WO2000067697A2 - Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules - Google Patents

Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules Download PDF

Info

Publication number
WO2000067697A2
WO2000067697A2 PCT/FR2000/001259 FR0001259W WO0067697A2 WO 2000067697 A2 WO2000067697 A2 WO 2000067697A2 FR 0001259 W FR0001259 W FR 0001259W WO 0067697 A2 WO0067697 A2 WO 0067697A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
conjugate according
molecule
antibody
bridging agent
Prior art date
Application number
PCT/FR2000/001259
Other languages
English (en)
Other versions
WO2000067697A3 (fr
Inventor
François HIRSCH
Antoine Durrbach
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to EP00925426A priority Critical patent/EP1175498A2/fr
Priority to AU44152/00A priority patent/AU4415200A/en
Priority to JP2000616728A priority patent/JP2002543810A/ja
Priority to IL14639900A priority patent/IL146399A0/xx
Priority to CA002373851A priority patent/CA2373851A1/fr
Publication of WO2000067697A2 publication Critical patent/WO2000067697A2/fr
Publication of WO2000067697A3 publication Critical patent/WO2000067697A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3038Kidney, bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6861Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from kidney or bladder cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • the aim of gene therapy is to correct a genetic defect by intervention on DNA. It can be carried out according to two distinct approaches: either as a correction of the genotype by repairing the gene anomaly, or by correction of the phenotype by grafting a normal version of the gene thus making it possible to replace the defective gene always present.
  • Gene therapy applies to the treatment of both constitutional and acquired genetic diseases.
  • a number of constitutional genetic diseases are candidates for gene therapy; we can cite, among others, cystic fibrosis, Duchenne muscular dystrophy or adenosine deaminase deficiency (Cournoyer et al, 1991, "Gene tranfer of adenosine deaminase into primitive human hemotopoetic progenitor cells", Human Gene Therapy, 2: 203). Gene therapy also applies to the fight against acquired diseases, the candidate diseases of which are cancers and infectious and viral diseases (AIDS, hepatitis).
  • TIL tumor infiltrating lymphocytes
  • Gene therapy performed on the somatic cells of an individual affected by a genetic defect poses multiple methodological problems, the repaired or transplanted gene having to be expressed normally on a regular basis, that is to say in the right place, at the right time and in normal quantity adapted to needs; the correction or transplant must be indefinitely stable.
  • the cell vehicles which have previously received the ex vivo gene hematopoietic stem cells, lymphocytes, hepatocytes, endothelial cells, epithelial cells
  • viral vectors intramuscular injection d Naked DNA and artificial vehicles.
  • a first approach consisted in bridging via streptavidin, biotinylated antibodies directed against a target cell structure to also biotinylated antibodies directed against the structures of the retroviral envelope and therefore associated with a retrovirus (Roux et al, 1989, Proc. Natl Acad. Sci. USA 86: 9079-9083).
  • the retroviral vectors Once linked to cells, the retroviral vectors are internalized by endocytosis and are able to escape the lysosome-endosome system by a transfer mechanism from the endosome to the cytoplasm, thus avoiding the degradation of the transfected DNA and allowing the entry of said DNA into the cell nucleus.
  • lysosomotropic agents such as chloroquine (Zenke et al, 1990, Proc. Natl. Acad. Sci. USA 87: 3655-3659; Luthman et al, 1983, Nucleic Acids Res. 1 1: 1295); such agents reduce lysosomal destruction of DNA by increasing the pH of endosomes and by inhibiting the transfer of internalized material to lysosomes.
  • Another approach is to use protein domains with cell translocation activity.
  • nucleic acid transfer system composed of a recombinant monomeric protein comprising different domains functional including a translocation domain derived from toxins, preferably bacteria, such as exotoxin A.
  • the present invention therefore relates to a conjugate for the transfer of a nucleic acid molecule into a cell, characterized in that it comprises a nucleic acid molecule, a domain of translocation and an antibody specific for a surface antigen of said cell, such that said conjugate is efficiently transfected into said cell.
  • the conjugate according to the invention is characterized in that said nucleic acid molecule, translocation domain and antibodies are conjugated by means of at least one bridging agent.
  • the conjugate is characterized in that it further comprises a peptide cleavable by at least one glycolytic and / or proteolytic enzyme, said antibody being linked to said translocation domain via said cleavable peptide.
  • the antibody and said cleavable peptide can be linked either (i) covalently via a bridging agent preferably selected from the group consisting of benzoquinone, EDC, APDP; or (ii) to an avidin-like molecule by means of a bridging agent which may be identical or different and which is preferably selected from the group consisting of biotin, benzoquinone, EDC, APDP .
  • the translocation domain of this compound is linked to said cleavable peptide by a covalent chemical bond.
  • covalent chemical bond is intended to denote preferably a bond of peptide type; according to a particular embodiment, the peptide corresponding to the translocation domain linked to the cleavable peptide is obtained by chemical synthesis.
  • the translocation domain can be linked to a nucleic acid molecule either: i) by means of a bridging agent which is preferably APDP; according to this embodiment, an even more preferred embodiment of the conjugate of the invention is characterized in that said antibody is linked to said cleavable peptide by a covalent bond by means of said EDC bridging agent, said cleavable peptide being linked to said domain of translocation by a covalent bond by means of a chemical bond, said translocation domain being linked to said acid nucleic acid by a covalent bond using said APDP bridging agent.
  • a bridging agent which is preferably APDP
  • an even more preferred embodiment consists in that said antibody is linked to said cleavable peptide by a covalent bond by means of said EDC bridging agent, said cleavable peptide being linked to said translocation domain by a covalent bond to by means of a chemical bond, said translocation domain being linked to said nucleic acid binding molecule by a covalent bond by means of said APDP bridging agent, said nucleic acid binding molecule binding said nucleic acid by a non-covalent bond .
  • the invention relates to a conjugate characterized in that it further comprises a nucleic acid binding molecule, such as said translocation domain, said antibody and said nucleic acid binding molecule are linked to an avidin-like molecule by means of a bridging agent which may be the same or different, said nucleic acid binding molecule being linked to said nucleic acid molecule.
  • a nucleic acid binding molecule such as said translocation domain
  • said antibody and said nucleic acid binding molecule are linked to an avidin-like molecule by means of a bridging agent which may be the same or different, said nucleic acid binding molecule being linked to said nucleic acid molecule.
  • the invention relates to a conjugate characterized in that it further comprises a nucleic acid binding molecule and a peptide cleavable by at least one glycolytic and / or proteolytic enzyme, such as said translocation domain, said antibody and said cleavable peptide are linked to an avidin-type molecule by means of a bridging agent which may be identical or different, said nucleic acid binding molecule being linked to said nucleic acid molecule, said nucleic acid binding molecule being linked to said cleavable peptide and to said nucleic acid molecule.
  • the invention relates to a conjugate for the transfer of a nucleic acid molecule into a cell characterized in that it comprises a nucleic acid molecule, an antibody specific for an antigen of cell surface and a nucleic acid binding molecule such that said conjugate is efficiently transfected into said cell;
  • this conjugate is characterized in that said nucleic acid molecule, said antibody and said nucleic acid binding molecule are linked to an avidin-type molecule by means of a bridging agent which may be identical or different, said molecule binding to nucleic acids being linked to said nucleic acid molecule.
  • the preceding conjugate is characterized in that it further comprises a peptide cleavable by at least one glycolytic and / or proteolytic enzyme, said antibody being linked to said nucleic acid binding molecule via said cleavable peptide; in this conjugate, said antibody and said cleavable peptide are linked either (i) covalently via a bridging agent preferably selected from the group consisting of benzoquinone, EDC, APDP, or either (ii) via an avidin-like molecule by means of a bridging agent which may be identical or different and preferably selected from the group consisting of biotin, benzoquinone, EDC, APDP.
  • a bridging agent preferably selected from the group consisting of benzoquinone, EDC, APDP
  • said cleavable peptide is linked to said nucleic acid binding molecule by means of a bridging agent which is preferably APDP, said nucleic acid binding molecule binding said nucleic acid by a non-covalent bond.
  • a bridging agent which is preferably APDP
  • the invention relates to a conjugate for the transfer of a nucleic acid molecule into a cell characterized in that it comprises a nucleic acid molecule, an antibody specific for a cell surface antigen and a peptide cleavable by at least one glycolytic and / or proteolytic enzyme such that said conjugate is efficiently transfected into said cell.
  • said antibody and said cleavable peptide are linked either (i) covalently via a bridging agent preferably selected from the group consisting of benzoquinone, EDC, APDP, or (ii) to an avidin-like molecule by means of a bridging agent which may be the same or different, preferably selected from the group consisting of biotin, benzoquinone, EDC, APDP.
  • a bridging agent preferably selected from the group consisting of benzoquinone, EDC, APDP
  • said cleavable peptide is linked to said nucleic acid either (i) by a covalent bond by means of a bridging agent which is preferably APDP, or (ii) via a nucleic acid binding molecule, said nucleic acid binding molecule being linked to said cleavable peptide by a covalent bond by means of a bridging agent which is preferably APDP.
  • said conjugate further comprises a translocation domain which is optionally covalently linked by means of a bridging agent to said nucleic acid molecule and / or to said acid-binding molecule nucleic acids.
  • said translocation domain is present within the conjugate without being covalently linked to it.
  • cleavable peptide is intended to denote a peptide comprising one or more sequences cleavable by glycolytic and / or proteolytic enzymes, preferably endosomal and / or lysosomal, such as for example cathepsins and trypsin.
  • the cleavable peptide of the invention comprises at least one cathepsin B site and / or a cathepsin D site.
  • the cleavable peptide comprises a cathepsin B site and a cathepsin D site separated by at least an amino acid, preferably by at least two amino acids such as for example glycine;
  • the cleavable peptide of the invention has the sequence: X1-X2-FYGGFR- in which G represents glycine, Xi and X 2 amino acids allowing the attachment or chemical bond of the antibody such for example two lysines (K) .
  • FY represents the dipeptide composed of the amino acids phenylalanine-tyrosine which is cleavable by cathepsin D; this sequence can possibly be replaced by LY (leucine- tyrosine), YL (tyrosine-leucine) or FF (phenylalanine-phenylalanine).
  • FR represents the dipeptide composed of the amino acids phenylalanine-arginine which is cleavable by cathepsin B.
  • the bridging agent makes it possible to bind in a chemical (covalent), electrostatic, non-covalent manner all or part of the components of the conjugate.
  • bridging agents capable of being used in the present invention, mention should be made of benzoquinone, carbodiimide and more particularly EDC (1-Ethyl-3 [3-dimethylaminopropyl] carbodiimide hydrochloride), dimaleimide, dithio-bis-nitrobenzoic acid (DTNB), N-succinimidyl-S-acetylthioacetate (SATA), bridging agents having one or more phenylazide groups reacting with ultraviolet (UV) and preferably N - [- 4- (azidosalicylamino) butyl] -3 '- (2'- pyridyldithio) propionamide (APDP), N-succinimidyl-3- (2-pyridyldithio) propionate (SPDP), 6-hydrazinonic
  • the conjugate previously described according to the various embodiments of the invention is characterized in that said bridging agent is selected from the group consisting of benzoquinone, biotin, carbodiimides , bridging agents having at least one phenylazide group reacting to ultraviolet (UN).
  • the bridging agent is selected from the group consisting of benzoquinone, biotin, EDC, APDP.
  • the conjugate previously described according to the second embodiment (B) is characterized in that the bridging agent which binds said translocation domain and said antibody to the avidin-like molecule is biotin and, the bridging agent that binds said binding molecule to Nucleic acids in the avidin-like molecule is benzoquinone.
  • the conjugate previously described according to the second embodiment (B) is characterized in that the bridging agent which binds said translocation domain, said antibody and said molecule for binding to nucleic acid is biotin.
  • the conjugate previously described according to the second embodiment (B) is characterized in that the translocation domain and the nucleic acid binding molecule form a fusion protein.
  • fusion protein is intended to denote a protein which contains protein domains originating from different proteins and encoded by the same DNA molecule obtained by recombinant DNA technology. This fusion protein and the antibody are linked to an avidin-like molecule by means of bridging agents which are identical or different, said fusion protein being linked to said nucleic acid molecule by its nucleic acid binding domain. .
  • the conjugate previously described according to the second embodiment (B) and which comprises a cleavable peptide is characterized in that the bridging agent which binds said translocation domain and said antibody to the avidin-like molecule is biotin and, the bridging agent which binds said cleavable peptide to the avidin-like molecule is benzoquinone.
  • the conjugate previously described according to the second embodiment (B) is characterized in that the bridging agent which binds said translocation domain, said antibody and said cleavable peptide is biotin.
  • the conjugate previously described according to another embodiment (C) of the invention is characterized in that in the bridging agent which binds said antibody to the molecule of avidin type is the biotin, and the bridging agent that binds said nucleic acid binding molecule to the avidin-like molecule is benzoquinone.
  • the previously described conjugate is characterized in that said bridging agent is biotin.
  • the conjugate according to the invention is characterized in that the nucleic acid molecule of the conjugate is chosen from single-stranded DNA, double-stranded DNA, single-stranded RNA, double-stranded RNA, the RNA / DNA hybrid .
  • said nucleic acid molecule is double stranded DNA or single stranded RNA which codes for a protein product of interest which is expressed effectively in said cell.
  • the protein products of interest are chosen from a group composed of interleukins, cytokines, lymphokines, chemokines, growth factors, killer proteins, proteins which make it possible to lift the chemoresistance and restriction enzymes; the interleukins, cytokines and lymphokines are chosen from a group preferably composed of interleukins II-1, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11- 9, 11-10, 11-11, 11-12, 11-13, 11-14, II- 15, 11-16, 11-17 and 11-18, interferons ⁇ -IFN, ⁇ -IFN and ⁇ - IFN; preferably the protein product of interest is interleukin 2.
  • the growth factors are preferably colony stimulating factors (colony stimulating factors G-CSF, GM-CSF, M-CSF) and erythropoietin, it is appropriate also to cite the growth factors which interact by inhibiting them, with nuclear transcription factors such as NF-KB; these growth factors were the subject of patent application FR 98 14858.
  • the killer proteins are chosen from the group composed of kinases, and preferably thymidine kinase, and pro-apoptotic proteins; the term “pro-apoptotic proteins” is intended to denote the proteins which are involved in apoptosis or promote apoptosis.
  • the proteins of the Bcl2 family and more particularly the proteins BIK (Bcl2-interacting protein), BAX (Oltvai et al 1993, Cell 74: 609-619), BAK (Chittenden et al. 1995, Nature 374: 733-736; Kiefer et al 1995, Nature 374: 736-739) and BID (BH3-interacting domain death agonist) (Wang et al. 1996, Genes Dev. 10: 2859-2869); preferably the protein product of interest is the BAX protein.
  • the caspases the AIF protein (apoptosis-inducing factor) (Susin et al 1999, Nature 397: 441-446) and the proteins of the tumor necrotizing factor family (TNF). , tumor necrosing factor), and more specifically TNF itself (Old 1985, Science 230: 630-632), the FASL protein (FAS-ligand) (Takahashi et al 1994, Int. Immun. 6: 1567-1574) .
  • AIF protein apoptosis-inducing factor
  • TNF tumor necrotizing factor family
  • FASL protein FAS-ligand
  • the nucleic acid molecule is an antisense RNA.
  • the conjugate according to the invention is characterized in that the nucleic acid binding molecule binds said nucleic acid molecule by a non-covalent bond.
  • the nucleic acid binding molecule is either a polycationic polymer or a nucleic acid binding protein: (i) the polycationic polymer is chosen from poly-L-lysine, poly-D-lysine, polyethyleneimine, polyamidoamine, polyamine and all free polycations of chemical origin; preferably, the polycationic polymer is poly-L-lysine; (ii) the nucleic acid binding protein is chosen from histones, protamine, ornithine, putrescine, spermidine, spermine, transcription factors, homeobox proteins; preferably, the nucleic acid binding protein is a protamine and / or a histone.
  • the binding domain is preferably added in excess. This binding domain is then present in excess in the conjugate.
  • excess is meant to denote that the nucleic acid binding domain and the other components of the conjugate are not present in stoichiometric amount.
  • nucleic acid molecule of the invention with a nucleic acid binding molecule such as protamine or histones makes it possible to protect said nucleic acid molecule from degradation by cellular and extracellular nucleases.
  • protamine and histones to promote transfection and expression of nucleic acid molecules has long been known to those skilled in the art (Wienhues et al. (1987) and Dubes and Wegrzyn (1978) ).
  • the conjugate according to the invention is characterized in that said translocation domain derives from a bacterial or viral toxin without containing the part of the toxin which gives it its toxic effect.
  • the bacterial or viral toxin is chosen from: Pseudomonas exotoxin A, diphtheria toxin, cholera toxin, anthrox toxin from Bacillus, Pertussis toxin, Shiga toxin from Shigella, toxin related to Shiga toxin, toxins of Escherichia coli, colicin A, d-endotoxin, ltiemagglutinin Ha 'Haemophilus A.
  • the translocation domain is exotoxin A from Pseudomonas aeruginosa.
  • the translocation domain is the non-toxic fragment B of the Shiga toxin from Shigella.
  • the translocation domain is a fragment of Haemophilus A hemaglutinin A.
  • This fragment of influenza A (HA) hemaglutinin can be modified at its C-terminal end by the addition of 'a cysteine or by adding a short peptide sequence ending in a cysteine in order to react with this cysteine the coupling agent, which is preferably APDP.
  • the conjugate according to the invention is characterized in that the antibody is a monoclonal antibody or a polyclonal antibody specific for a membrane surface antigen.
  • the antibody binds specifically to the G250 antigen characteristic of human renal cell carcinomas (RCC).
  • RRC human renal cell carcinomas
  • the antibody of the invention is the G250 antibody described by Oosterwijk et al. (1986, Int. J. Cancer. 38: 489-494) and which was the subject of the international patent application WO 88/08854.
  • the antibody according to the present invention is a 5C5 monoclonal antibody obtained by ltiybridome 5C5 deposited at the CNCM under the number I-2184.
  • the antibody according to the invention is either in the form of a single chain antibody, or in the form of a chimeric antibody or a humanized antibody.
  • the antibody is an antibody fragment, preferably an F (ab ') 2, Fab' or Fv fragment.
  • the DNA-antibody conjugate of the present invention can be administered by various routes known to those skilled in the art. For example, it can be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intratumorally, anal or rectally.
  • the invention relates to a conjugate as described above as a medicament. More particularly, the invention relates to a conjugate as described above as a medicament for gene therapy and more precisely for the treatment of acquired or constitutional genetic diseases.
  • the acquired diseases are selected from the group consisting of cancers and infectious diseases.
  • renal cell carcinoma melanoma
  • chronic myeloid leukemia acute myeloid leukemia
  • Burkitt lymphoma small cell lung cancer
  • neuroblastoma retinoblastoma
  • glioblastoma hepatocarcinoma
  • rhabdomyosarcoma gastric adenocarcinoma
  • colon carcinoma ovarian cancer
  • breast carcinoma uterine cancer
  • testicular carcinoma a conjugate as described previously as a drug for the treatment of renal cell carcinoma (RCC).
  • infectious diseases mention may preferably be made of AIDS and hepatitis.
  • the constitutional diseases are preferably selected from the group composed of myopathies, and more particularly Duchenne muscular dystrophy (DM), Steinert's myopathy and spinal muscular atrophy (SMA), cystic fibrosis, lateral sclerosis amyotrophic (ALS), hemophilia, hemoglobinopathies, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease, Gaucher's disease, Lesch-Nyhan disease, immune deficiencies linked to a adenosine deaminase or purine nucleoside phosphorylase deficiency, pulmonary emphysema, hypercholesterolemia.
  • DM Duchenne muscular dystrophy
  • SMA spinal muscular atrophy
  • cystic fibrosis cystic fibrosis
  • ALS lateral sclerosis amyotrophic
  • hemophilia hemoglobinopathies
  • neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease, Gaucher's disease, Lesch-
  • the invention also relates to a pharmaceutical composition, in particular for the treatment of diseases by gene therapy, which comprises a therapeutically effective amount of a conjugate according to the invention and a pharmaceutically acceptable vehicle.
  • the present invention also relates to a process for transferring a nucleic acid molecule into a cell, characterized in that the conjugate according to the invention is brought into contact with said cell so as to transfect said cell with said conjugate.
  • the nucleic acid molecule codes for a protein product of interest which is expressed effectively in said transfected cell.
  • the nucleic acid molecule is double-stranded DNA coding for a protein product of interest.
  • the present invention therefore provides an efficient system which allows the transit of the double-stranded DNA molecule through the cytoplasmic cell membrane, the transport to the nucleus, entry into the nucleus and maintenance of the functional state of this molecule in the nucleus.
  • the persistence of the expression of the protein product encoded by the DNA molecule is obtained either by the stable integration of the DNA molecule into the chromosomal DNA of the target cell, or by maintaining the DNA molecule under the shape of an extrachromosomal replicon.
  • nucleic acid molecule is maintained in the form of an extrachromosomal replicon in said cell.
  • the present invention provides a method characterized in that said nucleic acid molecule integrates into the genomic and / or mitochondrial DNA of said transfected cell.
  • the cell targeted by the compound of the present invention is a prokaryotic or eukaryotic, animal or plant cell.
  • the invention relates to a method characterized in that said cell is a eukaryotic cell, preferably a mammalian cell, and preferably a human cell.
  • the invention relates to cells transfected with the conjugate according to the invention; the cell preferably being a eukaryotic cell, more particularly a mammalian cell, and preferably a human cell.
  • Figure 5 Induction of human kidney cell death after in vitro antifection with human Bax cDNA.
  • EXAMPLE 1 MATERIALS AND METHODS (see D ⁇ rrbach et al, The antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal-cell- carcinoma in vitro, Cancer Gene Therapy, In Press)
  • the renal carcinoma cell lines used are: IGR / RCC-17 (HIEG), IGR / RCC-40 (ROB), IGR / RCC-47 (FRAP), IGR / RCC-58 (MOJ) which are derived from three primary tumors (- 17, - 40 and -47) and adrenal metastasis (-58), from four patients with metastatic RCC.
  • RCC-17, -40 and -58 correspond to clear cell carcinomas and RCC-47 to a particular form of clear cell carcinoma with typical papillary foci highly tumorigenic in SCID mice (Angevin et al. ( 1997) Proc. Am. Asso. Cancer Res. 38: 238; Goulkhova et al. (1998) Genes Chrom.
  • the expression of the G250 antigen associated with RCC tumors was directly tested by indirect immunostaining using the mouse monoclonal antibody IgG1 G250 (mAb G250) previously described (Oosterwijk et al, 1986, Int. J. Cancer. 38: 489-494).
  • mAb G250 mouse monoclonal antibody
  • the monoclonal antibody NKTA having the same isotype (IgGl directed against a clonotypic determinant of TCR ⁇ / ⁇ ) (provided free of charge by Doctor Thierry Hercend, France) was used as a negative control.
  • Flow cytometry was performed with a FACScan cytometer (Becton-Dickinson, Sunnyvale, CA, USA) using Cellquest software. 1.3. Endocytosis experiences
  • the antibody G250 and the human iron-loaded apo-transferrin were coupled respectively with fluorescein isothiocyanate (Sigma) and with sulfonyl chloride Rhodamine B lissamine as described above ( Maxfield et al, 1978, Cell 14: 805-810; Brandzaeg, 1973, Scan. J. Immunol. 2: 273-290).
  • the conjugated proteins are separated from the free fluorochromes by gel filtration on a column of Sephadex G50 (Pharmacia, Uppsala, Sweden). The specific binding of coupled proteins to cell surface receptors was determined by competitive experiments using a 100-fold higher concentration of uncoupled proteins.
  • BMGneo-mIL2 plasmid DNA containing the mouse interleukin 2 cDNA (IL-2) under the control of the inducible promoter of the metallothionein gene (Karasuyama and Melchers, 1988, Eur. J. Immunol. 18: 97- 104) (1 mg / ml) is incubated (vol / vol) with EZ-link-Biotin-LC-ASA reconstituted in ethanol (2 mg / ml) (Pierce, Rockford, IL, USA) and exposed for 15 min UV (365 nm) at 4 ° C.
  • the plasmid DNA is then precipitated with ethanol (final concentration 70%) for 30 min at -20 ° C.
  • the labeling efficiency is determined by an ELISA test on microplates covered with poly-L-lysine using phosphatase-alkaline conjugated to streptavidin.
  • the cells cultured for two days on coverslips are washed three times with RPMI-1640 (Gibco BRL) containing 1 mg / ml of bovine serum albumin (BSA), then are incubated twice 15 min in RPMI - 1640 containing 1 mg / ml of BSA at 37 ° C with or without cytochalasin D (5 DM) (Sigma). The cells are then incubated for one hour at 4 ° C.
  • rhodamine-conjugated transferrin 50 nM
  • FITC-labeled monoclonal antibody G250 in RPMI-1640 containing 1 mg / ml of BSA with or without cytochalasin D (5 DM) then transferred to 37 ° C for variable times with transferrin-Rhodamine only (draws) or with FITC-labeled mAb G250.
  • the cells are washed three times with cold PBS, fixed for 20 min with a solution of 4% paraformaldehyde, glutaraldehyde 0.025% in PBS at 4 ° C and prepared for analysis in epifluorescence.
  • the cells were incubated continuously as described above either with FITC-labeled mAb G250 conjugated with biotinylated plasmid DNA or with a mixture of mAb G250.
  • FITC-labeled and biotinylated plasmid DNA as a control.
  • the cells are washed twice in PBS, incubated for 10 min with 0.1% sodium borohydrate in PBS (ICN, Costa Mesa, CA, USA) and then 10 min with ammonium chloride (50 mM in PBS) (Sigma).
  • the cells are either directly analyzed by immunofluorescence to detect the FITC-labeled mAb G250 or is permeabilized with PBS containing 0.05% saponin or 0.1% Triton X100 (ICN) and then labeled with Texas-red conjugated streptavidin (20 mg / ml) (Pierce).
  • the actin filaments are marked with phalloidin-rhodamine according to the manufacturer's recommendations (Sigma).
  • the cells are then visualized with an Axiophot microscope (Zeiss, Oberkochen, Germany).
  • the RCC cells are incubated with mouse dlL-2 cDNA conjugated to mAb G250 in the presence of cytochalasin D for 1 hour at 4 ° C and 4 hours at 37 ° C.
  • the conjugates still bound to the cell surface were unhooked with a solution of RPMI-1640 pH2.2 containing 0.1 M glycine for 2 min at 4 ° C.
  • Two volumes of RPMI-1640 pH 9.0 are then added for 3 min and the cells are incubated in a normal culture medium.
  • 100 ⁇ l of cell culture supernatants were taken on different days after transfection.
  • cytokine in the medium was determined using the ELISA DuoSeT kit specific for 1TL-2 of mice (Ref. 80-3573-00) (detection threshold of 15 pg / ml) (Genzyme Diagnostics, Cambridge, MA, USA)
  • the G250 / BZQ / I12 conjugate is prepared by coupling between the G250 monoclonal antibody and a plasmid coding for murine interleukin 2 (mIl-2) by means of benzoquinone (BZQ) according to the coupling method previously described by Poncet and al. (1996, Gene Therapy 3: 731-738).
  • the BZQ dissolved in absolute ethanol at a concentration of 30 mg / ml is added to a solution of purified monoclonal antibody dissolved in PBS at a concentration of at least 2 mg / ml to give a final solution containing 3 mg / ml of BZQ. 1/10 of the final volume is then added in the form of potassium phosphate buffer 1M pH 6.0.
  • the activated monoclonal antibody is separated from the excess of BZQ by chromatography on a G25M column (Pharmacia) presaturated in 1% BSA in 0.15M NaCl, collected and then mixed with the plasmid DNA purified (10 times the amount of antibody).
  • the solution is mixed with 0.1 M carbonate buffer pH 8.7 and incubated for 48 hours at 4 ° C.
  • the mAb-DNA conjugate is concentrated by gel filtration on a FPLC Superose 6HR column (Pharmacia) to remove excess free antibodies capable of entering into competition with the DNA-antibody conjugate.
  • the collected fractions are dialyzed against PBS and concentrated using a Centricon 10 cartridge (Amicon, MA, USA).
  • the amounts of purified soluble conjugates are expressed as the amount of plasmid DNA initially used in the reaction.
  • Exotoxin A marketed by Sigma is added to the G250 / BZQ / I12 conjugate.
  • the conjugates G250 / BZQ / I12 and G250 / BZQ / 112+ ExoT are brought into contact with 10 5 cells of RCC lines in culture in a medium devoid of serum for 4 hours at 37 ° C. according to the protocol previously described. The cells are returned to culture in normal medium after washing. The production of Ti-2 is measured 10 days later using the DuoSeT ELISA kit (Ref. 80-3573-00, Genzyme Diagnostics).
  • Biotinylated / avidin / BZQ / PL / I12 consists of a tetravalent molecule of avidin (Av) which is first activated by benzoquinone according to the protocol previously described. Activated avidin binds poly-L-lysine molecules which are very affine molecules for DNA. The Avidin / BZQ / PL complex is brought into contact with the plasmid coding for mouse interleukin 2 (11-2). The complex is then associated with the monoclonal antibody G250 and / or with exotoxin A (ExoT), both of which are previously biotinylated.
  • ExoT exotoxin A
  • the various complexes are brought into contact with 10 5 cells of RCC lines in culture in a medium devoid of serum for 4 hours at 37 ° C. according to the protocol previously described.
  • the cells are returned to culture in normal medium after washing.
  • the dll-2 production is measured 10 days later using the DuoSeT ELISA kit (Ref. 80-3573-00, Genzyme Diagnostics).
  • the results are presented in Figure No. 2.
  • a certain production of mIl-2 is measured (127 pg / 10 6 cells, AvPL) certainly due to the non-specific attachment of the poly-L-lysine and / or avidin molecules on the cell surface.
  • EXAMPLE 4 Conjugate G250-biotinylated / neutravidin / histone H1 biotinylated / fusiogenic peptide of the hemotlutinin of Infl enz e (HA) biotinylated / CD4
  • FIG. 3 represents the flow cytometric analysis of human RCC cells carrying the Ag G250, collected 7 days after antifection of the cDNA coding for the human CD4 molecule and labeled with an anti-human CD4 mAb. About 20% of cells thus express this molecule.
  • the vector used included all of the molecules, G250, H 1, HA, cDNA.
  • the sequence of the HA peptide used is as follows: GLFEAIAGFIENGWEGMIDGGGCGSGSYTDIEMNRLGKG.
  • FIG. 4 represents the result of an antifection of human RCC cells carrying the Ag G250, collected 11 days after antifection of the cDNA coding for mouse interleukin-2.
  • the amount of IL-2 secreted by the RCCs brought into contact with the cDNA alone or coupled to neutravidine is 80 pg / 106 cells, 1200 pg / 106 cells for the RCCs brought into contact with a conjugate comprising G250 / Hl / cDNA and 3100 ⁇ g / 106 cells for RCCs brought into contact with a conjugate comprising G250 / Hl / HA / cDNA.
  • FIG. 5 represents the result of an antifection of human RCC cells carrying the Ag G250, collected 11 days after antifection of the cDNA coding for the pro-apoptotic molecule Bax human. Cell death was assessed by staining with Trypan blue.
  • the control cDNA used corresponds to the green fluorescent protein (GFP) gene.
  • GFP green fluorescent protein
  • the size of the tumors was then evaluated on day D5, D8, D 12 and D 19 after the injection the mice were sacrificed on day D 19.
  • a decrease in tumor growth lower than that noted in the control groups is observed in 6 out of 10 mice receiving the whole complex and 1 in 10 in the group treated with the antibody-free complex, and this at day 19 after the first injection (figure N ° 6).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Psychology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Psychiatry (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)

Abstract

La présente invention concerne les techniques relatives à l'introduction d'acide nucléique étranger dans des cellules. Plus particulièrement, la présente invention concerne un conjugué ADN/anticorps permettant l'expression efficace d'ADN étranger sous forme protéique dans des cellules cibles <i>in vivo</i> ou <i>in vitro</i>.

Description

Conjugué acide nucléique-anticorps pour délivrer un acide nucléique étranger dans les cellules
La thérapie génique a pour objet de corriger un défaut génétique par intervention sur l'ADN. Elle peut être réalisée selon deux approches distinctes : soit comme une correction du génotype par réparation de l'anomalie génique, soit par correction du phénotype par greffe d'une version normale du gène permettant ainsi de suppléer le gène défectueux toujours présent. La thérapie génique s'applique aussi bien au traitement des maladies génétiques constitutionnelles que acquises. Ainsi, un certains nombres de maladies génétiques constitutionnelles sont candidates à une thérapie génique ; on peut citer, entre autres, la mucoviscidose, la myopathie de Duchenne ou le déficit en adenosine désaminase (Cournoyer et al, 1991 , "Gène tranfer of adenosine deaminase into primitive human hemotopoetic progenitor cells", Human Gène Thérapie, 2 : 203). La thérapie génique s'applique aussi à la lutte contre les maladies acquises dont les maladies candidates sont les cancers et les maladies infectieuses et virales (SIDA, hépatites). Dans la thérapie des cancers, les premières expériences effectuées avec les lymphocytes infiltrant les tumeurs (TIL : tumor infiltrating lymphocytes) ont démontré que des cellules pouvaient être armées avec des facteurs cytotoxiques (TNF, tumor necrosis factor) (Rosenberg et al. 1990, "Gène transfer into humans : immunotherapy of patients with advanced melanoma using infiltrating lymphocytes modified by retroviral gène transduction" N. Eng. J. Med. 323 :570- 578) ou être dopées avec des cytokines ; ainsi Golumbek et ses collaborateurs ont obtenu un succès thérapeutique sur des cancers rénaux de souris traités par des cellules produisant de l'interleukine 4 (Golumbek et al. 1991, Science 254 .713-716).
La thérapie génique effectuée sur les cellules somatiques d'un individu affecté d'un défaut génétique pose de multiples problèmes méthodologiques, le gène réparé ou greffé devant être exprimé normalement de façon régulière, c'est-à-dire au bon endroit, au bon moment et en quantité normale adaptée aux besoins ; la correction ou la greffe devant être indéfiniment stable.
Parmi les stratégies de transfert génique somatique ex vivo développées pour tenter de cibler spécifiquement et efficacement les cellules d'intérêt, il convient de citer : (i) les stratégies utilisant les méthodes physiques telles que la co-précipitation par le phosphate de calcium, l'électroporation, la micro-injection, la fusion de protoplastes, la biolistique ou les véhicules artificiels tels les liposomes et les ligands de récepteur par exemple ; (ii) et celles faisant appel aux vecteurs viraux (rétrovirus, adénovirus, AAV, HSV) (Ragot et al., 1993 Nature 361 : 647-650). Parmi les stratégies de transfert génique somatique in vivo développées peuvent être citées les véhicules cellulaires ayant préalablement reçus le gène ex vivo (cellules souches hématopoïétiques, lymphocytes, hépatocytes, cellules endothéliales, cellules épithéliales), les vecteurs viraux, l'injection intra-musculaire d'ADN nu et les véhicules artificiels.
Une des difficultés actuelles de la thérapie génique porte sur le ciblage in vivo des cellules à modifier. Actuellement, seul un petit nombre d'approches virales ou synthétiques ont été développées ; elles exploitent essentiellement les interactions ligand-récepteur (Michael et Curiel, 1994, « Stratégies to achieved targeted gène delivery via the receptor-mediated endocytosis pathway », Gène Therapy 1:223).
Différentes approches utilisant un vecteur viral ont ainsi été expériementées. Une première approche a consisté à ponter via la streptavidine, des anticorps biotinylés dirigés contre une structure cellulaire cible à des anticorps également biotinylés dirigés contre les structures de l'enveloppe rétrovirale et donc associés à un rétrovirus (Roux et al, 1989, Proc. Natl. Acad. Sci. USA 86 :9079-9083). Une fois liés aux cellules, les vecteurs rétroviraux sont internalisés par endocytose et sont capables d'échapper au système lysosome- endosome par un mécanisme de transfert de l'endosome vers le cytoplasme, évitant ainsi la dégradation de l'ADN transfecté et permettant l'entrée dudit ADN dans le noyau cellulaire. Cette approche a révélé une absence de spécificité du ciblage in vivo due à l'accrochage non spécifique des vecteurs rétroviraux à la surface cellulaire. Une deuxième approche virale a été développée qui utilise des virus ectopiques modifiés pour porter une protéine-ligand d'enveloppe chimérique à leur surface (Kasahara et al 1987 « Receptor-mediated in vitro gène transformation by a soluble DNA carrier System » J. Biol. Chem. 262 :4429). Enfin, il convient de citer l'approche développée par Neda et al. ( 1991 « Chemical modification of an ecotropic murine leukemia virus results in redirection of its target cell specificity » J. Biol. Chem. 266 : 14143).
Des approches synthétiques non virales ont également été expérimentées. Elles sont réalisées par la formation d'un complexe entre un ligand capable de se lier à la surface de la cellule cible et avec l'ADN à transférer. Il convient de citer tout d'abord les approches utilisant les véhicules artificiels tels les liposomes recouverts d'anticorps (immunoliposomes); ce type d'approche ne s'est pas, à présent, avérée satisfaisante car les immunoliposomes présentent une activité non spécifique vraisemblablement suite à l'accrochage non spécifique des liposomes aux membranes cellulaires. Il est également apparu que l'efficacité de transfert de gène contenu dans les liposomes reste modeste bien qu'il est supposé que la dégradation associée aux endosomes est évitée par l'utilisation des liposomes. Des approches alternatives utilisant des composés qui retiennent l'aptitude à interagir spécifiquement avec des récepteurs cellulaires de surface ont été développées. En effet, différents récepteurs naturellement présents à la surface des cellules ont la propriété de s'internaliser dans la cellule après fixation sur leur ligand ; ainsi la transférine, dont le récepteur a une répartition tissulaire ubiquitaire, a fait l'objet de nombreuses expériences (transférinfection) (Zenke et al, 1990, Proc.Natl.Acad.Sci. USA, 87 .3655-3659). Une autre alternative a consisté à cibler des asialoglycoprotéines présentent à la surface des hépatocytes (Wu et al, 1991, J. Biol. Chem. 266 : 14338- 14342). Enfin une autre technique appelée « antifection » développée par l'un des inventeurs de la présente invention (Hirsch et al. « Antifection : a new method to targeted gène transfection » 1993, Transpl. Proc. 25 : 138) a été décrite ; cette technique consiste à préparer un vecteur anticorps-ADN qui est délivré à une population cellulaire sélectionnée (Brevet US 5 428 132).
Outre les problèmes de ciblage du vecteur, une autre difficulté à surmonter dans les expériences de thérapie génique se situe dans le transfert, à l'intérieur des cellules, de l'ADN à transfecter et de la protection de cet ADN contre les activités nucléasiques des compartiments cellulaires lysosomiaux afin d'obtenir une expression conséquente du transgène.
Différentes approches ont été développées pour répondre à ce problème ; une efficacité accrue de l'expression du transgène a ainsi pu être obtenue en utilisant des agents lysosomotropiques tels la chloroquine (Zenke et al, 1990, Proc. Natl. Acad. Sci. USA 87 :3655- 3659 ; Luthman et al, 1983, Nucleic Acids Res. 1 1 : 1295) ; de tels agents réduisent la destruction lysosomiale de l'ADN en augmentant le pH des endosomes et en inhibant le transfert du matériel internalisé vers les lysosomes. Une autre approche consiste à utiliser des domaines protéiques ayant une activité de translocation cellulaire. La propriété de ces domaines est mise à profit pour faciliter l'échappement des acides nucléiques transfectés hors des vésicules endosomiales afin d'augmenter l'efficacité du transfert d'acide nucléique vers le noyau (Fominaya et Wels, 1995, J. Biol. Chem. 271 : 10560). La demande internationale de brevet WO 94/04696 décrit un système de transfert d'acide nucléique composé d'un domaine de translocation provenant de l'exotoxine A de Pseudomonas aeruginosa ; l'efficacité de transfection et la spécificité d'un tel système de transfert apparaît très bas. Une autre demande internationale de brevet WO 96/ 13599 décrit également un système de transfert d'acide nucléique composé d'une protéine monomérique recombinante comportant différents domaines fonctionnels dont un domaine de translocation dérivés de toxines, de préférence bactériennes, telle que l'exotoxine A.
Les stratégies de thérapie génique préalablement évoquées nécessitent des préparations laborieuses ou du matériel sophistiqué et peuvent présentées un certain risque biologique. Il existe à l'heure actuelle un besoin de développer un système de transfert simple et efficace d'acides nucléiques qui permette d'introduire spécifiquement dans les cellules cibles des acides nucléiques exprimés efficacement. A ce titre, la technique d'antifection (brevet US 5 428 132), basée sur l'utilisation d'anticorps pour cibler des séquences d'ADN d'intérêt dans des cellules cibles, est extrêmement prometteuse car les anticorps constituent un outil extrêmement efficace pour diriger le vecteur de transfert vers un type cellulaire particulier du fait de la grand affinité et de la grande spécificité des anticorps; de plus la multitude d'anticorps monoclonaux et polyclonaux disponibles dirigés contre les nombreuses structures cellulaires tumorales ou normales donne à cette technologie un réel intérêt. Néanmoins la technique d'antifection décrite dans le brevet US 5 428 132 bien qu'elle permette un ciblage efficace, ne permet pas d'obtenir une expression conséquente du transgène transfecté.
C'est donc l'objet de la présente invention d'améliorer le taux d'expression du transgène transfecté dans les cellules cibles en utilisant la technologie d'antifection. Ces améliorations portent sur l'adjonction d'un domaine de translocation au complexe ADN-anticorps et/ ou à l'utilisation de protéine de liaison à l'ADN pour coupler de manière non covalente l'ADN au complexe et/ou pour augmenter l'efficacité du transfert et/ ou à l'adjonction d'un peptide clivable. Ces améliorations permettent de manière spectaculaire et inattendue d'augmenter de 2 à 10 fois le taux d'expression du transgène dans la cellule cible.
La présente invention concerne donc un conjugué pour le transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce qu'il comprend une molécule d'acide nucléique, un domaine de translocation et un anticorps spécifique d'un antigène de surface de ladite cellule, tel que ledit conjugué est transfecté efficacement dans ladite cellule.
Selon un premier mode de réalisation de l'invention (A) , le conjugué selon l'invention est caractérisé en ce que lesdits molécule d'acide nucléique, domaine de translocation et anticorps sont conjugués au moyen d'au moins un agent de pontage.
Selon un mode préféré de réalisation (A), le conjugué se caractérise en ce qu'il comprend en outre un peptide clivable par au moins une enzyme glycolytique et/ou protéolytique, ledit anticorps étant lié audit domaine de translocation via ledit peptide clivable. Dans ce conjugué, l'anticorps et ledit peptide clivable peuvent être liés soit (i) de manière covalente via un agent de pontage sélectionné de préférence dans le groupe composé de la benzoquinone, de l'EDC, de l'APDP ; soit (ii) à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent et qui est sélectionné de préférence dans le groupe composé de la biotine, la benzoquinone, de l'EDC, de l'APDP. Le domaine de translocation de ce composé est lié audit peptide clivable par une liaison chimique covalente. On entend désigner par liaison chimique covalente de préférence une liaison de type peptidique ; selon un mode particulier de réalisation le peptide correspondant au domaine de translocation lié au peptide clivable est obtenu par synthèse chimique.
Dans ce mode de réalisation le domaine de translocation peut être lié à une molécule d'acide nucléique soit : i) au moyen d'un agent de pontage qui est de préférence l'APDP ; selon ce mode de réalisation un mode encore plus préféré de réalisation du conjugué de l'invention se caractérise en ce que ledit anticorps est lié audit peptide clivable par une liaison covalente au moyen dudit agent de pontage EDC, ledit peptide clivable étant lié audit domaine de translocation par une liaison covalente au moyen d'une liaison chimique, ledit domaine de translocation étant lié audit acide nucléique par une liaison covalente au moyen dudit agent de pontage APDP. ii) via une molécule de liaison aux acides nucléiques, ladite molécule de liaison aux acides nucléiques étant liée audit domaine de translocation par une liaison covalente au moyen d'un agent de pontage qui est de préférence l'APDP. Selon ce mode de réalisation, un mode de réalisation encore plus préféré consiste en ce que ledit anticorps est lié audit peptide clivable par une liaison covalente au moyen dudit agent de pontage EDC, ledit peptide clivable étant lié audit domaine de translocation par une liaison covalente au moyen d'une liaison chimique, ledit domaine de translocation étant lié à ladite molécule de liaison aux acides nucléiques par une liaison covalente au moyen dudit agent de pontage APDP, ladite molécule de liaison aux acides nucléiques liant ledit acide nucléique par une liaison non- covalente.
Selon un deuxième mode de réalisation (B), l'invention concerne un conjugué caractérisé en ce qu'il comprend en outre une molécule de liaison aux acides nucléiques, tel que ledit domaine de translocation, ledit anticorps et ladite molécule de liaison aux acides nucléiques sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent, ladite molécule de liaison aux acides nucléiques étant liée à ladite molécule d'acide nucléique.
Selon un autre mode de réalisation (B), l'invention concerne un conjugué caractérisé en ce qu'il comprend en outre une molécule de liaison aux acides nucléiques et un peptide clivable par au moins une enzyme glycolytique et/ou protéolytique, tel que ledit domaine de translocation, ledit anticorps et ledit peptide clivable sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent, ladite molécule de liaison aux acides nucléiques étant liée à ladite molécule d'acide nucléique, ladite molécule de liaison aux acides nucléiques étant liée audit peptide clivable et à ladite molécule d'acide nucléique. Selon un autre aspect (C), l'invention concerne un conjugué pour le transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce qu'il comprend une molécule d'acide nucléique, un anticorps spécifique d'un antigène de surface de cellule et une molécule de liaison aux acides nucléiques tel que ledit conjugué est transfecté efficacement dans ladite cellule ; ce conjugué se caractérise en ce que ladite molécule d'acide nucléique, ledit anticorps et ladite molécule de liaison aux acides nucléiques sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent, ladite molécule de liaison aux acides nucléiques étant liée à ladite molécule d'acide nucléique.
Selon un mode de réalisation (C) préféré le conjugué précédent se caractérise en ce qu'il comprend en outre un peptide clivable par au moins une enzyme glycolytique et/ ou protéolytique, ledit anticorps étant lié à ladite molécule de liaison aux acides nucléiques via ledit peptide clivable ; dans ce conjugué, ledit anticorps et ledit peptide clivable sont liés soit (i) de manière covalente via un agent de pontage sélectionné de préférence dans le groupe composé de la benzoquinone, de l'EDC, de l'APDP, ou soit (ii) via une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent et sélectionné de préférence dans le groupe composé de la biotine, la benzoquinone, de l'EDC, de l'APDP. Dans ce conjugué, ledit peptide clivable est lié à ladite molécule de liaison aux acides nucléiques au moyen d'un agent de pontage qui est de préférence APDP, ladite molécule de liaison aux acides nucléiques liant ledit acide nucléique par une liaison non-covalente.
Selon un mode de réalisation (D), l'invention porte sur un conjugué pour le transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce qu'il comprend une molécule d'acide nucléique, un anticorps spécifique d'un antigène de surface de cellule et un peptide clivable par au moins une enzyme glycolytique et/ ou protéolytique tel que ledit conjugué est transfecté efficacement dans ladite cellule. Dans ce conjugué, ledit anticorps et ledit peptide clivable sont liés soit (i) de manière covalente via un agent de pontage sélectionné de préférence dans le groupe composé de la benzoquinone, de l'EDC, de l'APDP, soit (ii) à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent sélectionné de préférence dans le groupe composé de la biotine, la benzoquinone, de l'EDC, de l'APDP. Dans ce conjugué, ledit peptide clivable est lié audit acide nucléique soit (i) par une liaison covalente au moyen d'un agent de pontage qui est de préférence l'APDP, soit (ii) via une molécule de liaison aux acides nucléiques, ladite molécule de liaison aux acides nucléiques étant liée audit peptide clivable par une liaison covalente au moyen d'un agent de pontage qui est de préférence l'APDP. Selon un mode particulièrement préféré de l'invention ledit conjugué comprend en outre un domaine de translocation qui est éventuellement lié de manière covalente au moyen d'un agent de pontage à ladite molécule d'acide nucléique et/ou à ladite molécule de liaison aux acides nucléiques. Selon un autre mode de réalisation, ledit domaine de translocation est présent au sein du conjugué sans y être lié covalemment.
On entend désigner par peptide clivable, un peptide comportant une ou plusieurs séquences clivables par des enzymes glycolytiques et/ou protéolytiques de préférence endosomiales et/ou lysosomiales telles par exemple les cathepsines et la trypsine. Selon un mode particulier de réalisation, le peptide clivable de l'invention comporte au moins un site cathepsine B et/ou un site cathepsine D. De manière préférée, le peptide clivable comporte un site cathepsine B et un site cathepsine D séparés par au moins un acide aminé, de préférence par au moins deux acides aminés tel par exemple la glycine ; le peptide clivable de l'invention présente la séquence : X1-X2-F-Y-G-G-F-R- dans laquelle G représente la glycine, Xi et X2 des acides aminés permettant l'accrochage ou liaison chimique de l'anticorps telle par exemple deux lysines (K). F-Y représente le dipeptide composé des acides aminés phénylalanine-tyrosine qui est clivable par la cathepsine D ; cette séquence peut éventuellement être remplacée par L-Y (leucine- tyrosine), Y-L (tyrosine-leucine) ou F-F (phénylalanine-phénylalanine) . FR représente le dipeptide composé des acides aminés phénylalanine- arginine qui est clivable par la cathepsine B.
L'agent de pontage permet de lier de manière chimique (covalente), électrostatique, non-covalente tout ou partie des composants du conjugué. Parmi les agents de pontage susceptibles d'être utilisés dans la présente invention, il convient de citer la benzoquinone, la carbodiimide et plus particulièrement l'EDC ( l-Ethyl-3[3- Diméthylaminopropyl]carbodiimide hydrochloride), la dimaléimide, l'acide dithio-bis-nitrobenzoïque (DTNB), le N-succinimidyl-S-acétyl- thioacétate (SATA), les agents pontants possédant un ou plusieurs groupements phénylazide réagissant avec les ultraviolets (U.V.) et de préférence le N-[-4-(azidosalicylamino)butyl]-3'-(2'- pyridyldithio)propionamide (APDP), le N-succinimidyl-3-(2- pyridyldithio)propionate (SPDP), le 6-hydrazinonicotimide (HYNIC), la biotine; la benzoquinone, l'EDC, l'APDP et la biotine étant les agents de coupage préféremment utilisés. Par "molécule de type avidine", on entend désigner toutes molécules se liant avec une forte affinité à la biotine, et de préférence la molécule tétravalente d'avidine, la streptavidine, la neutravidine.
Selon un mode préféré de réalisation de l'invention, le conjugué précédemment décrit selon les différents modes de réalisation de l'invention est caractérisé en ce que ledit agent de pontage est sélectionné dans le groupe composé de la benzoquinone, de la biotine, des carbodiimides, des agents pontants présentant au moins un groupement phénylazide réagissant aux ultra- violets (UN). Selon un mode préféré, l'agent de pontage est sélectionné dans le groupe composé de la benzoquinone, de la biotine, de l'EDC, l'APDP.
Selon un autre mode préféré de réalisation de l'invention, le conjugué précédemment décrit selon le deuxième mode de réalisation (B) est caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation et ledit anticorps à la molécule de type avidine est la biotine et, l'agent de pontage qui lie ladite molécule de liaison aux acides nucléiques à la molécule de type avidine est la benzoquinone. Selon un autre mode préféré de réalisation de l'invention, le conjugué précédemment décrit selon le deuxième mode de réalisation (B) est caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation, ledit anticorps et ladite molécule de liaison aux acides nucléiques est la biotine. Selon un mode particulier de réalisation de l'invention, le conjugué précédemment décrit selon le deuxième mode de réalisation (B) se caractérise en ce que le domaine de translocation et la molécule de liaison aux acides nucléiques forment une protéine de fusion. Par protéine de fusion, on entend désigner une protéine qui renferme des domaines protéiques provenant de protéines différentes et codées par une même molécule d'ADN obtenue par la technologie de l'ADN recombinant. Cette protéine de fusion et l'anticorps sont liés à une molécule de type avidine aux moyens d'agents de pontage qui sont identiques ou différents, ladite protéine de fusion étant liée à ladite molécule d'acide nucléique par son domaine de liaison aux acides nucléiques.
Selon un autre mode préféré de réalisation de l'invention, le conjugué précédemment décrit selon le deuxième mode de réalisation (B) et qui comprend un peptide clivable est caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation et ledit anticorps à la molécule de type avidine est la biotine et, l'agent de pontage qui lie ledit peptide clivable à la molécule de type avidine est la benzoquinone. Selon un autre mode préféré de réalisation de l'invention, le conjugué précédemment décrit selon le deuxième mode de réalisation (B) est caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation, ledit anticorps et ledit peptide clivable est la biotine.
Selon un autre mode préféré de réalisation, le conjugué précédemment décrit selon un autre mode de réalisation (C) de l'invention est caractérisé en ce que en ce que l'agent de pontage qui lie ledit anticorps à la molécule de type avidine est la biotine, et l'agent de pontage qui lie ladite molécule de liaison aux acides nucléiques à la molécule de type avidine est la benzoquinone. Selon un autre mode préféré de réalisation, le conjugué précédemment décrit est caractérisé en ce que ledit agent de pontage est la biotine.
Le conjugué selon l'invention se caractérise en ce que la molécule d'acide nucléique du conjugué est choisie parmi l'ADN simple brin, l'ADN double brin, l'ARN simple brin, TARN double brin, l'hybride ARN/ADN. Selon un mode préféré de réalisation, ladite molécule d'acide nucléique est de l'ADN double brin ou de l'ARN simple brin qui code pour un produit protéique d'intérêt qui s'exprime efficacement dans ladite cellule. Les produits protéiques d'intérêt sont choisis dans un groupe composé des interleukines, des cytokines, des lymphokines, des chémokines, des facteurs de croissance, des protéines tueuses, des protéines qui permettent de lever la chimiorésistance et des enzymes de restriction ; les interleukines, cytokines et lymphokines sont choisies dans un groupe composé de préférence des interleukines II- 1, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9, 11- 10, 11- 11, 11- 12, 11- 13, 11- 14, II- 15, 11- 16, 11- 17 et 11- 18, des interférons α-IFN, β-IFN et γ-IFN ; de préférence le produit protéique d'intérêt est l'interleukine 2. Les facteurs de croissance sont de préférence les facteurs stimulateurs des colonies (colony stimulating factors) G-CSF, GM-CSF, M-CSF) et l'érythropoïétine, il convient également de citer les facteurs de croissance qui interagissent en les inhibant, avec les facteurs de transcription nucléaires tels NF-KB ; ces facteurs de croissance ont fait l'objet de la demande de brevet FR 98 14858. Les protéines tueuses sont choisies parmi le groupe composé des kinases, et de préférence la thymidine kinase, et des protéines pro-apoptotiques ; on entend désigner par protéines pro-apoptotiques les protéines qui interviennent dans l'apoptose ou promeuvent l'apoptose. Parmi les protéines pro- apoptotiques, il convient de citer les protéines de la famille de Bcl2, et plus particulièrement les protéines BIK (Bcl2-interacting protein), BAX (Oltvai et al 1993, Cell 74 :609-619), BAK (Chittenden et al. 1995, Nature 374 : 733-736 ; Kiefer et al 1995, Nature 374 : 736-739) et BID (BH3-interacting domain death agonist) (Wang et al. 1996, Gènes Dev. 10 : 2859-2869); de préférence le produit protéique d'intérêt est la protéine BAX. Parmi les protéines pro-apoptotiques, il convient également de citer les caspases, la protéine AIF (apoptosis-inducing factor) (Susin et al 1999, Nature 397 : 441-446) et les protéines de la famille du facteur nécrosant des tumeurs (TNF, tumor necrosing factor), et plus particulièrement le TNF lui-même (Old 1985, Science 230 : 630-632), la protéine FASL (FAS-ligand) (Takahashi et al 1994, Int. Immun. 6 : 1567- 1574).
Selon un autre mode de réalisation de l'invention, la molécule d'acide nucléique est un ARN antisens.
Selon l'invention, le conjugué selon l'invention se caractérise en ce que la molécule de liaison aux acides nucléiques lie ladite molécule d'acide nucléique par une liaison non-covalente. La molécule de liaison aux acides nucléiques est soit un polymère polycationique soit une protéine de liaison aux acides nucléiques : (i) le polymère polycationique est choisi parmi la poly-L-lysine, la poly-D-lysine, le polyéthylènimine, la polyamidoamine, la polyamine et toutes polycations libres d'origine chimique ; de préférence, le polymère polycationique est la poly-L-lysine ; (ii) la protéine de liaison aux acides nucléiques est choisie parmi les histones, la protamine, l'ornithine, la putrescine, la spermidine, la spermine, les facteurs de transcription, les protéines homéobox ; de préférence, la protéine de liaison aux acides nucléiques est une protamine et/ou une histone.
Lors de la préparation du conjugué selon l'invention, qui comprend un domaine de liaison aux acides nucléiques tels que la protamine et/ ou les histones, le domaine de liaison est de préférence ajouté en excès. Ce domaine de liaison est ensuite présent en excès dans le conjugué. Par le terme "en excès", on entend désigner que le domaine de liaison aux acides nucléiques et les autres composants du conjugué ne sont pas présents en quantité stoechiométrique.
La présence en large excès de molécule de liaison aux acides nucléiques tels que la protamine ou les histones permet et favorise le compactage de la molécule d'acides nucléiques, permettant ainsi une transfection efficace de la molécule d'acide nucléique dans la cellule et plus particulièrement une translocation et un ciblage de la molécule d'acide nucléique dans le noyau de la cellule. Par ailleurs, le compactage de la molécule d'acide nucléique de l'invention par une molécule de liaison aux acides nucléiques telle que la protamine ou les histones permet de protéger ladite molécule d'acides nucléiques des dégradations par les nucléases cellulaires et extracellulaires. L'utilisation de la protamine et des histones pour favoriser la transfection et l'expression de molécule d'acide nucléique est depuis longtemps connue de l'homme de l'art (Wienhues et al. ( 1987) et Dubes et Wegrzyn ( 1978)).
Le conjugué selon l'invention se caractérise en ce que ledit domaine de translocation dérive d'une toxine bactérienne ou virale sans contenir la partie de la toxine qui lui confère son effet toxique. La toxine bactérienne ou virale est choisie parmi: l'exotoxine A de Pseudomonas, la toxine diphtérique, la toxine cholérique, la toxine anthrox de Bacillus, la toxine Pertussis, la toxine Shiga de Shigella, la toxine apparentée à la toxine Shiga, les toxines d 'Escherichia coli, la colicine A, la d-endotoxine, ltiémagglutinine ά 'Haemophilus A. Dans un mode préféré de réalisation, le domaine de translocation est l'exotoxine A de Pseudomonas aeruginosa. Dans un autre mode préféré de réalisation, le domaine de translocation est le fragment B non toxique de la toxine Shiga de Shigella.
Dans un autre mode préféré de réalisation, le domaine de translocation est un fragment de lTiémagglutinine d 'Haemophilus A. Ce fragment de l'hémaglutinine de l'influenza A (HA) peut être modifié à son extrémité C-terminale par l'adjonction d'une cystéine ou par l'adjonction d'une courte séquence peptidique se terminant par une cystéine afin de faire réagir avec cette cystéine l'agent de couplage, qui est de préférence l'APDP.
Le conjugué selon l'invention est caractérisé en ce que l'anticorps est un anticorps monoclonal ou un anticorps polyclonal spécifique d'un antigène de surface membranaire. Selon un des modes préférés de réalisation de l'invention, l'anticorps se lie spécifiquement à l'antigène G250 caractéristique des carcinomes des cellules rénales humaines (RCC). Selon un mode préféré de réalisation de l'invention, l'anticorps de l'invention est l'anticorps G250 décrit par Oosterwijk et al. ( 1986, Int. J. Cancer. 38 :489-494) et qui a fait l'objet de la demande de brevet internationale WO 88/08854. Selon un autre mode préféré de réalisation, l'anticorps selon la présente invention est un anticorps monoclonal 5C5 obtenu par ltiybridome 5C5 déposé à la CNCM sous le N°I-2184. L'anticorps selon l'invention est soit sous la forme d'un anticorps simple chaîne, soit sous la forme d'un anticorps chimérique ou d'un anticorps humanisé. Selon un mode particulier de réalisation, l'anticorps est un fragment d'anticorps, de préférence un fragment F(ab')2, Fab' ou Fv.
Le conjugué ADN-anticorps de la présente invention peut être administré selon diverses voies connues par les personnes de l'art. Par exemple, il peut être administré par voie intraveineuse, par voie intrapéritonéale, par voie intramusculaire, par voie sous-cutanée, par voie intra-tumorale, par voie anale ou rectale.
Enfin, l'invention porte sur un conjugué tel que décrit précédemment à titre de médicament. Plus particulièrement, l'invention porte sur un conjugué tel que décrit précédemment à titre de médicament pour la thérapie génique et plus précisément pour le traitement des maladies génétiques acquises ou constitutionnelles. Selon l'invention, les maladies acquises sont sélectionnées dans le groupe composé des cancers et des maladies infectieuses. Parmi les cancers selon l'invention, on peut citer, le carcinome des cellules rénales (RCC), le mélanome, la leucémie myéloïde chronique, la leucémie myéloïde aiguë, le lymphome de Burkitt, le cancer pulmonaire à petites cellules, le neuroblastome, le rétinoblastome, le glioblastome, l'hépatocarcinome, rhabdomyosarcome, l'adénocarcinome gastrique, le carcinome colique, le cancer ovarien, le carcinome mammaire, le cancer de l'utérus, le carcinome du testicule. De préférence, l'invention porte sur un conjugué tel que décrit précédemment à titre de médicament pour le traitement du carcinome des cellules rénales (RCC). Parmi les maladies infectieuses on peut citer de préférence le SIDA et les hépatites.
Selon l'invention, les maladies constitutionnelles sont sélectionnées de préférence dans le groupe composé des myopathies, et plus particulièrement de la myopathie de Duchenne (DM), la myopathie de Steinert et l'amyotrophie spinale (SMA), la mucoviscidose, la sclérose latérale amyotrophique (SLA), l'hémophilie, les hémoglobinopathies, les maladies neurodégénératives telles la maladie d'Alzheimer, la maladie de Parkinson et la chorée de Huntington, la maladie de Gaucher, la maladie de Lesch-Nyhan, les déficiences immunitaires liées à un déficit en adenosine désaminase ou en purine nucléoside phosphorylase, l'emphysème pulmonaire, l'hypercholestérolémie.
Il est évident que le composé selon l'invention a de multiples applications selon la nature de la séquence d'ADN et de la nature de l'anticorps sélectionnés. Ces multiples applications sont facilement envisageables par une personne de l'art et ne peuvent être mentionnées de manière exhaustive.
L'invention porte également sur une composition pharmaceutique notamment pour le traitement des maladies par thérapie génique qui comprend une quantité thérapeutiquement efficace d'un conjugué selon l'invention et un véhicule pharmaceutiquement acceptable.
La présente invention porte également sur un procédé de transfert d'une molécule d'acide nucléique dans une cellule, caractérisé en ce qu'on met en contact avec ladite cellule le conjugué selon l'invention de façon à transfecter ladite cellule avec ledit conjugué. De préférence, la molécule d'acide nucléique code pour un produit protéique d'intérêt qui s'exprime efficacement dans ladite cellule transfectée.
Selon un mode préféré de réalisation de l'invention, la molécule d'acide nucléique est de l'ADN double brin codant pour un produit protéique d'intérêt. La présente invention fournit donc un système efficace qui permet le transit de la molécule d'ADN double brin à travers la membrane cellulaire cytoplasmique, le transport vers le noyau, l'entrée dans le noyau et le maintien à l'état fonctionnel de cette molécule dans le noyau. La persistance de l'expression du produit protéique codé par la molécule d'ADN est obtenue soit par l'intégration stable de la molécule d'ADN dans l'ADN chromosomique de la cellule cible, soit par maintien de la molécule d'ADN sous la forme d'un réplicon extrachromosomique. C'est donc un des objets de la présente invention de fournir un procédé caractérisé en ce que ladite molécule d'acide nucléique se maintient sous la forme d'un réplicon extrachromosomique dans ladite cellule. Selon un autre mode de réalisation, la présente invention fournit un procédé caractérisé en ce que ladite molécule d'acide nucléique s'intègre dans l'ADN génomique et/ ou mitochondrial de ladite cellule transfectée.
La cellule ciblée par le composé de la présente invention est une cellule procaryote ou eucaryote, animale ou végétale. Selon un mode de réalisation préféré, l'invention concerne un procédé caractérisé en ce que ladite cellule est une cellule eucaryote, de préférence une cellule de mammifère, et de manière préférée une cellule humaine.
Enfin, l'invention concerne les cellules transfectées par le conjugué selon l'invention ; la cellule étant de préférence une cellule eucaryote, plus particulièrement de mammifère, et de manière préférée humaine.
D'autres caractéristiques et avantages de la présente invention seront mieux mis en évidence à la lecture des exemples suivants.
Dans ces exemples, on se référera aux figures suivantes :
Figure N° l : Production d'interleukine 2 murine par des lignées
RCC antifectées par le conjugué G250/BZQ/I12 (G250=DNA) en présence ou non d'exotoxine A.
Figure N°2 : Production d'interleukine 2 murine par des lignées RCC antifectées par les conjugués G250-
Biotinylé/avidine/BZQ/PL/I12 (G250AvPL) et (G250+ExoT)-
Biotinylé/avidine/BZQ/PL/ιl2 (G250AvPLTox) ; contrôle négatif : avidine/BZQ/PL/I12 (AvPL). Figure 3 : Expression de la molécule CD4 à la surface de cellules de cancer de rein humain après antifection in vitro (% de cellules positives)
Figure 4 : Mesure de la sécrétion d'IL-2 de souris 1 1 jours après antifection de cellules de cancer de rein humain in vitro
Figure 5 : Induction de la mort de cellules de rein humain après antifection in vitro par l'ADNc de Bax humain.
Figure 6 : Mesure du volume de tumeurs obtenues aux jours J=7 et J= 19 après la greffe tumorale après antifection in vivo de l'ADNc de Bax murin avec une injection (30 μg d'ADN) au jour J=7.
Figure 7 : Infiltration de tumeurs par des cellules CD 16+ après antifection de l'ADNc de Bax murin
EXEMPLES
EXEMPLE 1 : MATERIELS ET METHODES (voir Dϋrrbach et al, The antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gène transfer to human renal-cell- carcinoma in vitro, Cancer Gène Therapy, Sous Presse)
1.1. Cellules
Les lignées cellulaires de carcinome rénal utilisées sont : IGR/RCC- 17 (HIEG), IGR/RCC-40 (ROB), IGR/RCC-47 (FRAP), IGR/RCC-58 (MOJ) qui dérivent de trois tumeurs primaires (- 17, - 40 et -47) et d'une métastase surrénale (-58), de quatre patients atteints de RCC au stade métastatique. Selon les critères histologiques, le RCC- 17, -40 et -58 correspondent à des carcinomes à cellules claires et le RCC-47 à une forme particulière de carcinome à cellules claires avec des foci papillaires typiques hautement tumorigéniques chez la souris SCID (Angevin et al. ( 1997) Proc. Am. Asso. Cancer Res. 38 : 238 ; Goulkhova et al. ( 1998) Gènes Chrom. Cancer 22 : 171- 178). L'établissement de la culture in vitro ainsi que la caractérisation des lignées cellulaires de RCC ont été réalisées comme précédemment décrit (Angevin et al ( 1997 Int. J. Cancer 72 :434-440). Les cellules sont cultivées à 37°C dans une atmosphère comportant 5% de CO2 dans du milieu MEM modifié par Dulbecco avec du Glutamax- 1 (Gibco BRL, Paisley, Scotland) supplémenté avec 10% de sérum de veau fétal (Seromed, Berlin, Allemagne), 5% d'acides aminés non-essentiels, 10 mM de pyruvate de sodium (Gibco BRL) et un mélange de pénicilline /streptomycine ( lOmg/ml) (Seromed).
1.2. Immunophénotypage de l'antigène G250
L'expression de l'antigène G250 associé aux tumeurs RCC a été directement testée par immunomarquage indirect en utilisant l'anticorps monoclonal IgGl G250 (mAb G250) de souris précédemment décrit (Oosterwijk et al, 1986, Int. J. Cancer. 38 :489-494). Une suspension de 5.105 cellules, obtenues par trypsination, a été lavée deux fois dans du milieu de culture des RCC ; les cellules sont ensuite incubées avec le mAb G250, lavées 3 fois dans du PBS (Phosphate-buffered saline), puis incubées avec un fragment F(ab')2 d'anticorps IgG de chèvre anti-souris marqué au FITC. L'anticorps monoclonal NKTA ayant le même isotype (IgGl dirigé contre un déterminant clonotypique du TCRα/β) (fourni gracieusement par le Docteur Thierry Hercend, France) a été utilisé comme contrôle négatif. La cytométrie de flux a été réalisée avec un cytomètre FACScan (Becton-Dickinson, Sunnyvale, CA, USA) utilisant le logiciel Cellquest. 1.3. Expériences d'endocytose
L'anticorps G250 et l'apo-transferrine humaine chargée en fer (Sigma, St-Louis, MO, USA) ont été couplés respectivement avec de la fluorescéine isothiocyanate (Sigma) et avec du chlorure de sulfonyl Rhodamine B lissamine tel décrit précédemment (Maxfield et al, 1978, Cell 14 :805-810 ; Brandzaeg, 1973, Scan. J. Immunol. 2 : 273-290). Les protéines conjuguées sont séparées des fluorochromes libres par gel filtration sur une colonne de Sephadex G50 (Pharmacia, Uppsala, Sweden). La liaison spécifique des protéines couplées avec les récepteurs cellulaires de surface a été déterminée par des expériences de compétition utilisant une concentration 100 fois supérieure de protéines non- couplées. L'ADN plasmidique BMGnéo-mIL2 contenant le cDNA de l'interleukine 2 de souris (IL-2) sous le contrôle du promoteur inductible du gène de la métallothionéine (Karasuyama et Melchers, 1988, Eur. J. Immunol. 18 : 97- 104) ( 1 mg/ml) est incubé (vol/vol) avec EZ-link-Biotin-LC-ASA reconstitué dans l'éthanol (2 mg/ml) (Pierce, Rockford, IL, USA) et exposé pendant 15 min aux UV (365 nm) à 4°C. L'ADN plasmidique est ensuite précipité à l'éthanol (concentration finale 70%) pendant 30 min à - 20°C. L'efficacité du marquage est déterminée par un test ELISA sur des microplaques couvertes de poly-L-lysine en utilisant de la phosphatase-alkaline conjuguée à de la streptavidine. Pour tester l'endocytose, les cellules cultivées deux jours sur des lamelles sont lavées trois fois avec du RPMI- 1640 (Gibco BRL) contenant 1 mg/ml de sérum albumine bovine (BSA), puis sont incubées deux fois 15 min dans du RPMI- 1640 contenant 1 mg/ml de BSA à 37°C avec ou sans cytochalasine D (5 DM) (Sigma). Les cellules sont ensuite incubées une heure à 4°C avec de la transferrine conjuguée à la rhodamine (50 nM) et de l'anticorps monoclonal G250 marqué au FITC dans du RPMI- 1640 contenant 1 mg/ml de BSA avec ou sans cytochalasine D (5 DM) puis transférées à 37°C pendant des temps variables avec de la transferrine-Rhodamine seulement (puise) ou avec le mAb G250 marqué au FITC. Les cellules sont lavées trois fois avec du PBS froid, fixées 20 min avec une solution de paraformaldéhyde 4%, glutaraldéhyde 0.025% dans du PBS à 4°C et préparées pour l'analyse en épifluorescence. Pour analyser la distribution du conjugué mAb G250-plasmide par double marquage, les cellules ont été incubées en permanence comme décrit ci-dessus soit avec du mAb G250 marqué au FITC conjugué avec de l'ADN plasmidique biotinylé ou soit avec un mélange de mAb G250 marqué au FITC et de l'ADN plasmidique biotinylé, comme contrôle.
Après fixation, les cellules sont lavées deux fois dans du PBS, incubées 10 min avec 0, 1% de borohydrate de sodium dans du PBS (ICN, Costa Mesa, CA, USA) et puis 10 min avec du chlorure d'ammonium (50 mM dans du PBS) (Sigma). Selon les conditions expérimentales, les cellules sont soit directement analysées par immunofluorescence pour détecter le mAb G250 marqué au FITC ou soit perméabilisées avec du PBS contenant 0,05% de saponine ou 0, 1% de Triton X100 (ICN) puis marquées avec de la streptavidine conjuguée au Texas-red (20 mg/ml) (Pierce). Les filaments d'actine sont marqués avec de la phalloidine-rhodamine selon les recommandations du fabricant (Sigma). Les cellules sont ensuite visualisées avec un microscope Axiophot (Zeiss, Oberkochen, Germany).
1.4. Antifection et analyse de l'expression hétérologue
Pour la transfection, 3.105 cellules de RCC fraîchement trypsinées sont incubées pendant 30 min à 4°C avec des concentrations différentes de conjugués mAb-ADN selon l'invention dans 1 ml de RPMI- 1640 sans sérum. Les cellules sont ensuite incubées pendant 4 heures à 37°C dans 1 ml de RPMI- 1640 sans-sérum contenant 4.105 M de chloroquine (Sigma) et finalement resuspendues dans 2 ml de DMEM supplémenté avec du glutamax- 1 (Gibco BRL) et 10% de sérum de veau fétal. Dans des expériences séparées, les cellules de RCC sont incubées avec l'ADNc dlL-2 de souris conjugué au mAb G250 en présence de cytochalasine D pendant 1 heure à 4°C et 4 heures à 37°C. Les conjugués toujours liés à la surface cellulaire ont été décrochés avec une solution de RPMI- 1640 pH2,2 contenant de la glycine 0, 1 M pendant 2 min à 4°C. Deux volumes de RPMI- 1640 pH 9,0 sont ensuite ajoutés pendant 3 min et les cellules sont incubées dans un milieu de culture normal. Pour déterminer la production d'interleukine 2 murine, 100 μl de surnageants de culture de cellules ont été prélevés à des jours différents après la transfection. La production de cytokine dans le milieu a été déterminée en utilisant le kit ELISA DuoSeT spécifique de 1TL-2 de souris (Réf. 80-3573-00) (seuil de détection de 15 pg/ml) (Genzyme Diagnostics, Cambridge, MA, USA)
EXEMPLE 2 : Conjugués G250/BZQ/I12 et G250/BZQ/I12+ExoT
2.1. Préparation du conjugué G250/BZQ/I12
Le conjugué G250/BZQ/I12 est préparé par couplage entre l'anticorps monoclonal G250 et un plasmide codant pour l'interleukine 2 murine (mIl-2) au moyen de la benzoquinone (BZQ) selon la méthode de couplage précédemment décrite par Poncet et al. ( 1996, Gène Therapy 3 : 731-738). La BZQ dissoute dans de l'éthanol absolu à une concentration de 30 mg/ml est ajoutée à une solution d'anticorps monoclonal purifié en solution dans du PBS à une concentration d'au moins 2 mg/ml pour donner une solution finale contenant 3 mg/ml de BZQ. 1/ 10 du volume final est ensuite ajouté sous la forme de tampon de phosphate de potassium 1M pH 6.0. Après 90 min. à température ambiante, dans l'obscurité, l'anticorps monoclonal activé est séparé de l'excès de BZQ par chromatographie sur une colonne G25M (Pharmacia) présaturée en 1% BSA dans du NaCl 0, 15M, collecté puis mélangé avec l'ADN plasmidique purifié ( 10 fois la quantité d'anticorps). La solution est mélangée avec 0.1 M de tampon carbonate pH 8,7 et incubée 48 heures à 4°C. Le conjugué mAb-ADN est concentré par filtration sur gel sur une colonne FPLC Superose 6HR (Pharmacia) pour éliminer les excès d'anticorps libre susceptibles d'entrer en compétition avec le conjugué ADN-anticorps. Les fractions collectées sont dialysées contre du PBS et concentrées en utilisant une cartouche Centricon 10 (Amicon, MA, USA). Les quantités de conjugués solubles purifiés sont exprimées comme la quantité d'ADN plasmidique initialement utilisée dans la réaction.
2.2. Antifection de lignées RCC avec les conjugués G250/BZQ/I12 et G250/BZQ/I12+ExoT
Nous avons comparé la mesure d i-2 après transfert de ce conjugué dans des lignées RCC après addition ou non d'exotoxine A (ExoT) de Pseudomonas Aeruginosa dans le milieu de culture. L'exotoxine A commercialisée par Sigma est ajoutée au conjugué G250/BZQ/I12.
Les conjugués G250/BZQ/I12 et G250 /BZQ/ 112+ ExoT sont mis en contact avec 105 cellules de lignées RCC en culture dans un milieu dépourvu en sérum pendant 4 heures à 37°C selon le protocole préalablement décrit. Les cellules sont remises en culture en milieu normal après lavages. La production dTi-2 est mesurée 10 jours plus tard en utilisant le kit ELISA DuoSeT (Réf. 80-3573-00, Genzyme Diagnostics). Les cellules antifectées avec le conjugué G250 /BZQ/ 112+ ExoT produisent environ 3 fois plus dTi-2 murine (371 pg/ 106 cellules) que les cellules antifectées par le conjugué G250/BZQ/I12 (165 pg/ 106 cellules) (Figure N° l). EXEMPLE 3 : Conjugués G250-Biotinylé/ avidine /BZQ /PL/ 112 et (G250+ExoT)-Biotinylé/ avidine/ BZQ /PL/ 112
3.1. Préparation des conjugués
Le corps central des conjugués G250-
Biotinylé/avidine/BZQ/PL/I12 et (G250+ExoT)-
Biotinylé/avidine/BZQ/PL/I12 se compose d'une molécule tétravalente d'avidine (Av) qui est dans un premier temps activée par la benzoquinone selon le protocole précédemment décrit. L'avidine activée lie les molécules de poly-L-lysine qui sont des molécules très affines pour l'ADN. Le complexe Avidine /BZQ /PL est mis en contact avec le plasmide codant l'interleukine 2 de souris (11-2). Le complexe est ensuite associé à l'anticorps monoclonal G250 et/ou à l'exotoxine A (ExoT) tous deux préalablement biotinylés.
3.2. Antifection de lignées RCC avec les conjugués G250- Biotinylé/ avidine /BZQ /PL/ 112 et (G250+ExoT)-Biotinylé/ avidine/BZQ/PL/I12
Les différents complexes sont mis en contact avec 105 cellules de lignées RCC en culture dans un milieu dépourvu en sérum pendant 4 heures à 37°C selon le protocole préalablement décrit. Les cellules sont remises en culture en milieu normal après lavages. La production dll-2 est mesurée 10 jours plus tard en utilisant le kit ELISA DuoSeT (Réf. 80-3573-00, Genzyme Diagnostics). Les résultats sont présentés dans la figure N°2. Dans l'expérience contrôle dans laquelle l'anticorps monoclonal G250 a été omis, une certaine production de mIl-2 est mesurée (127 pg/ 106 cellules, AvPL) due certainement à l'accrochage non spécifique des molécules de poly-L-lysine et/ ou d'avidine à la surface des cellules. L'addition de mAb G250 au complexe avidine /BZQ /PL/ 112 augmente de 2 fois la production d'interleukine 2 murine (261 pg/ 106 cellules au lieu de 127 pg/ 106 cellules); la présence supplémentaire d'exotoxine A (ExoT) permet d'augmenter de 10 fois la production de mIl-2 (1347 pg/ 106 cellules) (Figure N°2).
EXEMPLE 4 : Conjugué G250-biotinylé/neutravidine/histone Hl biotinylé/ peptide fusiogene de l'hémaglutinine d' ' Infl enz e (HA) biotinylé/ CD4
Les différents complexes tels que mentionnés sur les figures sont mis en contact avec des RCC, comme décrit dans l'exemple 3, section 3.2.
La figure 3 représente l'analyse en cytométrie en flux des cellules RCC humaines portant l'Ag G250, collectées 7 jours après antifection de l'ADNc codant pour la molécule de CD4 humain et marquées par un AcM anti-CD4 humain. Environ 20% des cellules expriment de la sorte cette molécule. Le vecteur utilisé comprenait la totalité des molécules, G250,H l,HA,ADNc. La séquence du peptide HA utilisé est la suivante : GLFEAIAGFIENGWEGMIDGGGCGSGSYTDIEMNRLGKG.
EXEMPLE 5 : Conjugué G250-biotinylé/ neutravidine/histone Hl biotinylé/ 112 et Conjugué G250 biotinylé/ neutravidine/histone Hl biotinylé/ peptide fusogène HA biotinylé/ 112
La figure 4 représente le résultat d'une antifection de cellules RCC humaines portant l'Ag G250, collectées 1 1 jours après antifection de l'ADNc codant pour l'interleukine-2 de souris. La quantité dlL-2 sécrétée par les RCC mises en contact avec l'ADNc seul ou couplé à la neutravidine est de 80 pg/ 106 cellules, 1200 pg/ 106 cellules pour les RCC mises en contact avec un conjugué comprenant G250/H l /ADNc et 3100 pg/ 106 cellules pour les RCC mises en contact avec un conjugué comprenant G250/H l /HA/ADNc.
EXEMPLE 6 : G250 biotinylé/ neutravidine/histone Hl biotinylé/ BAX et G250 biotinylé/ neutravidine/histone Hl biotinylé/ peptide fusogène HA biotinylé/ BAX
La figure 5 représente le résultat d'une antifection de cellules RCC humaines portant l'Ag G250, collectées 1 1 jours après antifection de l'ADNc codant pour la molécule pro-apoptotique Bax humaine. La mort cellulaire a été appréciée par coloration au bleu de Trypan. L'ADNc contrôle utilisé correspond au gène de la green fluorescent protein (GFP). On peut noter une augmentation importante de la perte de viabilité liée à l'accrochage de l'AcM G250 « Vecteur BAX sans HA », accrue par l'accrochage du peptide fusiogene de HA « Vecteur BAX avec HA ».
EXEMPLE 7 Antifection in vivo avec le conjugué 5C5 biotinylé/ neutravidine/histone Hl biotinylé/ peptide fusogène HA biotinylé/ BAX murin
7.1. Protocole
Différents conjugués sont préparés à partir de : - 10 μg d'anticorps 5C5
30 μg d'ADN BAX murin 15 μg d'histone H l 0.5 μg de peptide HA 4 μg de neutravidine. Neuf souris nude irradiées servant de contrôle, ont reçu une greffe de tumeur RCC en sous-cutanée au jour J = 0. Ces souris greffées n'ont pas de conjugué. Dix souris nude irradiées ont reçu une greffe de tumeur RCC en sous- cutanée au jour J = 0 puis au jour J = 7, elles ont reçu par voie intraveineuse le conjugué neutravidine-/HA/h l /Bax en une seule injection. Dix souris nude irradiées ont reçu une greffe de tumeur RCC en sous- cutanée au jour J = 0 puis au jour J = 7, elles ont reçu par voie intraveineuse le conjugué 5C5/neutravidine/HA/H l/Bax en une seule injection.
La taille des tumeurs a ensuite été évaluée au jour J5, J8, J 12 et J 19 après l'injection les souris ont été sacrifiées au jour J 19.
7.2. Résultats
Une diminution de la croissance tumorale inférieure à celle notée dans les groupes contrôles est observée chez 6 souris sur 10 recevant le complexe entier et 1 sur 10 dans le groupe traité avec le complexe sans anticorps, et ce à jour 19 après la première injection (figure N°6).
De façon intéressante, le marquage retrouvée dans les tumeurs antifectées avec Bax, à l'aide d'un AcM fluorescent dirigé contre la molécule CD 16 de souris présente sur des cellules de type natural killer (cellules NK), macrophages, granulocytes indique clairement la possibilité de recruter des cellules effectrices pouvant participer pleinement à la réponse anti-tumorale (figure N°7).
REFERENCES
Angevin et al. 1997, Proc. Am. Asso. Cancer Res. 38 : 238.
Angevin et al. 1997, Int. J. Cancer 72 :434.
Brandzaeg 1973, Scan. J. Immunol. 2 : 273.
Chittenden et al 1995, Nature 374 : 733
Cournoyer et al 19 1, Human Gène Therapy, 2 : 203. Dûrrbach et al. (Sous Presse) Cancer Gène Therapy.
Dubes et Wegrzyn 1978, Protoplasma 96 : 209-223.
Fominaya et Wels 1995, J. Biol. Chem. 271 : 10560.
Golumbek et al. 1991, Science 254 :713.
Goulkhova et al 1998, Gènes Chrom. Cancer 22 : 171. Hirsch et al 1993, Transpl. Proc. 25 : 138.
Karasuyama et Melchers 1988, Eur. J. Immunol. 18 : 97.
Kasahara et al. 1987, J. Biol. Chem. 262 :4429.
Kiefer et al. 1995, Nature 374 : 736
Luthman ét al 1983, Nucleic Acids Res. 11 : 1295. Maxfield et al. 1978, Cell 14 :805.
Michael et Curiel 1994, Gène Therapy 1:223.
Neda et al. 1991, J. Biol. Chem. 266 : 14143.
Old 1985, Science 230 : 630
Oltvai et al. 1993, Cell 74 :609 Oosterwijk et αU986, Int. J. Cancer. 38 :489.
Poncet et αU 996, Gène Therapy 3 : 731.
Ragot et al. 1993, Nature 361 : 647.
Rosenberg et al. 1990, N. Eng. J. Med. 323 :570.
Roux et al. 1989, Proc.Natl.Acad.Sci. USA 86 :9079. Susin et al. 1999, Nature 397 : 441.
Takahashi et al. 1994, Int. Immun. 6 : 1567
Wang et al 1996, Gènes Dev. 10 : 2859
Wienhues et al. 1987, DNA 6( 1) : 81-89. Wu ét al 1991, J. Biol. Chem. 266 : 14338.
Zenke et al. 1990, Proc.Natl.Acad.Sci. USA, 87 :3655.

Claims

REVENDICATIONS
1. Conjugué pour le transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce qu'il comprend une molécule d'acide nucléique, un domaine de translocation et un anticorps spécifique d'un antigène de surface de ladite cellule, tel que ladite molécule d'acide nucléique, ledit domaine de translocation et ledit anticorps sont conjugués au moyen d'au moins un agent de pontage, et tel que ledit conjugué est transfecté efficacement dans ladite cellule.
2. Conjugué selon la revendication 1 caractérisé en ce qu'il comprend en outre un peptide clivable par au moins une enzyme glycolytique et/ou protéolytique, ledit anticorps étant lié audit domaine de translocation via ledit peptide clivable.
3. Conjugué selon la revendication 2 caractérisé en ce que ledit anticorps et ledit peptide clivable sont liés de manière covalente via un agent de pontage sélectionné de préférence dans le groupe composé de la benzoquinone, de 1ΕDC, de l'APDP.
4. Conjugué selon la revendication 2 caractérisé en ce que ledit anticorps et ledit peptide clivable sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent et qui est sélectionné de préférence dans le groupe composé de la biotine, la benzoquinone, de l'EDC, de l'APDP.
5. Conjugué selon la revendication 3 ou 4 caractérisé en ce que ledit domaine de translocation est lié audit peptide clivable par une liaison chimique covalente.
6. Conjugué selon la revendication 5 caractérisé en ce que ledit domaine de translocation est lié à une molécule d'acide nucléique au moyen d'un agent de pontage.
7. Conjugué selon la revendication 6 caractérisé en ce que ledit agent de pontage est l'APDP.
8. Conjugué selon l'une quelconque des revendications 6 et 7 caractérisé en ce que ledit anticorps est lié audit peptide clivable par une liaison covalente au moyen dudit agent de pontage EDC, ledit peptide clivable étant lié audit domaine de translocation par une liaison covalente au moyen d'une liaison chimique, ledit domaine de translocation étant lié audit acide nucléique par une liaison covalente au moyen dudit agent de pontage APDP.
9. Conjugué selon la revendication 5 caractérisé en ce que la liaison entre ledit domaine de translocation et ladite molécule d'acide nucléique est réalisée au moyen d'une molécule de liaison aux acides nucléiques, ladite molécules de liaison aux acides nucléiques étant liée audit domaine de translocation par une liaison covalente au moyen d'un agent de pontage.
10. Conjugué selon la revendication 9 caractérisé en ce que ledit agent de pontage est l'APDP.
11. Conjugué selon l'une quelconque des revendications 9 et 10 caractérisé en ce que ledit anticorps est lié audit peptide clivable par une liaison covalente au moyen dudit agent de pontage EDC, ledit peptide clivable étant lié audit domaine de translocation par une liaison covalente au moyen d'une liaison chimique, ledit domaine de translocation étant lié à ladite molécule de liaison aux acides nucléiques par une liaison covalente au moyen dudit agent de pontage APDP, ladite molécule de liaison aux acides nucléiques liant ledit acide nucléique par une liaison non-covalente.
12. Conjugué selon la revendication 1 caractérisé en ce qu'il comprend en outre une molécule de liaison aux acides nucléiques, tel que ledit domaine de translocation, ledit anticorps et ladite molécule de liaison aux acides nucléiques sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent, ladite molécule de liaison aux acides nucléiques liant ladite molécule d'acide nucléique.
13. Conjugué selon la revendication 1 caractérisé en ce qu'il comprend en outre une molécule de liaison aux acides nucléiques et un peptide clivable par au moins une enzyme glycolytique et/ ou protéolytique, tel que ledit domaine de translocation, ledit anticorps et ledit peptide clivable sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent, ladite molécule de liaison aux acides nucléiques étant liée à ladite molécule d'acide nucléique, ladite molécule de liaison aux acides nucléiques étant liée audit peptide clivable et à ladite molécule d'acide nucléique.
14. Conjugué pour le transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce qu'il comprend une molécule d'acide nucléique, un anticorps spécifique d'un antigène de surface de cellule et une molécule de liaison aux acides nucléiques tel que ledit conjugué est transfecté efficacement dans ladite cellule.
15. Conjugué selon la revendication 14 caractérisé en ce qu'il comprend en outre un peptide clivable par au moins une enzyme glycolytique et/ ou protéolytique, ledit anticorps étant lié à ladite molécule de liaison aux acides nucléiques via ledit peptide clivable.
16. Conjugué selon la revendication 15 caractérisé en ce que ledit anticorps et ledit peptide clivable sont liés de manière covalente via un agent de pontage sélectionné de préférence dans le groupe composé de la benzoquinone, de l'EDC, de l'APDP.
17. Conjugué selon la revendication 15 caractérisé en ce que ledit anticorps et ledit peptide clivable sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent sélectionné de préférence dans le groupe composé de la biotine, la benzoquinone, de l'EDC, de l'APDP.
18. Conjugué selon la revendication 16 ou 17 caractérisé en ce que ledit peptide clivable est lié à ladite molécule de liaison aux acides nucléiques au moyen d'un agent de pontage, ladite molécule de liaison aux acides nucléiques liant ledit acide nucléique par une liaison non-covalente.
19. Conjugué selon la revendication 18 caractérisé en ce que ledit agent de pontage est l'APDP.
20. Conjugué pour le transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce qu'il comprend une molécule d'acide nucléique, un anticorps spécifique d'un antigène de surface de cellule et un peptide clivable par au moins une enzyme glycolytique et/ ou protéolytique tel que ledit conjugué est transfecté efficacement dans ladite cellule.
21. Conjugué selon la revendication 20 caractérisé en ce que ledit anticorps et ledit peptide clivable sont liés de manière covalente via un agent de pontage sélectionné de préférence dans le groupe composé de la benzoquinone, de l'EDC, de l'APDP.
22. Conjugué selon la revendication 20 caractérisé en ce que ledit anticorps et ledit peptide clivable sont liés à une molécule de type avidine au moyen d'un agent de pontage qui peut être identique ou différent sélectionné de préférence dans le groupe composé de la biotine, la benzoquinone, de l'EDC, de l'APDP.
23. Conjugué selon la revendication 21 ou 22 caractérisé en ce que ledit peptide clivable est lié audit acide nucléique par une liaison covalente au moyen d'un agent de pontage.
24. Conjugué selon la revendication 21 ou 22 caractérisé en ce que la liaison entre ledit peptide clivable et ladite molécule d'acide nucléique est réalisée au moyen d'une molécule de liaison aux acides nucléiques, ladite molécule de liaison aux acides nucléiques étant liée audit peptide clivable par une liaison covalente au moyen d'un agent de pontage.
25. Conjugué selon les revendications 23 et 24 caractérisé en ce que ledit agent de pontage est l'APDP.
26. Conjugué selon l'une quelconque des revendications 20 à 25 caractérisée en ce que ledit conjugué comprend en outre un domaine de translocation.
27. Conjugué selon la revendication 26 caractérisé en ce que ledit domaine de translocation est lié de manière covalente au moyen d'un agent de pontage à ladite molécule d'acide nucléique et/ ou à ladite molécule de liaison aux acides nucléiques .
28. Conjugué selon l'une quelconque des revendications 1 , 6, 8, 13, 14, 17 et 22 caractérisé en ce que ledit agent de pontage est sélectionné dans le groupe composé de la benzoquinone, de la biotine, des carbodiimides, des agents pontants présentant au moins un groupement phénylazide réagissant aux ultra-violets (UV).
29. Conjugué selon la revendication 1 caractérisé en ce que ledit agent de pontage est sélectionné dans le groupe composé de la benzoquinone, de la biotine, de l'EDC, l'APDP.
30. Conjugué selon la revendication 12 caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation et ledit anticorps à la molécule de type avidine est la biotine et, l'agent de pontage qui lie ladite molécule de liaison aux acides nucléiques à la molécule de type avidine est la benzoquinone.
31. Conjugué selon la revendication 13 caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation et ledit anticorps à la molécule de type avidine est la biotine et, l'agent de pontage qui lie ledit peptide clivable à la molécule de type avidine est la benzoquinone.
32. Conjugué selon la revendication 12 caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation, ledit anticorps et ladite molécule de liaison aux acides nucléiques est la biotine.
33. Conjugué selon la revendication 13 caractérisé en ce que l'agent de pontage qui lie ledit domaine de translocation, ledit anticorps et ledit peptide clivable est la biotine.
34. Conjugué selon la revendication 17 caractérisé en ce que l'agent de pontage qui lie ledit anticorps à la molécule de type avidine est la biotine, et l'agent de pontage qui lie ladite molécule de liaison aux acides nucléiques à la molécule de type avidine est la benzoquinone.
35. Conjugué selon la revendication 17 caractérisé en ce que ledit agent de pontage est la biotine.
36. Conjugué selon l'une quelconque des revendications 1 à 35 caractérisé en ce que ladite molécule d'acide nucléique est choisie parmi l'ADN simple brin, l'ADN double brin, l'ARN simple brin, l'ARN double brin, l'hybride ARN/ADN.
37. Conjugué selon la revendication 36 caractérisé en ce que ladite molécule d'acide nucléique est de l'ADN double brin ou de l'ARN simple brin qui code pour un produit protéique d'intérêt qui s'exprime efficacement dans ladite cellule.
38. Conjugué selon la revendication 35 caractérisé en ce que ledit produit protéique d'intérêt est choisi dans un groupe composé des cytokines, des lymphokines, des chémokines, des facteurs de croissance, des gènes tueurs, des gènes qui permettent de lever la chimiorésistance, des enzymes de restriction.
39. Conjugué selon la revendication 38 caractérisé en ce que le produit protéique d'intérêt est la protéine Bax.
40. Conjugué selon la revendication 36 caractérisée en ce que ladite molécule d'acide nucléique est un ARN antisens.
41. Conjugué selon l'une quelconque des revendications 8 à 10, 12 à 19, 24, 30, 32, 34 caractérisé en ce que la molécule de liaison aux acides nucléiques lie ladite molécule d'acide nucléique par une liaison non-covalente.
42. Conjugué selon l'une quelconque des revendications 8 à 10, 12 à 19, 24, 30, 32, 34, 41 caractérisé en ce que la molécule de liaison aux acides nucléiques est un polymère polycationique ou une protéine de liaison aux acides nucléiques.
43. Conjugué selon la revendication 42 caractérisé en ce que ledit polymère polycationique est choisi parmi la poly-L-lysine, la poly-D- lysine, le polyéthylènimine, la polyamidoamine, la polyamine, et les polycations libres.
44. Conjugué selon la revendication 43 caractérisé en ce que ledit polymère polycationique est la poly-L-lysine.
45. Conjugué selon la revendication 42 caractérisé en ce que ladite protéine de liaison aux acides nucléiques est choisie parmi les histones, la protamine, l'ornithine, la putrescine, la spermidine, la spermine, les facteurs de transcription, les protéines homéobox.
46. Conjugué selon la revendication 45 caractérisé en ce que ladite protéine de liaison aux acides nucléiques est sélectionnée dans le groupe composé de la protamine et des histones.
47. Conjugué selon l'une quelconque des revendications 1 à 13 et 26, 27, 30 à 33 caractérisé en ce que ledit domaine de translocation dérive d'une toxine virale sans contenir la partie de la toxine qui lui confère son effet toxique.
48. Conjugué selon la revendication 47 caractérisé en ce que ledit domaine de translocation est un fragment de lTiémagglutinine d 'Haemophilus A.
49. Conjugué selon l'une quelconque des revendications 1 à 48 caractérisé en ce que ledit anticorps est un anticorps monoclonal ou un anticorps polyclonal.
50. Conjugué selon la revendication 49 caractérisé en ce que ledit anticorps est spécifique d'un antigène de surface membranaire.
51. Conjugué selon la revendication 50 caractérisé en ce que ledit antigène est l'antigène G250.
52. Conjugué selon la revendication 50 caractérisé en ce que ledit anticorps est l'anticorps monoclonal 5C5 obtenu par l'hybdridome 5C5 déposé à la CNCM sous le N° 1-2184.
53. Conjugué selon l'une quelconque des revendications 1 à 52 à titre de médicament.
54. Conjugué selon l'une quelconque des revendications 1 à 52 à titre de médicament pour la thérapie génique.
55. Conjugué selon les revendications 53 et 54 à titre de médicament pour le traitement des maladies génétiques acquises ou constitutionnelles.
56. Conjugué selon la revendication 55 à titre de médicament pour le traitement des maladies génétiques acquises choisies parmi les cancers et les maladies infectieuses.
57. Conjugué selon la revendication 56 à titre de médicament pour le traitement du carcinome des cellules rénales (RCC).
58. Conjugué selon l'une quelconque des revendications 1 à 52 à titre de médicament destiné au transfert d'une molécule d'acide nucléique dans une cellule caractérisé en ce que ladite cellule est mise en contact avec ledit conjugué de façon à transfecter ladite cellule avec ledit conjugué.
59. Conjugué selon la revendication 58 caractérisé en ce que ladite molécule d'acide nucléique code pour un produit protéique d'intérêt qui s'exprime efficacement dans ladite cellule transfectée.
60. Conjugué selon la revendication 58 caractérisé en ce que ladite molécule d'acide nucléique se maintient sous la forme d'un réplicon extrachromosomique dans ladite cellule.
61. Conjugué selon la revendication 58 caractérisé en ce que ladite molécule d'acide nucléique s'intègre dans l'ADN génomique et/ou mitochondrial de ladite cellule transfectée.
62. Conjugué selon les revendications 58 à 61 caractérisé en ce que ladite cellule est une cellule eucaryote.
63. Composition pharmaceutique notamment pour le traitement des maladies par thérapie génique qui comprend une quantité thérapeutiquement efficace d'un conjugué selon l'une quelconque des revendications 1 à 52 et un véhicule pharmaceutiquement acceptable.
PCT/FR2000/001259 1999-05-10 2000-05-10 Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules WO2000067697A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00925426A EP1175498A2 (fr) 1999-05-10 2000-05-10 Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules
AU44152/00A AU4415200A (en) 1999-05-10 2000-05-10 Nucleic acid-antibody conjugate for delivering a foreign nucleic acid in cells
JP2000616728A JP2002543810A (ja) 1999-05-10 2000-05-10 外来性核酸を細胞に送達するための核酸−抗体複合体
IL14639900A IL146399A0 (en) 1999-05-10 2000-05-10 Nucleic acid-antibody conjugate for delivering a foreign nucleic acid in cells
CA002373851A CA2373851A1 (fr) 1999-05-10 2000-05-10 Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/05943 1999-05-10
FR9905943A FR2793414B1 (fr) 1999-05-10 1999-05-10 Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules

Publications (2)

Publication Number Publication Date
WO2000067697A2 true WO2000067697A2 (fr) 2000-11-16
WO2000067697A3 WO2000067697A3 (fr) 2001-06-28

Family

ID=9545418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001259 WO2000067697A2 (fr) 1999-05-10 2000-05-10 Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules

Country Status (7)

Country Link
EP (1) EP1175498A2 (fr)
JP (1) JP2002543810A (fr)
AU (1) AU4415200A (fr)
CA (1) CA2373851A1 (fr)
FR (1) FR2793414B1 (fr)
IL (1) IL146399A0 (fr)
WO (1) WO2000067697A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124869A1 (fr) * 2010-04-09 2011-10-13 Commissariat à l'Energie Atomique et aux Energies Alternatives Hemi-anticorps a auto-assemblage
CN108530540A (zh) * 2018-03-30 2018-09-14 华南农业大学 抗亚精胺单克隆抗体杂交瘤细胞株4e4及其单克隆抗体和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1592412A1 (fr) * 2003-01-31 2005-11-09 Novartis AG Regulation negative d'un gene cible a l'aide de complexes de pei/oligoribonucleotide simple brin
JP4521519B2 (ja) * 2003-05-26 2010-08-11 学校法人慶應義塾 部分ヒストンテイル型イムノポーター
US10540907B2 (en) 2014-07-31 2020-01-21 Intelligent Technologies International, Inc. Biometric identification headpiece system for test taking
US10410535B2 (en) 2014-08-22 2019-09-10 Intelligent Technologies International, Inc. Secure testing device
CN106662746B (zh) 2014-08-22 2020-10-23 国际智能技术公司 安全考试设备、系统和方法
US10438106B2 (en) 2014-11-04 2019-10-08 Intellignet Technologies International, Inc. Smartcard

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008854A1 (fr) * 1987-05-06 1988-11-17 Egbert Oosterwijk Anticorps monoclonaux contre le carcinome des cellules renales
US5166320A (en) * 1987-04-22 1992-11-24 University Of Connecticut Carrier system and method for the introduction of genes into mammalian cells
WO1994004696A1 (fr) * 1992-08-25 1994-03-03 Miles Inc. Apport nucleaire de macromolecules facilite par un signal de translocation
WO1994013325A2 (fr) * 1992-12-15 1994-06-23 Microprobe Corporation Sequences de liaison peptidiques pour l'amelioration de l'apport d'oligonucleotides
US5428132A (en) * 1987-10-11 1995-06-27 United States Of America Conjugate and method for integration of foreign DNA into cells
WO1995021195A1 (fr) * 1994-02-07 1995-08-10 Research Development Foundation Vecteur non viral
WO1996013599A1 (fr) * 1994-11-01 1996-05-09 Winfried Wels Systeme de transfert de l'acide nucleique
WO1998002564A1 (fr) * 1996-07-12 1998-01-22 The John P. Robarts Research Institute Vecteur hybride de virus herpetique/virus de epstein-barr
WO1998047538A2 (fr) * 1997-04-23 1998-10-29 Institut für Diagnostikforschung GmbH an der Freien Universität Berlin Colorants de synthese labiles aux acides et clivables par voie enzymatique pour le diagnostic avec de la lumiere dans le proche infrarouge et pour l'usage therapeutique
WO1998056425A1 (fr) * 1997-06-11 1998-12-17 The School Of Pharmacy, University Of London Compositions pharmaceutiques contenant des conjugues anticorps-enzymes combines a des promedicaments

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166320A (en) * 1987-04-22 1992-11-24 University Of Connecticut Carrier system and method for the introduction of genes into mammalian cells
WO1988008854A1 (fr) * 1987-05-06 1988-11-17 Egbert Oosterwijk Anticorps monoclonaux contre le carcinome des cellules renales
US5428132A (en) * 1987-10-11 1995-06-27 United States Of America Conjugate and method for integration of foreign DNA into cells
WO1994004696A1 (fr) * 1992-08-25 1994-03-03 Miles Inc. Apport nucleaire de macromolecules facilite par un signal de translocation
WO1994013325A2 (fr) * 1992-12-15 1994-06-23 Microprobe Corporation Sequences de liaison peptidiques pour l'amelioration de l'apport d'oligonucleotides
WO1995021195A1 (fr) * 1994-02-07 1995-08-10 Research Development Foundation Vecteur non viral
WO1996013599A1 (fr) * 1994-11-01 1996-05-09 Winfried Wels Systeme de transfert de l'acide nucleique
WO1998002564A1 (fr) * 1996-07-12 1998-01-22 The John P. Robarts Research Institute Vecteur hybride de virus herpetique/virus de epstein-barr
WO1998047538A2 (fr) * 1997-04-23 1998-10-29 Institut für Diagnostikforschung GmbH an der Freien Universität Berlin Colorants de synthese labiles aux acides et clivables par voie enzymatique pour le diagnostic avec de la lumiere dans le proche infrarouge et pour l'usage therapeutique
WO1998056425A1 (fr) * 1997-06-11 1998-12-17 The School Of Pharmacy, University Of London Compositions pharmaceutiques contenant des conjugues anticorps-enzymes combines a des promedicaments

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHAKRABARTI, M. ET AL: "Transfer of DNA into lymphoma cells by DNA-bound to T101- biotinylated -avidin- polylysine antibody complex." JOURNAL OF NUCLEAR MEDICINE, (1996) VOL. 37, NO. 5 SUPPL., PP. 62P. MEETING INFO.: 43RD ANNUAL MEETING OF THE SOCIETY OF NUCLEAR MEDICINE DENVER, COLORADO, USA JUNE 3-5, 1996, XP002133111 *
DATABASE BIOSIS [en ligne] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1990 HUCKETT B ET AL: "EVIDENCE FOR TARGETED GENE TRANSFER BY RECEPTOR-MEDIATED ENDOCYTOSIS STABLE EXPRESSION FOLLOWING INSULIN-DIRECTED ENTRY OF NEO INTO HEPG2 CELLS" Database accession no. PREV199090077976 XP002155196 & BIOCHEMICAL PHARMACOLOGY, vol. 40, no. 2, 1990, pages 253-264, ISSN: 0006-2952 *
DATABASE BIOSIS [en ligne] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1995 TRAUT ROBERT R ET AL: "Location and domain structure of Escherichia coli ribosomal protein L7/L12: Site specific cysteine cross-linking and attachment of fluorescent probes." Database accession no. PREV199698797154 XP002155195 & BIOCHEMISTRY AND CELL BIOLOGY, vol. 73, no. 11-12, 1995, pages 949-958, ISSN: 0829-8211 *
DATABASE MEDLINE [en ligne] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; GUY J ET AL: "Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy." retrieved from STN Database accession no. 96031841 XP002133112 & MOLECULAR BIOTECHNOLOGY, (1995 JUN) 3 (3) 237-48. REF: 60, *
FOMINAYA J ET AL: "Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system." JOURNAL OF BIOLOGICAL CHEMISTRY, (1996 MAY 3) 271 (18) 10560-8., XP002133110 cité dans la demande *
PONCET ET AL: "ANTIFECTION: AN ANTIBODY-MEDIATED METHOD TO INTRODUCE GENES INTO LYMPHOID CELLS IN VITRO AND IN VIVO" GENE THERAPY, vol. 3, 1996, pages 731-738, XP000877306 cité dans la demande *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124869A1 (fr) * 2010-04-09 2011-10-13 Commissariat à l'Energie Atomique et aux Energies Alternatives Hemi-anticorps a auto-assemblage
FR2958645A1 (fr) * 2010-04-09 2011-10-14 Commissariat Energie Atomique Hemi-anticorps a auto-assemblage
CN108530540A (zh) * 2018-03-30 2018-09-14 华南农业大学 抗亚精胺单克隆抗体杂交瘤细胞株4e4及其单克隆抗体和应用
CN108530540B (zh) * 2018-03-30 2021-06-15 华南农业大学 抗亚精胺单克隆抗体杂交瘤细胞株4e4及其单克隆抗体和应用

Also Published As

Publication number Publication date
WO2000067697A3 (fr) 2001-06-28
JP2002543810A (ja) 2002-12-24
IL146399A0 (en) 2002-07-25
EP1175498A2 (fr) 2002-01-30
FR2793414B1 (fr) 2003-05-23
AU4415200A (en) 2000-11-21
CA2373851A1 (fr) 2000-11-16
FR2793414A1 (fr) 2000-11-17

Similar Documents

Publication Publication Date Title
Lungwitz et al. Polyethylenimine-based non-viral gene delivery systems
Xu et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes
Pichon et al. Histidine-rich peptides and polymers for nucleic acids delivery
Deonarain Ligand-targeted receptor-mediated vectors for gene delivery
JP3222461B2 (ja) 新規タンパク質―ポリカチオン結合体
Elfinger et al. Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells
JP2002514892A (ja) 遺伝子治療における合成ウイルス様粒子の使用
JP2017119701A (ja) バイオ医薬の送達のためのエキソソーム
JP2005508396A (ja) 核酸送達ビヒクルのための治療方法
CA2222550A1 (fr) Transporteurs d&#39;acide nucleique servant a introduire des acides nucleiques dans une cellule
JP2002502243A (ja) トランスフェクション活性を有するインテグリン−ターゲッティングベクター
Jung et al. Safety profiles and antitumor efficacy of oncolytic adenovirus coated with bioreducible polymer in the treatment of a CAR negative tumor model
Bäumer et al. Immunoprotein-mediated siRNA delivery
US5922859A (en) Complexes containing nucleic acid which can be taken-up by endocytosis into higher eukaryotic cells
Casper et al. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications
May et al. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment
WO2000067697A2 (fr) Conjugue acide nucleique-anticorps pour delivrer un acide nucleique etranger dans les cellules
CA2101332C (fr) Conjugues anticorps-polycations
Strehblow et al. Monoclonal antibody–polyethyleneimine conjugates targeting Her-2/neu or CD90 allow cell type-specific nonviral gene delivery
Morizono et al. Redirecting lentiviral vectors by insertion of integrin‐tageting peptides into envelope proteins
KR20220138309A (ko) 면역세포를 표적화하고 관심 mRNA가 봉입된 구조체, 이의 용도 및 이의 제조방법
Germershaus et al. HER2 targeted polyplexes: the effect of polyplex composition and conjugation chemistry on in vitro and in vivo characteristics
JP2024512505A (ja) 免疫細胞への核酸の効率的な細胞内送達のための樹状ペプチド結合ポリマー
EP0934342B1 (fr) Composition contenant du chitosan
JP2003534804A (ja) トランスフェクションの改良方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2000925426

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2373851

Country of ref document: CA

Ref country code: CA

Ref document number: 2373851

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 616728

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09926493

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000925426

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000925426

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)