drawing, and an optical fiber is produced by a drawing step of drawing from the front end of the preform (process PR5).
  • the drawn optical fiber is wound around a bobbin after coating with a resin.
  • a screening test is performed on the manufactured optical fiber (process PR 6).
  • the screening tests select optical fibers that meet the required tensile strength.
  • an apparatus for storing a preform for an optical fiber includes an ionizing gas supply device 1 provided in a clean room (not shown) as a storage room of the present invention.
  • the preform 51 is stored in the clean room.
  • the preform 51 is one in which the porous glass base material for optical fiber described in FIG. 6 is accommodated in a clean room immediately after dehydration sintering.
  • the surface of the preform 51 can be prevented from being charged, and the adhesion of foreign substances such as dust can be prevented.
  • the ionized gas supply device 1 includes a clean air blower 2 for supplying purified air, and an ion generator 3 for ionizing the air supplied from the clean air blower 2 by alternately charging the air positively and negatively. ing.
  • the configuration of the ion generator 3 is a well-known technique, and a detailed description thereof will be omitted.
  • the clean air blower 2 supplies the purified air to the ion generator 3 at a predetermined air volume and a predetermined wind speed.
  • the ion generator 3 has, for example, discharge electrodes for ionizing air in the positive and negative directions inside, and by applying a high voltage to these discharge electrodes, approximately the same amount of air is turned into the positive and negative directions. Ionize.
  • the air G ionized in the ion generator 3 is blown out from the outlet 3a of the ion generator 3 formed toward the preform 51.
  • the preform 51 stored in the clean room is always blown with substantially the same amount of positively and negatively ionized air G.
  • the surface of the preform 51 is electrically neutralized by the ionized air G, and the potential of the surface of the preform 51 becomes almost zero.
  • the preform 51 in this state is introduced into a heating furnace for drawing, heated and melted, and drawn from the tip of the preform 51 to produce an optical fiber, which is caused by foreign matter adhering to the surface of the preform 51. It is possible to minimize the occurrence of defects in the optical fiber.
  • the ionized air G is always supplied to the clean room containing the preform 51, foreign substances such as dust are hardly charged, and the cleanness in the clean room is reduced. Can also be improved.
  • a preform 51 having an outer diameter of 80 mm and a length of 1 m was stored and then drawn in a heating furnace to produce an optical fiber.
  • the air volume of the ion generator 3 in the storage device was set to about 100 SLM, and the wind speed was set to about 0.5 to 5 mZ.
  • the non-break length of the manufactured optical fiber was 800 km or more.
  • the non-break length of an optical fiber was about 100 km at the maximum, and the non-break length could be greatly increased.
  • the ionized gas supply device 1 is configured to ionize the purified air, but the present invention is not limited to this.
  • the ionized gas supply device 1 may be provided above the preform 51 so as to blow gas downward from the preform 51.
  • the potential of the surface of the preform 51 can be efficiently neutralized by the small ionized gas supply device 1, and the adsorption of dust can be prevented.
  • the preform 51 may be rotated around its longitudinal direction as an axis. With such a configuration, it is possible to blow uniformly ionized air G over the entire surface of the preform 51, and to more efficiently and efficiently neutralize the potential of the surface of the preform 51. As a result, adsorption of dust can be prevented.
  • Second embodiment
  • FIG. 3 is a configuration diagram showing another embodiment of the storage device for the optical fiber preform.
  • the optical fiber preform storage device shown in Fig. 3 is an ion generating device with two discharge plates 11a and 1lb, which are provided separately and in parallel in a clean room (not shown). Having.
  • the preform 51 is stored with the preform 51 inserted between the two discharge plates 11a and 11b.
  • the discharge plates 11a and 11b ionize the air around the discharge plates 11a and 11b to plus and minus, respectively, when a high voltage is applied. Approximately equal amounts of positively and negatively ionized air exist between the discharge plates 1 la and 1 lb.
  • the preform 51 inserted between the discharge plates 11a and 11b is always exposed to ionized air, so that the surface of the preform 51 is always electrically
  • the surface of the preform 51 becomes zero potential, and the adhesion of foreign matter to the surface of the preform 51 can be suppressed.
