WO2000031323A1 - Method and arrangement for deposition of a semiconductor material - Google Patents

Method and arrangement for deposition of a semiconductor material Download PDF

Info

Publication number
WO2000031323A1
WO2000031323A1 PCT/DE1999/003665 DE9903665W WO0031323A1 WO 2000031323 A1 WO2000031323 A1 WO 2000031323A1 DE 9903665 W DE9903665 W DE 9903665W WO 0031323 A1 WO0031323 A1 WO 0031323A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
semiconductor
deposition
halogen
Prior art date
Application number
PCT/DE1999/003665
Other languages
German (de)
French (fr)
Inventor
Arnulf A. JÄGER-WALDAU
Martha Christina Lux-Steiner
Holger JÜRGENSEN
Original Assignee
Hahn-Meitner-Institut Berlin Gmbh
Aixtron Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn-Meitner-Institut Berlin Gmbh, Aixtron Ag filed Critical Hahn-Meitner-Institut Berlin Gmbh
Priority to AU17718/00A priority Critical patent/AU1771800A/en
Publication of WO2000031323A1 publication Critical patent/WO2000031323A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Definitions

  • the invention relates to a method for depositing semiconductor material from a supply via halogenated gaseous intermediates on a substrate in a reaction space (chemical gas phase transport) and an arrangement for carrying out the method.
  • Such a method of deposition via halogenated gaseous intermediates offers the advantage of being able to work at relatively low process temperatures, since evaporation of the coating material at the high temperatures required for this is not necessary.
  • a method and an arrangement are known from Thin Solid Films 226 (1993) pp. 254-258 "Close-spaced vapor transport of CulnSe 2 , CuGaSe 2 and Cu (Ga, In) Se 2 ", G. Masse and K. Djessas by means of which a substrate is coated with a semiconductor material from a supply of gaseous halogenated intermediates in a closed reaction space.
  • a method for coating substrates (metal organic vapor phase epitaxy) is also known, which can be used on an industrial scale and in which metal alkyls are passed into a cold-wall reactor with a heated substrate holder, where the supplied semiconductor material then grows on the substrate (see S. Chichibu et al, J. Appl. Phys., Vol. 36 (1997), p 1703).
  • the high costs of the process, in particular also of the starting materials, are disadvantageous here. This method can therefore only be used for special purposes such as the production of solar cells for space stations.
  • the object is achieved according to the invention by specifying a method with the method steps listed below: 1. heating the reaction space with the supply and substrate located therein at positions apart from one another under an inert gas stream,
  • Chalcopyrites II-VI compounds, III-V compounds, transition metal chalcogenides (eg WS 2 ) or silicon are used as semiconductor materials to be applied.
  • the inert gas used consists of nitrogen (N 2 ) or noble gases such as argon or helium.
  • Hydrogen (H 2 ), nitrogen or forming gas (N 2 + H 2 or A r + H 2 each with A r ) are used as carrier gases.
  • the halogen s chlorine, bromine, iodine or corresponding gaseous halogen compounds, such as e.g. whose hydrogen compounds used.
  • the coated substrate is cooled either in the reaction space with an inert gas flow or outside the same.
  • the substrate is moved slowly and continuously through the reaction space under a constant gas flow of carrier gas and halogen-containing gas.
  • the arrangement for carrying out the method which has an externally heatable reactor space with a substrate and semiconductor supply material located therein and a halogen source, is equipped according to the invention with a positioning device for the mutual positioning of substrate and semiconductor supply material in the deposition position.
  • the heatable halogen source is arranged outside the reactor room.
  • an adjustable Gas mixing system provided for the optional flow of inert gas or carrier gas with halogen-containing gas through the reactor space.
  • the positioning device for substrate and semiconductor material can be operated mechanically, electrically, pneumatically or hydraulically.
  • either the substrate or the semiconductor supply material is advantageously arranged on a preferably horizontally rotatable plate.
  • Mass flow controllers with pneumatically switchable valves are provided in the gas mixing system to regulate the gas quantities required in each case. Furthermore, the total pressure in the reactor space and the temperature can be continuously regulated.
  • An exhaust gas system which has a vacuum pump with butterfly valve, is connected downstream of the reactor space.
  • the figure shows a cross section of the arrangement for carrying out the method according to the invention.
  • the method according to the invention will be explained using the example of coating a substrate made of glass with copper gallium diselenide (CuGaSe 2 ).
  • the reaction chamber with the semiconductor supply material and the substrate located therein in spaced-apart positions is heated to approximately 600 ° C. under an inert gas stream.
  • Molecular nitrogen (N 2 ) is used as the inert gas.
  • the substrate and semiconductor material are positioned in the deposition position by moving them horizontally and vertically. The distance between the substrate and the semiconductor supply material in the deposition position is a maximum of 2 mm.
  • the inert gas stream is replaced by a gas stream comprising carrier gas (H 2 ) and halogen gas (l 2 ) for starting the halogenation of the semiconductor supply material and transporting it to the substrate.
  • the iodine is provided by evaporating an iodine supply in a separate, heatable halogen storage container. The use of iodine for the halogenization results in a high transport efficiency for the semiconductor material to be applied.
  • the halogenation or iodide formation takes place according to the following reaction equation:
  • the iodide formation gives rise to the gaseous intermediate products required for material transport at relatively low temperatures.
  • the material to be applied is dehalogenated, so that only the pure semiconductor material is deposited without halogen components.
  • dehalogenation the reaction takes place according to the above. Equation from right to left (reverse reaction).
  • the temperature of the semiconductor supply material is approximately 20 to 25 ° C. higher than the temperature of the substrate. This is achieved by additional heating of the semiconductor supply material.
  • the cooling (lowering of temperature) on the substrate as a result of Gas flow in the reaction space contributes to the formation of the required temperature gradient and increases the deposition rate.
  • the deposition of the semiconductor material on the substrate is ended by switching from the gas stream of hydrogen (H 2 ) and iodine-containing gas to an inert gas stream of nitrogen (N 2 ) and the subsequent spatial separation of the coated substrate from the semiconductor stock material by moving the two apart. These two process steps prevent uncontrolled iodide formation and material deposition in the reaction space and in particular on the substrate.
  • reaction space with the coated substrate located therein is cooled under an inert gas stream.
  • the entire process takes place at a pressure of approx. 200 mbar.
  • the gaseous waste products resulting from the process e.g.
  • Hydrogen halides or the like are removed via an exhaust system, possibly cleaned and reused in the process.
  • the arrangement for carrying out the method according to the invention has a hollow cylindrical reaction space 1 and a separate halogen storage space 2.
  • a substrate 4 glass
  • a semiconductor supply material 6 CuGaSe 2
  • the supports 3 and 5 can be adjusted or displaced independently of one another, horizontally and vertically, for positioning and adjustment in the separation position.
  • the drive for this can be done via racks, threaded spindles, electric plungers, electric servomotors, or hydraulically or pneumatically.
  • the reaction chamber 1 is provided with a gas inlet connector 7 for the supply of inert gas and a further gas inlet connector 8 for the supply of Carrier gas and halogen-containing gas.
  • a gas outlet connection 9 is provided to discharge used or excess gas. This is connected to an exhaust system (not shown).
  • a heating device 10 for example resistance heating.
  • the carrier 5 for the semiconductor supply material 6 is provided with an additional heater. This can also be designed as an electrical resistance heater.
  • the externally heatable halogen storage space 2 has a halogen supply 11 (iodine), a gas supply connection 12 for the carrier gas (H 2 ; N 2 ) and a gas outlet connection 13 for carrier gas and halogen-containing gas.
  • a halogen supply 11 iodine
  • a gas supply connection 12 for the carrier gas H 2 ; N 2
  • a gas outlet connection 13 for carrier gas and halogen-containing gas for carrier gas and halogen-containing gas.
  • the latter gas mixture is fed to the reaction chamber 1 for the halogenization of the semiconductor supply material 6.
  • a controllable gas mixing system (not shown) is provided for the optional flow of inert gas or carrier gas with halogen-containing gas through the reaction chamber 1.
  • Mass flow controllers are provided in the gas mixing system for controlling the gas quantities required in each case and are equipped with pneumatically switchable valves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to a method for depositing semiconductor material on a substrate in a reaction chamber (chemical vapour-phase transport). To this end, said semiconductor material is removed from a supply thereof and converted into halogenated gaseous intermediate products. The invention also relates to an arrangement for implementing said method. The aim of the invention is to provide a simple and robust method for depositing semiconductor material on a substrate in addition to an arrangement for implementing said method. This is achieved by means of a method characterised by the following steps: heating of the reaction chamber by means of inert gas, positioning of the substrate and semiconductor supply in relation to one another, starting of halogenation of the semiconductor material by replacing the inert gas stream by a gas stream of a carrier gas and halogenated gas, dehalogenation of the semiconductor material for the deposition on the substrate, concluding the deposition by switching to inert gas and by spatial separation of the coated substrate and the supply of semiconductor, cooling of the coated substrate.

Description

Bezeichnungdescription
Verfahren und Anordnung zum Abscheiden von HalbleitermaterialMethod and arrangement for depositing semiconductor material
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zum Abscheiden von Halbleitermaterial aus einem Vorrat über halogenierte gasförmige Zwischenprodukte auf einem Substrat in einem Reaktionsraum (chemischer Gasphasentransport) sowie eine Anordnung zur Durchführung des Verfahrens.The invention relates to a method for depositing semiconductor material from a supply via halogenated gaseous intermediates on a substrate in a reaction space (chemical gas phase transport) and an arrangement for carrying out the method.
Ein derartiges Verfahren der Abscheidung über halogenierte gasförmige Zwischenprodukte bietet den Vorteil bei relativ geringen Prozeßtemperaturen arbeiten zu können, da ein Verdampfen des Beschichtungsmaterials bei den dafür erforderlichen hohen Temperaturen nicht notwendig ist.Such a method of deposition via halogenated gaseous intermediates offers the advantage of being able to work at relatively low process temperatures, since evaporation of the coating material at the high temperatures required for this is not necessary.
Aus Thin Solid Films 226 (1993) S. 254-258 „Close-spaced vapour transport of CulnSe2, CuGaSe2 and Cu (Ga, In) Se2", G. Masse and K. Djessas ist ein Verfahren und eine Anordnung bekannt mittels deren in einem abgeschlossenen Reaktionsraum eine Beschichtung eines Substrats mit einem Halbleitermaterial aus einem Vorrat über gasförmige halogenierte Zwischenprodukte erfolgt.A method and an arrangement are known from Thin Solid Films 226 (1993) pp. 254-258 "Close-spaced vapor transport of CulnSe 2 , CuGaSe 2 and Cu (Ga, In) Se 2 ", G. Masse and K. Djessas by means of which a substrate is coated with a semiconductor material from a supply of gaseous halogenated intermediates in a closed reaction space.
Nachteilig ist hierbei, daß die entsprechenden Reaktionen in einem vollkommen geschlossenen System ablaufen. In diesem geschlossenem System stellt sich ein Reaktionsgleichgewicht ein. Es ist daher nicht gewährleistet, daß die erforderlichen chemischen Reaktionen alle in der erforderlichen Richtung ablaufen. Weiterhin gibt es keine Möglichkeit von außen steuernd einzugreifen, d.h. eine Prozeßsteuerung ist nicht möglich, die vorgegebenen Bedingungen wie z.B. der Abstand Halbleitervorrat zum Substrat sind nicht veränderbar. Weiterhin kann es zu unkontrollierten Halogenidbildungen und Materialabscheidungen kommen. Diese bekannte Lösung ist daher für einen großtechnischen Einsatz nicht geeignet.The disadvantage here is that the corresponding reactions take place in a completely closed system. A reaction equilibrium is established in this closed system. There is therefore no guarantee that the required chemical reactions will all proceed in the required direction. Furthermore, there is no possibility to intervene in a controlling manner, ie process control is not possible, the specified conditions such as the distance between the semiconductor supply and the substrate cannot be changed. Furthermore, it can become uncontrolled Halide formation and material deposition are coming. This known solution is therefore not suitable for large-scale use.
In J. Electrochem. Soc: Solid State Science, Vol. 116, No. 6 (1969), S. 843 - 847 „The Epitaxy of ZnSe on Ge, GaAs and ZnSe by an HCL Close - Spaced Transport Process" H. J. Hovel and A. G. Milnes ist das gleiche Verfahren wie bei Masse beschrieben, allerdings läuft dieses Verfahren bei Hovel et al in einem offenen System ab.In J. Electrochem. Soc: Solid State Science, Vol. 116, No. 6 (1969), pp. 843-847 "The Epitaxy of ZnSe on Ge, GaAs and ZnSe by an HCL Close - Spaced Transport Process" HJ Hovel and AG Milnes is the same procedure as described for Masse, but this procedure is carried out by Hovel et al in an open system.
Nachteilig ist auch hier, daß der Abstand zwischen Substrat und Halbleitervorrat nicht veränderbar ist. Damit ist eine definierte, gleichmäßige und reproduzierbare Abscheidung von Halbleitermaterial auf einem Substrat nicht gewährleistet, so daß auch diese Lösung für einen großtechnichen Einsatz nicht geeignet ist.It is also disadvantageous here that the distance between the substrate and the semiconductor supply cannot be changed. A defined, uniform and reproducible deposition of semiconductor material on a substrate is therefore not guaranteed, so that this solution is also unsuitable for large-scale use.
Es ist weiterhin ein Verfahren zur Beschichtung von Substraten bekannt (metal organic vapour phase epitaxy), das großtechnisch einsetzbar ist und bei dem Metallalkyle in einen Kaltwandreaktor mit beheiztem Substrathalter geleitet werden, wo dann das zugeführte Halbleitermaterial auf dem Substrat aufwächst (s. S. Chichibu et al, J. Appl. Phys., Vol. 36 (1997), p 1703). Nachteilig sind hierbei die hohen Kosten des Verfahrens, insbesondere auch der Ausgangsmaterialien. Dieses Verfahren ist daher nur für Sonderzwecke wie zum Beispiel Herstellung von Solarzellen für Weltraumstationen sinnvoll einsetzbar.A method for coating substrates (metal organic vapor phase epitaxy) is also known, which can be used on an industrial scale and in which metal alkyls are passed into a cold-wall reactor with a heated substrate holder, where the supplied semiconductor material then grows on the substrate (see S. Chichibu et al, J. Appl. Phys., Vol. 36 (1997), p 1703). The high costs of the process, in particular also of the starting materials, are disadvantageous here. This method can therefore only be used for special purposes such as the production of solar cells for space stations.
Es ist daher Aufgabe der Erfindung, ein einfaches und robustes Verfahren zum Abscheiden von Halbleitermaterial aus einem Vorrat über halogenierte gasförmige Zwischenprodukte auf einem Substrat in einem Reaktionsraum sowie eine Anordnung zur Durchführung des Verfahrens anzugeben, wobei preisgünstige Ausgangsmateπalien einsetzbar sind und eine reproduzierbare und präzise steuerbare Prozeßführung möglich ist. Die Aufgabe wird erfindungsgemäß durch die Angabe eines Verfahrens mit nachfolgend aufgeführten Verfahrensschritten gelöst: 1. Aufheizen des Reaktionsraumes mit darin in voneinander entfernten Positionen befindlichen Vorrat und Substrat unter einem Inertgasstrom,It is therefore an object of the invention to provide a simple and robust method for depositing semiconductor material from a supply of halogenated gaseous intermediates on a substrate in a reaction space, and an arrangement for carrying out the method, inexpensive starting materials being usable and reproducible and precisely controllable process control is possible. The object is achieved according to the invention by specifying a method with the method steps listed below: 1. heating the reaction space with the supply and substrate located therein at positions apart from one another under an inert gas stream,
2. Positionierung von Substrat und Vorrat zueinander in Auftragungsposition durch horizontales und vertikales Verschieben gegeneinander nach Erreichen der Reaktionstemperatur,2. Positioning the substrate and the stock relative to one another in the application position by moving them horizontally and vertically relative to one another after the reaction temperature has been reached,
3. Ersetzen des Inertgasstromes durch einen Gasstrom aus Trägergas und halogenhaltigem Gas oder halogenhaltigem Gasgemisch zum Starten der3. Replacing the inert gas stream with a gas stream of carrier gas and halogen-containing gas or halogen-containing gas mixture to start the
Halogenisierung des Halbleitervorratsmaterials und Transport desselben zum Substrat,Halogenation of the semiconductor supply material and transport thereof to the substrate,
4. Dehalogenisierung des Halbleitervorratsmaterials (Rückreaktion) zur Abscheidung auf dem Substrat bei TSUbstrat ≠ T θrrat,4. dehalogenization of the semiconductor supply material (reverse reaction) for deposition on the substrate at T SU substrate ≠ T θ rrat,
5. Beenden der Abscheidung durch a.) Umschalten von Trägergas mit halogenhaltigem Gas auf Inertgasstrom, b.) anschließend räumliche Trennung des beschichteten Substrates vom5. End the deposition by a.) Switching from carrier gas with halogen-containing gas to inert gas flow, b.) Then spatial separation of the coated substrate from
Halbleitervorratsmaterial durch Auseinanderbewegung beider,Semiconductor supply material by moving the two apart,
6. Abkühlen des beschichteten Substrates.6. Cool the coated substrate.
Als aufzutragende Halbleitermaterialien werden Chalkopyrite, ll-VI- Verbindungen, Ill-V-Verbindungen, Übergangsmetallchalkogenide (z.B. WS2) oder Silizium verwendet.Chalcopyrites, II-VI compounds, III-V compounds, transition metal chalcogenides (eg WS 2 ) or silicon are used as semiconductor materials to be applied.
Als Substrat werden zweckmäßigerweise Glas, Quarz, Keramik oder Silizium bzw. andere Halbleitermaterialien, beschichtet oder unbeschichtet eingesetzt. Das verwendete Inertgas besteht aus Stickstoff (N2) oder Edelgasen wie z.B. Argon oder Helium.Glass, quartz, ceramic or silicon or other semiconductor materials, coated or uncoated, are expediently used as the substrate. The inert gas used consists of nitrogen (N 2 ) or noble gases such as argon or helium.
Der mögliche Temperaturbereich für die Abscheidung von Halbleitermaterial liegt zwischen Raumtemperatur («=20°C) und 1200°C bei zugehörigen Druckwerten zwischen 5 bis 1000 mbar.The possible temperature range for the deposition of semiconductor material is between room temperature («= 20 ° C) and 1200 ° C with associated pressure values between 5 and 1000 mbar.
Als Trägergase werden Wasserstoff (H2), Stickstoff oder Formiergas (N2+H2 bzw. Ar+H2 jeweils mit Ar) eingesetzt.Hydrogen (H 2 ), nitrogen or forming gas (N 2 + H 2 or A r + H 2 each with A r ) are used as carrier gases.
Zur Halogenisierung des Halbleitervorratsmaterials werden die Halogene Chlor, Brom, lod bzw. entsprechende gasförmige Halogenverbindungen, wie z.B. deren Wasserstoffverbindungen verwendet.To halogenate the semiconductor supply material, the halogens chlorine, bromine, iodine or corresponding gaseous halogen compounds, such as e.g. whose hydrogen compounds used.
Die Abkühlung des beschichteten Substrates erfolgt entweder im Reaktionsraum unter Inertgasdurchfluß oder außerhalb desselben.The coated substrate is cooled either in the reaction space with an inert gas flow or outside the same.
Für die Erzielung von HeteroStrukturen werden mehrere unterschiedliche Halbleitermaterialien übereinander aber zeitlich nacheinander auf dem Substrat abgeschieden.To achieve heterostructures, several different semiconductor materials are deposited on top of each other but one after the other on the substrate.
Für eine kontinuierliche Beschichtung wird das Substrat ununterbrochen langsam durch den Reaktionsraum bewegt unter einem ständigen Gasstrom aus Trägergas und halogenhaltigem Gas.For a continuous coating, the substrate is moved slowly and continuously through the reaction space under a constant gas flow of carrier gas and halogen-containing gas.
Die Anordnung zur Durchführung des Verfahrens, die einen von außen beheizbaren Reaktorraum mit darin befindlichem Substrat und Halbleitervorratsmaterial sowie eine Halogenquelle aufweist ist erfindungsgemäß mit einer Positioniereinrichtung ausgestattet für die gegenseitige Positionierung von Substrat und Halbleitervorratsmaterial in Abscheideposition. Die beheizbare Halogenquelle ist außerhalb des Reaktorraumes angeordnet. Weiterhin ist ein regulierbares Gasmischsystem vorgesehen für den wahlweisen Durchfluß von Inertgas bzw. Trägergas mit halogenhaltigem Gas durch den Reaktorraum.The arrangement for carrying out the method, which has an externally heatable reactor space with a substrate and semiconductor supply material located therein and a halogen source, is equipped according to the invention with a positioning device for the mutual positioning of substrate and semiconductor supply material in the deposition position. The heatable halogen source is arranged outside the reactor room. Furthermore is an adjustable Gas mixing system provided for the optional flow of inert gas or carrier gas with halogen-containing gas through the reactor space.
Zur Realisierung der Bedingung T θrrat ≠ T Substrat sind jeweils separate Temperaturregelungen (z.B. Zusatzheizung oder -kühlung) für das Halbleitervorratsmaterial und das Substrat vorgesehen.To implement the condition T θ rrat ≠ T substrate, separate temperature controls (for example additional heating or cooling) are provided for the semiconductor supply material and the substrate.
Die Positioniereinrichtung für Substrat und Halbleitermaterial ist mechanisch, elektrisch, pneumatisch oder hydraulisch betätigbar.The positioning device for substrate and semiconductor material can be operated mechanically, electrically, pneumatically or hydraulically.
Zur Erzielung einer gleichmäßigen Abscheiduπg ist vorteilhafterweise entweder das Substrat oder das Halbleitervorratsmaterial auf einem vorzugsweise waagerecht drehbaren Teller angeordnet.To achieve a uniform deposition, either the substrate or the semiconductor supply material is advantageously arranged on a preferably horizontally rotatable plate.
Für die Regelung der jeweils benötigten Gasmengen sind im Gasmischsystem Massenflußregler mit pneumatisch schaltbaren Ventilen vorgesehen. Weiterhin sind der Totaldruck im Reaktorraum sowie die Temperatur kontinuierlich regelbar Dem Reaktorraum ist ein Abgassystem nachgeschaltet, das eine Vakuumpumpe mit Schmetterlingventil aufweist.Mass flow controllers with pneumatically switchable valves are provided in the gas mixing system to regulate the gas quantities required in each case. Furthermore, the total pressure in the reactor space and the temperature can be continuously regulated. An exhaust gas system, which has a vacuum pump with butterfly valve, is connected downstream of the reactor space.
Die Erfindung wird nachstehend an einem Ausführungsbeispiel anhand der zugehörigen Zeichnung näher erläutert:The invention is explained in more detail below using an exemplary embodiment with reference to the accompanying drawing:
Die Abb. zeigt einen Querschnitt der Anordnung zur Durchführung des erfindungsgemäßen Verfahrens.The figure shows a cross section of the arrangement for carrying out the method according to the invention.
Zunächst soll das erfindungsgemäße Verfahren am Beispiel der Beschichtung eines Substrates aus Glas mit Kupfergalliumdiselenid (CuGaSe2) erläutert werden. Am Anfang des Verfahrens steht die Aufheizung des Reaktionsraumes mit darin in voneinander entfernten Positionen befindlichen Halbleitervorratsmaterial und Substrat unter einem Inertgasstrom auf ca. 600°C. Als Inertgas wird molekularer Stickstoff (N2) verwendet. Nach dem Aufheizen erfolgt die Positionierung von Substrat und Halbleitervorratsmaterial in Abscheideposition durch horizontales und vertikales Verschieben gegeneinander. Der Abstand zwischen Substrat und Halbleitervorratsmaterial in Abscheideposition beträgt maximal 2 mm.First, the method according to the invention will be explained using the example of coating a substrate made of glass with copper gallium diselenide (CuGaSe 2 ). At the beginning of the process, the reaction chamber with the semiconductor supply material and the substrate located therein in spaced-apart positions is heated to approximately 600 ° C. under an inert gas stream. Molecular nitrogen (N 2 ) is used as the inert gas. After heating, the substrate and semiconductor material are positioned in the deposition position by moving them horizontally and vertically. The distance between the substrate and the semiconductor supply material in the deposition position is a maximum of 2 mm.
Nach Erreichen der Reaktionstemperatur und erfolgter Positionierung wird der Inertgasstrom ersetzt durch einen Gasstrom aus Trägergas (H2) und Halogengas (l2) zum Starten der Halogenisierung des Halbleitervorratsmaterials und Transport desselben zum Substrat. Die Bereitstellung von lod erfolgt durch Verdampfen eines lodvorrats in einem separaten beheizbaren Halogenvorratsbehälter. Der Einsatz von lod für die Halogenisierung ergibt eine hohe Transporteffizienz für das aufzutragende Halbleitermaterial. Die Halogenisierung bzw. lodidbildung erfolgt gemäß nachstehender Reaktionsgleichung:After the reaction temperature has been reached and positioning has been carried out, the inert gas stream is replaced by a gas stream comprising carrier gas (H 2 ) and halogen gas (l 2 ) for starting the halogenation of the semiconductor supply material and transporting it to the substrate. The iodine is provided by evaporating an iodine supply in a separate, heatable halogen storage container. The use of iodine for the halogenization results in a high transport efficiency for the semiconductor material to be applied. The halogenation or iodide formation takes place according to the following reaction equation:
CuGaSe2 + 2I2 600 °c > Cul + Gal3 + Se2 CuGaSe 2 + 2I 2 600 ° c > Cul + Gal 3 + Se 2
Durch die lodidbildung entstehen die für den Materialtransport bei relativ niedrigen Temperaturen erforderlichen gasförmigen Zwischenprodukte.The iodide formation gives rise to the gaseous intermediate products required for material transport at relatively low temperatures.
Vor der Abscheidung des Halbleitermaterials auf dem Substrat erfolgt die Dehalogenierung des aufzubringenden Materials, so daß nur das reine Halbleitermaterial ohne Halogenbestandteile abgeschieden wird. Bei der Dehalogenierung erfolgt also die Reaktion gemäß o.a. Gleichung von rechts nach links (Rückreaktion).Before the semiconductor material is deposited on the substrate, the material to be applied is dehalogenated, so that only the pure semiconductor material is deposited without halogen components. In dehalogenation, the reaction takes place according to the above. Equation from right to left (reverse reaction).
Für den verfahrenstechnisch sauberen Ablauf der Verfahreπsschritte Halogenisierug (lodidbildung) und Dehalogenisierung (Rückreaktion) ist es erforderlich, daß die Temperatur des Halbleitervorratsmaterials ca. 20 bis 25 °C höher liegt als die Temperatur des Substrates. Dies wird erreicht durch eine zusätzliche Beheizung des Halbleitervorratsmaterials. Die Abkühlung (Temperaturabsenkung) am Substrat infolge des Gasdurchflusses im Reaktionsraum trägt zur Herausbildung des erforderlichen Temperaturgefälles bei und erhöht die Abscheidungsrate.For the procedurally clean sequence of the halogenization (iodide formation) and dehalogenization (back reaction) steps, it is necessary that the temperature of the semiconductor supply material is approximately 20 to 25 ° C. higher than the temperature of the substrate. This is achieved by additional heating of the semiconductor supply material. The cooling (lowering of temperature) on the substrate as a result of Gas flow in the reaction space contributes to the formation of the required temperature gradient and increases the deposition rate.
Die Abscheidung des Halbleitermaterials auf dem Substrat wird beendet durch das Umschalten vom Gasstrom aus Wasserstoff (H2) und jodhaltigem Gas auf einen Inertgasstrom aus Stickstoff (N2) und die anschließende räumliche Trennung des beschichteten Substrates vom Halbleitervorratsmaterial durch eine Auseinanderbewegung beider. Durch diese beiden Verfahrensschritte wird eine unkontrollierte lodidbildung und Materialablagerung im Reaktionsraum und insbesondere auf dem Substrat verhindert.The deposition of the semiconductor material on the substrate is ended by switching from the gas stream of hydrogen (H 2 ) and iodine-containing gas to an inert gas stream of nitrogen (N 2 ) and the subsequent spatial separation of the coated substrate from the semiconductor stock material by moving the two apart. These two process steps prevent uncontrolled iodide formation and material deposition in the reaction space and in particular on the substrate.
Abschließend erfolgt die Abkühlung des Reaktionsraumes mit dem darin befindlichen beschichteten Substrat unter einem Inertgasstrom. Das gesamte Verfahren läuft bei einem Druck von ca. 200 mbar ab. Die beim Verfahren anfallenden gasförmigen Abfallprodukte (z.B.Finally, the reaction space with the coated substrate located therein is cooled under an inert gas stream. The entire process takes place at a pressure of approx. 200 mbar. The gaseous waste products resulting from the process (e.g.
Halogenwasserstoffe o.a.) werden über ein Abgassystem abgeführt, eventuell gereinigt und im Verfahren wiederverwendet.Hydrogen halides or the like) are removed via an exhaust system, possibly cleaned and reused in the process.
Die Anordnung zur Durchführung des erfindungsgemäßen Verfahrens weist einen hohlzylinderförmigen Reaktionsraum 1 und einen separaten Halogenvorratsraum 2 auf. Im Reaktionsraum 1 sind auf einem Substratträger 3 ein Substrat 4 (Glas) und auf einem weiteren Trägerarm 5 ein Halbleitervorratsmaterial 6 (CuGaSe2) angeordnet. Die Träger 3 und 5 sind unabhängig voneinander jeweils horizontal und vertikal verstell- bzw. verschiebbar zur Positionierung und Justierung in Abscheideposition. Der Antrieb hierfür kann über Zahnstangen, Gewindespindeln, elektrische Tauchspulen, elektrische Stellmotore, oder hydraulisch bzw. pneumatisch erfolgen.The arrangement for carrying out the method according to the invention has a hollow cylindrical reaction space 1 and a separate halogen storage space 2. In the reaction space 1, a substrate 4 (glass) is arranged on a substrate carrier 3 and a semiconductor supply material 6 (CuGaSe 2 ) is arranged on a further carrier arm 5. The supports 3 and 5 can be adjusted or displaced independently of one another, horizontally and vertically, for positioning and adjustment in the separation position. The drive for this can be done via racks, threaded spindles, electric plungers, electric servomotors, or hydraulically or pneumatically.
Der Reaktionsraum 1 ist mit einem Gaseinlaßstutzen 7 für die Zufuhr von Inertgas und einem weiteren Gaseinlaßstutzen 8 für die Zufuhr von Trägergas und halogenhaltigem Gas ausgestattet. Zur Ableitung von verbrauchtem bzw. überschüssigem Gas ist ein Gasauslaßstutzen 9 vorgesehen. Dieser ist mit einem (nicht gezeigten) Abgassystem verbunden. Zur Aufheizung des Reaktionsraumes 1 ist die Außenwand desselben von einer Heizeinrchtung 10 (z.B. Widerstaπdsheizung) umgeben. Um die für die Abscheidung von CuGaSe2 auf dem Substrat erforderliche Bedingung T orrat > TSubstrat zu erfüllen, ist der Träger 5 für das Halbleitervorratsmaterial 6 mit einer Zusatzheizung versehen. Diese kann ebenfalls als elektrische Widerstandsheizung ausgebildet sein.The reaction chamber 1 is provided with a gas inlet connector 7 for the supply of inert gas and a further gas inlet connector 8 for the supply of Carrier gas and halogen-containing gas. A gas outlet connection 9 is provided to discharge used or excess gas. This is connected to an exhaust system (not shown). To heat the reaction space 1, the outer wall thereof is surrounded by a heating device 10 (for example resistance heating). In order to meet the condition T orra t > T substrate required for the deposition of CuGaSe 2 on the substrate, the carrier 5 for the semiconductor supply material 6 is provided with an additional heater. This can also be designed as an electrical resistance heater.
Zur Erreichung einer gleichmäßigen Abscheidung von Halbleitervorratsmaterial 6 auf dem Substrat 4 kann es vorteilhaft sein, entweder das Substrat 4 oder das Halbleitervorratsmaterial 6 auf einem drehbaren Teller (nicht gezeigt) anzuordnen.To achieve a uniform deposition of semiconductor stock material 6 on the substrate 4, it may be advantageous to arrange either the substrate 4 or the semiconductor stock material 6 on a rotatable plate (not shown).
Der von außen beheizbare Halogenvorratsraum 2 weist einen Halogenvorrat 11 (lod), einen Gaszuleitungsstutzen 12 für das Trägergas (H2;N2) sowie einen Gasauslaßstutzen 13 für Trägergas und halogenhaltiges Gas auf. Das letztere Gasgemisch wird dem Reaktionsraum 1 zur Halogenisierung des Halbleitervorratsmaterials 6 zugeführt.The externally heatable halogen storage space 2 has a halogen supply 11 (iodine), a gas supply connection 12 for the carrier gas (H 2 ; N 2 ) and a gas outlet connection 13 for carrier gas and halogen-containing gas. The latter gas mixture is fed to the reaction chamber 1 for the halogenization of the semiconductor supply material 6.
Für den wahlweisen Durchfluß von Inertgas bzw. Trägergas mit halogenhaltigem Gas durch den Reaktionsraum 1 ist ein (nicht gezeigtes) regulierbares Gasmischsystem vorgesehen. Für die Regelung der jeweils benötigten Gasmengen sind Massenflußregler im Gasmischsystem vorgesehen, die mit pneumatisch schaltbaren Ventilen ausgestattet sind. A controllable gas mixing system (not shown) is provided for the optional flow of inert gas or carrier gas with halogen-containing gas through the reaction chamber 1. Mass flow controllers are provided in the gas mixing system for controlling the gas quantities required in each case and are equipped with pneumatically switchable valves.

Claims

Patentansprüche claims
1.) Verfahren zum Abscheiden von Halbleitermaterial aus einem Vorrat über halogenierte gasförmige Zwischenprodukte auf einem Substrat in einem Reaktionsraum (chemischer Gasphasentransport) gekennzeichnet durch nachstehend angegebene Verfahrensschritte:1.) Method for depositing semiconductor material from a supply via halogenated gaseous intermediate products on a substrate in a reaction space (chemical gas phase transport) characterized by the following process steps:
1. Aufheizen des Reaktionsraumes mit darin in voneinander entfernten Positionen befindlichen Halbleitermaterial und Substrat unter einem1. Heating of the reaction space with the semiconductor material and substrate located therein in spaced apart positions under one
Inertgasstrom,Inert gas flow,
2. Positionierung von Substrat und Halbleitervorratsmaterial zueinander in Auftragungsposition durch horizontales und vertikales Verschieben gegeneinander nach Erreichen der Reaktionstemperatur,2. Positioning the substrate and the semiconductor supply material in relation to one another in the application position by moving them horizontally and vertically relative to one another after the reaction temperature has been reached,
3. Ersetzen des Inertgasstromes durch einen Gasstrom aus Trägergas und halogenhaltigem Gas oder halogenhaltigem Gasgemisch zum Starten der Halogenisierung des Halbleitervorratsmaterials und Transport desselben zum Substrat,3. Replacing the inert gas stream with a gas stream of carrier gas and halogen-containing gas or halogen-containing gas mixture for starting the halogenization of the semiconductor supply material and transporting it to the substrate,
4. Dehalogenisierung des Halbleitervorratsmaterials (Rückreaktion) zur Abscheidung auf dem Substrat bei Tsubstrat ≠ vorrat,4. dehalogenization of the semiconductor supply material (reverse reaction) for deposition on the substrate at the substrate ≠ stock,
5. Beenden der Abscheidung durch a) Umschalten von Trägergas mit halogenhaltigem Gas auf Inertgasstrom, b) anschließend räumliche Trennung des beschichteten Substrates vom Halbleitervorratsmaterial durch Auseinanderbewegung beider,5. termination of the deposition by a) switching from carrier gas with halogen-containing gas to inert gas flow, b) then spatial separation of the coated substrate from the semiconductor supply material by moving the two apart,
6. Abkühlen des beschichteten Substrates. 6. Cool the coated substrate.
2.) Verfahren nach Anspruch 1 , dadurch g e ke n nze i ch n e t , daß als aufzutragende Halbleitermaterialien Chalkopyrite, ll-VI- Verbindungen, Ill-V-Verbindungen, Ubergangsmetallchalkogenide (z.B. WS2) oder Silizium verwendet werden.2.) Process according to claim 1, characterized in that chalcopyrites, II-VI compounds, III-V compounds, transition metal chalcogenides (for example WS 2 ) or silicon are used as semiconductor materials to be applied.
3.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n e t , daß als Substrat Glas, Quarz, Keramik oder Silizium bzw. andere Halbleitermaterialien, beschichtet oder unbeschichtet, eingesetzt werden.3.) Method according to claim 1, characterized in that glass, quartz, ceramic or silicon or other semiconductor materials, coated or uncoated, are used as the substrate.
4.) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als Inertgase Stickstoff (N2) oder Edelgase wie z.B. Argon oder Helium verwendet werden.4.) Method according to claim 1, characterized in that nitrogen (N 2 ) or noble gases such as argon or helium are used as inert gases.
5.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n et , daß der mögliche Temperaturbereich für die Abscheidung von5.) Method according to claim 1, characterized in that the possible temperature range for the deposition of
Halbleitermaterial zwischen Raumtemperatur (« 20°C) und 1200°C liegt.Semiconductor material is between room temperature («20 ° C) and 1200 ° C.
6.) Verfahren nach Anspruch 1 , dadurch g e ke n nze i ch n e t , daß die Abscheidung von Halbleitermaterial unter einem Druck im Bereich von 5 - 1000 mbar erfolgt.6.) Method according to claim 1, characterized in that the deposition of semiconductor material takes place under a pressure in the range of 5-1000 mbar.
7.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n et , daß als Trägergase Wasserstoff (H2), Stickstoff (N2) oder Formiergas (N2 +7.) Method according to claim 1, characterized in that the carrier gases are hydrogen (H 2 ), nitrogen (N 2 ) or forming gas (N 2 +
H2 bzw. Ar + H2 mit Ar) eingestzt werden. H 2 or Ar + H 2 with Ar) can be used.
8.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n e t , daß zur Halogenisierung Chlor, lod, Brom bzw. entsprechende gasförmige Halogenverbindungen wie z.B. Halogenwasserstoffe verwendet werden.8.) Process according to claim 1, characterized in that chlorine, iodine, bromine or corresponding gaseous halogen compounds such as e.g. Hydrogen halides are used.
9.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n e t , daß die Abkühlung des beschichteten Substrates im Reaktionsraum unter Innertgasdurchfluß erfolgt.9.) Method according to claim 1, characterized in that the coated substrate is cooled in the reaction space under an inert gas flow.
10.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n e t , daß die Abkühlung des beschichteten Substrates außerhalb des Reaktionsraumes erfolgt.10.) Method according to claim 1, characterized in that the coated substrate is cooled outside the reaction space.
11.) Verfahren nach Anspruch 1 , dadurch g e ke n nze i ch n e t , daß zur Erzielung von HeteroStrukturen auf dem Substrat mehrere unterschiedliche Halbleitermaterialien übereinander zeitlich nacheinander abgeschieden werden.11.) Method according to claim 1, characterized in that several different semiconductor materials are successively deposited one after the other in order to achieve heterostructures on the substrate.
12.) Verfahren nach Anspruch 1, dadurch g e ke n nze i ch n e t , daß für eine kontinuierliche Beschichtung ein Substrat ununterbrochen langsam durch den Reaktionsraum bewegt wird unter einem ständigen Gasstrom aus Trägergas und halogenhaltigem Gas.12.) Method according to claim 1, characterized in that a substrate is continuously and slowly moved through the reaction space for a continuous coating under a constant gas stream of carrier gas and halogen-containing gas.
13.) Anordnung zur Durchführung des Verfahrens nach Anspruch 1 bis 10, aufweisend einen von außen beheizbaren Reaktionsraum mit darin befindlichem Substrat und Halbleitervorratsmaterial sowie eine Halogenquelle, dadurch g e ke n nze i ch n e t , daß eine Positioniereinrichtung vorgesehen ist für die gegenseitige Positionierung von Substrat (4) und Halbleitervorratsmaterial (6) in Abscheideposition, daß die beheizbare Halogenquelle (2)außerhalb des Reaktionsraumes (1) angeordnet ist und daß ein regulierbares13.) Arrangement for carrying out the method according to claim 1 to 10, comprising an externally heatable reaction chamber with a substrate and semiconductor material therein and a halogen source, ge ge n n nze i ch net that a positioning device is provided for the mutual positioning of substrate (4) and semiconductor stock material (6) in the deposition position, that the heatable halogen source (2) is arranged outside the reaction chamber (1) and that an adjustable
Gasmischsystem vorgesehen ist für den wahlweisen Durchfluß von Inertgas bzw. Trägergas mit Halogengas durch den Reaktionsraum (1).Gas mixing system is provided for the optional flow of inert gas or carrier gas with halogen gas through the reaction space (1).
14.) Anordnung nach Anspruch 11, dadurch gekennzeichnet, daß zur Realisierung der Bedingung Trrrat ≠ Substrat jeweils separate Temperaturregelungen (z.B. Zusatzheizung oder -kühlung) für das Halbleitervorratsmaterial (6) und das Substrat (4) vorgesehen sind.14.) Arrangement according to claim 11, characterized in that for the realization of the condition T rrrat ≠ Su bstrat separate temperature controls (eg additional heating or cooling) are provided for the semiconductor supply material (6) and the substrate (4).
15.) Anordnung nach Anspruch 11 , dadurch g e ke n nze i ch n e t , daß die Positioniereinrichtung mechanisch, elektrisch, pneumatisch oder hydraulisch betätigbar ist.15.) Arrangement according to claim 11, characterized in that the positioning device can be actuated mechanically, electrically, pneumatically or hydraulically.
16.) Anordnung nach Anspruch 11 , dadurch gekennzeichnet, daß sich das Substrat (4) oder das Halbleitervorratsmaterial (6) zum Erreichen einer gleichmäßigen Abscheidung auf einem vorzugsweise waagerecht drehbaren Teller befindet.16.) Arrangement according to claim 11, characterized in that the substrate (4) or the semiconductor supply material (6) for achieving a uniform deposition is on a preferably horizontally rotatable plate.
17.) Anordnung nach Anspruch 11 , dadurch gekennzeichnet, daß im Gasmischsystem für die Regelung der jeweiligen Gasmengen Massenflußregler mit pneumatisch schaltbaren Ventilen vorgesehen sind. 17.) Arrangement according to claim 11, characterized in that mass flow controllers with pneumatically switchable valves are provided in the gas mixing system for controlling the respective gas quantities.
18.) Anordnung nach Anspruch 11 , dadurch g e ke n nze i ch n e t , daß der Totaldruck im Reaktionsraum (1) sowie die Temperatur kontinuierlich regelbar sind.18.) Arrangement according to claim 11, characterized in that the total pressure in the reaction chamber (1) and the temperature are continuously adjustable.
19.) Anordnung nach Anspruch 11 , dadurch g e ke n nze i ch n e t , daß dem Reaktionsraum (1) ein Abgassystem nachgeschaltet ist, das eine19.) Arrangement according to claim 11, characterized g e ke n nze i ch n e t that the reaction chamber (1) is followed by an exhaust system, the one
Vakuumpumpe mit Schmetterlingsventil aufweist. Has vacuum pump with butterfly valve.
PCT/DE1999/003665 1998-11-20 1999-11-12 Method and arrangement for deposition of a semiconductor material WO2000031323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU17718/00A AU1771800A (en) 1998-11-20 1999-11-12 Method and arrangement for deposition of a semiconductor material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19855021.9 1998-11-20
DE19855021A DE19855021C1 (en) 1998-11-20 1998-11-20 Semiconductor material is deposited by chemical gas phase transport with horizontal and vertical close spacing of the substrate and source material during deposition

Publications (1)

Publication Number Publication Date
WO2000031323A1 true WO2000031323A1 (en) 2000-06-02

Family

ID=7889378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003665 WO2000031323A1 (en) 1998-11-20 1999-11-12 Method and arrangement for deposition of a semiconductor material

Country Status (3)

Country Link
AU (1) AU1771800A (en)
DE (1) DE19855021C1 (en)
WO (1) WO2000031323A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899954B2 (en) 2001-08-22 2005-05-31 Schott Ag Cadmium-free optical steep edge filters
CN107119328A (en) * 2017-04-07 2017-09-01 湖南大学 A kind of stratiform WS with complicated helical structure2Two-dimension nano materials and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208911A1 (en) * 2002-02-27 2003-09-11 Hahn Meitner Inst Berlin Gmbh Process for depositing material from supply vessel comprises positioning the substrate and supply material in stack, introducing inert gas and reaction gas, expanding the gas flows, stopping the deposition, and cooling the substrate
DE10318440B3 (en) * 2003-04-15 2005-02-03 Hahn-Meitner-Institut Berlin Gmbh An electrochemical process for direct nanostructurable material deposition on a substrate and semiconductor device fabricated by the process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2705904A1 (en) * 1976-04-12 1977-10-27 Gni I Pi Redkometallitscheskoj Epitaxial growth of periodic semiconductor structures - from gaseous phase on revolving heated discs with substrates and sources
GB1533645A (en) * 1976-11-05 1978-11-29 G Ni I P I Redkometallich Prom Method of producing mesa and threedimensional semiconductor structures with locally non-uniform composition and device for realizing same
US4171996A (en) * 1975-08-12 1979-10-23 Gosudarstvenny Nauchno-Issledovatelsky i Proektny Institut Redkonetallicheskoi Promyshlennosti "Giredmet" Fabrication of a heterogeneous semiconductor structure with composition gradient utilizing a gas phase transfer process
US5769942A (en) * 1994-09-29 1998-06-23 Semiconductor Process Laboratory Co. Method for epitaxial growth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617381A (en) * 1968-07-30 1971-11-02 Rca Corp Method of epitaxially growing single crystal films of metal oxides
GB1557605A (en) * 1977-01-11 1979-12-12 Gni I Pi Redkometallich Promys Method of appilying layers of source substance over recipient and device for realizing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171996A (en) * 1975-08-12 1979-10-23 Gosudarstvenny Nauchno-Issledovatelsky i Proektny Institut Redkonetallicheskoi Promyshlennosti "Giredmet" Fabrication of a heterogeneous semiconductor structure with composition gradient utilizing a gas phase transfer process
DE2705904A1 (en) * 1976-04-12 1977-10-27 Gni I Pi Redkometallitscheskoj Epitaxial growth of periodic semiconductor structures - from gaseous phase on revolving heated discs with substrates and sources
GB1533645A (en) * 1976-11-05 1978-11-29 G Ni I P I Redkometallich Prom Method of producing mesa and threedimensional semiconductor structures with locally non-uniform composition and device for realizing same
US5769942A (en) * 1994-09-29 1998-06-23 Semiconductor Process Laboratory Co. Method for epitaxial growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899954B2 (en) 2001-08-22 2005-05-31 Schott Ag Cadmium-free optical steep edge filters
CN107119328A (en) * 2017-04-07 2017-09-01 湖南大学 A kind of stratiform WS with complicated helical structure2Two-dimension nano materials and preparation method thereof

Also Published As

Publication number Publication date
AU1771800A (en) 2000-06-13
DE19855021C1 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
DE69334189T2 (en) METHOD AND APPARATUS FOR PRODUCING PHOTOVOLTAIC DEVICES AND PRODUCT THEREBY
EP2126161B1 (en) Device and method for selectively depositing crystalline layers using mocvd or hvpe
DE69830310T2 (en) MULTIFUNCTIONAL PROCESS ROOM FOR CVD PROCESSES
DE60024424T2 (en) Semiconductor wafer processor with vertically stacked development chambers and single-axis dual-wafer transfer system
EP1025277B1 (en) Vacuum coating installation and coupling device and process for producing work pieces
DE102006038885B4 (en) Method for depositing a Ge-Sb-Te thin film
DE69935351T2 (en) Process for depositing atomic layers
DE3901042C2 (en)
DE102009054677A1 (en) Linear deposition source
DE3635279A1 (en) GAS PHASE EPITAXIAL METHOD FOR A CONNECTION SEMICONDUCTOR SINGLE CRYSTAL AND DEVICE FOR CARRYING OUT THE METHOD
DE60124674T2 (en) HEATING ELEMENT FOR A CVD APPARATUS
DE102008010041A1 (en) Layer deposition apparatus, e.g. for epitaxial deposition of compound semiconductor layers, has segmented process gas enclosure in which substrate is moved relative to partition
DE3916622A1 (en) METHOD FOR GROWING A VERY THIN METAL LAYER AND DEVICE THEREFOR
DE102007022431A1 (en) Plasma-coating assembly for flat surfaces e.g. thin film solar cells has moving electrode and fixed electrode
EP1966831A2 (en) Method and device for converting metallic precursors into chalcopyrite layers of cigss solar cells
DE102012108901A1 (en) Method and system for producing chalcogenide semiconductor materials using sputtering and evaporation functions
DE102016110788A1 (en) Apparatus and method for the production of optoelectronic components, in particular of multi-junction solar cells in a continuous process
DE3507337A1 (en) DEVICE FOR CARRYING OUT VACUUM PROCESSES
DE3644655A1 (en) METHOD FOR FORMING A DEPOSITED FILM
DE19717565A1 (en) CVD apparatus for efficient production of compound semiconductor thin film
DE10393964T5 (en) Diamond coated silicon and manufacturing process therefor
DE19855021C1 (en) Semiconductor material is deposited by chemical gas phase transport with horizontal and vertical close spacing of the substrate and source material during deposition
EP1133593B1 (en) Growth method for a crystalline structure
DE2613004B2 (en) Device for the epitaxial deposition of single crystal layers on substrates from a melt solution
DE102008009337A1 (en) Coating a substrate with a conductive and transparent metallic oxide layer by sputtering in a continuous process, comprises moving and coating the substrate in a coating chamber at a coating source with a tubular target of metallic oxide

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 17718

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase