WO2000050490A1 - Derives amines aromatiques, compose conducteur soluble, et element electroluminescent - Google Patents

Derives amines aromatiques, compose conducteur soluble, et element electroluminescent Download PDF

Info

Publication number
WO2000050490A1
WO2000050490A1 PCT/JP2000/000999 JP0000999W WO0050490A1 WO 2000050490 A1 WO2000050490 A1 WO 2000050490A1 JP 0000999 W JP0000999 W JP 0000999W WO 0050490 A1 WO0050490 A1 WO 0050490A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
aromatic amine
amine derivative
alkoxy
Prior art date
Application number
PCT/JP2000/000999
Other languages
English (en)
French (fr)
Inventor
Junji Kido
Hiroyoshi Fukuro
Hitoshi Furusho
Tomoyuki Enomoto
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to DE60032744T priority Critical patent/DE60032744T2/de
Priority to EP00904091A priority patent/EP1156072B1/en
Priority to US09/914,076 priority patent/US6632544B1/en
Publication of WO2000050490A1 publication Critical patent/WO2000050490A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • Aromatic amine derivatives, soluble conductive compounds and electroluminescent devices Aromatic amine derivatives, soluble conductive compounds and electroluminescent devices
  • the present invention relates to a novel aromatic amine derivative and a soluble conductive compound in which the derivative forms a salt with an electron-accepting dopant. Since the soluble conductive compound of the present invention exhibits high solubility, it is useful for antistatic coatings, electromagnetic wave shielding materials, and the like.
  • the present invention provides an electroluminescent organic layer having one or more layers including a light emitting material layer between an anode and a cathode, and applying a voltage between the two electrodes to form the light emitting material layer.
  • the present invention relates to an electroluminescent element that emits light. Background art
  • examples of low-resistance polymer materials include so-called conductive polymers typified by polyaniline, polypyrrole, polythiophene, and the like.
  • a conductive polymer can be obtained by using aniline, pyrrole, thiophene or a derivative thereof as a monomer material and chemically or oxidatively polymerizing with an oxidizing agent, or by electrochemically polymerizing.
  • a conductive polymer material obtained by such a method generally shows high conductivity by doping with an acid such as a Lewis acid. The conductivity thus obtained
  • the conductive polymer can be applied to an antistatic agent, an electromagnetic wave shielding agent, and the like.
  • the conductive polymer material polymerized by the above method generally has low solubility in a solvent, a film using a varnish dissolved or dispersed in an organic solvent is brittle, has a small mechanical strength, and has a strong toughness. It was difficult to obtain a coating.
  • a first object of the present invention is to form a conductive polymer film or coating which has high solubility as a solution, is excellent in coatability and solution stability, and has low antistatic or small charge accumulation.
  • An object of the present invention is to provide a soluble conductive compound which can be produced and an aromatic amine derivative as a raw material thereof.
  • a second object of the present invention is to provide an electroluminescent device using a carrier transporting auxiliary layer material for an electroluminescent device having excellent coatability in order to improve the durability of these organic electroluminescent devices. It is in.
  • the present invention provides an aromatic amine derivative having a repeating unit represented by the following general formula (1) and having a number average molecular weight of 250 to 100,000. . (1)
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group or an organo A and B each independently represent the following general formula (2) or (3)
  • R 2 to R M are each independently a hydrogen atom, a hydroxyl group, an unsubstituted or substituted monovalent hydrocarbon group, or an organooxy group, an acyl group, or a sulfonic acid group.
  • the present invention also provides a soluble conductive compound in which the aromatic amine derivative forms a salt with an electron-accepting dopant.
  • the aromatic amine polymer of the present invention is a polymer conductive compound which is soluble in an organic solvent obtained by oxidative polymerization of an inaniline derivative which is an inexpensive raw material, and is used for various electronic devices. Useful as a coating agent. Further, it is also useful as a light emitting material of an organic electroluminescent device.
  • the present invention comprises an anode and a cathode, and an organic electroluminescent layer composed of one or more layers interposed between the anode and the cathode, by applying a voltage between the anode and the cathode.
  • the number average molecular weight having a repeating unit represented by the general formula (1) between the anode and the organic layer is from 250 to 100 0 .
  • Aromatic amine derivatives especially Provided is an electroluminescent device comprising a carrier transport auxiliary layer containing a soluble conductive compound formed by forming a salt with a soluble dopant.
  • an electroluminescent device having one or more electroluminescent organic layers interposed between an anode and a cathode, in particular, an organic hole transporting layer on an inorganic electrode of the anode (such as an ITO electrode).
  • an electroluminescent device in which a light emitting material layer is sequentially stacked and a cathode is stacked thereon, a carrier transport auxiliary layer is provided between the anode and the organic layer (between the inorganic electrode and the organic hole transport layer).
  • the carrier transport auxiliary layer is formed by the above general formula
  • the hole injection efficiency is improved and the durability is improved by using the aromatic amine derivative represented by (1) as a main component, and in particular, by forming a soluble conductive compound (polymer) formed with the aromatic amine derivative and a dopant.
  • FIG. 1 is a graph showing voltage dependence of light emission luminance of the light emitting device manufactured in Example 8.
  • FIG. 2 is a graph showing voltage dependency of current density in the light emitting device manufactured in Example 8. BEST MODE FOR CARRYING OUT THE INVENTION
  • the aromatic amine derivative of the present invention has a repeating unit represented by the following general formula (1).
  • R 1 represents an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group
  • a and B each independently represent a divalent group represented by the following general formula (2) or (3).
  • R 2 to R M are each independently a hydrogen atom, a hydroxyl group, an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group, an acyl group, or a sulfonic acid group.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group.
  • the monovalent hydrocarbon group and the organooxy group those having 1 to 20 carbon atoms, particularly 1 to 5 carbon atoms are preferred.
  • Specific examples of the monovalent hydrocarbon group include a methyl group, an ethyl group and a propyl group.
  • Isopropyl group butyl group, sec_butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, etc., alkyl group, cyclopentyl group, cyclohexyl group, etc., cycloalkyl group, bicyclohexyl Bicycloalkyl group, vinyl group, 1-propenyl group, 2-propenyl group, isopropyl group, 1-methyl-2-propenyl group, 1 or 2 or 3-butenyl group, etc.
  • Alkenyl group such as xenyl group, phenyl group, xylyl group, tolyl group, biphenyl group, aryl group such as naphthyl group, benzyl group, phenylethyl group, phenylcyclohexyl group And etc.
  • Ararukiru group can be part or all of the hydrogen atoms of these monovalent hydrocarbon groups are exemplified those substituted by a halogen atom, a hydroxyl group, an alkoxy group.
  • the organooxy group includes an alkoxy group and an alkenyloxy group.
  • an alkyl group, an alkenyl group, and an aryl group which are the same as those exemplified above.
  • R 1 has an alkyl or alkoxy group having 1 to 20 carbon atoms, more preferably 1 to 4 carbon atoms, or a substituent of an alkyl or alkoxy group having 1 to 4 carbon atoms, respectively.
  • a and B are each independently a divalent group represented by the following general formula (2) or (3).
  • R 2 to RH are each independently a hydrogen atom, a hydroxyl group, an unsubstituted or substituted monovalent hydrocarbon group or an organooxy group, an acyl group, or a sulfonic acid group.
  • the unsubstituted or substituted monovalent hydrocarbon group or organooxy group include the same ones as described for R 1 having 1 to 20 carbon atoms.
  • the acyl group include those having 2 to 10 carbon atoms, for example, an acetyl group, a propionyl group, a butyryl group, an isoptyryl group, and a benzoyl group.
  • R 2 to RH preferably have a hydrogen atom, an alkyl group, an alkoxy group, an alkoxyalkyl group, an alkenyl group, an acyl group, a sulfonic acid group, a hydroxyl group, and a substituent of an alkyl group or an alkoxy group each having 1 to 4 carbon atoms.
  • Phenyl, cyclohexyl, cyclopentyl, biphenyl, bicyclohexyl or phenylcyclohexyl which may be substituted.
  • R 2 to RH are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms is specifically a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an s-butyl group and a t-butyl group, and has 1 to 4 carbon atoms.
  • the alkoxy groups are a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an S-butoxy group and a t-butoxy group.
  • R 2 to R 11 may be the same or different from each other.
  • the aromatic amine derivative represented by the formula (1) has a number average molecular weight of 250 to 100,000.
  • aromatic amine derivative having a repeating unit represented by the above formula (1) include those having a repeating unit represented by the following general formulas (la) to (Id).
  • the method for synthesizing the aromatic amine derivative represented by the above formula (1a) and the soluble conductive compound using the same are not particularly limited, but may be, for example, a method described below. can do. That is, a sufficiently purified raw material, an aniline derivative and an N-substituted aniline derivative, from which impurities such as an antioxidant have been removed by distillation or the like, are mixed, and a salt is formed with 1 to 3 times the amount of acid of these raw materials. Let it.
  • the mixing ratio of the aniline derivative and the N-substituted aniline derivative at this time is not particularly limited, but is usually 1:99 to 99: 1 in molar ratio.
  • the salt obtained here is soluble in water, it is dissolved in 2 to 10 times the amount of the raw material. After keeping the temperature at 25 ° C, add ammonium persulfate, cerium sulfate, iron chloride or copper chloride as an oxidizing agent.
  • the amount of the oxidizing agent to be added is 0.5 to 4 moles, preferably 1 to 2 moles, based on the added raw material.
  • the mixture is filtered, and the filter is sufficiently washed with a low-boiling water-soluble organic solvent such as acetone, methanol, ethanol or isopropanol.
  • a compound can be obtained.
  • the acid used here is not particularly limited as long as it becomes an electron-accepting dopant of the aromatic amine derivative. Examples of the electron-accepting dopant include Lewis acids, protonic acids, transition metal compounds, electrolyte salts, and halogen compounds.
  • Protonic acids include HF, HC 1, HN-like H, S-like HC 1 0 4 such as an inorganic acid, benzenesulfonic acid, p- toluenesulfonic acid, de decyl benzene sulfonate, polyvinyl sulfonate, methanesulfonate phosphate, 1 one butanoic acid, vinyl phenylalanine sulfonic acid, organic such Kanfu Asuruhon acid Acids.
  • Transition metal compounds include F e F C l, T i C l 4 , Z r C l 4 , H f C l 4 , N b F 5 , N b C l 5 , T a C l 5 , M o F 5 and the like.
  • the halogen compound C l 2, B r 2 , I 2, IC 1, IC 1 3, IB r, IF and the like.
  • ferric chloride as the Lewis acid
  • inorganic acids such as hydrochloric acid and perchloric acid as the protic acid
  • p-toluenesulfonic acid camphorsulfonic acid and the like
  • organic acids such as acids.
  • the desired aromatic amine derivative can be obtained by washing the soluble conductive compound obtained by the method described above with alkali.
  • alkali is not particularly limited, but ammonia, sodium hydrogen carbonate and the like are preferable.
  • the aromatic amine derivative of the present invention can be easily obtained by treating a soluble conductive compound with alkali.
  • the aromatic amine derivative thus obtained can be used as the electron-accepting dopant described above for Lewis acid, protonic acid, and transition metal compound.
  • a soluble conductive compound (polymer conductive compound) can be easily obtained.
  • the amount of the electron acceptor that forms a dopant is generally determined by the nitrogen atom in the repeating unit having a conjugated structure containing nitrogen as a basic atom. It is preferable to add them so that one or less dopants per one.
  • doping can be performed by exposing to a hydrochloric acid vapor or exposing to an iodine vapor.
  • m and n are each independently preferably 1 or more, preferably 2 or more, particularly preferably 4 or more, and m + n is 3 to 3, 0 or more. 00, preferably 4 to 3,000, more preferably 8 to 2,000, and the number average molecular weight is 250 to; 100, 000, preferably 600. 770, 000, more preferably 1, 000 to 700, 000.
  • the aromatic amine derivatives represented by the formulas (lb), (1c), and (1d) and a method for obtaining a soluble conductive compound from the aromatic amine derivatives are also described in the above formula (1).
  • a) is the same as in the case of the aromatic amine derivative, and the ranges of m and n are the same as in the case of the aromatic amine derivative represented by the formula (1a), including the preferred range.
  • the number average molecular weight of the aromatic amine derivative represented by the formula (1b) or (1c) is from 300 to 100, preferably from 700 to 80
  • the number average molecular weight of the derivative of the formula (Id) is preferably from 350 to 100,000, more preferably from 800 to 700,000. 0 to 80,000, more preferably 1,600 to 700,000.
  • the thus obtained soluble conductive compound of the present invention may be used as a common organic solvent, for example, a chlorinated solvent such as chloroform, dichloroethane, and benzene, N, N-dimethylformamide, N, It is soluble in polar solvents such as amide solvents such as N-dimethylacetamide and phenol solvents at a ratio of 2 to 10% by weight.
  • polar solvents such as amide solvents such as N-dimethylacetamide and phenol solvents
  • N, N-dimethylformamide is most desirable. In this case, the solubility is usually 5 to 7% by weight.
  • a solvent which cannot obtain a homogeneous solvent by itself another solvent may be added and used as long as a homogeneous solvent can be obtained.
  • examples include ethyl sorbitol, butyl sorb, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol and the like.
  • the resulting solution of the soluble conductive compound is force-plucked to further improve the adhesion between the soluble conductive compound film and the substrate. It is of course preferable to add an additive such as an agent.
  • Examples of a coating method for forming the soluble conductive compound thin film of the present invention include, but are not particularly limited to, dipping, spin coating, transfer printing, roll coating, and brush coating. .
  • the thickness is not particularly limited, but is preferably as thin as possible in order to improve external luminous efficiency, and is usually preferably from 100 to 100 A.
  • an aromatic amine derivative of the present invention and a conductive compound coating film using the same can be formed on the substrate.
  • the temperature at this time may be such that the solvent is evaporated, and usually 80 to 150 ° C. is sufficient.
  • the electroluminescent device of the present invention includes an anode, a cathode, and an electroluminescent organic layer interposed therebetween.
  • anode and the cathode known ones can be used.
  • an inorganic electrode transparent electrode
  • ITO formed on a glass substrate can be used
  • the cathode aluminum, A metal electrode such as an Mg Ag alloy can be used.
  • the organic layer for electroluminescence has a light-emitting material layer, and its specific structure may be a known structure.
  • the hole transport layer, the light-emitting material Layer, carrier transport layer The hole transporting material can be, but is not limited to, a layered structure.
  • the hole transporting material is not particularly limited, but is generally a tertiary aromatic amine, such as N, N, N- Squirrel (p-tolyl) amine (TPD), 1,1-bis [(di-4-tolylamine) phenyl] cyclohexane, N, N 'diphenyl-N, N'-bis (3-methylphenyl) (1,1'-biphenyl) 4,4 'diamine, N, N, N', N'-tetrakis (4-methylphenyl) (1,1,1'-biphenyl) —4,4, diamine, N, N ' —Bis (1 naphthyl) — N, N 'diphenyl 1, 1, —bisphenyl 4,
  • the carrier transport material there is no particular limitation on the carrier transport material, but generally, an aromatic condensed ring compound or a metal complex compound is often used.
  • metal complex systems such as tris (8-hydroxyquinoline) aluminum (A1q3), bis (10-hydroxybenzo [h] quinolate) beryllium (BeBq2), , 1,3,4-oxothiazol derivatives, 1,2,4-triazole derivatives, bis (benzimidazole) derivatives of perylenedicarpoxyimide, and thiopyrans sulfone derivatives.
  • the hole transport between the anode and the organic layer, that is, when the organic layer has a plurality of layers, the anode and the layer closest to the anode, typically, the hole transport A carrier transport auxiliary layer that assists charge transport is interposed between the layers.
  • the carrier transport auxiliary layer is mainly composed of an aromatic amine derivative having a repeating unit represented by the above general formula (1).
  • the aromatic amine derivative forms a salt with an electron-accepting dopant and is used as a thin film of a soluble conductive compound.
  • the copolymer composition represented by the general formula (1) contains 50 units by mole or more of A unit with respect to a decrease in 10 dynamic voltage.
  • the method for producing the electroluminescent device of the present invention is not particularly limited, but typically, the aromatic amine derivative and a conductive compound thin film using the same are first treated with an inorganic electrode. It is formed on a certain IT ⁇ . At this time, generally, I I is subjected to cleaning treatment such as reverse sputtering, ozone treatment, and acid treatment to remove foreign substances such as organic substances on the surface.
  • the method for forming the aromatic amine derivative and the conductive compound thin film using the same is not particularly limited, but preferably a spin coating method or a vapor deposition method. More preferably a spin core
  • the laminated structure has various shapes, and is not particularly limited. In general, an element in which a hole transport layer, a light emitting layer, and a carrier transport layer are laminated in this order by a vapor deposition method is used. Material is vacuum steamed sequentially
  • the layers are stacked by a 25-dip method, and a MgAg alloy, for example, is deposited as a cathode thereon.
  • a MgAg alloy for example, is deposited as a cathode thereon.
  • the obtained soluble conductive compound was dispersed in 300 cc of aqueous ammonia (5%), stirred well, and the hydrochloric acid that had been dropped was removed to obtain a compound that was the aromatic amine derivative of the present invention.
  • aqueous ammonia 5%
  • the hydrochloric acid that had been dropped was removed to obtain a compound that was the aromatic amine derivative of the present invention.
  • the molecular weight of the N, N-dimethylformamide solution (0.3% by weight) was measured by gel permeation chromatography (GPC), the number average molecular weight was 12,000. Further, the obtained compound (powder) was confirmed by IR to be an aromatic amine derivative which was a target copolymer.
  • NMR N-butylaniline to phenetidine in the molecule was 1: 3.
  • pyrolysis gas chromatography confirmed the peaks of N-butylaniline and phenetidine.
  • a coating film was formed on a glass substrate by spin coating using an N, N-dimethylformamide solution (5% by weight solution) of the obtained powdery copolymer having a dopant hydrochloride, and the surface was formed by a two-terminal method.
  • Result of measuring the resistance value Result was a 3. 0 X 1 0 9 ⁇ ⁇ mouth.
  • the compound from which the doped hydrochloric acid had been removed was dispersed in a 1-mol ferric chloride solution, re-dried, and the surface resistance of the coating film formed in the same manner as above was measured. .35 X 10 8 ⁇
  • the product without hydrochloric acid was obtained in the same manner as in Example 1, and the number-average molecular weight was measured to be 21,000. By IR, this powder was found to be the target copolymer. (Aromatic amine derivative).
  • the ratio of N-ethylenirinine to phenetidine in the molecule was 1: 3. Further, peaks of N-ethylenirinine and phenetidine were confirmed by pyrolysis gas chromatography.
  • the obtained compound was a co-polymerized compound consisting of 4, 5, 6, 7, and octamer with n + m having N-butyradiline at both ends by IR and FDMAS.
  • the thin film was formed using the obtained varnish by a spin coating method.
  • the following electroluminescent device was prepared under the condition that the thickness of the conductive compound film becomes 10 OA.
  • the thickness of ITO was set to 100 OA.
  • This substrate was subjected to ultrasonic cleaning using acetone and isopropyl alcohol, and further subjected to ozone treatment.
  • the obtained glass was spin-coated on the substrate thus processed to form a thin film having a thickness of 100 A.
  • TPD400 people, A1q600AmgAg20000A were formed by a vacuum deposition method.
  • Figure 1 shows the voltage dependence of light emission luminance
  • Figure 2 shows the relationship between voltage and current density.
  • ⁇ and the opening consist of a force source Z carrier transport auxiliary layer Z hole transport layer Z luminescent material layer Z anode, respectively.
  • the results of the electroluminescent device having a structure composed of a force source, a Z-hole transport layer, a luminescent material layer, and a Z-node are shown below, and the components of each layer are as follows.
  • Carrier transport assistance layer :
  • Light-emitting material layer Aluminum 8—hydroquinoline complex
  • Anode Magnesium silver alloy
  • Example 8 Polymerization was carried out in the same manner as in Example 8 while changing the mixing ratio of N-butylaniline and o-phenetidine, to prepare respective DMF varnishes, and then electroluminescent devices were prepared and their characteristics were evaluated. Table 3 shows the experimental conditions and molecular weight.
  • the dopant 5-sulfosalicylic acid was used.
  • Table 4 shows the characteristics of the fabricated electroluminescent device. Table 1 3
  • Example 8 Polymerization was carried out in the same manner as in Example 8 while changing the mixing ratio of N-butylaniline and o-phenetidine, and each DMF varnish was prepared. Then, an electroluminescent device was prepared and its characteristics were evaluated. Hydrochloric acid was used as a dopant.
  • Table 5 shows the characteristics of the fabricated electroluminescent device. Table 1 5
  • the compound obtained here was confirmed to be the target compound by GPC and IR.
  • G PC Number average molecular weight 8, 650,
  • Examples 8 to 16 described above the carrier transport auxiliary layer material for an electroluminescent element having excellent coatability was used, and it was confirmed that the electroluminescent element could be efficiently and stably manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
芳香族ァミ ン誘導体、 可溶性導電性化合物及び電界発光素子 技術分野
本発明は、 新規な芳香族ァミ ン誘導体及び該誘導体が電子受容性 ドーパントと塩を形成してなる可溶性導電性化合物に関する。 本発 明の可溶性導電性化合物は高い溶解性を示すことから、 帯電防止被 膜、 電磁波シールド材などに有用である。
また、 本発明は、 陽極と陰極との間に発光材料層を含む 1層又は 複数層の電界発光用有機層が介在され、 上記両極間に電圧を印加す ることにより、 上記発光材料層の発光をもたらす電界発光素子に関 する。 背景技術
従来、 帯電防止や低抵抗化の方法としては、 いくつかの方法が試 みられている。 例えば、 金属粉あるいは導電性金属酸化物を特定の 非導電性ポリマーに混入する方法や、 イオン系界面活性剤を使用す る方法などが挙げられる。
しかしながら、 これらの方法では、 例えば均一な塗膜が得られな かったり、 透明性が損なわれたり、 あるいはイオン性不純物が多く なり、 電子デバィス用途には適さないなどの問題があった。
一方、 低抵抗なポリマー材料としては、 ポリア二リ ン、 ポリ ピロ ール、 ポリチォフェン等に代表されるいわゆる導電性ポリマ一が挙 げられる。 このような導電性ポリマーは、 ァニリ ン、 ピロ一ル、 チ ォフェン又はその誘導体をモノマー原料とし、 酸化剤によって化学 酸化重合するか、 もしくは電気化学的に重合する手法によって得る ことができる。 このような手法によって得られた導電性ポリマー材 料は、 一般にはルイス酸などの酸をドーピングすることによって高 い導電性を示すことが知られている。 このようにして得られた導電 性高分子は、 帯電防止剤、 電磁波シールド剤などに応用することが できる。
しかしながら、 上記の方法で重合された導電性ポリマー材料は、 一般に溶剤への溶解性が低いことから、 有機溶剤に溶解もしくは分 散したワニスを用いたフィルムは脆く、 機械的強度が小さく、 強靭 な塗膜を得ることが困難であった。
即ち、 このようないわゆる導電性ポリマーは、 低抵抗であること から、 実用上、 優れた帯電防止能を有し、 また電荷の蓄積等の面で も優れた性能を有する。 しかしながら、 溶液の溶解性あるいは塗膜 性状の面で必ずしも満足できるものではなく、 溶解性が低く、 賦形 性に問題が生じる場合があった。 このため、 従来から導電性高分子 が持つ種々の特徴を保ちながら、 より有機溶剤に対して可溶で、 し かも高い電気伝導性を示す高分子材料が求められてきた。
また、 導電性の高分子材料は、 最近、 電界発光素子のキャリア輸 送のための材料としても注目されているが、 当初、 有機材料の電界 発光現象は、 アントラセン単結晶によって観測された ( J . C h e m. P h y s . 3 8 ( 1 9 6 3 ) 2 0 4 2 ) 。 その後、 注入効率の 良い溶液電極を用いることにより比較的強い発光現象を観測するに 至った (P h y s . R e v . L e t t . 1 4 ( 1 9 6 5 ) 2 2 6 ) 。 その後、 精力的に共役の有機ホス ト物質と縮合ベンゼン環を持つ 共役の有機活性剤とで有機発光性物質を形成した研究が行われた (
U S P 3 , 1 7 2 , 8 6 2 , U S P 3 , 1 7 2 , 0 5 0, U S P 3 , 7 1 0 , 1 6 7、 J . C h e m. P h y s . 4 4 ( 1 9 6 6 ) 2 9 0 2 , J . C h e m. P h y s . 5 0 ( 1 9 6 9 ) 1 4 3 6 4 ) 。 しかし、 ここで挙げられた有機発光物質はいずれも膜厚が厚く、 発光に必要な電界が高くなるという欠点があつた。
これに対して蒸着法による薄膜素子の研究が行われ、 駆動電圧低 減には効果が現れた。 しかし、 実用レベルの輝度を得るには至らな 力、つた ( P o l ym e r 2 4 ( 1 9 8 3 ) 7 4 8 , J p n . J . A p p 1 . P h y s . 2 5 ( 1 9 8 6 ) L 7 7 3 ) 。
近年、 イース トマンコダック社から電極間に電荷輸送層と発光層 を蒸着法で形成した素子が提案され、 低駆動電圧での高輝度が実現 されるに至った (A p p l . P h y s . L e t t . 5 1 ( 1 9 8 7 ) 9 1 3、 U S P 4 , 3 5 6 , 4 2 9 ) 。 その後、 研究は更に活発 化し、 キャ リ ア輸送と発光基を分離した 3層型素子などが検討され 、 有機エレク ト口ルミネッセンス素子は実用段階への検討に入った ( J p n . J . A p p l . P h y s . 2 7 ( 1 9 8 8 ) L 2 6 9 , L 7 1 3 ) 。
しかし、 その発光寿命は数百カンデラで、 早いもので 3 0 0 0時 間、 長いものでも数万時間で製品寿命の点で大きな問題を抱えてい る。 発明の開示
本発明の第 1 の目的は、 溶液としては溶解性が高く、 塗布性、 溶 液安定性に優れたものであり、 帯電防止あるいは電荷蓄積の小さい 導電性高分子フィルムあるいは塗膜を形成することができる可溶性 導電性化合物及びその原料の芳香族ァミ ン誘導体を提供することに ある。
本発明の第 2の目的は、 これら有機エレク ト口ルミネッセンス素 子の耐久性を向上するため、 塗布性に優れた電界発光素子用キヤ リ ァ輸送補助層材料を用いた電界発光素子を提供することにある。 本発明は、 上記目的を達成するため、 下記一般式 ( 1 ) で表され る繰り返し単位を有する数平均分子量が 2 5 0〜 1 0 0, 0 0 0の 芳香族ァミ ン誘導体を提供する。 (1)
Figure imgf000005_0001
(式中、 R1は非置換もしく は置換の一価炭化水素基又はオルガノォ キシ基を示し、 A及び Bはそれぞれ独立に下記一般式 ( 2 ) 又は ( 3 )
Figure imgf000006_0001
Figure imgf000006_0002
で表される二価の基であり、 R2〜 RMはそれぞれ独立して水素原子 、 水酸基、 非置換もしくは置換の一価炭化水素基又はオルガノォキ シ基、 ァシル基、 又はスルホン酸基である。 m及び nはそれぞれ独 立に 1以上の正数で、 m+ n = 3〜 3, 0 0 0を満足する。 )
また、 本発明は、 前記芳香族ァミン誘導体が電子受容性ドーパン 卜と塩を形成してなる可溶性導電性化合物を提供する。
本発明の芳香族アミン重合体は、 安価な原料であるァニリ ン誘導 体を原料とし、 これを酸化重合して得られる有機溶剤に可溶な高分 子導電性化合物であり、 各種電子デバイス用コート剤として有用で ある。 また、 有機エレク ト口ルミネッセンス素子の発光材料として も有用である。
更に、 本発明は、 陽極及び陰極と、 これらの間に介在された 1層 もしくは複数層からなる電界発光用有機層とを具備し、 上記陽極及 び陰極との間に電圧を印加することにより上記有機層中の発光材料 の発光が生じる電界発光素子において、 上記陽極と有機層との間に 上記一般式 ( 1 ) で表される繰り返し単位を有する数平均分子量が 2 5 0〜 1 0 0 , 0 0 0の芳香族ァミン誘導体、 特にこれと電子受 容性ドーパントとで塩を形成してなる可溶性導電性化合物を含むキ ャ リア輸送補助層を形成してなることを特徴とする電界発光素子を 提供する。
即ち、 本発明者らは、 陽極と陰極との間に 1層もしくは複数層の 電界発光用有機層を介在した電界発光素子、 特に陽極の無機電極 ( I T O電極等) 上に有機ホール輸送層及び発光材料層が順次積層さ れ、 その上に陰極が積層された電界発光素子において、 上記陽極と 有機層との間 (上記無機電極と有機ホール輸送層との間) にキヤ リ ァ輸送補助層を設けること、 このキャリア輸送補助層を上記一般式
( 1 ) で表される芳香族ァミン誘導体を主成分とし、 特にはこれと ドーパントとで形成された可溶性導電性化合物 (高分子) にて形成 することにより、 ホール注入効率が向上し、 耐久性に対して極めて 効果的であることを見出したものである。 図面の簡単な説明
図 1 は、 実施例 8で製造した発光素子での発光輝度の電圧依存性 を示すグラフである。
図 2は、 実施例 8で製造した発光素子での電流密度の電圧依存性 を示すグラフである。 発明を実施するための最良の形態
本発明の芳香族ァミン誘導体は 下記一般式 ( 1 ) で示される繰 り返し単位を有するものである。
,1,
B- ( 1 )
Figure imgf000007_0001
(式中、 R 1は非置換もしくは置換の一価炭化水素基又はオルガノォ キシ基を示し、 A及び Bはそれぞれ独立に下記一般式 ( 2 ) 又は ( 3 ) で表される二価の基であり、 m及び nはそれぞれ独立に 1以上 の正数で、 m + n = 3〜 3, 0 0 0 を満足する。 )
Figure imgf000008_0001
(式中、 R 2〜 R Mはそれぞれ独立して水素原子、 水酸基、 非置換も しく は置換の一価炭化水素基又はオルガノォキシ基、 ァシル基、 又 はスルホン酸基である。 )
ここで、 式 ( 1 ) において、 R 1は非置換もしく は置換の一価炭化 水素基又はオルガノォキシ基である。 この一価炭化水素基、 オルガ ノォキシ基としては、 炭素数 1〜 2 0、 特に 1〜 5 のものが好まし レ 一価炭化水素基として具体的には、 メチル基、 ェチル基、 プロ ピル基、 イソプロピル基、 ブチル基、 s e c _ブチル基、 t e r t 一ブチル基、 ペンチル基、 へキシル基、 ォクチル基、 デシル基等の アルキル基、 シクロペンチル基、 シクロへキシル基等のシクロアル キル基、 ビシクロへキシル基等のビシクロアルキル基、 ビニル基、 1 _プロぺニル基、 2 —プロぺニル基、 イソプロぺニル基、 1 —メ チルー 2 —プロぺニル基、 1 又は 2又は 3 —ブテニル基、 へキセニ ル基等のアルケニル基、 フエニル基、 キシリル基、 ト リル基、 ビフ ェニル基、 ナフチル基等のァリール基、 ベンジル基、 フエ二ルェチ ル基、 フエニルシクロへキシル基等のァラルキル基などや、 これら の一価炭化水素基の水素原子の一部又は全部がハロゲン原子、 水酸 基、 アルコキシ基などで置換されたものを例示することができる。 また、 オルガノォキシ基としては、 アルコキシ基、 アルケニルォキ シ基、 ァリールォキシ基などが挙げられ、 これらのアルキル基、 ァ ルケニル基、 ァリール基としては、 上記例示したと同様のものが挙 げられる。
好ましく は、 R 1 としては、 炭素数 1 〜 2 0、 より好ましく は炭素 数 1 〜 4のアルキル基又はアルコキシ基、 あるいはそれぞれ炭素数 1 〜 4のアルキル基又はアルコキシ基の置換基を有していてもよい 、 フエニル基、 シクロへキシル基、 シクロペンチル基、 ビフエ二ル 基、 ビシクロへキシル基又はフエニルシクロへキシル基が挙げられ 、 特にはアルキル基又はアルコキシ基である。
また、 A , Bはそれぞれ独立して下記一般式 ( 2 ) 又は ( 3 ) で 示される二価の基である。
Figure imgf000009_0001
Figure imgf000009_0002
上記式 ( 2 ) , ( 3 ) において、 R2〜RHは、 それぞれ独立して 水素原子、 水酸基、 非置換もしく は置換一価炭化水素基又はオルガ ノォキシ基、 ァシル基、 又はスルホン酸基であり、 非置換もしく は 置換一価炭化水素基又はオルガノォキシ基としては、 炭素数 1 〜 2 0 の R 1で説明したものと同様のものを挙げることができる。 また、 ァシル基としては炭素数 2〜 1 0 のもの、 例えばァセチル基、 プロ ピオニル基、 プチリル基、 イソプチリル基、 ベンゾィル基等が挙げ られる。 R 2〜 R H として好ましく は、 水素原子、 アルキル基、 アルコキシ 基、 アルコキシアルキル基、 アルケニル基、 ァシル基、 スルホン酸 基、 水酸基、 それぞれ炭素数 1 〜 4のアルキル基又はアルコキシ基 の置換基を有していてもよいフエニル基、 シクロへキシル基、 シク 口ペンチル基、 ビフエ二ル基、 ビシクロへキシル基又はフエニルシ クロへキシル基である。 - より好ましく は、 R 2〜 R H としては、 水素原子、 炭素数 1 〜 2 0 のアルキル基、 炭素数 1 〜 2 0 のアルコキシ基、 アルコキシ基の炭 素数が 1 〜 2 0でありアルキル基の炭素数が 1 〜 2 0のアルコキシ アルキル基、 炭素数 2 〜 4のアルケニル基、 炭素数 2 〜 4のァシル 基、 ベンゾィル基、 スルホン酸基、 水酸基、 それぞれ置換基 (該置 換基は炭素数 1 〜 4のアルキル基又は炭素数 1 〜 4のアルコキシ基 である) を有していてもよいフエニル基、 シクロへキシル基、 シク 口ペンチル基、 ビフエ二ル基、 ビシクロへキシル基もしく はフエ二 ルシクロへキシル基が挙げられ、 特には、 水素原子、 炭素数 1 〜 4 のアルキル基、 炭素数 1 〜 4のアルコキシ基、 アルコキシ基の炭素 数が 1 〜 4でありアルキル基の炭素数が 1 〜 4のアルコキシアルキ ル基、 ビニル基、 2 —プロぺニル基、 ァセチル基、 ベンゾィル基、 スルホン酸基、 水酸基、 それぞれ置換基 (該置換基は炭素数 1 〜 4 のアルキル基又は炭素数 1 〜 4のアルコキシ基である) を有してい てもよいフエニル基、 シクロへキシル基、 ビフエ二ル基、 ビシクロ へキシル基もしく はフェニルシク口へキシル基が挙げられる。
なお、 上記の炭素数 1 〜 4のアルキル基は、 具体的にはメチル基 、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 s —ブチル 基及び t 一ブチル基であり、 炭素数 1 〜 4のアルコキシ基は、 メ ト キシ基、 エ トキシ基、 プロポキシ基、 イソプロボキシ基、 ブトキシ 基、 S —ブトキシ基及び t 一ブトキシ基である。
上記 R 2〜 R 1 1は、 互いに同一でも異なっていてもよい。
上記式 ( 1 ) において、 m及び nはそれぞれ独立して 1以上の正 数で、 m+ n = 3〜 3, 0 0 0を満足する。 また、 式 ( 1 ) で示さ れる芳香族ァミン誘導体の数平均分子量は 2 5 0〜 1 0 0, 0 0 0 である。
上記式 ( 1 ) の繰り返し単位を有する芳香族ァミン誘導体として は、 具体的に下記一般式 ( l a ) 〜 ( I d ) で表される繰り返し単 位を有するものが挙げられる。
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000012_0001
(式中、 R '〜 R U, m, nは上記と同じ意味を示す。 )
ここで、 上記式 ( 1 a ) で表される芳香族ァミ ン誘導体及びそれ を用いた可溶性導電性化合物の合成方法は、 特に限定されるもので はないが、 例えば以下に述べる方法により合成することができる。 即ち、 蒸留などで酸化防止剤等の不純物を除去した、 十分に精製 された原料であるァニリ ン誘導体と N置換ァニリ ン誘導体を混合し 、 これら原料の 1〜 3倍量の酸によって塩を形成させる。 この際の ァニリ ン誘導体と N置換ァニリ ン誘導体の混合割合は特に限定しな いが、 通常、 モル比で 1 : 9 9〜 9 9 : 1 である。
ここで得られる塩は水に可溶なので原料の 2〜 1 0倍量の水に溶 解させる。 これを 2 5 °Cに保った後、 酸化剤として過硫酸アンモニ ゥム、 硫酸セリ ウム、 塩化鉄又は塩化銅を加える。 酸化剤の添加量 は、 加えた原料に対して 0 . 5〜 4倍モル、 好ましく は 1 〜 2倍モ ルである。 酸化剤を加えて 1 0〜 5 0時間反応させた後、 濾過し、 その濾さいをアセ トン、 メタノール、 エタノール又はイソプロパノ ール等の低沸点の水溶性有機溶剤で十分に洗浄し、 可溶性導電性化 合物を得ることができる。 ここで用いる酸としては、 芳香族ァミ ン 誘導体の電子受容性ドーパン トとなるもので、 特に限定されるもの ではない。 電子受容性ド一パン ト としては、 ルイス酸、 プロ トン酸 、 遷移金属化合物、 電解質塩、 ハロゲン化合物が挙げられる。
ルイス酸としては、 F e C l P F A s F S b F B F
B C 1 B B r 等が挙げられる。
プロ トン酸としては、 H F、 H C 1 、 H N〇い H, S〇い H C 1 04等の無機酸、 ベンゼンスルホン酸、 p— トルエンスルホン酸、 ド デシルベンゼンスルホン酸、 ポリ ビニルスルホン酸、 メタンスルホ ン酸、 1 一ブタンスルホン酸、 ビニルフエニルスルホン酸、 カンフ アスルホン酸等の有機酸が挙げられる。
遷移金属化合物としては、 F e 〇 C l 、 T i C l 4、 Z r C l 4、 H f C l 4、 N b F5、 N b C l 5 、 T a C l 5、 M o F5等が挙げられ る。
電解質塩としては、 L i S b F6、 L i A s F 6、 N a A s F6、 N a S b F6、 KA s F6、 K S b Fい [ ( n - B u ) 4 N ] A s Fい [ ( n— B u ) 4 N] S b Fい [ ( n— E t ) 4 N] A s F6、 [ ( n - E t ) 4 N ] S b F 6等が挙げられる。
ハロゲン化合物としては、 C l 2、 B r 2、 I 2、 I C 1 、 I C 1 3 、 I B r、 I F等が挙げられる。
これらの電子受容性ド一パン ト中で好ましいものは、 ルイス酸と しては塩化第 2鉄、 プロ トン酸としては塩酸、 過塩素酸等の無機酸 、 p— トルエンスルホン酸、 カンフアスルホン酸などの有機酸が挙 げられる。
ドーパン トを有さない芳香族ァミ ン誘導体の場合、 先に述べた方 法で得られた可溶性導電性化合物をアルカ リで洗浄することで、 目 的とする芳香族ァミ ン誘導体が得られる。 ここで、 アルカリは特に 限定されるものではないが、 アンモニア、 炭酸水素ナト リ ウム等が 望ましい。 このように本発明の芳香族ァミ ン誘導体は、 可溶性導電 性化合物をアルカ リ処理することで容易に得ることができる。
このようにして得られた芳香族ァミ ン誘導体は、 先に記載した電 子受容性ドーパン トとしてルイス酸、 プロ トン酸、 遷移金属化合物
、 電解質塩を ドープすることによって、 容易に可溶性導電性化合物 (高分子導電性化合物) とする ことができる。
ド一パン トを形成させる電子受容体の添加量は、 一般には塩基性 原子として窒素を含む共役系構造の繰り返し単位における窒素原子 1個に対して 1個以下の ド一パン トとなるように添加することが好 ましい。
更には、 本発明の芳香族ァミ ン誘導体の塗膜を形成した後、 塩酸 蒸気にさ らしたり、 ョゥ素蒸気にさ らすことによって ドーピングを 行う こともできる。
なお、 式 ( l a ) の芳香族ァミ ン誘導体において、 m, nはそれ ぞれ独立して 1以上、 好ましく は 2以上、 特に 4以上であることが 好ましく、 m+ nは 3〜 3, 0 0 0、 好ましく は 4〜 3, 0 0 0、 より好ましく は 8〜 2, 0 0 0であり、 また、 数平均分子量は 2 5 0〜 ; 1 0 0 , 0 0 0、 好ましく は 6 0 0〜 7 0 , 0 0 0、 より好ま しく は 1 , 0 0 0〜 7 0, 0 0 0である。
また、 式 ( l b ) , ( 1 c ) , ( 1 d ) で表される芳香族ァミ ン 誘導体及びこの芳香族ァミ ン誘導体からの可溶性導電性化合物を得 る方法も、 上記式 ( 1 a ) の芳香族ァミ ン誘導体の場合と同様であ り、 m, nの範囲は、 好適範囲を含めて、 式 ( 1 a ) で表される芳 香族ァミ ン誘導体の場合と同様であるが、 式 ( 1 b ) , ( 1 c ) で 表される芳香族ァミ ン誘導体の数平均分子量は 3 0 0〜 1 0 0, 0 0 0、 好ましく は 7 0 0〜 8 0 , 0 0 0、 より好ましくは 1, 6 0 0〜 7 0, 0 0 0であり、 式 ( I d ) の誘導体の数平均分子量は 3 5 0〜 1 0 0, 0 0 0、 好ましく は 8 0 0〜 8 0, 0 0 0 、 よ り好 ましく は 1 , 6 0 0〜 7 0 , 0 0 0である。
このようにして得られた本発明の可溶性導電性化合物は、 一般的 な有機溶剤として、 例えばクロ口ホルム、 ジクロロェタン、 クロ口 ベンゼン等の塩素系溶剤、 N, N—ジメチルホルムアミ ド、 N, N ージメチルァセ トアミ ド等のアミ ド系溶剤、 フエノール系溶剤等の 極性溶剤に対して 2〜 1 0重量%の割合で可溶である。 しかし、 ゲ ル化せず十分に安定したワニスを得るためには、 N , N—ジメチル ホルムアミ ドが最も望ましい。 この場合、 溶解度は、 通常 5〜 7重 量%である。 なお、 単独では均一溶媒が得られない溶媒であっても、 均一溶媒 が得られる範囲で他の溶媒を加えて使用してもよい。 その例として は、 ェチルセ口ソルブ、 ブチルセ口ソルブ、 ェチルカルビ トール、 プチルカルビ トール、 ェチルカルビ トールアセテー ト及びエチレン グリ コール等が挙げられる。
また、 基材上に可溶性導電性化合物塗膜を形成させる場合、 可溶 性導電性化合物膜と基材の密着性を更に向上させる目的で、 得られ た可溶性導電性化合物の溶液に力ップリ ング剤等の添加剤を加える ことはもちろん好ましい。
本発明の可溶性導電性化合物薄膜を形成する際の塗布方法として は、 ディ ップ法、 スピンコー ト法、 転写印刷法、 ロールコー ト法、 刷毛塗りなどが挙げられるが、 特に限定されるものではない。 その 膜厚は特に限定されるものではないが、 外部発光効率を向上させる ため、 できるだけ薄いことが望ましく 、 通常 1 0 0 〜 1 0 0 0 Aが 好ましい。
この溶液を基材上に塗布し、 溶媒を蒸発させることにより、 基材 上に本発明の芳香族アミ ン誘導体及びそれを用いた導電性化合物塗 膜を形成させることができる。 この際の温度は溶媒が蒸発すればよ く 、 通常は 8 0 〜 1 5 0 °Cで十分である。
次に、 本発明の電界発光素子について説明する。
本発明の電界発光素子は、 陽極と、 陰極と、 これらの間に介在さ れた電界発光用有機層とを備えたものである。
ここで、 陽極、 陰極としては、 公知のものを用いることができ、 例えば陽極としては、 ガラス基板上に形成された I T O等の無機電 極 (透明電極) を使用でき、 陰極としては、 アルミニウム、 M g A g合金等の金属製電極等を用いることができる。
また、 上記電界発光用有機層は、 発光材料層を有するもので、 そ の具体的な構成としては公知の構成とすることができ、 典型的には 、 陰極側から順次ホール輸送層、 発光材料層、 キャ リア輸送層を積 層した構成とすることができるが、 これに限定されるものではない ホール輸送材料は、 特に限定されるものではないが、 一般には 3 級芳香族ァミ ンである N, N , N— ト リス ( p— トルィル) ァミ ン (T P D) 、 1, 1 —ビス [ (ジ一 4— トルィルァミ ン) フエニル ] シクロへキサン、 N, N ' ージフエニル— N, N ' —ビス ( 3 — メチルフエニル) ( 1 , 1 ' —ビフエニル) 4, 4 ' ージァミ ン、 N , N, N ' , N ' ーテトラキス ( 4—メチルフエニル) ( 1 , 1 ' —ビフエニル) — 4, 4, ージァミ ン、 N, N ' —ビス ( 1 ーナ フチル) — N, N ' ージフエニル一 1 , 1 , —ビスフエニル一 4,
4 ' ージァミ ン、 4 , 4 ' , 4 " — ト リス ( 3 —メチルフエニルァ ミ ノ) ト リ フエニルァミ ン等が挙げられる。 このほかにもピラゾリ ン誘導体が用いられる。
キャ リ ア輸送材料に関しても特に限定されるものではないが、 一 般に芳香族縮合環系化合物や金属錯体化合物が用いられることが多 い。 例えばト リス ( 8 —ヒ ドロキシキノ リ ン) アルミニウム ( A 1 q 3 ) 、 ビス ( 1 0 —ヒ ドロキシベンゾ [ h ] キノ レー ト) ベリ リ ゥム (B e B q 2 ) などの金属錯体系や、 1 , 3, 4一ォキサチア ゾ一ル誘導体、 1, 2 , 4ー ト リ アゾール誘導体、 ペリ レンジカル ポキシイ ミ ドのビス (ベンズイ ミダゾ一ル) 誘導体、 チォピランス ルフォン誘導体などが挙げられる。
更に発光材料としては、 金属錯体系として、 A 1 Q 3、 ト リス (
5—シァノ ー 8—ヒ ドロキシキノ リ ン) アルミニウム (A l (Q - C N) ) 等が挙げられ、 色素としてォキサチアゾール系、 例えば、 ビフエ二ルー p— ( t ーブチル) フエ二ルー 1, 3, 4一才キサチ ァゾールや、 ト リァゾール類、 ァリ レン類、 クマリ ン類等が挙げら れるが、 特に限定されるものではない。
本発明の電界発光素子は、 上記陽極と有機層との間、 即ち有機層 が複数層の場合は陽極とこれに最も近い層、 典型的にはホール輸送 層との間に電荷輸送を補助するキャ リア輸送補助層を介在させたも のである。
このキャ リ ア輸送補助層は、 上記一般式 ( 1 ) で表される繰り返 し単位を有する芳香族ァミ ン誘導体を主成分とするものであり、 そ
5 の内容は上述した通りである。
この場合、 この芳香族ァミ ン誘導体は、 電子受容性ド一パン トと 塩を形成して可溶性導電性化合物の薄膜として使用することが有効 である。
また、 上述した芳香族ァミ ン誘導体としては、 輝度の向上及び駆
1 0 動電圧の低下に対して一般式 ( 1 ) で表される共重合組成としては Aュニッ 卜が 5 0モル%以上含まれることが更に好ましい。
本発明の電界発光素子を製造する方法としては、 特に制限される ものではないが、 典型的には、 上記芳香族ァミ ン誘導体及びそれを 用いた導電性化合物薄膜を、 まず、 無機電極である I T〇上に形成 i s する。 この時、 一般に I Τ Οは逆スパッタ リ ング、 オゾン処理、 酸 処理等の洗浄処理を行い、 表面の有機物等の異物を除去したものが 用いられる。 上記芳香族ァミ ン誘導体及びそれを用いた導電性化合 物薄膜の形成方法は、 特に限定されるものではないが、 好ましく は スピンコー ト法、 蒸着法が用いられる。 より好ましく はスピンコ一
20 ト法が用いられる。
このようにして得られた電極付き基板に電界発光用有機材料を積 層する。 その積層構造には様々な形があり、 特に限定されるもので はないが、 一般には蒸着法によ りホール輸送層、 発光層、 キャ リ ア 輸送層の順に積層した素子が用いられ、 これら材料は、 順次真空蒸
2 5 着法により積層され、 その上部に陰極として例えば M g A g合金が 蒸着される。 このようにして得られた素子に電界を印加することに より、 特定波長の発光を示す電界発光素子が得られる。
以下、 実施例と比較例を示し、 本発明を具体的に説明するが、 本 発明は下記の実施例に制限されるものではない。 〔実施例 1〕
(フエネチジンと N—ブチルァニリ ンの共重合)
5 0 0 m l フラスコにフエネチジン 6. 8 6 g ( 0. 0 5 m o 1 ) 、 N—プチルァニリ ン 7. 4 6 g ( 0. 0 5 m o 1 ) を加え、 こ れに塩酸 1 1. 0 gを徐々に添加した。 これに更に水 1 1 0 gをカロ え、 ゆつ く りかき混ぜながらフエネチジンと N—プチルァニリ ン塩 酸塩を溶解させた。
これらが溶解したところで、 水 5 0 gに溶解した過硫酸アンモニ ゥム 2 2. 8 2 g ( 0. 1 m o 1 ) を添加し、 2 4時間撹拌し反応 させた。 反応終了後、 反応物を 1 0 0 0 c cのアセ トンに入れ、 未 反応物を洗い落とし、 固形分を濾別しアセ トンで洗浄した後、 8 0 °Cで減圧乾燥し、 緑色の粉末 4. 6 1 gを得た。
得られた可溶性導電性化合物をアンモニア水 ( 5 % ) 3 0 0 c c に分散し、 よくかき混ぜ、 ド一プされている塩酸を除去し、 本発明 の芳香族ァミ ン誘導体である化合物を得た。 このものの N, N—ジ メチルホルムアミ ド溶液 ( 0. 3重量% ) をゲルパーミエイ シヨ ン クロマ トグラフ (G P C) により分子量を測定したところ、 数平均 分子量 1 2, 0 0 0であった。 また、 得られた化合物 (粉末) は、 I Rによって、 目的とする共重合体である芳香族ァミ ン誘導体であ ることが確認された。
また、 NMRにより、 分子中の N—プチルァニリ ンとフエネチジ ンの比は 1 : 3であった。 更に、 熱分解ガスクロマ トグラフィーに より、 N—ブチルァニリ ンとフエネチジンのピークが確認された。
I R : 3 3 5 0 c m—' ( レ NH) , 1 3 2 0 c m— 1 ( レ C N) ,
1 2 2 0 c m— 1 ( レ C O) ,
8 2 0 c m'1 ( 1 , 4ジ置換ベンゼン)
得られた塩酸ドーパン トを有する粉末の共重合体を N, N—ジメ チルホルムアミ ド溶液 ( 5重量%溶液) を用いてスピンコー トでガ ラス基板上に塗膜を形成させ、 2端子法で表面抵抗値を測定した結 果は、 3. 0 X 1 09 Ω Ζ口であった。
また、 ドープされている塩酸を除去した化合物を塩化第 2鉄 1 モ ル溶液に分散し、 再ド一プし、 前記と同様に作成した塗膜の表面抵 抗値を測定した結果は、 2. 3 5 X 1 08 Ω Ζ口であった。
〔実施例 2, 3及び比較例 1 , 2〕
表 1 に示すように、 フエネチジンと Ν—ブチルァニリ ンのモル比 を変化させ、 実施例 1 と同様に塩酸ドーパン トを有する共重合体を 合成した場合の収量及び得られた共重合体の Ν, Ν—ジメチルホル ムアミ ド溶液を用いて作成した塗膜の表面抵抗値を測定した。 結果 を表 1 に実施例 1 の結果と併せて示す。 表一 1
フエネチジンと Ν—プチルァニリ ン共重合体の合成と特性
Figure imgf000019_0001
* 1 測定に用いた濃度で、 ゲル化せず安定して溶解する濃度である。
〔実施例 4〕
(フエネチジンと N—ェチルァニリ ンの共重合)
5 0 0 m l フラスコにフエネチジン 6. 8 6 g ( 0. 0 5 m o 1 ) 、 N—ェチルァニリ ン 6. 8 6 g ( 0. 0 5 m o 1 ) を加え、 こ れに塩酸 1 1 . 0 gを徐々に添加した。 これに更にァセ トニ ト リル 1 1 0 gを加え、 ゆっ く りかき混ぜながらフエネチジンと N—ェチ ルァニリ ン塩酸塩を溶解させた。
これらが溶解したところで、 水 5 0 gに溶解した過硫酸アンモニ ゥム 2 2. 8 2 g ( 0. 1 m o 1 ) を添加し、 4 0時間撹拌し反応 させた。 反応終了後、 反応物を 1 0 0 0 c cのアセ トンに入れ、 未 反応物を洗い落とした。 その後、 濾別し、 更にもう一度アセ トンで 洗浄し、 固形分を濾別して、 8 0 °Cで減圧乾燥し、 緑色の粉末 6. 2 0 gを得た。〇〇
o 〇
実施例 1 と同様に塩酸ド一パン トを除いたものを得、 数平均分子 量を測定したところ、 2 1 , 0 0 0であり、 I Rによって、 この粉 末は、 目的とする共重合体 (芳香族ァミ ン誘導体) であることが確 認された。
また、 NM Rにより、 分子中の N—ェチルァニリ ンとフエネチジ ンの比は 1 : 3であった。 更に、 熱分解ガスクロマ トグラフィーに よ り、 N—ェチルァニリ ンとフエネチジンのピークが確認された。
I R : 3 3 5 0 c m—' ( レ NH) , 1 3 2 〇0 c m— 1 ( レ C N) ,
1 2 2 0 c m- 1 ( レ C O) ,
8 2 0 c m— 1 ( 1, 4ジ置換ベンゼン)
〔実施例 5, 6及び比較例 3 , 4〕
表 2 に示すように、 フエネチジンと N—ェチルァニリ ンのモル比 を変化させ、 実施例 1 と同様に塩酸ド一パン トを有する共重合体を 合成した場合の収量及び得られた共重合体の N, N—ジメチルホル ムアミ ド溶液を用いて作成したフィルムの表面抵抗値を測定した。 結果を表 2に実施例 4の結果と併せて示す。 表一 2
フエネチジンと N—ェチルァニリ ン共重合体の合成と特性
フエネチジン Ν—ェチノレア二リン 収量 表 ifi ί& 溶解性 (mol) (mol) (g) (Ω/D) (wt%) 比較例 3 0. 1 0 7. 0 X 107 2 実施例 5 0. 07 0. 03 4. 10 3. 52 X 108 5 実施例 4 0. 05 6. 20 5. 12 X 108 5 実施例 6 0. 01 3. 95 8. 88 X 108 5 比較例 4 0 0. 1 4. 27 8. 31 X 10'° 5 〔実施例 7〕
(フエネチジンと N—ブチルァニリ ンの共重合)
5 0 0 m l フラスコにフエネチジン 6. 8 6 g ( 0. 0 5 m o 1 ) 、 N—プチルァニリ ン 7. 4 6 g ( 0. 0 5 m o 1 ) を加え、 こ れに塩酸 1 1 . 0 gを徐々に添加した。 これに更に水 3 0 0 gを加 え、 ゆつく りかき混ぜながらフエネチジンと N—プチルァニリ ン塩 酸塩を溶解させた。
これらが溶解したところで、 水 5 0 gに溶解した過硫酸アンモニ ゥム 2 2. 8 2 g ( 0. l m o l ) を添加し、 反応温度 3 5 °Cで 1 2時間撹拌し、 反応させた。 反応終了後、 反応物を l O O O c cの アセトンに入れ、 未反応物を洗い落とした。 その後、 濾別し、 ァセ トンで洗浄し、 固形分を濾別し、 8 0 °Cで減圧乾燥し、 緑色の粉末 3. 3 8 gを得た。
得られた化合物は、 I R, F D MA S Sによって両末端を N—ブ チルァ二リンとする n +mが 4, 5, 6 , 7, 8量体からなる共重 合体の化合物であつた。
I R : 3 3 5 0 c m— 1 ( レ NH) , 1 3 2 0 c m"1 ( レ C N) ,
1 2 2 0 c m- 1 ( レ C O) ,
8 2 0 c m— 1 ( 1 , 4ジ置換ベンゼン)
〔実施例 8〕
N—ブチルァニリ ン 0. 0 9 m o l ( 1 3. 4 8 g) 、 o—フエ ネチジン 0. O l m o l ( 1. 3 8 g ) に 3 5 %塩酸 2 5. 7 1 g ( 0. 2 5 m o 1 ) を加え、 更に水 2 0 0 m 1 を注ぎ、 2時間沸点 で撹拌した。 その後、 3 0 °Cまで冷却し、 これに過硫酸アンモニゥ ム 0. 2 m o l を水 1 0 0 m l に溶解させたものを反応温度 3 0 ~ 3 2 °Cの間で滴下した。 滴下終了後、 更に 2 4時間、 反応温度 3 0 〜 3 2 °Cで撹拌した。 反応終了後、 生成物は大量のアセトンにあけ 、 洗浄、 濾過した。 この操作を濾液の色がなくなるまで十分に行つ た。 ここで得られた化合物は、 G P C及び I Rによって目的物である ことが確認された。
I R : 3 3 5 0 c m— 1 ( レ N H) , 1 3 2 0 c m" 1 ( レ C N ) ,
1 2 2 0 c m— 1 ( レ C〇) ,
8 2 0 c m— 1 ( 1 , 4置換ベンゼン)
G P C : 数平均分子量 2 , 6 5 5 ,
多分散度 (MwZM n ) 5 8 . 4 0
(測定条件 : 溶離液 D M F、 液速度 1 . O m l / i n、 ポリスチレン換算、 カラム K D 8 0 5昭和電工製) また、 共重合比は N M Rによ り算出し、 ほぼ混合比通り 9 : 1 で めつ /こ。
得られた化合物 2 gを溶剤 N, N—ジメチルホルムアミ ド 9 8 g に溶解し、 これに ド一パン トとして 5 —スルホサリチル酸 2 . 9 9 gを添加し、 1 昼夜室温で撹拌した。 作成したワニスは 0 . 2 ミク ロンフィルターで濾過し、 不溶成分を除去した。
得られたワニスを用いた薄膜形成は、 スピンコー ト法を用いた。 この導電性化合物膜の膜厚 1 0 O Aになる条件で以下の電界発光素 子の作成を行った。
I T O付きガラスは、 I T Oの厚みを 1 0 0 O Aとした。 この基 盤をアセ トン、 イソプロピルアルコールを用いて超音波洗浄し、 更 にオゾン処理を施した。 この処理された基盤に前記の得られたヮニ スをスピンコー トし、 厚み 1 0 0 Aの薄膜を形成させた。 この基盤 に T P D 4 0 0 人、 A 1 q 6 0 0 A M g A g 2 0 0 0 Aを真空蒸 着法で形成させた。
このように作成された素子に電圧を与え、 その発光特性を測定し た。 発光輝度の電圧依存性を図 1 に、 電圧一電流密度の関係を図 2 に示す。
なお、 図 1 , 2 において、 〇及び口はそれぞれ力ソー ド Zキヤ リ ァ輸送補助層 Zホール輸送層 Z発光材料層 Zアノー ドからなる構成 の電界発光素子、 △は力ソー ド Zホール輸送層 発光材料層 Zァノ — ドからなる構成の電界発光素子の結果であり 各層の構成成分は 下記の通りである。
力ソー ド : 酸化インジウム錫
キヤ リァ輸送補助層 :
〇…上で得られた共重合体 5 一スルホサリチル酸 = 1 1 口…上で得られた共重合体 5 一スルホサリチル酸 1 2 ホール輸送層 :
N , N ' ージフエ二ルー N N ' ビス ( 3 —メチルフエニル) ( 1 1 ' 一ビスフエニル) 4 , 4 ' —ジァミ ン
発光材料層 : アルミニウム 8 —ヒ ドロキノ リ ン錯体
アノー ド : マグネシウム銀合金
〔実施例 9 1 1〕
実施例 8 と同様な方法により、 N—プチルァニリ ン、 o —フエネ チジン混合比を変えて重合を行い、 それぞれの D M Fワニスを作成 した後、 電界発光素子を作成し、 その特性を評価した。 以下、 実験 条件及び分子量を表 3 に示す。 ドーパン トとしては 5 —スルホサリ チル酸を用いた。
作成した電界発光素子の特性を表 4に示す。 表一 3
実験条件及び分子量
Figure imgf000023_0001
* 1 N—ブチルァニリ ン : o — フエネチジン 表一 4
導電性化合物を電荷補助層に有する電界発光素子の特性
Figure imgf000024_0001
* 1 N—プチルァニリ ン : o —フエネチジン
〔実施例 1 2〜 1 6〕
実施例 8 と同様な方法により、 N—プチルァニリ ン、 o—フエネ チジン混合比を変えて重合を行い、 それぞれの DM Fワニスを作成 した後、 電界発光素子を作成し、 その特性を評価した。 ド一パント としては塩酸を用いた。
作成した電界発光素子の特性を表 5に示す。 表一 5
導電性化合物を電荷補助層に有する電界発光素子の特性
Figure imgf000024_0002
* 1 N—プチルァニリ ン : o —フエネチジン
〔比較例 5〕
ァニリ ン 0. 2 m o l ( 1 8. 6 g ) に 3 5 %塩酸 3 0. 8 6 g
( 0. 3 m o 1 ) を加え、 更に水 2 0 0 m 1 を注ぎ、 2時間沸点で 撹拌した。 その後、 5 °Cまで冷却し、 これに過硫酸アンモニゥム 0 . 2 m o 1 を水 1 0 0 m l に溶解させたものを反応温度 0〜 5 の 間で滴下した。 滴下終了後、 更に 2 4時間、 反応温度 0〜 5 °Cで撹 拌した。 反応終了後、 生成物は大量のアセトンにあけ、 洗浄し濾過 した。 この操作を濾液の色がなくなるまで十分に行った。
ここで得られた化合物は G P C及び I Rによって目的物であるこ とが確認された。
I R : 3 3 5 0 c m— 1 ( v N H) , 1 3 2 0 c m" 1 ( レ C N ) ,
1 2 2 0 c m- 1 ( レ C O ) ,
8 2 0 c m— 1 ( 1, 4置換ベンゼン)
G P C : 数平均分子量 8 , 6 5 0,
多分散度 (Mw/M n ) 6 . 5 5
(測定条件 : 溶離液 D M F、 液速度 1 . 0 m l / m i n、 ポリスチレン換算、 カラム K D 8 0 5昭和電工製) 。
得られた化合物 2 gを溶剤 N, N—ジメチルホルムアミ ド 9 8 g に分散し、 これにドーパントとして 5 —スルホサリチル酸 0 . 0 1 5 m o 1 ( 3 . 2 7 g ) を添加し、 1昼夜室温で撹拌した。 作成し たワニスは 0 . 2 ミクロンフィル夕一で濾過し、 不溶成分を除去し よう としたが、 濾過できなかった。 更に、 この未濾過のワニスで薄 膜を形成したところ、 2 0 0 O Aを越える凹凸が確認された。
このワニスを用いて電界発光素子を作成したが、 2 0 0 O Aを越 える凹凸によるショ一トのため、 特性は評価できなかった。
上記実施例 8〜 1 6は、 塗布性に優れた電界発光素子用キヤ リァ 輸送補助層材料を用いたもので、 電界発光素子を効率的に安定して 製造できることが認められる。

Claims

請求の範囲
. 下記一般式 ( 1 ) で表される繰り返し単位を有する数平均分子 が 2 5 0〜 1 0 0 , 0 0 0である芳香族ァミン誘導体。
Figure imgf000026_0001
(式中、 R1は非置換もしくは置換の一価炭化水素基又はオルガノォ キシ基を示し、 A及び Bはそれぞれ独立に下記一般式 ( 2 ) 又は ( 3 )
Figure imgf000026_0002
Figure imgf000026_0003
で表される二価の基であり、 !^2〜!^1 1はそれぞれ独立して水素原子 、 水酸基、 非置換もしくは置換の一価炭化水素基又はオルガノォキ シ基、 ァシル基、 又はスルホン酸基である。 m及び nはそれぞれ独 立に 1以上の正数で、 m+ n = 3〜 3 , 0 0 0を満足する。 )
2. 芳香族ァミン誘導体が、 下記一般式 ( l a ) で表される数平均 分子量が 2 5 0〜 1 0 0 , 0 0 0のものである請求の範囲第 1項記 載の芳香族アミン誘導体。
Figure imgf000027_0001
(式中、 R'〜R5, m, nは上記と同じ意味を示す。 )
3. R1が炭素数 1〜 2 0のアルキル基又は炭素数 1〜 2 0のアルコ キシ基である請求の範囲第 2項記載の芳香族ァミ ン誘導体。
4. R 2〜 R 5がそれぞれ独立して水素原子、 炭素数 1〜 2 0のアル キル基、 炭素数 1〜 2 0のアルコキシ基、 アルコキシ基の炭素数が 1〜 2 0でありアルキル基の炭素数が 1〜 2 0のアルコキシアルキ ル基、 炭素数 2〜 4のアルケニル基、 炭素数 2〜 4のァシル基、 ベ ンゾィル基、 スルホン酸基、 水酸基、 それぞれ置換基 (該置換基は 炭素数 1〜 4のアルキル基又は炭素数 1〜 4のアルコキシ基を示す 。 ) を有していてもよいフエニル基、 シクロへキシル基、 シクロべ ンチル基、 ビフエ二ル基、 ビシクロへキシル基、 又はフエ二ルシク 口へキシル基である請求の範囲第 2項又は第 3項記載の芳香族アミ ン誘導体。
5. 芳香族ァミ ン誘導体が、 下記一般式 ( l b ) 又は ( l c ) で示 される数平均分子量が 3 0 0〜 1 0 0, 0 0 0のものである請求の 範囲第 1項記載の芳香族ァミ ン誘導体。
Figure imgf000027_0002
Figure imgf000028_0001
(式中、 1〜!^ 1 1, m, nは上記と同じ意味を示す。 )
6. R1が炭素数 1〜 2 0のアルキル基又は炭素数 1〜 2 0のアルコ キシ基である請求の範囲第 5項記載の芳香族ァミ ン誘導体。
7. 尺2〜!^ 1 1がそれぞれ独立して水素原子、 炭素数 1〜 2 0のアル キル基、 炭素数 1〜 2 0のアルコキシ基、 アルコキシ基の炭素数が 1〜 2 0でありアルキル基の炭素数が 1〜 2 0のアルコキシアルキ ル基、 炭素数 2〜 4のアルケニル基、 炭素数 2〜 4のァシル基、 ベ ンゾィル基、 スルホン酸基、 水酸基、 それぞれ置換基 (該置換基は 炭素数 1〜 4のアルキル基又は炭素数 1〜 4のアルコキシ基を示す
。 ) を有していてもよいフエニル基、 シクロへキシル基、 シクロべ ンチル基、 ビフエ二ル基、 ビシクロへキシル基、 又はフエ二ルシク 口へキシル基である請求の範囲第 5項又は第 6項記載の芳香族アミ ン誘導体。
8. 芳香族ァミ ン誘導体が、 下記一般式 ( I d ) で示される数平均 分子量が 3 5 0〜 1 0 0, 0 0 0のものである請求の範囲第 1項記 載の芳香族アミ ン誘導体。
Figure imgf000028_0002
(式中、 R ' , R 6〜 R H , m, nは上記と同じ意味を示す。 )
9. R1が炭素数 1〜 2 0のアルキル基又は炭素数 1〜 2 0のアルコ キシ基である請求の範囲第 8項記載の芳香族ァミ ン誘導体。
1 0. R6〜RMがそれぞれ独立して水素原子、 炭素数 1〜 2 0のァ ルキル基、 炭素数 1〜 2 0のアルコキシ基、 アルコキシ基の炭素数 が 1〜 2 0でありアルキル基の炭素数が 1〜 2 0のアルコキシアル キル基、 炭素数 2〜 4のアルケニル基、 炭素数 2〜 4のァシル基、 ベンゾィル基、 スルホン酸基、 水酸基、 それぞれ置換基 (該置換基 は炭素数 1〜 4のアルキル基又は炭素数 1〜 4のアルコキシ基を示 す。 ) を有していてもよいフエニル基、 シクロへキシル基、 シクロ ペンチル基、 ビフエ二ル基、 ビシクロへキシル基、 又はフエニルシ クロへキシル基である請求の範囲第 8項又は第 9項記載の芳香族ァ ミ ン誘導体。
1 1. 請求の範囲第 1項乃至第 1 0項のいずれか 1項記載の芳香族 アミ ン誘導体が電子受容性ドーパン トと塩を形成してなる可溶性導 電性化合物。
1 2. 電子受容性ドーパン トがルイス酸、 プロ トン酸、 遷移金属化 合物、 電解質塩及びハロゲン化合物から選ばれるものである請求の 範囲第 1 1項記載の可溶性導電性化合物。
1 3. 陽極及び陰極と、 これらの間に介在された 1層もしく は複数 層からなる電界発光用有機層とを具備し、 上記陽極及び陰極との間 に電圧を印加することにより上記有機層中の発光材料の発光が生じ る電界発光素子において、 上記陽極と有機層との間に下記一般式 ( 1 ) で表される繰り返し単位を有する数平均分子量が 2 5 0〜 1 0 0 , 0 0 0の芳香族ァミ ン誘導体を含むキャ リ ア輸送補助層を形成 してなることを特徴とする電界発光素子。
R1
•A一 NHH—— hB N— (1)
(式中、 R 1は非置換もしく は置換の一価炭化水素基又はオルガノォ キシ基を示し、 A及び Bはそれぞれ独立に下記一般式 ( 2 ) 又は ( 3 )
Figure imgf000030_0001
Figure imgf000030_0002
で表される二価の基であり、 R2〜 R' 'はそれぞれ独立して水素原子 、 水酸基、 非置換もしくは置換の一価炭化水素基又はオルガノォキ シ基、 ァシル基、 又はスルホン酸基である。 m及び nはそれぞれ独 立に 1以上の正数で、 m+ n = 3〜 3 , 0 0 0を満足する。 ) 1 4. 芳香族ァミン誘導体が、 下記一般式 ( l a ) 〜 ( I d ) で表 されるものである請求の範囲第 1 3項記載の電界発光素子。
Figure imgf000030_0003
Figure imgf000031_0001
Figure imgf000031_0002
(式中、 R '〜R H , m, nは上記と同じ意味を示す。 )
1 5. 上記キャ リア輸送補助層が、 上記芳香族ァミン誘導体と電子 受容性ドーパン トとで塩を形成してなる可溶性導電性化合物により 形成されたものである請求の範囲第 1 3項又は第 1 4項記載の電界 発光素子。
1 6. 電子受容性ドーパントがルイス酸、 プロ トン酸、 遷移金属化 合物、 電解質塩又はハロゲン化合物である請求の範囲第 1 5項記載 の電界発光素子。
PCT/JP2000/000999 1999-02-23 2000-02-22 Derives amines aromatiques, compose conducteur soluble, et element electroluminescent WO2000050490A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60032744T DE60032744T2 (de) 1999-02-23 2000-02-22 Aromatische aminoderivate, löslich leitfähige zusammensetzung, und elektroluminescente vorrichtung
EP00904091A EP1156072B1 (en) 1999-02-23 2000-02-22 Aromatic amine derivatives, soluble conductive compound, and electroluminescent element
US09/914,076 US6632544B1 (en) 1999-02-23 2000-02-22 Aromatic amine derivative, soluble conductive compound, and electroluminscent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP04407899A JP4258583B2 (ja) 1999-02-23 1999-02-23 電界発光素子
JP11/44078 1999-02-23

Publications (1)

Publication Number Publication Date
WO2000050490A1 true WO2000050490A1 (fr) 2000-08-31

Family

ID=12681600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000999 WO2000050490A1 (fr) 1999-02-23 2000-02-22 Derives amines aromatiques, compose conducteur soluble, et element electroluminescent

Country Status (7)

Country Link
US (1) US6632544B1 (ja)
EP (1) EP1156072B1 (ja)
JP (1) JP4258583B2 (ja)
KR (1) KR100589587B1 (ja)
DE (1) DE60032744T2 (ja)
TW (1) TWI225089B (ja)
WO (1) WO2000050490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071559A1 (fr) 2002-02-20 2003-08-28 Nissan Chemical Industries, Ltd. Materiau organique conducteur et vernis conducteur

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407776B2 (ja) * 1999-12-02 2010-02-03 淳二 城戸 電界発光素子
WO2003065770A1 (fr) * 2002-01-31 2003-08-07 Sumitomo Chemical Company, Limited Dispositif d'electroluminescence organique
KR101048468B1 (ko) 2002-11-07 2011-07-11 닛산 가가쿠 고교 가부시키 가이샤 전하수송성 니스
EP1728827A4 (en) * 2004-03-25 2010-02-03 Nissan Chemical Ind Ltd LOAD TRANSPORT LACQUER AND ORIGINAL ELECTROLUMINESCENT PRODUCTS MANUFACTURED THEREFOR
KR101197492B1 (ko) 2004-04-30 2012-11-09 닛산 가가쿠 고교 가부시키 가이샤 양용매 및 빈용매를 함유하는 니스
US7087351B2 (en) * 2004-09-29 2006-08-08 Eastman Kodak Company Antistatic layer for electrically modulated display
WO2006129589A1 (ja) * 2005-06-03 2006-12-07 Nissan Chemical Industries, Ltd. 電荷輸送性ポリマーを含有する電荷輸送性ワニス及びそれを用いた有機エレクトロルミネッセンス素子
JP4513800B2 (ja) * 2006-12-08 2010-07-28 セイコーエプソン株式会社 有機el素子の製造方法
KR100890910B1 (ko) * 2007-12-27 2009-04-02 재단법인대구경북과학기술원 도핑된 정공 전달층 및 이를 이용한 유기전계 발광소자
EP2495229B1 (en) * 2009-10-30 2016-06-01 Mitsubishi Chemical Corporation Low-molecular compound, polymer, material for electronic devices, composition for electronic devices, organic electroluminescent element, organic solar cell element, display and lighting equipment
DE102010056519A1 (de) * 2010-12-27 2012-06-28 Heliatek Gmbh Optoelektronisches Bauelement mit dotierten Schichten
JP6182884B2 (ja) * 2013-02-05 2017-08-23 日産化学工業株式会社 電荷輸送性ワニス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135878A (ja) * 1991-09-18 1993-06-01 Idemitsu Kosan Co Ltd 有機エレクトロルミネツセンス素子
JPH06316631A (ja) * 1992-09-09 1994-11-15 Tosoh Corp 多環式芳香族アミン重合体及びその製造方法
EP0827367A2 (en) * 1996-09-03 1998-03-04 Xerox Corporation Electroluminescent devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172862A (en) 1960-09-29 1965-03-09 Dow Chemical Co Organic electroluminescent phosphors
US3710167A (en) 1970-07-02 1973-01-09 Rca Corp Organic electroluminescent cells having a tunnel injection cathode
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US5069820A (en) 1987-08-07 1991-12-03 Allied-Signal Inc. Thermally stable forms of electrically conductive polyaniline
DE69110922T2 (de) * 1990-02-23 1995-12-07 Sumitomo Chemical Co Organisch elektrolumineszente Vorrichtung.
US5232631A (en) 1991-06-12 1993-08-03 Uniax Corporation Processible forms of electrically conductive polyaniline
DE69231312T3 (de) * 1991-06-12 2003-12-11 Dupont Displays, Inc. Anwendbare formen von elektrisch leitfähigen polyanilinen und davon hergestellte leitfähige produkte
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5719467A (en) * 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
WO1997007654A1 (en) * 1995-08-21 1997-02-27 Philips Electronics N.V. Electroluminescent device
KR0176017B1 (ko) * 1996-08-05 1999-05-15 이서봉 수용성 전도성 폴리아닐린 복합체
US6403236B1 (en) * 1997-09-04 2002-06-11 Sumitomo Chemical Company, Limited Polymer light emitting device
JP4269113B2 (ja) * 1998-11-10 2009-05-27 日産化学工業株式会社 芳香族アミン誘導体及び可溶性導電性化合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135878A (ja) * 1991-09-18 1993-06-01 Idemitsu Kosan Co Ltd 有機エレクトロルミネツセンス素子
JPH06316631A (ja) * 1992-09-09 1994-11-15 Tosoh Corp 多環式芳香族アミン重合体及びその製造方法
EP0827367A2 (en) * 1996-09-03 1998-03-04 Xerox Corporation Electroluminescent devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1156072A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071559A1 (fr) 2002-02-20 2003-08-28 Nissan Chemical Industries, Ltd. Materiau organique conducteur et vernis conducteur

Also Published As

Publication number Publication date
EP1156072A4 (en) 2002-05-22
KR100589587B1 (ko) 2006-06-13
JP4258583B2 (ja) 2009-04-30
EP1156072A1 (en) 2001-11-21
KR20010110446A (ko) 2001-12-13
DE60032744T2 (de) 2007-10-25
US6632544B1 (en) 2003-10-14
DE60032744D1 (de) 2007-02-15
EP1156072B1 (en) 2007-01-03
TWI225089B (en) 2004-12-11
JP2000243570A (ja) 2000-09-08

Similar Documents

Publication Publication Date Title
EP1477993B1 (en) Organic conductive material and conductive varnish
JPH0945478A (ja) 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
KR20080027445A (ko) 정공 수송 중합체
JP2003519266A (ja) ルミネッセンス用高分子
JPH10324870A (ja) 高分子蛍光体および有機エレクトロルミネッセンス素子
JPWO2006129589A1 (ja) 電荷輸送性ポリマーを含有する電荷輸送性ワニス及びそれを用いた有機エレクトロルミネッセンス素子
US7341678B2 (en) Charge-transporting varnish
WO2000050490A1 (fr) Derives amines aromatiques, compose conducteur soluble, et element electroluminescent
KR20010079716A (ko) 티오펜카르복실레이트 금속 착물을 함유하는 전자 발광어셈블리
KR101311933B1 (ko) 전도성 고분자 중합체, 전도성 고분자 조성물, 전도성 고분자 조성물막 및 이를 이용한 유기광전소자
JP2001076880A (ja) 有機エレクトロルミネッセンス素子
JP4375502B2 (ja) 発光素子
KR101350744B1 (ko) 벤조사이아디아졸 유도체를 포함하는 전계발광고분자 및 그를 이용한 유기 전계 발광 소자
JP2003007470A (ja) 有機電界発光素子
JP4924784B2 (ja) 電子輸送材料および該電子輸送材料を用いた有機発光素子
JP2000311785A (ja) 高分子発光素子
JPH08190986A (ja) 有機エレクトロルミネッセンス素子
KR100284947B1 (ko) 고효율을 갖는 유기 전기발광 고분자 조성물 및 그 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017010802

Country of ref document: KR

Ref document number: 09914076

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000904091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000904091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017010802

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017010802

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000904091

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)