  • the ion generator 11 having the two discharge plates 1 la and 11 b is provided in the clean room, Adhesion of foreign matter to the surface of the preform 51 can be suppressed by a relatively simplified device. Further, since the surface of the preform 51 can be prevented from being charged without blowing air, the configuration of the ion generator 11 can be simplified. By adopting such a configuration, a blowing device is not required. For example, when the storage device is transported, the storage device can be easily transported.
  • the discharge plates 11a and 11b are arranged in parallel, but the discharge plates 11a and 11b are curved to surround the periphery of the preform 51. It may be. By forming the discharge plates 11a and 11b in such a shape, the preform 51 surrounded by the discharge plates 11a and 11b enters from outside the discharge plates 11a and 11b. Dust is less likely to adhere.
  • Third embodiment
  • FIG. 4 is a view for explaining one embodiment of the method for maintaining the quality of the optical fiber preform according to the present invention.
  • an ion generator equipped with two discharge plates 21a and 21b is provided on part or all of the transport path between the storage device described above and the heating furnace that performs the drawing process.
  • Device 21 is provided.
  • the discharge plates 21a and 21b ionize the air around the discharge plates 21a and 21b by applying a high voltage to positive and negative, respectively, and discharge plates 21a and 2lb There is almost the same amount of positively and negatively ionized air between.
  • the preform 51 is exposed to ionized air, and the surface of the preform 51 is electrically neutralized during transportation, so that adhesion of foreign substances can be prevented.
  • the ionized air is similarly transported during transport of the preform in a state where the preform is exposed to the ionized air G in the storage device and foreign matter such as dust is not attached as much as possible.
  • foreign matter such as dust
  • the heating furnace By carrying into the heating furnace while exposing to G, foreign substances can be prevented from adhering to the surface of the preform 51 during transportation, and foreign matters adhere to the preform 51 carried into the heating furnace as much as possible. It can be in a state that has not been done.
  • discharge plates 21a and 21b are provided along the transport path from the storage device to the heating furnace, and the preform 51 passes between these discharge plates 21a and 21b.
  • the preform 51 is disposed between the discharge plates 21a and 21b, the preform 51 and the discharge plates 21a and 21b may be transported together. .
  • the preform 51 is exposed to ionized air also in the storage device from the viewpoint of suppressing the adhesion of dust, but the preform 51 is used only during transportation. It can be exposed to ionized air.
  • FIG. 5 is a view for explaining another embodiment of the method for maintaining the quality of the optical fiber base material according to the present invention.
  • the conveyed preform 51 is configured to pass between the discharge plates 21a and 21b.
  • the preform 51 is conveyed during conveyance.
  • ionized air G is directly blown onto the surface of the preform 51 by the ionized gas blowing device 31.
  • the ionized gas spraying device 31 includes a cleaner supply duct 34 for supplying purified air, a discharge part 33 having discharge electrodes connected to an outlet of the clean air supply duct 34, and a discharge part. And a nozzle section 32 connected to the clean air supply duct 34 through the discharge section 33.
  • the ionized air G is blown from the nozzle part 32 toward the preform 51.
  • the ionized air G can be blown to the entire preform 51.
  • the optical fiber preform storage device for example, after storing a preform 51 having an outer diameter of 13 O mm and a length of about 2 m, it is ionized by the ionized gas spraying device 31 before the drawing process. After blowing the air G that was drawn, it was drawn.
  • the conditions for implementing the ionized gas spray device 31 are as follows: the amount of purified air from the clean air supply duct 34 is 30 to 100 SLM, and the pressure is 0.05 to 0.7 MPa, the nozzle diameter of the nozzle section 32 was about 2 to 3 mm, and the input current to the discharge electrode of the discharge section 33 was about 300 mA.
  • the non-break length of the manufactured optical fiber was about 100 km, and the non-break length of the optical fiber could be greatly extended as compared with the conventional case.
  • the optical fiber preform storage device can prevent foreign matter from adhering to the preform before the optical fiber drawing process, and as a result, the tensile strength of the optical fiber after the drawing. It is suitable for use in the optical fiber manufacturing process, because it improves the fiber length and can dramatically increase the non-break length.
  • the method for maintaining the quality of an optical fiber preform according to the present invention is useful for improving the tensile strength of an optical fiber after drawing and for greatly increasing the non-break length, and is used in the optical fiber manufacturing process. Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

明糸田 光フアイバ用母材の品質維持方法および保管装置 技術分野
本発明は、 光ファイバ用母材を加熱溶融して線引きするまでに当該光ファイバ 用母材に塵埃等の異物が付着するのを抑制するのに好適な光ファイバ用母材の品 質維持方法、 および、 線引き工程前の光ファイバ用母材を保管するのに好適な光 フアイバ用母材の保管装置に関するものである。 背景技術
光ファイノくは、 たとえば、 V A D (vapour - phase axial deposi tion) 法などに よってコアおよびクラッ ドからなる光ファイバ用多孔質ガラス母材を合成した後 、 脱水焼結し、 これを必要に応じて線引きに適した外径となるように延伸して光 ファイバ用母材 (プリフォーム) とし、 線引き用加熱炉で加熱溶融してプリフォ ームの先端から線引きする線引き工程によって作製される。 このようにして製造 された単一モードの光ファイバは、 たとえば、 外径 1 0〃mのコアと、 その周囲 に設けられた外径 1 2 5 mのクラッドとで構成される。
作製された光ファイバの引っ張り強度としては、 たとえば、 5 k g f 以上が要 求されている。 このため、 たとえば、 1 k g f 以下の低い引っ張り強度の光ファ ィバは、 光ファイバの線引き後に行うスクリーニング試験工程で破断されている o
したがって、 スクリーニング試験工程での光ファイバの破断の頻度が高いと、 スクリーニング試験後に得られる光ファイバの長さ (非破断長) が短くなる。 このような光ファイバの非破断長が短くなる原因、 すなわち、 引っ張り強度が 低下した光ファイバが製造される原因としては、 たとえば、 光ファイバ内部に存 在する異物や、 光ファイバ表面に付着した異物や、 樹脂の被覆不良等が考えられ るが、 特に、 光ファイバ表面に付着した異物が主原因となる場合が多い。
線引きされる前のプリフォームは、 高純度ガラスであり、 電気絶縁性が非常に 高い。 プリフォームは、 通常、 クリーンルーム内に保管されるが、 クリーンル一 ムといえども塵埃が存在し、 この塵埃がプリフォームと接触することによりプリ フォーム表面に静電気が発生し、 接触した塵埃がそのままプリフォームに付着し 、 クリーンルーム内での保管時間が長いほど、 塵埃の付着量が増加してしまう。 塵埃が付着したプリフォームは、 塵埃が付着した状態で線引き用加熱炉に運ば れ、 高温に加熱されることによって溶融し、 その結果線引きされる。
このため、 線引きされた光ファイバの表面には、 異物が付着し、 あるいは、 こ の異物を核とした結晶が形成されやすく、 この異物や結晶がスクリーニング試験 の際の光ファイバの破断の原因となる。
この問題を解決するための技術として、 プリフォームの線引き工程において線 引きの直前にプリフォームにイオン風を吹き付けることが特開昭 6 0 - 2 1 5 5 4 3号公報に開示されている。 特開昭 6 0 - 2 1 5 5 4 3号公報に開示されてい る技術では、 加熱炉炉心管にガス導入管を設け、 このガス導入管を通じてイオン 風を吊り下げられたプリフォームの上部に吹きつける構成としている。
しかしながら、 この技術では、 プリフォームを製造後にこのプリフォームに異 物が付着する環境で長期間保管していた場合には、 期待されるような効果を得る ことができない。 すなわち、 異物が付着した状態のプリフォームを加熱炉に導入 してからイオン風をプリフォームの表面に吹きつけても異物の除去が十分ではな いという不利益が存在した。
また、 加熱炉炉心管の下部から上部に向けてアルゴンガスなどの不活性ガスが 加熱炉炉心管内に導入されるため、 イオン風によつて除去された異物が加熱炉炉 心管内で浮遊し、 再度プリフォームに付着するおそれもある。
さらに、 加熱炉の構造は比較的複雑であり、 この加熱炉にイオン風のガス導入 管を設けることは、 構造上の制約が多く、 設備コストも上昇するという不利益が 存在する。 発明の開示
本発明の目的は、 光ファイバ用母材の表面に付着する異物に起因する線引き後 のスクリ一ニング試験の際の光フアイバの破断の発生を抑制し、 光フアイバの非 破断長を伸ばすことが可能な光フアイバ用母材の品質維持方法を提供することに ある。
また、 本発明の目的は、 光ファイバ用母材の表面に付着する異物に起因する線 引き後のスクリ一二ング試験の際の光ファイバの破断の発生を抑制し、 光フアイ バの非破断長を伸ばすことが可能な光ファイバ用母材の保管装置を提供すること にめ 。
本発明の第 1の観点によれば、 光ファイバ用母材を形成後に線引用加熱炉に導 入する前に、 前記光ファイバ用母材をイオン化されたガス体中に保持する光ファ ィバ用母材の品質維持方法が提供される。
好適には、 前記光ファイバ用母材をイオン化されたガス体中に保持する工程は 、 前記光ファイバ用母材を所定の保管場所に保管する保管工程と、 前記光フアイ バ用母材を前記保管場所から前記加熱炉まで搬送する搬送工程とにおいて行われ る形態を採用することができる。
上記第 1の観点に係る発明では、 好適には、 清浄空気をイオン化し、 前記光フ アイバ用母材に吹きつける形態を採用することができる。
さらに好適には、 前記光ファイバ用母材に略同量でプラスおよびマイナスにィ オン化された空気を吹きつける構成を採用することができる。
さらに好適には、 吊り下げられた前記光ファイバ用母材の上部から下部に向け てイオン化した清浄空気を吹きつける構成を採用することができる。
前記光ファイバ用母材とを相対回転させながらイオン化した清浄空気を吹きつ ける構成を採用することも可能である。
前記清浄空気に不活性ガスを混合する構成とすることも可能である。
上記第 1の観点に係る発明では、 2枚の放電電極を有するィォン発生装置の 2 枚の放電電極間に前記光フアイバ用母材を保持する形態を採用することも可能で める。
上記第 1の観点に係る発明において、 好適には、 前記放電電極板の間には、 略 同量のプラスおよびマイナスにイオン化された空気を発生させる構成を採用する ことができる。
前記搬送工程では、 前記光ファイバ用母材の前記加熱炉への搬送経路に 2枚の 放電電極を有するィォン発生装置を配置し、 前記光フアイバ用母材を前記 2枚の 放電電極間に通過させる構成とすることができる。
本発明の第 2の観点によれば、 線引用加熱炉に導入される前の光フアイバ用母 材を保管する光ファイバ用母材の保管装置であって、 内部に前記光ファイバ用母 材を収容する収容室と、 前記収容室内に設けられ、 前記光ファイバ用母材の周囲 にイオン化されたガス体を供給するイオン化ガス供給手段とを有する光ファイバ 用母材の保管装置が提供される。
上記第 2の観点に係る発明では、 前記イオン化ガス供給手段は、 清浄空気をィ オン化して前記光ファイバ用母材に吹きつける形態を採用することができる。 好適には、 前記イオン化ガス供給手段は、 略同量でプラスおよびマイナスにィ オン化された空気を前記光ファイバ用母材に吹きつける構成を採用することがで さる。
上記第 2の観点に係る発明では、 前記イオン化ガス供給手段は、 前記光フアイ バ用母材を間に挟む 2枚の放電電極を有するィォン発生装置で構成される形態と することも可能である。
好適には、 前記イオン発生装置は、 略同量の空気をプラスおよびマイナスにィ オン化する構成とすることが可能である。 本発明の第 1および第 2の観点では、 光ファイバ用母材をイオン化されたガス 体中に保持することで、 光ファイバ用母材の表面が電気的に中和される。 絶縁物 である光フアイバ用母材の表面に物体が接触すると、 絶縁物表面で電荷交換が行 われるため正、 負のいずれかに帯電する。 絶縁物では電荷が電気抵抗のため動き にくいので、 帯電状態が続き、 塵埃を静電気によって吸引しやすく、 光ファイバ 用母材の表面には塵埃等の異物が付着しやすくなる。 光ファイバ用母材の表面が 電気的に中和された状態であると、 塵埃等の異物が付着するのを抑制できる。 このように、 線引き加熱炉に導入される前のプリフォームに極力塵埃等の異物 が付着していない状態とし、 このプリフォームを線引き加熱炉で線引きして光フ アイバを作製することで、 作製された光ファイバの線引き後のスクリ一二ング試 験において異物に起因した光フアイバの破断の頻度を抑制することができる。 図面の簡単な説明
図 1は、 本発明の一実施形態に係る光ファイバ用母材の保管装置の構成図であ な。
図 2は、 光ファイバ用母材の保管装置の実施形態を示す構成図である。
図 3は、 光フアイバ用母材の保管装置のさらに他の実施形態を示す構成図であ 。
図 4は、 本発明に係る光ファイバ用母材の品質維持方法の一実施形態を説明す るための図である。
図 5は、 本発明に係る光フアイバ用母材の品質維持方法の他の実施形態を説明 するための図である。
図 6は、 光フアイバの製造工程の一例を説明するための工程図である。 発明を実施するための最良の形態
本発明の好適実施の形態を添付図面を参照して述べる。 第 1の実施の形態
以下、 本発明に係る光ファイバ用母材の保管装置の実施の形態について説明す る。
図 1は、 本発明の一実施形態に係る光ファイバ用母材の保管装置の構成図であ る。
ここで、 保管装置の具体的構成を説明する前に、 光ファイバの製造工程の一例 について図 6に示す工程図を参照して説明する。
図 6に示すように、 まず、 たとえば、 VA D (vapour-phase axial deposi t ion ) 法などによってコアおよびクラッ ドからなる光ファイバ用多孔質ガラス母材を 合成する (プロセス P R 1 ) 。
次いで、 この光ファイバ用多孔質ガラス母材を脱水焼結し、 これを必要に応じ て線引きに適した外径となるように延伸してプリフォームとする (プロセス P R 2 )
次いで、 このプリフォームを所定の場所に保管する (プロセス P R 3 ) 。 この プリフォームの保管は、 たとえば、 数時間から 2日間程度である場合が多い。 次いで、 保管装置に保管されたプリフォームを線引き用加熱炉に搬送する (プ ロセス P R 4 ) 。 なお、 この保管装置として本実施形態に係る光ファイバ用母材 の保管装置が用いられる。
次いで、 このプリフォームを線引き用加熱炉で加熱溶融してプリフォームの先 端から線引きする線引き工程によって光ファイバを作製する (プロセス P R 5 ) 。 線引きされた光ファイバは、 樹脂被覆後にボビンに巻き取られる。
次いで、 作製された光ファイバに対してスクリーニング試験を行う (プロセス P R 6 ) 。 このスクリーニング試験によって、 要求される引っ張り強度を満たす 光ファイバが選別される。
図 1において、 本実施形態に係る光ファイバ用母材の保管装置は、 図示しない 本発明の収容室としてのクリ一ンルーム内に設けられたィォン化ガス供給装置 1 を有しており、 クリーンルーム内にはプリフォーム 5 1が保管されている。
このプリフォーム 5 1は、 図 6において説明した光フアイバ用多孔質ガラス母 材を脱水焼結した直後にクリーンルーム内に収容したものである。 脱水焼結した 直後にクリーンルーム内に収容することで、 プリフォーム 5 1の表面の帯電を防 ぎ、 塵埃当の異物の付着を未然に防ぐことができる。
イオン化ガス供給装置 1は、 清浄化された空気を供給するクリーンエア送風機 2と、 クリーンエア送風機 2から供給された空気を、 正負に交互に荷電すること によりイオン化するイオン発生装置 3とを有している。 なお、 イオン発生装置 3 の構成は周知技術であり、 詳細説明は省略する。
クリーンエア送風機 2は、 清浄化された空気を、 所定の空気量および風速でィ オン発生装置 3に供給する。
イオン発生装置 3は、 たとえば、 内部にプラスおよびマイナスに空気をイオン 化する放電電極を有しており、 これらの放電電極に高電圧を印加することにより 、 略同量の空気をプラスおよびマイナスにイオン化する。
イオン発生装置 3においてイオン化された空気 Gは、 プリフォーム 5 1に向か つて形成されたイオン発生装置 3の吹出口 3 aから吹き出される。
このとき、 クリーンルーム内に保管されたプリフォーム 5 1には、 常に、 略同 量でプラスおよびマイナスにイオン化された空気 Gが吹きつけられる。
したがって、 プリフォーム 5 1の表面は、 イオン化された空気 Gによって電気 的に中和され、 プリフォーム 5 1の表面の電位はほとんど零となる。
さらに、 略同量でプラスおよびマイナスにイオン化された空気 Gが吹きつけら れることから、 プリフォーム 5 1が正または負のいずれに帯電した場合でも、 電 気的に中和される。
これに加えて、 本実施形態によれば、 プリフォーム 5 1の表面に空気を吹きつ けることから、 プリフォーム 5 1の表面に付着した塵埃を積極的に除去すること ができる。 このようにして光ファイバ用母材の保管装置 (クリーンルーム) 内に保管され たプリフォーム 5 1の表面には、 異物の付着がほとんどなくなった状態に保たれ る。
この状態のプリフォーム 5 1を線引き用加熱炉に導入して加熱溶融し、 プリフ オーム 5 1の先端から線引きして光ファイバを作製することにより、 プリフォー ム 5 1の表面に付着した異物に起因した光ファイバの欠陥の発生を極力抑制する ことが可能になる。
この結果、 作製された光ファイバに荷重をかけるスクリーニング試験において 、 光ファイバが破断するのを抑制することができ、 光ファイバの非破断長を大幅 に伸ばすことが可能となる。
また、 本実施形態では、 プリフォーム 5 1を収容しているクリーンルーム内に 常にイオン化された空気 Gを供給しているので、 塵埃等の異物も帯電しにく くな り、 クリーンルーム内のクリーン度も向上させることができる。
実施例
上記構成の光ファイバ用母材の保管装置において、 たとえば、 外径 8 0 mm、 長さ 1 mのプリフォーム 5 1を保管した後に加熱炉において線引きして光フアイ バを作製した。
なお、 保管装置におけるイオン発生装置 3の空気量は、 約 1 0 0 0 S L M程度 とし、 風速は、 0 . 5〜5 mZ分程度とした。
作製された光ファイバの非破断長が 8 0 0 k m以上となった。
従来においては、 光ファイバの非破断長は最大でも 1 0 0 k m程度であり、 大 幅に非破断長を伸ばすことができた。
なお、 上記した実施形態では、 イオン化ガス供給装置 1は、 清浄化された空気 をイオン化する構成としたが、 本発明はこれに限定されない。
たとえば、 清浄化された空気に窒素やアルゴン等のイオン化されやすい不活性 の気体を混合することにより、 イオン化が一層容易となる。 なお、 たとえば、 図 2に示すように、 イオン化ガス供給装置 1を、 プリフォー ム 5 1の上方に設けて、 プリフォーム 5 1に対して下向きに気体を吹き出す構成 としてもよい。 このような構成とすることにより、 小型のイオン化ガス供給装置 1で効率良くプリフォーム 5 1の表面の電位を中和することができ、 塵埃の吸着 を防ぐことができる。
また、 プリフォーム 5 1はその長手方向を軸として回転させてもよい。 このよ うな構成とすることにより、 プリフォーム 5 1の全面に均一にイオン化された空 気 Gを吹きつけることが可能となり、 さらに効率良く効率良くプリフォーム 5 1 の表面の電位を中和することができ、 結果として、 塵埃の吸着を防ぐことができ る。 第 2の実施の形態
図 3を参照して本発明に係る光フアイバ用母材の保管装置の他の実施の形態を 述べる。
図 3は、 光ファイバ用母材の保管装置の他の実施形態を示す構成図である。 図 3に示す光ファイバ用母材の保管装置は、 図示しないクリ一ンルーム内に離 間して並行に設けられた 2枚の放電板 1 1 aおよび 1 l bを備えたイオン発生装 置 1 1を有する。
2枚の放電板 1 1 aおよび 1 1 bの間に、 プリフォーム 5 1が挿入された状態 で保管される。
放電板 1 1 aおよび 1 1 bは、 高電圧を印加されることにより放電板 1 1 aお よび 1 1 bの周囲の空気をそれぞれプラスおよびマイナスにイオン化する。 放電板 1 l aおよび 1 l bとの間には、 プラスおよびマイナスにイオン化され た空気が略同量存在する。
このため、 放電板 1 1 aおよび 1 1 bの間に挿入されたプリフォーム 5 1は、 常にイオン化された空気に晒されるため、 プリフォーム 5 1の表面は常に電気的 に中和され、 プリフォーム 5 1の表面は零電位となり、 プリフォーム 5 1の表面 への異物の付着を抑制することができる。
以上のように、 本実施形態の光ファイバ用母材の保管装置によれば、 2枚の放 電板 1 l aおよび 1 1 bを備えたイオン発生装置 1 1をクリーンルーム内に設け ることから、 比較的簡素化された装置によってプリフォーム 5 1の表面への異物 の付着を抑制することができる。 また、 空気を吹きつけることなくプリフォーム 5 1の表面の帯電を防止できるので、 イオン発生装置 1 1の構成を簡素化できる 。 このような構成とすることで、 送風装置が不要となり、 たとえば、 保管装置を 運搬する際に、 保管装置の運搬が容易に行える。
なお、 本実施形態では、 放電板 1 1 aおよび 1 1 bを平行に配置する構成とし たが、 放電板 1 1 aおよび 1 1 bを湾曲させてプリフォーム 5 1の周囲を包囲す る構成としてもよい。 放電板 1 1 aおよび 1 1 bをこのような形状とすることで 、 放電板 1 1 aおよび 1 1 bによって包囲されたプリフォーム 5 1に放電板 1 1 aおよび 1 1 bの外部から侵入する塵埃が一層付着しにく くなる。 第 3の実施の形態
以下、 本発明に係る光ファイバ用母材の品質維持方法の実施の形態について説 明する。
図 4は、 本発明に係る光ファイバ用母材の品質維持方法の一実施形態を説明す るための図である。
上記した第 1および第 2の実施形態では、 保管装置を用いてプリフォーム 5 1 を線引きする前に保管する方法について説明した。 本実施形態では、 プリフォー ム 5 1を保管装置から線引き工程を行う加熱炉まで搬送する搬送方法について説 明する。
上記した保管装置と線引き工程を行う加熱炉との間の搬送経路の一部または全 部に、 図 4に示すように、 2枚の放電板 2 1 aおよび 2 1 bを備えたイオン発生 装置 2 1を設ける。
放電板 2 1 aおよび 2 1 bは、 高電圧を印加されることにより放電板 2 1 aお よび 2 1 bの周囲の空気をそれぞれプラスおよびマイナスにイオン化し、 放電板 2 1 aおよび 2 l bとの間には、 プラスおよびマイナスにイオン化された空気が 略同量存在することになる。
このように、 放電板 2 1 aおよび 2 1 bの間にイオン化された空気を存在させ た状態で、 矢印に示す搬送方向にプリフォーム 5 1を搬送する際に、 プリフォー ム 5 1を 2枚の放電板 2 1 aおよび 2 1 bの間を通過させる。
プリフォーム 5 1は、 イオン化された空気に晒され、 プリフォーム 5 1の表面 は搬送中も電気的に中和された状態となり、 異物の付着が防止できる。
したがって、 本実施形態によれば、 保管装置においてイオン化された空気 Gに 晒された状態にあり塵埃等の異物が極力付着していない状態にあるプリフォーム を搬送中にも同様にイオン化された空気 Gに晒しながら加熱炉に搬入することで 、 搬送中にプリフォーム 5 1の表面へ異物が付着するのを抑制することができ、 加熱炉に搬入されたプリフォーム 5 1に異物が極力付着していない状態とするこ とができる。
なお、 本実施形態では、 保管装置から加熱炉までの搬送経路に沿って放電板 2 1 aおよび 2 1 bを設け、 プリフォーム 5 1をこれら放電板 2 1 aおよび 2 1 b の間を通過させる構成としたが、 プリフォーム 5 1を放電板 2 1 aおよび 2 1 b の間に配置した状態でプリフォーム 5 1および放電板 2 1 aおよび 2 1 bをとも に搬送する構成としてもよい。
また、 本実施形態のように、 保管装置においてもプリフォーム 5 1をイオン化 された空気に晒した状態としたほうが塵埃の付着を抑制する観点からは好ましい が、 搬送中においてだけプリフォーム 5 1をイオン化された空気に晒した状態と することも可能である。 第 4の実施の形態
図 5は、 本発明に係る光フアイバ用母材の品質維持方法の他の実施形態を説明 するための図である。
上述した第 3の実施形態では、 搬送されるプリフォーム 5 1を放電板 2 1 aお よび 2 1 bの間に通過させる構成としたが、 本実施形態では、 搬送中にプリフォ ーム 5 1に付着した異物を除去するために、 イオン化ガス吹付装置 3 1によって プリフォーム 5 1の表面にイオン化された空気 Gを直接吹きつける構成としてい る。
イオン化ガス吹付装置 3 1は、 清浄化された空気を供給するためのクリーンェ ァ供給ダクト 3 4と、 クリーンエア供給ダクト 3 4の出口部に接続され放電電極 を有する放電部 3 3と、 放電部 3 3に接続され放電部 3 3を通じてクリーンエア 供給ダクト 3 4に連通しているノズル部 3 2とを有している。
イオン化された空気 Gは、 ノズル部 3 2からプリフォーム 5 1に向けて吹きつ けられる。
また、 イオン化ガス吹付装置 3 1をプリフォーム 5 1に対して移動させること により、 プリフォーム 5 1の全体にイオン化された空気 Gを吹きつけることがで きる。
このような構成にすることにより、 プリフォーム 5 1の帯電を防ぐことができ るとともに、 空気を吹きつけるので塵埃等の異物を吹き飛ばすことができ、 プリ フォーム 5 1に付着する塵埃を確実に除去することができる。
実施例
上記構成の光ファイバ用母材の保管装置において、 たとえば、 外径 1 3 O mm 、 長さ約 2 mのプリフォーム 5 1を保管した後、 線引き工程前にイオン化ガス吹 付装置 3 1によってイオン化された空気 Gを吹きつけた後に、 線引きした。 イオン化ガス吹付装置 3 1の実施条件としては、 クリーンエア供給ダクト 3 4 からの清浄化された空気の空気量を 3 0〜1 0 0 S L Mとし、 圧力を 0 . 0 5〜 0 . 7 M P aとし、 ノズル部 3 2のノズル径を、 2〜 3 mm程度とし、 放電部 3 3の有する放電電極への入力電流は 3 0 0 m A程度とした。
この結果、 作製された光ファイバの非破断長は約 1 0 0 0 k mとなり、 従来と 比べて光ファイバの非破断長を大幅に伸ばすことができた。 産業上の利用可能性
以上のように、 本発明に係る光ファイバ用母材の保管装置は、 光ファイバの線 引き工程前にプリフォームに異物が付着するのを抑制でき、 結果として、 線引き 後の光フアイバの引っ張り強度を向上させ非破断長を飛躍的に伸ばすことが可能 になるので、 光ファイバの製造工程に用いるのに適している。
本発明に係る光ファイバ用母材の品質維持方法は、 線引き後の光ファイバの引 つ張り強度を向上させ、 非破断長を飛躍的に伸ばすのに有用であり、 光ファイバ の製造工程に用いるのに適している。

Claims

言青求の範囲
1 . 光ファイバ用母材を形成後、 線引用加熱炉に導入する前に、 前記光ファ ィバ用母材をイオン化されたガス体中に保持する
光ファイバ用母材の品質維持方法。
2 . 前記光ファイバ用母材をイオン化されたガス体中に保持する工程は、 前 記光ファイバ用母材を所定の保管場所に保管する保管工程と、 前記光ファイバ用 母材を前記保管場所から前記加熱炉まで搬送する搬送工程とにおいて行われる 請求項 1に記載の光フアイバ用母材の品質維持方法。
3 . 清浄空気をイオン化し、 前記光ファイバ用母材に吹きつける
請求項 1または 2に記載の光フアイバ用母材の品質維持方法。
4 . 前記光ファィバ用母材に略同量でプラスおよびマイナスにイオン化され た空気を吹きつける
請求項 3に記載の光ファイバ用母材の品質維持方法。
5 . 吊り下げられた前記光ファィバ用母材の上部から下部に向けてィォン化 した清浄空気を吹きつける
請求項 4に記載の光ファィバ用母材の品質維持方法。
6 . 前記光フアイバ用母材とを相対回転させながらィォン化した清浄空気を 吹きつける
請求項 5に記載の光ファィバ用母材の品質維持方法。
7 . 前記清浄空気に不活性ガスを混合する
請求項 3に記載の光フアイバ用母材の品質維持方法。
8 . 2枚の放電電極を有するィォン発生装置の 2枚の放電電極間に前記光フ アイバ用母材を保持する
請求項 1または 2に記載の光ファイバ用母材の品質維持方法。
9 . 前記放電電極板の間には、 略同量のプラスおよびマイナスにイオン化さ れた空気を発生させる
請求項 8に記載の光ファィバ用母材の品質維持方法。
1 0 . 前記搬送工程では、 前記光ファイバ用母材の前記加熱炉への搬送経路に 2枚の放電電極を有するィォン発生装置を配置し、 前記光ファィバ用母材を前記 2枚の放電電極間に通過させる
請求項 2に記載の光ファィバ用母材の品質維持方法。
1 1 . 線引用加熱炉に導入される前の光ファイバ用母材を保管する光ファイバ 用母材の保管装置であって、
内部に前記光ファイバ用母材を収容する収容室と、
前記収容室内に設けられ、 前記光ファイバ用母材の周囲にイオン化され たガス体を供給するィオン化ガス供給手段と
を有する光ファイバ用母材の保管装置。
1 2 . 前記イオン化ガス供給手段は、 清浄空気をイオン化して前記光ファイバ 用母材に吹きつける
請求項 1 1に記載の光ファイバ用母材の保管装置。
1 3 . 前記イオン化ガス供給手段は、 略同量でプラスおよびマイナスにイオン 化された空気を前記光ファイバ用母材に吹きつける
請求項 1 2に記載の光ファイバ用母材の保管装置。
1 4 . 前記イオン化ガス供給手段は、 前記光ファイバ用母材を間に挟む 2枚の 放電電極を有するイオン発生装置で構成される
請求項 1 1に記載の光ファイバ用母材の保管装置。
1 5 . 前記イオン発生装置は、 略同量の空気をプラスおよびマイナスにイオン 化する
請求項 1 4に記載の光ファイバ用母材の保管装置。
PCT/JP2000/003309 1999-05-24 2000-05-24 Procede de maintien de la qualite d'une preforme de fibre optique et procede de conservation WO2000071479A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/768,055 US20010037662A1 (en) 1999-05-24 2001-01-24 Method for maintaining quality of optical fiber preform and storage apparatus of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11143125A JP2000327359A (ja) 1999-05-24 1999-05-24 光ファイバの製造方法および光ファイバ用母材の保管装置
JP11/143125 1999-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/768,055 Continuation US20010037662A1 (en) 1999-05-24 2001-01-24 Method for maintaining quality of optical fiber preform and storage apparatus of the same

Publications (1)

Publication Number Publication Date
WO2000071479A1 true WO2000071479A1 (fr) 2000-11-30

Family

ID=15331507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003309 WO2000071479A1 (fr) 1999-05-24 2000-05-24 Procede de maintien de la qualite d'une preforme de fibre optique et procede de conservation

Country Status (4)

Country Link
US (1) US20010037662A1 (ja)
JP (1) JP2000327359A (ja)
CN (1) CN100368328C (ja)
WO (1) WO2000071479A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005051A1 (en) * 2000-04-28 2002-01-17 Brown John T. Substantially dry, silica-containing soot, fused silica and optical fiber soot preforms, apparatus, methods and burners for manufacturing same
US20050120752A1 (en) * 2001-04-11 2005-06-09 Brown John T. Substantially dry, silica-containing soot, fused silica and optical fiber soot preforms, apparatus, methods and burners for manufacturing same
KR20030047616A (ko) * 2001-12-11 2003-06-18 천호식 플라스틱 광섬유 제조방법 및 그 제조장치
WO2003062159A1 (fr) * 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Procede de fabrication d'un corps sedimentaire constitue de particules de verre et procede de fabrication de materiau a base de verre
JP5485056B2 (ja) * 2010-07-21 2014-05-07 東京エレクトロン株式会社 イオン供給装置及びこれを備えた被処理体の処理システム
WO2016074750A1 (en) 2014-11-13 2016-05-19 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter
CN106940319B (zh) * 2017-04-28 2019-12-13 中国建筑材料科学研究总院 光学纤维传像元件疵点检测方法及装置
CN107601845A (zh) * 2017-10-16 2018-01-19 平步青 一种基于物联网的防污染的智能型光纤预制棒拉制设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113253A (ja) * 1974-07-23 1976-02-02 Fujikura Ltd Hikaritsushinyogarasufuaibaano seizohoho
JPS5913641A (ja) * 1982-07-09 1984-01-24 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの製造方法
JPS60215543A (ja) * 1984-04-11 1985-10-28 Hitachi Cable Ltd 光フアイバの線引方法
JPH09132425A (ja) * 1995-11-02 1997-05-20 Fujikura Ltd 光ファイバ母材の清浄処理方法及びその清浄処理装置
JPH1179771A (ja) * 1997-09-08 1999-03-23 Fujikura Ltd 光ファイバ母材等の搬送用遮蔽装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253863A (en) * 1977-06-07 1981-03-03 International Telephone And Telegraph Corporation Apparatus for mass producing fiber optic preforms and optic fibers
US4390357A (en) * 1981-10-29 1983-06-28 Western Electric Company, Inc. Methods of and system for clean air delivery to lightguide fiber drawing apparatus
US4829398A (en) * 1987-02-02 1989-05-09 Minnesota Mining And Manufacturing Company Apparatus for generating air ions and an air ionization system
US4973345A (en) * 1987-10-13 1990-11-27 British Telecommunications Public Limited Company Surface treatments for optical fibre preforms
US5244485A (en) * 1991-04-30 1993-09-14 The Furukawa Electric Co., Ltd. Method of manufacturing a silica glass preform
US6003342A (en) * 1991-10-25 1999-12-21 The Furukawa Electric Co., Ltd. Apparatus for production of optical fiber preform
GB9411990D0 (en) * 1994-06-15 1994-08-03 Coca Cola & Schweppes Beverage Apparatus for handling and/or cleansing tubular articels
US5550703A (en) * 1995-01-31 1996-08-27 Richmond Technology, Inc. Particle free ionization bar
JPH09110454A (ja) * 1995-10-17 1997-04-28 Furukawa Electric Co Ltd:The 光ファイバ母材の搬送装置
US5849135A (en) * 1996-03-12 1998-12-15 The Regents Of The University Of California Particulate contamination removal from wafers using plasmas and mechanical agitation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113253A (ja) * 1974-07-23 1976-02-02 Fujikura Ltd Hikaritsushinyogarasufuaibaano seizohoho
JPS5913641A (ja) * 1982-07-09 1984-01-24 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの製造方法
JPS60215543A (ja) * 1984-04-11 1985-10-28 Hitachi Cable Ltd 光フアイバの線引方法
JPH09132425A (ja) * 1995-11-02 1997-05-20 Fujikura Ltd 光ファイバ母材の清浄処理方法及びその清浄処理装置
JPH1179771A (ja) * 1997-09-08 1999-03-23 Fujikura Ltd 光ファイバ母材等の搬送用遮蔽装置

Also Published As

Publication number Publication date
CN100368328C (zh) 2008-02-13
JP2000327359A (ja) 2000-11-28
US20010037662A1 (en) 2001-11-08
CN1315925A (zh) 2001-10-03

Similar Documents

Publication Publication Date Title
US4402993A (en) Process for coating optical fibers
WO2000071479A1 (fr) Procede de maintien de la qualite d&#39;une preforme de fibre optique et procede de conservation
US5756998A (en) Process for manufacturing coated wire composite and a corona generating device produced thereby
AU621929B2 (en) Process for fusion-splicing hermetically coated optical fibers
JP2007506545A (ja) パルス化アーク放電および適用される磁場を使用するナノ粉末合成
JP4741246B2 (ja) 基材上にダイヤモンドライクガラスコーティングを堆積する装置
US8047020B2 (en) Method of producing vitreous silica crucible
US4597984A (en) Method and apparatus for coating fluorescent lamp tubes
US20050115277A1 (en) Method and apparatus for manufacturing optical fiber preform
US20070104954A1 (en) Antistatic glass substrate production method and antistatic glass substrate produced by the method
KR20190059179A (ko) 플랫 패널 디스플레이 제조 장치
US5922098A (en) Cleaning a glass preform with a high temperature inert gas during the drawing of an optical fiber
JPH11238595A (ja) 除電装置および除電方法
JPH0314790B2 (ja)
JPS5913641A (ja) 光フアイバの製造方法
JP2004331430A (ja) ガラス母材の製造装置及びガラス母材の製造方法
US7703305B2 (en) Overcladding an optical fiber preform using an air-argon plasma torch
CN101528977A (zh) 成膜装置
JP2001284099A (ja) 放電装置およびこれを用いた物体の放電処理方法ならびに絶縁性連続体の製造方法
JP2004138650A (ja) 電極棒及び光ファイバ融着接続装置並びに光ファイバ融着接続方法
JPH06247739A (ja) フッ化物光ファイバ母材表面処理線引装置及びフッ化物光ファイバの製造方法
CN116944181A (zh) 一种用于玻璃基板的异物吸收装置和面板生产设备
JPH10194792A (ja) 光ファイバテープ心線の製造方法
CN104831519A (zh) 一种连续处理纱线材料的等离子体系统
JPS58161935A (ja) 内付cvd法による光フアイバ−のプレフオ−ム製造方法ならびに装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801277.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

WWE Wipo information: entry into national phase

Ref document number: 09768055

Country of ref document: US