WO2000031323A1 - Procede et dispositif pour le depot d'un materiau semi-conducteur - Google Patents

Procede et dispositif pour le depot d'un materiau semi-conducteur Download PDF

Info

Publication number
WO2000031323A1
WO2000031323A1 PCT/DE1999/003665 DE9903665W WO0031323A1 WO 2000031323 A1 WO2000031323 A1 WO 2000031323A1 DE 9903665 W DE9903665 W DE 9903665W WO 0031323 A1 WO0031323 A1 WO 0031323A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
semiconductor
deposition
halogen
Prior art date
Application number
PCT/DE1999/003665
Other languages
German (de)
English (en)
Inventor
Arnulf A. JÄGER-WALDAU
Martha Christina Lux-Steiner
Holger JÜRGENSEN
Original Assignee
Hahn-Meitner-Institut Berlin Gmbh
Aixtron Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn-Meitner-Institut Berlin Gmbh, Aixtron Ag filed Critical Hahn-Meitner-Institut Berlin Gmbh
Priority to AU17718/00A priority Critical patent/AU1771800A/en
Publication of WO2000031323A1 publication Critical patent/WO2000031323A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Definitions

  • the invention relates to a method for depositing semiconductor material from a supply via halogenated gaseous intermediates on a substrate in a reaction space (chemical gas phase transport) and an arrangement for carrying out the method.
  • Such a method of deposition via halogenated gaseous intermediates offers the advantage of being able to work at relatively low process temperatures, since evaporation of the coating material at the high temperatures required for this is not necessary.
  • a method and an arrangement are known from Thin Solid Films 226 (1993) pp. 254-258 "Close-spaced vapor transport of CulnSe 2 , CuGaSe 2 and Cu (Ga, In) Se 2 ", G. Masse and K. Djessas by means of which a substrate is coated with a semiconductor material from a supply of gaseous halogenated intermediates in a closed reaction space.
  • a method for coating substrates (metal organic vapor phase epitaxy) is also known, which can be used on an industrial scale and in which metal alkyls are passed into a cold-wall reactor with a heated substrate holder, where the supplied semiconductor material then grows on the substrate (see S. Chichibu et al, J. Appl. Phys., Vol. 36 (1997), p 1703).
  • the high costs of the process, in particular also of the starting materials, are disadvantageous here. This method can therefore only be used for special purposes such as the production of solar cells for space stations.
  • the object is achieved according to the invention by specifying a method with the method steps listed below: 1. heating the reaction space with the supply and substrate located therein at positions apart from one another under an inert gas stream,
  • Chalcopyrites II-VI compounds, III-V compounds, transition metal chalcogenides (eg WS 2 ) or silicon are used as semiconductor materials to be applied.
  • the inert gas used consists of nitrogen (N 2 ) or noble gases such as argon or helium.
  • Hydrogen (H 2 ), nitrogen or forming gas (N 2 + H 2 or A r + H 2 each with A r ) are used as carrier gases.
  • the halogen s chlorine, bromine, iodine or corresponding gaseous halogen compounds, such as e.g. whose hydrogen compounds used.
  • the coated substrate is cooled either in the reaction space with an inert gas flow or outside the same.
  • the substrate is moved slowly and continuously through the reaction space under a constant gas flow of carrier gas and halogen-containing gas.
  • the arrangement for carrying out the method which has an externally heatable reactor space with a substrate and semiconductor supply material located therein and a halogen source, is equipped according to the invention with a positioning device for the mutual positioning of substrate and semiconductor supply material in the deposition position.
  • the heatable halogen source is arranged outside the reactor room.
  • an adjustable Gas mixing system provided for the optional flow of inert gas or carrier gas with halogen-containing gas through the reactor space.
  • the positioning device for substrate and semiconductor material can be operated mechanically, electrically, pneumatically or hydraulically.
  • either the substrate or the semiconductor supply material is advantageously arranged on a preferably horizontally rotatable plate.
  • Mass flow controllers with pneumatically switchable valves are provided in the gas mixing system to regulate the gas quantities required in each case. Furthermore, the total pressure in the reactor space and the temperature can be continuously regulated.
  • An exhaust gas system which has a vacuum pump with butterfly valve, is connected downstream of the reactor space.
  • the figure shows a cross section of the arrangement for carrying out the method according to the invention.
  • the method according to the invention will be explained using the example of coating a substrate made of glass with copper gallium diselenide (CuGaSe 2 ).
  • the reaction chamber with the semiconductor supply material and the substrate located therein in spaced-apart positions is heated to approximately 600 ° C. under an inert gas stream.
  • Molecular nitrogen (N 2 ) is used as the inert gas.
  • the substrate and semiconductor material are positioned in the deposition position by moving them horizontally and vertically. The distance between the substrate and the semiconductor supply material in the deposition position is a maximum of 2 mm.
  • the inert gas stream is replaced by a gas stream comprising carrier gas (H 2 ) and halogen gas (l 2 ) for starting the halogenation of the semiconductor supply material and transporting it to the substrate.
  • the iodine is provided by evaporating an iodine supply in a separate, heatable halogen storage container. The use of iodine for the halogenization results in a high transport efficiency for the semiconductor material to be applied.
  • the halogenation or iodide formation takes place according to the following reaction equation:
  • the iodide formation gives rise to the gaseous intermediate products required for material transport at relatively low temperatures.
  • the material to be applied is dehalogenated, so that only the pure semiconductor material is deposited without halogen components.
  • dehalogenation the reaction takes place according to the above. Equation from right to left (reverse reaction).
  • the temperature of the semiconductor supply material is approximately 20 to 25 ° C. higher than the temperature of the substrate. This is achieved by additional heating of the semiconductor supply material.
  • the cooling (lowering of temperature) on the substrate as a result of Gas flow in the reaction space contributes to the formation of the required temperature gradient and increases the deposition rate.
  • the deposition of the semiconductor material on the substrate is ended by switching from the gas stream of hydrogen (H 2 ) and iodine-containing gas to an inert gas stream of nitrogen (N 2 ) and the subsequent spatial separation of the coated substrate from the semiconductor stock material by moving the two apart. These two process steps prevent uncontrolled iodide formation and material deposition in the reaction space and in particular on the substrate.
  • reaction space with the coated substrate located therein is cooled under an inert gas stream.
  • the entire process takes place at a pressure of approx. 200 mbar.
  • the gaseous waste products resulting from the process e.g.
  • Hydrogen halides or the like are removed via an exhaust system, possibly cleaned and reused in the process.
  • the arrangement for carrying out the method according to the invention has a hollow cylindrical reaction space 1 and a separate halogen storage space 2.
  • a substrate 4 glass
  • a semiconductor supply material 6 CuGaSe 2
  • the supports 3 and 5 can be adjusted or displaced independently of one another, horizontally and vertically, for positioning and adjustment in the separation position.
  • the drive for this can be done via racks, threaded spindles, electric plungers, electric servomotors, or hydraulically or pneumatically.
  • the reaction chamber 1 is provided with a gas inlet connector 7 for the supply of inert gas and a further gas inlet connector 8 for the supply of Carrier gas and halogen-containing gas.
  • a gas outlet connection 9 is provided to discharge used or excess gas. This is connected to an exhaust system (not shown).
  • a heating device 10 for example resistance heating.
  • the carrier 5 for the semiconductor supply material 6 is provided with an additional heater. This can also be designed as an electrical resistance heater.
  • the externally heatable halogen storage space 2 has a halogen supply 11 (iodine), a gas supply connection 12 for the carrier gas (H 2 ; N 2 ) and a gas outlet connection 13 for carrier gas and halogen-containing gas.
  • a halogen supply 11 iodine
  • a gas supply connection 12 for the carrier gas H 2 ; N 2
  • a gas outlet connection 13 for carrier gas and halogen-containing gas for carrier gas and halogen-containing gas.
  • the latter gas mixture is fed to the reaction chamber 1 for the halogenization of the semiconductor supply material 6.
  • a controllable gas mixing system (not shown) is provided for the optional flow of inert gas or carrier gas with halogen-containing gas through the reaction chamber 1.
  • Mass flow controllers are provided in the gas mixing system for controlling the gas quantities required in each case and are equipped with pneumatically switchable valves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

L'invention concerne un procédé pour le dépôt d'un matériau semi-conducteur à partir d'une réserve, via des produits intermédiaires gazeux halogénés, sur un substrat dans un espace réactionnel (transportn phase gazeuse chimique), ainsi qu'un dispositif pour la mise en oeuvre de ce procédé. L'invention a pour but de fournir un procédé simple et robuste pour le dépôt d'un matériau semi-conducteur sur un substrat, ainsi qu'un dispositif pour la mise en oeuvre de ce procédé. Ce but est atteint grâce au procédé selon l'invention, caractérisé en ce qu'il comprend les étapes ci-après : on chauffe sous gaz inerte l'enceinte du réacteur, on positionne le substrat et la réserve en semi-conducteur l'un par rapport à l'autre, on démarre la réaction d'halogénation du matériau semi-conducteur en remplaçant le courant de gaz inerte par un courant gazeux formé d'un gaz vecteur et d'un gaz contenant un halogène, on procède à une déshalogénation du matériau semi-conducteur pour le dépôt sur le substrat, on achève le dépôt en commutant sur le gaz inerte et en séparant le substrat revêtu et la réserve de semi-conducteur, puis on refroidit le substrat revêtu.
PCT/DE1999/003665 1998-11-20 1999-11-12 Procede et dispositif pour le depot d'un materiau semi-conducteur WO2000031323A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU17718/00A AU1771800A (en) 1998-11-20 1999-11-12 Method and arrangement for deposition of a semiconductor material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19855021.9 1998-11-20
DE19855021A DE19855021C1 (de) 1998-11-20 1998-11-20 Verfahren und Anordnung zum Abscheiden von Halbleitermaterial

Publications (1)

Publication Number Publication Date
WO2000031323A1 true WO2000031323A1 (fr) 2000-06-02

Family

ID=7889378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003665 WO2000031323A1 (fr) 1998-11-20 1999-11-12 Procede et dispositif pour le depot d'un materiau semi-conducteur

Country Status (3)

Country Link
AU (1) AU1771800A (fr)
DE (1) DE19855021C1 (fr)
WO (1) WO2000031323A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899954B2 (en) 2001-08-22 2005-05-31 Schott Ag Cadmium-free optical steep edge filters
CN107119328A (zh) * 2017-04-07 2017-09-01 湖南大学 一种具有复杂螺旋结构的层状ws2二维纳米材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208911A1 (de) * 2002-02-27 2003-09-11 Hahn Meitner Inst Berlin Gmbh Verfahren und Anordnung zum Abscheiden von Material aus einem Vorrat
DE10318440B3 (de) * 2003-04-15 2005-02-03 Hahn-Meitner-Institut Berlin Gmbh Elektrochemisches Verfahren zur direkten nanostrukturierbaren Materialabscheidung auf einem Substrat und mit dem Verfahren hergestelltes Halbleiterbauelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2705904A1 (de) * 1976-04-12 1977-10-27 Gni I Pi Redkometallitscheskoj Vorrichtung zur epitaxial-zuechtung von periodischen halbleiterstrukturen aus der gasphase
GB1533645A (en) * 1976-11-05 1978-11-29 G Ni I P I Redkometallich Prom Method of producing mesa and threedimensional semiconductor structures with locally non-uniform composition and device for realizing same
US4171996A (en) * 1975-08-12 1979-10-23 Gosudarstvenny Nauchno-Issledovatelsky i Proektny Institut Redkonetallicheskoi Promyshlennosti "Giredmet" Fabrication of a heterogeneous semiconductor structure with composition gradient utilizing a gas phase transfer process
US5769942A (en) * 1994-09-29 1998-06-23 Semiconductor Process Laboratory Co. Method for epitaxial growth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617381A (en) * 1968-07-30 1971-11-02 Rca Corp Method of epitaxially growing single crystal films of metal oxides
GB1557605A (en) * 1977-01-11 1979-12-12 Gni I Pi Redkometallich Promys Method of appilying layers of source substance over recipient and device for realizing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171996A (en) * 1975-08-12 1979-10-23 Gosudarstvenny Nauchno-Issledovatelsky i Proektny Institut Redkonetallicheskoi Promyshlennosti "Giredmet" Fabrication of a heterogeneous semiconductor structure with composition gradient utilizing a gas phase transfer process
DE2705904A1 (de) * 1976-04-12 1977-10-27 Gni I Pi Redkometallitscheskoj Vorrichtung zur epitaxial-zuechtung von periodischen halbleiterstrukturen aus der gasphase
GB1533645A (en) * 1976-11-05 1978-11-29 G Ni I P I Redkometallich Prom Method of producing mesa and threedimensional semiconductor structures with locally non-uniform composition and device for realizing same
US5769942A (en) * 1994-09-29 1998-06-23 Semiconductor Process Laboratory Co. Method for epitaxial growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899954B2 (en) 2001-08-22 2005-05-31 Schott Ag Cadmium-free optical steep edge filters
CN107119328A (zh) * 2017-04-07 2017-09-01 湖南大学 一种具有复杂螺旋结构的层状ws2二维纳米材料及其制备方法

Also Published As

Publication number Publication date
AU1771800A (en) 2000-06-13
DE19855021C1 (de) 2000-05-25

Similar Documents

Publication Publication Date Title
DE69334189T2 (de) Verfahren und apparat zur herstellung von photovoltaischen vorrichtungen und daraus entstehendes produkt
EP2126161B1 (fr) Dispositif et procédé de dépôt de couches cristallines par mocvd ou hvpe
DE69830310T2 (de) Multifunktionaler verfahrensraum für cvd-verfahren
DE60024424T2 (de) Halbleiter-Wafer Entwicklungsgerät mit vertikal gestapelte Entwicklungsräume und einachsiges Dual-Wafer Transfer System
EP1025277B1 (fr) Installation de metallisation sous vide et dispositif d'accouplement et procede pour produire des pieces d'oeuvre
DE102006038885B4 (de) Verfahren zum Abscheiden einer Ge-Sb-Te-Dünnschicht
DE69935351T2 (de) Verfahren zum Abscheiden von Atomschichten
DE3901042C2 (fr)
DE102009054677A1 (de) Linearablagerungsquelle
DE3635279A1 (de) Gasphasen-epitaxieverfahren fuer einen verbindungs-halbleiter-einkristall und einrichtung zur durchfuehrung des verfahrens
DE60124674T2 (de) Heizelement für einen cvd-apparat
DE102008010041A1 (de) Schichtabscheidevorrichtung und Verfahren zu deren Betrieb
DE3916622A1 (de) Verfahren zum zuechten einer sehr duennen metallschicht und vorrichtung hierfuer
DE102007022431A1 (de) Behandlungssystem für flache Substrate
EP1966831A2 (fr) Procede et installation de transformation de couches de precurseur metallique en couches de chalcopyrite de cellules solaires cigss
DE102012108901A1 (de) Verfahren und System zum Herstellen von Chalcogenid-Halbleitermaterialien unter Verwendung von Sputter- und Verdampfungsfunktionen
DE102016110788A1 (de) Vorrichtung und Verfahren zur Herstellung von optoelektronischen Bauelementen, insbesondere von Multi-Junction-Solarzellen im Durchlaufverfahren
DE3507337A1 (de) Vorrichtung zur durchfuehrung von prozessen im vakuum
DE3644655A1 (de) Verfahren zur bildung eines abgeschiedenen films
DE19717565A1 (de) Vorrichtung und Verfahren zur Bildung von I-III-VI¶2¶-Dünnfilmschichten
DE10393964T5 (de) Diamantbeschichtetes Silizium und Herstellungsverfahren dafür
DE19855021C1 (de) Verfahren und Anordnung zum Abscheiden von Halbleitermaterial
EP1133593B1 (fr) Procede de croissance d'une structure cristalline
DE2613004B2 (de) Vorrichtung zum epitaktischen Abscheiden von Einkristallschichten auf Substraten aus einer Schmelzlösung
DE102008009337A1 (de) Verfahren zur Herstellung einer transparenten leitfähigen Schicht

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 17718

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase