WO2000027961A1 - Tensid-granulate durch wirbelschichtgranulation - Google Patents

Tensid-granulate durch wirbelschichtgranulation Download PDF

Info

Publication number
WO2000027961A1
WO2000027961A1 PCT/EP1999/008278 EP9908278W WO0027961A1 WO 2000027961 A1 WO2000027961 A1 WO 2000027961A1 EP 9908278 W EP9908278 W EP 9908278W WO 0027961 A1 WO0027961 A1 WO 0027961A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
granules
surfactant
acid
weight
Prior art date
Application number
PCT/EP1999/008278
Other languages
English (en)
French (fr)
Inventor
Georg Assmann
Dieter Jung
Olaf Blochwitz
Rene-Andres Artiga-Gonzalez
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to JP2000581128A priority Critical patent/JP2002529581A/ja
Priority to EP99952638A priority patent/EP1129161A1/de
Publication of WO2000027961A1 publication Critical patent/WO2000027961A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/04Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions by chemical means, e.g. by sulfonating in the presence of other compounding ingredients followed by neutralising
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites

Definitions

  • the present application relates to granules for use in detergents and cleaning agents which have a high surfactant content.
  • a surfactant preparation form which has a non-surfactant liquid component and is in liquid to at normal pressure at 20-40 ° C pasty form, granulated and dried at the same time.
  • Advantages of this process for the production of free-flowing granules of different types of surfactants is the avoidance of browning of the surfactants due to gentle drying and the absence of dust in the granules.
  • the preparation used preferably contains anionic surfactants, in particular fatty alkyl sulfates, alkylbenzenesulfonates and methyl sulfofatty acid, and / or nonionic surfactants.
  • Granulation and simultaneous drying are carried out batchwise or continuously in a fluidized bed, the surfactant preparation being introduced into the fluidized bed simultaneously or in succession via one or more nozzles.
  • anionic surfactant granules by neutralizing anionic surfactant acids with powdered neutralizing agent with simultaneous granulation and optionally simultaneous drying is described in patent application WO 94/07990.
  • the energy released during neutralization can be used to dry the granules.
  • the surfactant granules thus produced can contain 20 to 70% by weight of alkali carbonate, which is preferably used in excess as a neutralizing agent. Additional carriers can also be included.
  • European patent EP-B-683 814 then describes a process for the production of surfactant granules with a bulk density above 450 g / l, in which anionic surfactant acids and an aqueous alkaline solution are acted upon separately with a gaseous medium and then in the granulating and Drying room can be sprayed.
  • the gaseous medium serves as a propellant for spraying.
  • Granulation can take place with the addition of solids, in particular alkali carbonates and zeolites being admixed.
  • Zeolite A is mentioned in particular as the zeolite which has a carrier function.
  • European patent EP-B-707 632 describes anionic surfactant granules with a low carbonate content which are free-flowing. They contain 33-55% by weight of anionic surfactant, 30-50% by weight of zeolite and 2-25% by weight of alkali metal carbonate. In particular if only fatty alcohol sulfate is present as the anionic surfactant, the carbonate content can be particularly low without loss of free-flowing properties.
  • Zeolite A or zeolite P are used as zeolites, zeolite P preferably being used, since granules which contain this zeolite are more dispersible than those which contain zeolite A.
  • a first subject of the invention are accordingly soluble surfactant granules which are suitable as additives in detergents and / or cleaning agents, the granules containing 55 to 95% by weight of anionic surfactant and 5 to 30% by weight of faujasite-type zeolite .
  • zeolites have a significantly higher surfactant absorption capacity than zeolite A and they also have the ability to bind moisture to them. They allow the production of granules which, despite their high surfactant content, are free-flowing and non-sticky. Such granules usually have bulk densities of more than 400 g / l, such granules with bulk weights of at least 500 g / l being preferred.
  • Suitable anionic surfactants are, in particular, those which contain sulfate or sulfonate groups.
  • surfactants of the sulfonate type preference is given to C 9 -C 13 -alkylbenzenesulfonates, olefin sulfonates, that is to say mixtures of alkene and hydroxyalkanesulfonates, and also disulfonates of the kind obtained, for example, from C 12 -C 18 monoolefins having an end or internal double bond by sulfonation Gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products. Also suitable are alkanesulfonates obtained from C 12 -C 18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of - sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, which by ⁇ -sulfonation of the methyl esters of fatty acids of vegetable and / or animal origin with 8 to 20 C- Atoms in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts are considered.
  • esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids with sulfonation products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3% by weight.
  • ⁇ -sulfofatty acid alkyl esters are preferred which have an alkyl chain with no more than 4 carbon atoms in the ester group, for example methyl esters, ethyl esters, propyl esters and butyl esters.
  • MES ⁇ -sulfofatty acids
  • saponified disalts are used with particular advantage.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and triesters and their mixtures, such as those produced by esterification by a monogiycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol be preserved.
  • alk (en) yl sulfates the alkali and especially the sodium salts of the sulfuric acid half-esters of the d 2 -C 18 fatty alcohols, for example from coconut oil alcohol, Taig fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half esters of secondary alcohols of this chain length are preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C 16 alkyl sulfates and C 12 alkyl sulfates and -C ⁇ 5 C ⁇ 4 -C ⁇ particularly preferably 5 alkyl sulfates are also suitable anionic surfactants.
  • anionic surfactants in particular sulfuric acid monoesters of the straight-chain or branched C 7 -C 2 -alcohols ethoxylated with 1 to 6 mol of ethylene oxide, such as 2-methyl-branched C 9 -Cn alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12 -C 8 fatty alcohols with 1 to 4 EO and the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters.
  • sulfuric acid monoesters of the straight-chain or branched C 7 -C 2 -alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -Cn alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12 -C 8 fatty alcohols with 1 to 4 EO and the salts of alkylsulfosuccin
  • Fatty acid derivatives of amino acids for example of N-methyl taurine (taurides) and / or of N-methyl glycine (sarcosides) are suitable as further anionic surfactants.
  • the anionic surfactants can be in the form of their sodium, potassium, ammonium or magnesium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Granules preferred according to the invention contain anionic surfactants of the sulfonate type, and it may be advantageous to further improve the dissolving behavior if the granules also contain surfactants of the sulfate type in addition to the sulfonates. Accordingly, granules which, in addition to surfactants of the sulfonate type, also contain C 12 -C 18 alkyl sulfates, in particular C 2 -C 1 alkyl sulfates, are preferred in a particular embodiment of the invention, the weight ratio of sulfonate Surfactants: sulfate surfactants in a particularly preferred embodiment is 1: 1 to 20: 1, in particular 2: 1 to 10: 1.
  • the granules may also contain nonionic surfactants.
  • Preferred nonionic surfactants are alkoxylated, advantageously ethoxylated, in particular primary alcohols with preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol and alkyl glycosides of the general formula RO (G) x , in which R is a primary one straight-chain or methyl-branched, in particular in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as an analytically determinable variable, can also take fractional values - between 1 and 10; x is preferably less than 2, in particular less than 1.5.
  • the granules according to the invention preferably contain only medium to small amounts of water, since the free-flowing properties of the highly concentrated surfactant granules decrease significantly with increasing water content. According to the invention, preference is given to those granules which contain less than 7% by weight of water and in particular if the surfactant content is above 70% by weight, preferably less than 4.5% by weight of water.
  • those compounds as carriers which can still absorb moisture in the granules and thus prevent the anionic surfactants from sticking together.
  • the use of such carriers thus improves the pouring and dissolving behavior of such granules and increases their shelf life.
  • Suitable carriers for this purpose are the zeolites of the faujasite type and additionally, for example, calcined soda and over-dried, amorphous silicates.
  • Faujasite type zeolites have the general formula M 2 / n OAI 2 O 3 " x SiO 2 y H 2 O, in which M is a cation of valence n, x represents values which are greater than or equal to 2 and y Can assume values between 0 and 20.
  • the zeolite structures form Linking AIO 4 tetrahedra with SiO tetrahedra, this network being occupied by cations and water molecules.
  • the cations in these structures are relatively mobile and can be exchanged for other cations in different degrees.
  • the intercrystalline “zeolitic” water can be released continuously and reversibly, while for some types of zeolite structural changes are also associated with the water release or uptake.
  • the “primary binding units” (AIO 4 tetrahedra and SiO 4 tetrahedra) form so-called “secondary binding units”, which have the form of one or more rings.
  • 4-, 6- and 8-membered rings appear in various zeolites (referred to as S4R, S6R and S8R), other types are connected via four- and six-membered double ring prisms (most common types: D4R as a square prism or D6R as a hexagonal prism ).
  • S4R, S6R and S8R zeolites
  • D4R most common types: D4R as a square prism or D6R as a hexagonal prism
  • These "secondary subunits" connect different polyhedra, which are denoted by Greek letters.
  • the mineral faujasite belongs to the faujasite types within the zeolite structure group 4, which is characterized by the double six-ring subunit D6R (compare Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, page 92.
  • the zeolite structure group 4 also includes the minerals chabazite and gmelinite and the synthetic zeolites R (chabazite type), S (gmelinite type) , L and ZK-5. The latter two synthetic zeolites have no mineral analogues.
  • Faujasite-type zeolites are made up of ß-cages which are tetrahedral linked by D6R subunits, the ß-cages being arranged similar to the carbon atoms in the diamond.
  • the three-dimensional network of the zeolites of the faujasite type used in the process according to the invention has pores of 2.2 and 7.4 ⁇ , the unit cell also contains 8 cavities with a diameter of approximately 13 A and can be represented by the formula Na 8 6 [(AIO 2 ) 86 (SiO 2 ) 10 6] ' 264 H 2 O describe.
  • the network of the Zeolite X contains a void volume of approximately 50%, based on the dehydrated crystal, which represents the largest empty space of all known zeolites (zeolite Y: approx. 48% void volume, faujasite: approx. 47% void volume). (All data from: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, pages 145, 176, 177).
  • zeolite of the faujasite type denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4.
  • zeolite Y and faujasite and mixtures of these compounds can also be used according to the invention however, the pure zeolite X is preferably contained in the granules.
  • Mixtures or cocrystallizates of zeolites of the faujasite type with other zeolites which do not necessarily have to belong to the zeolite structural group 4 can also be used according to the invention, the advantages of the granules according to the invention being particularly evident when at least 50% by weight of the zeolite component are made of faujasite type zeolites.
  • x can have values between 0 and 276 and the pore sizes range from 8.0 to 8.4 ⁇ .
  • a co-crystal of zeolite X and zeolite A (approx. 80 Wt .-% zeolite X), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • Y-type zeolites are also commercially available and can be expressed, for example, by the formulas
  • x stands for numbers between 0 and 276 and have a pore size of 8.0 A.
  • zeolite A finely crystalline, synthetic and bound water-containing zeolite
  • zeolite P finely crystalline, synthetic and bound water-containing zeolite
  • zeolite P is, for example, zeolite
  • MAP® commercial product from Crosfield.
  • the particle sizes of the zeolites used in the process according to the invention are preferably in the range from 0.1 to 100 ⁇ m, preferably between 0.5 and 50 ⁇ m and in particular between 1 and 30 ⁇ m, each measured using standard particle size determination methods.
  • the faujasite-type zeolite content of the granules is 5 to 30% by weight, it being preferred for the production of granules containing particularly high surfactants if the granules contain only 5 to 20% by weight of faujasite-type zeolite.
  • other support materials if other support materials are to be used in addition to the faujasite-type zeolite, it may be preferred to contain less than 15% by weight of faujasite-type zeolite.
  • the zeolite of the faujasite type is used in an over-dried form, i.e. that it has a removable water content at 800 ° C, which is lower than the water content of the zeolite type used in equilibrium.
  • the granules preferably contain an alkali carbonate, in particular soda and particularly preferably calcined soda, the weight ratio of alkali carbonate to zeolite of the faujasite type in the granules in the range from 5: 1 to 1: 5, preferably in the range from 2: 1 to 1: 3, lies.
  • an alkali carbonate in particular soda and particularly preferably calcined soda
  • zeolite types or amorphous alkali silicates in over-dried form, crystalline layered silicates, sodium sulfate and trisodium citrate can be contained as additional carrier components.
  • Another object of the invention is a process for the production of soluble surfactant granules which are suitable as additives in detergents and / or cleaning agents, an aqueous paste of at least one surfactant or a surfactant precursor being granulated together and preferably simultaneously dried using an inorganic carrier component is, wherein the liquid components are either mixed before being introduced into the granulation room or sprayed separately into the granulation room, and a zeolite of the faujasite type is used as the inorganic carrier component.
  • surfactants already described above are used as surfactants, it being possible for the anionic surfactants to be used preferably in the form of their acid precursors.
  • surfactants are used in the form of aqueous preparations of the anionic surfactant acids, it is preferred to use an aqueous alkaline solution for the spray neutralization, the spray neutralization taking place simultaneously with the granulation.
  • the granulation can take place in any apparatus that is suitable for this; however, the granulation is preferably carried out in a batch or continuous fluidized bed. It is particularly preferred to carry out the process continuously in the fluidized bed.
  • the liquid Preparations introduced into the fluidized bed via disposable or reusable nozzles or via several nozzles.
  • the carrier materials used are the carriers already described above.
  • the zeolite used is used in an over-dried form, ie that it has a water content that can be removed at 800 ° C., which is lower than the water content of the type of zeolite used in equilibrium, and the zeolite is preferably over-dried immediately before granulation. Under excess drying, each process is to be understood, wherein the removable at 800 C C water content decreases.
  • overdrying can involve heating the zeolite before it is introduced into the granulation room, although it is also preferred to place the solid zeolite in the granulation room and to heat it there in the air stream before the other components are sprayed.
  • the carrier component as well as any other solids present, are either dusted pneumatically via blow lines, the addition either taking place before the atomization of the liquid components or simultaneously with them, or as a solution or suspension in a mixture with the liquids.
  • the liquid components are mixed either before spraying or directly in the nozzle.
  • the arrangement of the nozzle or nozzles and the spray direction can be as long as an essentially uniform distribution of the liquid components in the fluidized bed is achieved.
  • Fluidized bed apparatuses which are preferably used have base plates with dimensions of at least 0.4 m.
  • fluidized bed apparatuses are preferred which have a base plate with a diameter between 0.4 and 5 m, for example 1, 2 m or 2.5 m.
  • fluidized bed apparatuses are also suitable which have a base plate with a diameter greater than 5 m.
  • a perforated base plate or a Conidur plate (commercial product from Hein & Lehmann, Federal Republic of Germany) is preferably used as the base plate.
  • the process according to the invention is preferably carried out at fluidized air speeds between 1 and 8 m / s and in particular between 1.5 and 5.5 m / s.
  • the granules are discharged from the fluidized bed advantageously by means of a size classification of the granules.
  • This classification can take place, for example, with a sieve device or by means of an opposed air flow (classifier air) which is regulated in such a way that only particles of a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the inflowing air is composed of the heated or unheated classifier air and the heated soil air.
  • the soil air temperature is preferably between 80 and 400 ° C, in particular between 90 and 350 ° C.
  • the fluidized air cools down due to heat losses and the heat of vaporization of the constituents of the solvent.
  • the temperature of the vortex air is about 5 cm above the base plate 60 to 120 ° C, preferably 70 to 100 ° C.
  • the air outlet temperature is preferably between 60 and 120 ° C, in particular below 100 ° C.
  • a powdering agent can be continuously introduced into the fluidized bed to maintain the fluidized bed granulation process.
  • Zeolites are preferably used as powdering agents, it being particularly preferred to also use the faujasite-type zeolites used as carriers according to the invention as powdering agents. These powdering agents additionally reduce the stickiness of the moist granules during the granulation and thus promote the swirling and drying to the desired product.
  • the particle size of the powdering agent is less than 100 ⁇ m and the granules thus obtained then contain between 1 and 4% by weight of the powdering agent. This variant can be advantageous for the production of granules by the process according to the invention, but it is not absolutely necessary for carrying out the invention.
  • the present invention furthermore relates to detergents or cleaning agents which contain other constituents, at least one soluble surfactant granulate according to the invention or one surfactant granulate which is the product of the process according to the invention.
  • the detergents and cleaning agents according to the invention which may be in the form of granules, powdered or tablet-shaped solids or other moldings, can, in addition to the compounds mentioned, in principle contain all the known ingredients customary in such agents.
  • Preferred agents for the purposes of the invention are granular agents, in particular those which are formed by mixing different granules of washing and / or cleaning agent components.
  • Anionic, nonionic, cationic, amphoteric and / or zwitterionic surfactants can be mentioned primarily as ingredients of the detergents according to the invention.
  • Suitable anionic surfactants are in particular the surfactants already mentioned above, which are preferably used in the form of the granules according to the invention. Soaps, for example in amounts of 0.2% by weight to 5% by weight, are particularly suitable as further anionic surfactants. Saturated fatty acid soaps are particularly suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Anionic surfactants are contained in detergents according to the invention preferably in amounts of 1% by weight to 35% by weight and in particular in amounts of 5% by weight to 30% by weight.
  • the surfactants already mentioned are preferably also used as nonionic surfactants.
  • these are alkoxylated, advantageously ethoxylated, in particular primary alcohols with preferably 8 to 18 carbon atoms and average 1 to 12 moles of ethylene oxide (EO) are used per mole of alcohol, in which the alcohol residue can be methyl-branched linearly or preferably in the 2-position or can contain linear and methyl-branched residues in the mixture, as is usually present in oxo alcohol residues.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 2 -C 1 alcohols with 3 EO or 4 EO, Cg-Cn alcohols with 7 EO, C 3 -C 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C ⁇ alcohol with 3 EO and C 12 -C ⁇ 8 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x , in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G for one Glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G for one Glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as an analytically determinable variable, can also take fractional values - between 1 and 10; x is preferably 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in which R 1 CO is an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups: R 2
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars with 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II)
  • [Z] is also preferably obtained here by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international patent application WO 95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO 90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • gemini surfactants can be considered as further surfactants. These are generally understood to mean those compounds which have two hydrophilic groups per molecule. These groups are generally separated from one another by a so-called “spacer”. This spacer is generally a carbon chain which should be long enough that the hydrophilic groups are sufficiently far apart that they can act independently of one another. Such surfactants are distinguished generally by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases, the term gemini surfactants is understood not only to mean “dimeric” in this way, but also correspondingly “trimeric” surfactants.
  • Surfactants are, for example, sulfated hydroxy mixed ethers according to German patent application DE 43 21 022 or dimer alcohol bis and trimeral alcohol tris sulfates and ether sulfates according to German patent application DE 195 03061.
  • End group-capped dimeric and trimeric mixed ethers according to German patent application DE 195 13 391 stand out especially by their bi- and multifunctionality.
  • the end-capped surfactants mentioned have good wetting properties and are low-foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • Gemini polyhydroxy fatty acid amides or poly polyhydroxy fatty acid amides, as described in international patent applications WO 95/19953, WO 95/19954 and WO 95/19955 can also be used.
  • the detergents according to the invention further contain a builder system consisting of organic and / or inorganic builders.
  • Usable organic builders are, for example, the polycarboxylic acids that can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as Citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • polymeric polycarboxylates are also preferably used as builders.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured against the polystyrene standard).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured against the polystyrene standard).
  • the content of (co) polymeric polycarboxylates in the compositions is within the usual range and is preferably 0.1 to 10% by weight.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE-A-43 00 772, are salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or according to DE-C-42 21 381 contain as monomers salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives.
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • the acids of such polymers themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value for detergents or cleaning agents.
  • Other suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molecular weights in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2000 to 30000 can be used.
  • a preferred dextrin is described in British patent application 94 19 091.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0427 349, EP-A-0472 042 and EP-A-0 542 496 and international patent applications WO-A- 92/18542, WO-A-93/08251, WO-A-94/28030, WO-A-95/07303, WO-A-95/12619 and WO-A-95/20608.
  • a product oxidized at the CQ of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates, as described, for example, in US Pat. Nos. 4,524,009, 4,639,325, European Patent Application EP-A-0 150 930 and Japanese Patent Application JP 93/339896 become. Suitable amounts used in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Suitable builder substances are oxidation products of carboxyl group-containing polyglucosans and / or their water-soluble salts, as are described, for example, in international patent application WO-A-93/08251 or whose preparation is described, for example, in international patent application WO-A-93/16110 .
  • Oxidized oligosaccharides according to German patent application DE-A-196 00 018 are also suitable.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which it is disclosed in German patent application DE-A-195 40 086 that in addition to cobuilder properties they also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A-0 280 223.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • a preferred inorganic builder used is finely crystalline, synthetic and bound water-containing zeolite, wherein according to the invention a zeolite of the faujasite type is always present.
  • Other zeolites which are preferably used as builders are zeolite A and P. However, mixtures of A, X, Y and / or P are also suitable.
  • Zeolite MAP® (commercial product from Crosfield) is particularly preferred as zeolite P.
  • zeolite MAP® commercial product from Crosfield
  • zeolite MAP® is particularly preferred as zeolite P.
  • zeolite MAP® commercial product from Crosfield
  • zeolite MAP® is particularly preferred as zeolite P.
  • zeolite MAP® commercial product from Crosfield
  • VEGOBOND AX ® commercial product from Condea Augusta SpA
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • this can add small amounts contain nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups, C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 10 to 24% by weight, in particular 15 to 22% by weight, of bound water.
  • at least part of the inorganic builder is a zeolite of faujasite Tp, which is at least partially introduced into the washing and cleaning agent via the granules according to the invention or via granules produced by the method according to the invention.
  • Suitable partial substitutes for zeolites are layer silicates of natural and synthetic origin.
  • Layered silicates of this type are known, for example, from patent applications DE-B-23 34 899, EP-A-0 026 529 and DE-A-35 26 405. Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here. Also crystalline, layered silicates, ad silicates of this type are known, for example, from patent applications DE-B-23 34 899, EP-A-0 026 529 and DE-A-35 26 405. Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here. Also crystalline, layered
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline phyllosilicates of the formula given are those in which M is sodium and x is 2 or 3.
  • Na 2 Si 2 O 5 yH 2 O is preferred.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 O: SiO 2 of 1: 2 to 1: 3.3, preferably of 1: 2 to 1: 2.8 and in particular of 1: 2 to 1: 2,6, which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compaction / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024.
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred, the over-dried silicates in particular also preferably being present as carriers in the granules according to the invention or used as carriers in the method according to the invention.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable. Their content is generally not more than 25% by weight, preferably not more than 20% by weight, based in each case on the finished composition. In some cases, it has been shown that tripolyphosphates in particular, even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances lead to a synergistic improvement in the secondary washing ability.
  • bleaching agents are of particular importance.
  • Other useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is 0 to 30% by weight and in particular 5 to 25% by weight, advantageously using perborate monohydrate or percarbonate.
  • bleach activators can be incorporated into the preparations.
  • these are N-acyl or O-acyl compounds which form organic peracids with H 2 O 2 , preferably multiply acylated alkylenediamines such as N, N'-tetraacylated diamines, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles , Triazines, urazoles, diketopiperazines, sulfurylamides and cyanurates, also carboxylic acid esters such as p- (alkanoyloxy) benzenesulfonate, in particular sodium isononanoyloxybenzenesulfonate, and the p- (alkenoyloxy) benzenesulfonate, furthermore caprolactam derivatives,
  • Carboxylic anhydrides such as phthalic anhydride and esters of polyols such as glucose pentaacetate.
  • Other known bleach activators are acetylated mixtures of sorbitol and mannitol, as described, for example, in European patent application EP-A-0 525 239, and acetylated pentaerythritol.
  • the bleach activators contain bleach activators in the usual range, preferably between 1 and 10% by weight and in particular between 3 and 8% by weight.
  • bleach activators are N, N, N ', N'-tetraacetylethylenediamine (TAED), 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine (DADHT) and acetylated sorbitol-mannitol mixtures (SORMAN).
  • the bleach activator may have been coated with coating substances in a known manner or, if appropriate with the aid of auxiliaries, in particular methyl celluloses and / or carboxymethylceliuloses, may have been granulated or extruded / pelleted and, if desired, contain further additives, for example dye.
  • Such granules preferably contain more than 70% by weight, in particular 90 to 99% by weight, of bleach activator.
  • a bleach activator is preferably used which forms peracetic acid under washing conditions.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0 446 982 and EP 0 453 003 may also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include, in particular, the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 195 29 905 and their N-analog compounds known from German patent application DE 196 20267, which are known from the German patent application DE 195 36 082 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes Manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes described in German patent application DE 196 05 688 with tripod ligands containing nitrogen, the cobalt known from German patent application DE 196 20 411 -, Iron, copper and ruthenium-amine complexes, the manganese, copper and cobalt complexes described in German patent application DE 44 16 438, the cobalt complexes described in European patent application EP 0 272 030, which are derived from European Patent application EP 0 693
  • bleach activators and transition metal bleach catalysts are known, for example, from German patent application DE 196 13 103 and international patent application WO 95/27775.
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • the enzymes optionally contained in agents according to the invention include proteases, amylases, pullulanases, cellulases, cutinases and / or lipases, for example proteases such as BLAP ® , Optimase ® , Opticlean ® , Maxacal ® , Maxapem ® , Durazym ® , Purafect ® OxP, Esperase ® and / or Savinase ® , amylases such as Termamyl ® , Amylase-LT ® , Maxamyl ® , Duramyl ® , Purafect ® OxAm, cellulases such as Celluzyme ® , Carezyme ® , KAC ® and / or those from international patent applications WO 96/34108 and WO 96/34092 known cellulases and / or lipases such as Lipolase ® , Lipomax ® , Lumafast ® and
  • the enzymes used can, as described, for example, in international patent applications WO 92/11347 or WO 94/23005, be adsorbed on carriers and / or be embedded in coating substances in order to protect them against premature inactivation. They are contained in washing and cleaning agents according to the invention preferably in amounts of up to 10% by weight, in particular from 0.05% by weight to 5% by weight, particular preference being given to enzymes stabilized against oxidative degradation, such as, for example from the international Patent applications WO 94/02597, WO 94/02618, WO 94/18314, WO 94/23053 or WO 95/07350 are used.
  • the salts of polyphosphonic acids are suitable as stabilizers, in particular for per-compounds and enzymes which are sensitive to heavy metal ions.
  • the agents can also contain components which have a positive influence on the oil and fat washability from textiles. This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, non-ionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight in each case based on the nonionic cellulose ether, and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, possibly signed silica, and paraffins, waxes, microcrystalline waxes and their mixtures with signed silica or bistearylethylenediamide. Mixtures of various foam inhibitors are also used with advantages, for example those made of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably attached to a granular, water-soluble or dispersible carrier substance bound. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, e.g. degraded starch, aldehyde starches etc.
  • polyvinylpyrrolidone in particular in the form of PVP granules, is preferred in the agents according to the invention.
  • Cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof are also preferred.
  • Graying inhibitors, such as PVP are usually used in amounts of 0.1 to 5% by weight, based on the composition.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its aicalimetal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which, instead of the morpholino group, have a diethanolamino group , a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyryl type may be present, e.g.
  • the agents can also contain other known additives which are usually used in detergents, dishwashing detergents or cleaning agents, for example small amounts of neutral filling salts as well as colorants and fragrances, opacifiers or pearlescent agents.
  • the bulk density of the advantageously granular agents is preferably at least about 600 g / l, in particular 650 to 1100 g / l.
  • agents can also be produced which have a lower bulk density. In particular, it can be preferred to assemble the agents from granular individual components in a kind of modular system.
  • Granules E1-E3 and E6-E9 according to the invention were produced in a fluidized bed dryer.
  • the respective anionic surfactant acids and an aqueous preparation of the neutralizing agent were introduced into the fluidized bed chamber together via a two-channel nozzle, while zeolite was blown in at the same time.
  • Table 1 compounds with compositions corresponding to Table 2 were obtained in this spray neutralization.
  • the products obtained in the continuous process are dust-free, the water content and the bulk density can be controlled via the residence time in the fluidized bed.
  • Zeolite A Wessalith P ® (trade name of Degussa.)
  • Zeolite X Wessalith XD ® (Handeisname from Degussa.)
  • ABS dodecyl benzene sulfonate, Na salt; Maranil A 55 ® (trade name from Henkel;
  • FAS C ⁇ 2- ⁇ 8 fatty alcohol sulfate, Na salt; Texapon LS ® (trade name from Henkel) was used as a paste.
  • Amorphous silicate Sipemat 22 S ® (trade name from
  • V1 is the product with the highest surfactant content in which a granulate produced under the specified conditions and containing zeolite A as a carrier was still free-flowing.
  • the free-flowing properties of the compounds E8 and E9 according to the invention were compared with commercially available surfactant compounds - with a high anionic surfactant content and sodium sulfate as carrier - (V3-V5, Table 3) using a potassium test.
  • 15 ml of the respective compound was measured in a 25 ml measuring cylinder and transferred to a stainless steel cylinder, which was in a porcelain bowl.
  • a stainless steel stamp was then inserted into the cylinder without compressing the powder and loaded with a weight of 500 g. After 30 minutes or 24 hours, the weight was removed, the cylinder was raised and the agent was pressed out with the stamp.
  • the test was carried out at room temperature or at 40 ° C.

Abstract

Tensidgranulate mit hohem Aniontensidgehalt besitzen in der Regel nur eine eingeschränkte Rieselfähigkeit. Jetzt wurde gefunden, daß der Einsatz eines Zeoliths vom Faujasit-Typ zur Granulation die Herstellung hoch-tensidhaltiger Granulate erlaubt, die gut rieselfähig und nicht klebrig sind, insbesondere wenn es sich um lösliche Tensid-Granulate handelt, die sich als Zusatz in Wasch- und/oder Reinigungsmitteln eignen und die 55 bis 95 Gew.-% Aniontensid und 5 bis 30 Gew.-% Zeolith vom Faujasit-Typ enthalten. Weiter wird ein Verfahren zur Herstellung solcher Granulate sowie ein Wasch- und Reinigungsmittel, in dem solche Granulate eingearbeitet wurden, beschrieben.

Description

"Tensid-Granulate durch Wirbelschichtgranulation"
Gegenstand der vorliegenden Anmeldung sind Granulate zum Einsatz in Wasch- und Reinigungsmitteln, die einen hohen Tensidgehalt aufweisen.
Zur Herstellung wasch- und reinigungsaktiver Tensidgranulate mit einem Schüttgewicht oberhalb 500 g/l gemäß der Lehre des europäischen Patents EP-B-603 207 wird eine Tensidzubereitungsform, die eine nicht-tensidische Flüssigkomponente aufweist und unter Normaldruck bei 20-40 °C in flüssiger bis pastöser Form vorliegt, granuliert und gleichzeitig getrocknet. Vorteile dieses Verfahrens zur Herstellung rieselfähiger Granulate von unterschiedlichen Tensidtypen ist die Vermeidung der Verbräunung der Tenside infolge schonender Trocknung und das Fehlen von Staubanteilen in den Granulaten. Die verwendete Zubereitung enthält bevorzugt Aniontenside, insbesondere Fettalkylsulfate, Alkylbenzolsulfonate und Sulfofettsäuremethylester, und / oder Niotenside. Granulierung und gleichzeitige Trocknung werden in einer Wirbelschicht batchweise oder kontinuierlich durchgeführt, wobei die Tensid-Zubereitungsform gleichzeitig oder nacheinander über eine oder über mehrere Düsen in die Wirbelschicht eingebracht wird.
Die Herstellung von Aniontensidgranulaten durch Neutralisation von Aniontensidsäuren mit pulverförm igem Neutralisationsmittel bei gleichzeitiger Granulierung und gegebenenfalls gleichzeitiger Trocknung wird in der Patentanmeldung WO 94/07990 beschrieben. Dabei kann die bei der Neutralisation freigesetzte Energie zur Trocknung der Granulate verwendet werden. Die so hergestellten Tensidgranulate können 20 bis 70 Gew.-% Alkalicarbonat enthalten, welches bevorzugt als Neutralisationsmittel im Überschuß eingesetzt wird. Weitere Träger können ebenfalls enthalten sein. WO 00/27961 " * " PCT/EP99/08278
In dem europäischen Patent EP-B-683 814 wird dann ein Verfahren zur Herstellung von Tensidgranulaten mit einem Schüttgewicht oberhalb 450 g/l beschrieben, bei dem Aniontensidsäuren und eine wäßrige alkalische Lösung getrennt voneinander mit einem gasförmigen Medium beaufschlagt und anschließend in den Granulier- und Trocknungsraum versprüht werden. Das gasförmige Medium dient dabei als Treibgas zum Versprühen. Die Granuiierung kann unter Zumischung von Feststoffen erfolgen, wobei insbesondere Alkalicarbonate und Zeolithe zugemischt werden können. Als Zeolith, der eine Trägerfunktion besitzt, wird dabei insbesondere Zeolith A genannt.
In dem europäischen Patent EP-B-707 632 werden Aniontensidgranulate mit niedrigem Carbonatgehalt beschrieben, die gut rieselfähig sind. Sie enthalten 33-55 Gew.-% Aniontensid, 30-50 Gew.-% Zeolith und 2-25 Gew.-% Alkalimetallcarbonat. Insbesondere wenn als Aniontensid ausschließlich Fettalkoholsulfat enthalten ist, kann der Carbonatgehalt ohne Verlust der Rieselfähigkeit besonders niedrig sein. Als Zeolithe werden Zeolith A oder Zeolith P eingesetzt, wobei bevorzugt Zeolith P eingesetzt wird, da Granulate, die diesen Zeolith enthalten, besser dispergierbar sind, als solche, die Zeolith A enthalten.
In der Literatur sind zahlreiche Verfahren beschrieben, mit denen prinzipiell auch hochkonzentrierte Tensid-Granulate hergestellt werden können. Grundsätzlich treten aber bei Compounds mit hohen Tensidgehaiten Probleme mit deren Klebrigkeit auf, und dementsprechend besitzen die Compounds nur eine eingeschränkte Rieselfähigkeit.
Jetzt wurde gefunden, daß es von Vorteil ist, einen Zeolith vom Faujasit-Typ zur Granulation einzusetzen.
Ein erster Gegenstand der Erfindung sind dementsprechend lösliche Tensid-Granulate, die sich als Zusatz in Wasch- und/oder Reinigungsmitteln eignen, wobei die Granulate 55 bis 95 Gew.-% Aniontensid und 5 bis 30 Gew.-% Zeolith vom Faujasit-Typ enthalten.
Diese Zeolithe besitzen ein im Vergleich zu Zeolith A deutlich höheres Tensidaufnahmevermögen und zusätzlich besitzen sie die Fähigkeit Feuchtigkeit an sich zu binden. So erlauben sie die Herstellung von Granulaten, die trotz hoher Tensidgehalte gut rieselfähig und nicht klebrig sind. Derartige Granulate besitzen üblicherweise Schüttgewichte über 400 g/l, wobei solche Granulate mit Schüttgewichten von mindestens 500 g/l bevorzugt sind.
Geeignete anionische Tenside sind insbesondere solche, die Sulfat- oder Sulfonat- Gruppen enthalten.
Ais Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von - Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C- Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen MonoSalzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α- sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Taigfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkyiester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monogiycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der d2-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20- Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C12- C16-Alkylsulfate und C12-Cι5-Alkylsulfate sowie Cι4-Cι5-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-amerikanischen Patentschriften US 3 234 258 oder US 5 075 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Darüberhinaus können auch alle anderen Aniontenside, insbesondere Schwefelsäuremonoester der mit 1 bis 6 Mol Ethyienoxid ethoxylierten geradkettigen oder verzweigten C7-C2ι-Alkohole, wie 2-Methylverzweigte C9-Cn-Alkohole mit im Durchschnitt 3,5 Mol Ethyienoxid (EO) oder C12-Cι8-Fettalkohole mit 1 bis 4 EO und die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, eingesetzt werden. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
Die anionischen Tenside können in Form ihrer Natrium-, Kalium-, Ammonium oder Magnesiumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Erfindungsgemäß bevorzugte Granulate enthalten Aniontenside vom Sulfonat-Typ, wobei es zur weiteren Verbesserung des Auflöseverhaltens von Vorteil sein kann, wenn die Granulate neben den Sulfonaten auch Tenside vom Sulfat-Typ enthalten. Dementsprechend sind Granulate, die neben Tensiden vom Sulfonat-Typ auch C12-C18- Alkylsulfate, insbesondere Cι2-C1 -Alkylsulfate, enthalten, in einer besonderen Ausführungsform der Erfindung bevorzugt, wobei das Gewichtsverhältnis von Sulfonat- Tensiden : Sulfat-Tensiden in einer besonders bevorzugten Ausführungsform 1 :1 bis 20:1 , insbesondere 2:1 bis 10:1 beträgt.
Neben den Aniontensiden können in den Granulaten auch nichtionische Tenside enthalten sein. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethyienoxid (EO) pro Mol Alkohol und Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht, eingesetzt. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise ist x kleiner 2, insbesondere kleiner 1 ,5.
Weiter enthalten die erfindungsgemäßen Granulate vorzugsweise nur mittlere bis geringe Mengen Wasser, da die Rieselfähigkeit der hochkonzentrierten Tensidgranulate mit steigendem Wassergehalt deutlich abnimmt. Erfindungsgemäß bevorzugt sind daher solche Granulate, die weniger als 7 Gew.-% Wasser und insbesondere dann, wenn der Tensidgehalt über 70 Gew.-% beträgt, bevorzugt weniger als 4,5 Gew.-% Wasser, enthalten.
Unter diesem Gesichtspunkt ist es insbesondere bevorzugt als Träger solche Verbindungen einzusetzen, die in den Granulaten noch Feuchtigkeit aufnehmen können und damit ein Verkleben der Aniontenside verhindern. Der Einsatz derartiger Träger verbessert damit das Riesel- und Löseverhalten solcher Granulate und erhöht deren Lagerfähigkeit.
Zu diesem Zweck geeignete Träger sind die Zeolithe vom Faujasit-Typ sowie zusätzlich beispielsweise calcinierte Soda und übertrocknete, amorphe Silicate.
Zeolithe vom Faujasit-Typ weisen die allgemeine Formel M2/nOAI2O3 "x SiO2y H2O auf, in der M ein Kation der Wertigkeit n ist, x für Werte steht, die größer oder gleich 2 sind und y Werte zwischen 0 und 20 annehmen kann. Die Zeolithstrukturen bilden sich durch Verknüpfung von AIO4-Tetraedern mit SiO -Tetraedern, wobei dieses Netzwerk von Kationen und Wassermolekülen besetzt ist. Die Kationen in diesen Strukturen sind relativ mobil und können in unterschiedlichen Graden durch andere Kationen ausgetauscht sein. Das interkristalline „zeolithische" Wasser kann je nach Zeolithtyp kontinuierlich und reversibel abgegeben werden, während bei einigen Zeolithtypen auch strukturelle Änderungen mit der Wasserabgabe bzw. -aufnähme einhergehen.
In den strukturellen Untereinheiten bilden die „primären Bindungseinheiten" (AIO4- Tetraeder und SiO4-Tetraeder) sogenannte „sekundäre Bindungseinheiten", die die Form ein- oder mehrfacher Ringe besitzen. So treten in verschiedenen Zeolithen beispielsweise 4-, 6- und 8-gliedrige Ringe auf (als S4R, S6R und S8R bezeichnet), andere Typen werden über vier- und sechsgliedrige Doppelringprismen verbunden (häufigste Typen: D4R als viereckiges bzw. D6R als sechseckiges Prisma). Diese „sekundären Untereinheiten" verbinden unterschiedliche Polyhedra, die mit griechischen Buchstaben bezeichnet werden. Am verbreitetsten ist hierbei ein Vielflächner, der aus sechs Quadraten und acht gleichseitigen Sechsecken aufgebaut ist und der als „ß" bezeichnet wird. Mit diesen Baueinheiten lassen sich mannigfaltige unterschiedliche Zeolithe realisieren. Bislang sind 34 natürliche Zeolith-Mineralien sowie ungefähr 100 synthetische Zeolithe bekannt.
Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: „Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith- Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit- Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus ß-Käfigen aufgebaut, die tetrahedral über D6R- Untereinheiten verknüpft sind, wobei die ß-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Ä auf, die Elementarzelle enthält darüberhinaus 8 Kavitäten mit ca. 13 A Durchmesser und läßt sich durch die Formel Na86[(AIO2)86(SiO2)106] ' 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvoiumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: „Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff „Zeolith vom Faujasit- Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar. Erfindungsgemäß bevorzugt ist jedoch der reine Zeolith X in den Granulaten enthalten.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungsgemäß einsetzbar, wobei die Vorteile der erfindungsgemäßen Granulate besonders deutlich zu Tage treten, wenn mindestens 50 Gew.-% der Zeolithkomponente aus Zeolithen vom Faujasit-Typ bestehen.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden:
Na86[(AIO2)86(SiO2)106j ' x H2O,
K86[(AIO2)86(SiO2)106l x H2O,
Ca4oNa6[(AIO2)86(SiO2)106j ' x H2O,
Sr21Ba22[(AIO2)86(SiO2)106] ' x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Ä aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens ebenfalls einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O ' (1-n)K2O AI2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich und lassen sich beispielsweise durch die Formeln
Na56[(AIO2)56(SiO2)136] x H2O,
K56[(AIO2)56(SiO2)136] ' x H2O,
in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 A aufweisen, beschreiben.
Neben dem Zeolith vom Faujasit-Typ kann auch feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, wie Zeolith A, Zeolith P und Mischungen aus A und P eingesetzt werden. Als im Handel erhältlicher Zeolith P ist beispielsweise Zeolith
MAP® (Handelsprodukt der Firma Crosfield) zu nennen.
Die Teilchengrößen der im erfindungsgemäßen Verfahren eingesetzten Zeolithe liegt vorzugsweise im Bereich von 0,1 bis zu 100 μm, vorzugsweise zwischen 0,5 und 50 μm und insbesondere zwischen 1 und 30 μm, jeweils mit Standard- Teilchengrößebestimmungsmethoden gemessen.
Der Gehalt der Granulate an Zeolith vom Faujasit-Typ beträgt dabei 5 bis 30 Gew.-%, wobei es zur Herstellung besonders hoch tensidhaltiger Granulate bevorzugt ist, wenn die Granulate lediglich 5 bis 20 Gew.-% Zeolith vom Faujasit-Typ enthalten. Insbesondere wenn neben dem Zeolith vom Faujasit-Typ noch andere Trägermaterialen eingesetzt werden sollen, kann es bevorzugt sein, daß weniger als 15 Gew.-% Zeolith vom Faujasit-Typ enthalten ist. WO 00/27961 " y ' PCT/EP99/08278
Zur Erhöhung der Lagerfähigkeit der erfindungsgemäßen Granulate ist es dabei bevorzugt, wenn der Zeolith vom Faujasit-Typ in einer übertrockneten Form eingesetzt wird, d.h. daß er einen bei 800°C entfernbaren Wassergehalt besitzt, der niedriger ist als der Wassergehalt des verwendeten Zeolith-Typs im Gleichgewicht.
Als weitere Trägerkomponente enthalten die Granulate bevorzugt ein Alkalicarbonat, insbesondere Soda und besonders bevorzugt calcinierte Soda, wobei das Gewichtsverhältnis Alkalicarbonat zu Zeolith vom Faujasit-Typ in den Granulaten im Bereich 5:1 bis 1 :5, bevorzugt im Bereich 2:1 bis 1 :3, liegt.
Als zusätzliche Trägerkomponenten können, wie oben erwähnt, andere Zeolith-Typen oder amorphe Alkalisilicate (sog. Wassergläser) in übertrockneter Form, kristalline Schichtsilicate, Natriumsulfat sowie Trinatriumcitrat enthalten sein.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von löslichen Tensid-Granulaten, die sich als Zusatz in Wasch- und/oder Reinigungsmitteln eignen, wobei eine wäßrige Paste mindestens eines Tensids oder einer Tensidvorstufe unter Verwendung einer anorganischen Trägerkomponente gemeinsam granuliert und vorzugsweise gleichzeitig getrocknet wird, wobei die flüssigen Komponenten entweder vor dem Einbringen in den Granulationsraum gemischt werden oder getrennt voneinander in den Granulationsraum eingesprüht werden, und als anorganische Trägerkomponente ein Zeolith vom Faujasit-Typ eingesetzt wird.
Als Tenside werden die bereits oben beschriebenen Tenside eingesetzt, wobei die Aniontenside bevorzugt in Form ihrer Säurevorstufen eingesetzt werden können.
Werden die Tenside in Form wäßriger Zubereitungen der Aniontensidsäuren eingesetzt, so ist es bevorzugt, zur Sprühneutralisation eine wäßrige alkalische Lösung zu verwenden, wobei die Sprühneutralisation gleichzeitig mit der Granulation stattfindet.
Dabei kann die Granulation in jeder beliebigen Apparatur, die dazu geeignet ist, stattfinden; bevorzugt wird die Granulation jedoch in einer batchweise oder kontinuierlich laufenden Wirbelschicht durchgeführt. Es ist insbesondere bevorzugt, das Verfahren kontinuierlich in der Wirbelschicht durchzuführen. Dabei werden die flüssigen Zubereitungen über Ein- oder Mehrwegdüsen oder über mehrere Düsen in die Wirbelschicht eingebracht.
Bei den verwendeten Trägermaterialen handelt es sich um die bereits oben beschriebenen Träger. Bei dem hier vorgestellten Verfahren ist es insbesondere bevorzugt, daß der verwendete Zeolith in einer übertrockneten Form eingesetzt wird, d.h. daß er einen bei 800°C entfernbaren Wassergehalt besitzt, der niedriger ist als der Wassergehalt des verwendeten Zeolith-Typs im Gleichgewicht, und der Zeolith bevorzugt unmittelbar vor der Granulation übertrocknet wird. Unter Übertrocknen ist dabei jeder Vorgang zu verstehen, bei dem der bei 800CC entfernbare Wassergehalt abnimmt. In der Regel kann das Übertrocknen in einem Aufheizen des Zeoliths vor seiner Einbringung in den Granulationsraum bestehen, wobei es jedoch auch bevorzugt ist, den festen Zeolith in dem Granulationsraum vorzulegen und ihn dort im Luftstrom zu heizen bevor die anderen Komponenten eingesprüht werden.
Die Trägerkomponente, sowie gegebenenfalls vorhandene weitere Feststoffe, werden entweder pneumatisch über Blasleitungen eingestaubt, wobei die Zugabe entweder vor der Verdüsung der flüssigen Komponenten oder gleichzeitig mit diesen erfolgt, oder als Lösung bzw. Suspension im Gemisch mit den Flüssigkeiten. Dabei erfolgt die Mischung der flüssigen Bestandteile entweder vor der Verdüsung oder unmittelbar in der Düse. Die Anordnung der Düse bzw. der Düsen und die Sprührichtung kann beliebig sein, solange eine im wesentlichen gleichmäßige Verteilung der flüssigen Komponenten in der Wirbelschicht erreicht wird.
Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von mindestens 0,4 m. Insbesondere sind Wirbelschicht-Apparate bevorzugt, die eine Bodenplatte mit einem Durchmesser zwischen 0,4 und 5 m, beispielsweise 1 ,2 m oder 2,5 m besitzen. Es sind jedoch auch Wirbelschicht-Apparate geeignet, die eine Bodenplatte mit einem größeren Durchmesser als 5 m aufweisen. Als Bodenplatte wird vorzugsweise eine Lochbodenplatte oder eine Conidurplatte (Handelsprodukt der Firma Hein & Lehmann, Bundesrepublik Deutschland) eingesetzt. Vorzugsweise wird das erfindungsgemäße Verfahren bei Wirbelluftgeschwindigkeiten zwischen 1 und 8 m/s und insbesondere zwischen 1 ,5 und 5,5 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt vorteilhafterweise über eine Größenklassierung der Granulate. Diese Klassierung kann beispielsweise mit einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. In einer bevorzugten Ausführungsform setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei vorzugsweise zwischen 80 und 400°C, insbesondere zwischen 90 und 350°C. Die Wirbelluft kühlt sich durch Wärmeverluste und durch die Verdampfungswärme der Bestandteile des Lösungsmittels ab. In einer besonders bevorzugten Ausführungsform beträgt die Temperatur der Wirbelluft etwa 5 cm oberhalb der Bodenplatte 60 bis 120°C, vorzugsweise 70 bis 100°C. Die Luftaustrittstemperatur liegt vorzugsweise zwischen 60 und 120°C, insbesondere unterhalb 100°C.
Erfolgt der Austrag aus der Wirbelschicht, wie in der EP-B-0 603 207 beschrieben, gegen einen Sichterluftstrom, so werden durch diese Klassierung staubfreie Granulate erhalten, d.h. die Korngrößen der Teilchen liegen über 0,2 mm. Erfindungsgemäß bevorzugte Granulate haben einen d50-Wert zwischen 0,4 und 2,0 mm. In einer besonders bevorzugten Ausführungsform wird der Kornanteil, der größer 2,0 mm ist, zurückgeführt. Dieser Grobkornanteil kann entweder nach Mahlen der Wirbelschicht als feste Komponente zugesetzt werden oder er wird erneut gelöst und in die Wirbelschicht eingesprüht.
Bei der erfindungsgemäßen Granulation kann zur Aufrechterhaltung des Wirbelgranulationsprozesses kontinuierlich ein Bepuderungsmittel in die Wirbelschicht eingebracht werden. Bevorzugt werden dabei Zeolithe als Bepuderungsmittel eingesetzt, wobei es insbesondere bevorzugt ist, die erfindungsgemäß als Träger eingesetzten Zeolithe vom Faujasit-Typ auch als Bepuderungsmittel zu verwenden. Diese Bepuderungsmittel vermindern bei der Granulation die Klebrigkeit der feuchten Granulatkörner zusätzlich und fördern somit die Verwirbelung und die Trocknung zum gewünschten Produkt. Die Teilchengröße des Bepuderungsmittel liegt dabei unter 100 μm und die so erhaltenen Granulate enthalten dann zwischen 1 und 4 Gew.-% des Bepuderungsmittels. Für die Herstellung von Granulaten nach dem erfindungsgemäßen Verfahren kann diese Variante vorteilhaft sein, sie ist zur Ausführung der Erfindung jedoch nicht zwingend erforderlich. Ein weiterer Gegenstand der vorliegenden Erfindung sind Wasch- oder Reinigungsmittel, die andere Bestandteile, mindestens ein erfindungsgemäßes lösliches Tensid-Granulat bzw. ein Tensid-Granulat, das Produkt des erfindungsgemäßen Verfahrens ist, enthalten.
Die erfindungsgemäßen Wasch- und Reinigungsmittel, die als Granulate, pulver- oder tablettenförmige Feststoffe oder sonstige Formkörper vorliegen können, können außer den genannten Compounds im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Bevorzugte Mittel im Sinne der Erfindung sind granuläre Mittel, insbesondere solche, die durch Mischen verschiedener Granulate von Wasch- und/oder Reinigungsmittelkomponenten entstehen.
Als Inhaltsstoffe der erfindungsgemäßen Waschmittel können in erster Linie anionische, nichtionische, kationische, amphotere und/oder zwitterionische Tenside genannt werden.
Geeignete anionische Tenside sind insbesondere die bereits oben genannten Tenside, die bevorzugt in Form der erfindungsgemäßen Granulate eingesetzt werden. Als weitere anionische Tenside kommen insbesondere Seifen, beispielsweise in Mengen von 0,2 Gew.-% bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Anionische Tenside sind in erfindungsgemäßen Waschmitteln vorzugsweise in Mengen von 1 Gew.-% bis 35 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 30 Gew.- % enthalten.
Als nichtionische Tenside werden vorzugsweise ebenfalls die bereits oben erwähnten Tenside eingesetzt. Im einzelnen sind dies alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethyienoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Cι2-Cι - Alkohole mit 3 EO oder 4 EO, Cg-Cn-Alkohole mit 7 EO, Cι3-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-Cι -Alkohol mit 3 EO und C12-Cι8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C- Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht: R2
I (0
R1-CO-N-[Z] Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
R4-O-R5
I 01)
R3-CO-N-[Z] in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C C -Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO 95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO 90/13533 beschriebenen Verfahren hergestellt werden. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten „Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig „dimere", sondern auch entsprechend „trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether gemäß der deutschen Patentanmeldung DE 43 21 022 oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate gemäß der deutschen Patentanmeldung DE 195 03061. Endgruppen- verschlossene dimere und trimere Mischether gemäß der deutschen Patentanmeldung DE 195 13 391 zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide, wie sie in den internationalen Patentanmeldungen WO 95/19953, WO 95/19954 und WO 95/19955 beschrieben werden.
Die erfindungsgemäßen Waschmittel enthalten weiter ein Buildersystem, bestehend aus organischen und/oder anorganischen Buildern. Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Neben den in monomerer Form vorliegenden Polycarbonsäuren werden bevorzugt auch polymere Polycarboxylate als Builder eingesetzt. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen und gemessen gegen Polystyrol-Standard). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000 (gemessen gegen Polystyrol-Standard) .
Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten liegt im üblichen Rahmen und beträgt vorzugsweise 0,1 bis 10 Gew.-%.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE-A- 43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Auch die Säuren solcher Polymere an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0427 349, EP-A-0472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO-A-92/18542, WO-A-93/08251 , WO-A-94/28030, WO-A-95/07303, WO-A-95/12619 und WO-A- 95/20608 bekannt. Ein an CQ des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4 524 009, US 4 639 325, in der europäischen Patentanmeldung EP-A-0 150 930 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder WO 00/27961 " 1 & " PCT/EP99708278
werden beispielsweise in der internationalen Patentanmeldung WO-A-95/20029 beschrieben.
Weitere geeignete Buildersubstanzen sind Oxidationsprodukte von carboxylgruppenhalti- gen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung WO-A-93/16110 beschrieben wird. Ebenfalls geeignet sind auch oxidierte Oligosaccharide gemäß der deutschen Patentanmeldung DE-A-196 00 018.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder- Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Ein bevorzugt eingesetzter anorganischer Builder ist feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, wobei erfindungsgemäß immer ein Zeolith vom Faujasit-Typ enthalten ist. Weitere vorzugsweise als Builder eingesetzte Zeolithe sind Zeolith A und P. Geeignet sind jedoch auch Mischungen aus A, X, Y und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Von besonderem Interesse ist auch ein cokristaHisiert.es Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 10 bis 24 Gew.-%, insbesondere 15 bis 22 Gew.-% an gebundenem Wasser. Dabei ist erfindungsgemäß zumindest ein Teil des anorganischen Buiiders ein Zeolith vom Faujasit-Tp, der zumindest teilweise über die erfindungsgemäßen Granulate bzw. über nach dem erfindungsgemäßen Verfahren hergestellte Granulate in das Wasch- und Reinigungsmittel eingebracht wird.
Geeignete Teilsubstitute für Zeolithe sind Schichtsilicate natürlichen und synthetischen Ursprungs. Derartige Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE-B-23 34 899, EP-A-0 026 529 und DE-A-35 26 405 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Auch kristalline, schichtförmige
Natriumsilicate der allgemeinen Formel NaMSixO2x+1 yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind, eigenen sich zur Substitution von Zeolithen oder Phosphaten. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilicate
Na2Si2O5 yH2O bevorzugt.
Zu den bevorzugten Builder-Substanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Ver- dichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate, wobei insbesondere die übertrockneten Silicate bevorzugt auch als Träger in den erfindungsgemäßen Granulaten vorkommen bzw. als Träger in dem erfindungsgemäßen Verfahren eingesetzt werden.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben Natriumperboratmonohydrat bzw. -tetrahydrat und Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt 0 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird. Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. O- Acyl-Verbindungen, vorzugsweise mehrfach acylierte Alkylendiamine wie N,N'- tetraacylierte Diamine, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N- acylierte Hydantoine, Hydrazide, Triazole, Triazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureester wie p- (Alkanoyloxy)benzolsulfonate, insbesondere Natriumisononanoyloxybenzolsulfonat, und der p-(Alkenoyloxy)benzolsulfonate, ferner Caprolactam-Derivate,
Carbonsäureanhydride wie Phthalsäureanhydrid und Ester von Polyoien wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbitol und Mannitol, wie sie beispielsweise in der europäischen Patentanmeldung EP-A-0 525 239 beschrieben werden, und acetyliertes Pentaerythrit. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin (TAED), 1 ,5-Diacetyl-2,4-dioxo-hexahydro-1 ,3,5-triazin (DADHT) und acetylierte Sorbitol- Mannitol-Mischungen (SORMAN). Der Bleichaktivator kann in bekannter Weise mit Hüllsubstanzen überzogen oder, gegebenenfalls unter Einsatz von Hilfsmitteln, insbesondere Methylcellulosen und/oder Carboxymethylceliulosen, granuliert oder extrudiert/pelletiert worden sein und gewünschtenfalls weitere Zusatzstoffe, beispielsweise Farbstoff, enthalten. Vorzugsweise enthält ein derartiges Granulat über 70 Gew.-%, insbesondere von 90 bis 99 Gew.-% Bleichaktivator. Vorzugsweise wird ein Bleichaktivator eingesetzt, der unter Waschbedingungen Peressigsäure bildet.
Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0 446 982 und EP 0 453 003 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20267 bekannte N- Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 bekannten Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 beschriebenen Mangan-, Kupfer- und Cobalt-Komplexe, die in der europäischen Patentanmeldung EP 0 272 030 beschriebenen Cobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0 693 550 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0 392 592 bekannten Mangan-, Eisen-, Cobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0443 651 oder den europäischen Patentanmeldungen EP 0 458 397, EP 0 458 398, EP 0 549 271 , EP 0 549 272, EP 0 544 490 und EP 0 544 519 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Zu den in erfindungsgemäßen Mitteln gegebenenfalls enthaltenen Enzymen gehören Proteasen, Amylasen, Pullulanasen, Cellulasen, Cutinasen und/oder Lipasen, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect® OxP, Esperase® und/oder Savinase®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl®, Purafect® OxAm, Cellulasen wie Celluzyme®, Carezyme®, KAC® und/oder die aus den internationalen Patentanmeldungen WO 96/34108 und WO 96/34092 bekannten Cellulasen und/oder Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®. Die verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92/11347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in erfindungsgemäßen Wasch- und Reinigungsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,05 Gew.-% bis 5 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme, wie sie zum Beispiel aus den internationalen Patentanmeldungen WO 94/02597, WO 94/02618, WO 94/18314, WO 94/23053 oder WO 95/07350 bekannt sind, eingesetzt werden.
Als Stabilisatoren insbesondere für Perverbindungen und Enzyme, die empfindlich gegen Schwermetallionen sind, kommen die Salze von Polyphosphonsäuren, insbesondere 1-Hydroxyethan-1 ,1-diphosphonsäure (HEDP), Diethylentriamin- pentamethylenphosphonsäure (DETPMP) oder Ethylendiamintetramethylen- phosphonsäure in Betracht.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett- Auswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nicht-ionische Celluloseether wie Methylcellulose und Methylhydroxy- propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. signierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit signierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Siliconen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silicon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Bevorzugt ist in den erfindungsgemäßen Mitteln der Einsatz von Polyvinylpyrrolidon , insbesondere in Form von PVP-Granulaten. Weiterhin bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methyl- carboxymethylcellulose und deren Gemische. Vergrauungsinhibitoren, wie PVP, werden üblicherweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Aikalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4- morpholino-1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)- diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Außer den genannten Inhaltsstoffen können die Mittel auch andere bekannte, in Wasch-, Spül- oder Reinigungsmitteln üblicherweise eingesetzte Zusatzstoffe, beispielsweise geringe Mengen an neutralen Füllsalzen sowie Färb- und Duftstoffe, Trübungsmittel oder Perlglanzmittel enthalten. Das Schüttgewicht der vorteilhafterweise granulären Mittel beträgt vorzugsweise mindestens etwa 600 g/l, insbesondere 650 bis 1100 g/l. Es können jedoch durchaus auch Mittel hergestellt werden, welche ein niedrigeres Schüttgewicht aufweisen. Insbesondere kann es bevorzugt sein, die Mittel aus granulären Einzelkomponenten, in einer Art Baukastensystem, zusammenzustellen.
B e i s p i e l e
Erfindungsgemäße Granulate E1-E3 und E6-E9 wurden im Wirbelschichttrockner hergestellt. Hierzu wurden die jeweiligen Aniontensidsäuren und eine wäßrige Zubereitung des Neutralisationsmittels gemeinsam über eine Zweikanaldüse in die Wirbelschichtkammer eingebracht, während gleichzeitig Zeolith eingeblasen wurde. Mit den in Tabelle 1 angegebenen Verfahrensparametern wurden bei dieser Sprühneutralisation Compounds mit Zusammensetzungen entsprechend Tabelle 2 erhalten.
Zur Herstellung der erfindungsgemäßen Beispiele E4, E5 und E10 sowie der Vergleichsbeispiele V1 und V2 wurde im Wirbeischichttrockner direkt eine wäßrige Tensidpaste eingesetzt, die gemeinsam mit den Trägerbestandteilen granuliert und getrocknet wurde.
Tabelle 1: Verfahrensparameter
E1 E2 E3 E4
Tensidzubereitung Säure Säure Säure Tensidpaste
Wirbelschichttrockner (Fa. Glatt) AGT 1800 AGT 1800 AGT 1800 AGT 400
Bodenlufttemperatur [°C] 175 175 185 150
Wirbellufttemperatur [°C] 75 77 82 88
Zuluft [m3/h] 16000 16000 16000 600
Durchsatz an Flüssigkeit [kg/h] 1000 1000 1600 25
Fortsetzung Tabelle 1
E5 V1 E6 E7
Tensidzubereitung Tensidpaste Tensidpaste Säure Säure
Wirbelschichttrockner (Fa. Glatt) AGT 400 AGT 400 AGT 1800 AGT 1800
Bodenlufttemperatur [°C] 150 150 125 125
Wirbellufttemperatur [°C] 88 70 90 90
Zuluft [m3/h] 600 750 17000 17000
Durchsatz an Flüssigkeit [kg/h] 25 43 830 830
Fortsetzung Tabelle 1
E8 E9 E10 V2
Tensidzubereitung Säure Säure Tensidpaste Tensidpaste
Wirbelschichttrockner (Fa. Glatt) AGT 1800 AGT 1800 AGT 1800 AGT 1800
Bodenlufttemperatur [°C] 110 110 180 193
Wirbellufttemperatur [°C] 82 80 95 86
Zuluft [m3/h] 15000 15000 14000 14000
Durchsatz an Flüssigkeit [kg/h] 630 630 1000 1000
Die in dem kontinuierlichen Verfahren erhaltenen Produkte sind staubfrei, der Wassergehalt und das Schüttgewicht sind über die Verweildauer in der Wirbelschicht steuerbar.
Tabelle 2: Zusammensetzung und Beschaffenheit der Granulate
Figure imgf000030_0001
Fortsetzung Tabelle 2
Figure imgf000031_0001
Zeolith A: Wessalith P® (Handelsname der Fa. Degussa) Zeolith X: Wessalith XD® (Handeisname der Fa. Degussa) ABS: Dodecylbenzolsulfonat, Na-Salz; als Paste wurde Maranil A 55® (Handelsname der Fa. Henkel;
55 Gew.-% Aktivstoffgehalt) eingesetzt
FAS: Cι2-ι8-Fettalkoholsulfat, Na-Salz; als Paste wurde Texapon LS® (Handelsname der Fa. Henkel) eingesetzt amorphes Silicat: Sipemat 22 S® (Handelsname der
Fa. Degussa)
Die Korngrößenverteilung wurde bei den Versuchen E4, E5 und V1 direkt am Austrag der Wirbelschicht gemessen, eine Grobkornabsiebung erfolgte hier nicht. Bei den restlichen Versuchen wurde eine Grobkornabsiebung vorgenommen. Sämtliche erfindungsgemäß hergestellten Granulate lassen sich an der Luft handhaben, ohne dabei zu verkleben oder ihre Rieselfähigkeit einzubüßen, und lösen sich schnell auf.
V1 ist das Produkt mit dem höchsten Tensidgehalt bei dem ein unter den angegebenen Bedingungen hergestelltes Granulat, das Zeolith A als Träger enthielt, noch rieselfähig war. Die unter vergleichbaren Bedingungen hergestellten erfindungsgemäßen Beispiele E4 und E5 weisen bei vergleichbarem Rieselverhalten über 20 % höhere Tensidgehalte auf.
Zur Bestimmung des Löslichkeitsverhaltens (L-Test) der Compounds E10 und V2 wurden in einem 2 I-Becherglas 8 g des zu testenden Granulats unter Rühren (800 U/min mit Laborrührer/Propeller-Rührkopf 1 ,5 cm vom Becherglasboden entfernt zentriert) eingestreut und 1 ,5 Minuten bei 30 °C gerührt. Der Versuch wurde mit Wasser einer Härte von 16 °d durchgeführt. Anschließend wurde die Lauge durch ein Sieb (80 μm) abgegossen. Das Becherglas wurde mit sehr wenig kaltem Wasser über dem Sieb ausgespült. Es erfolgte eine 2fach-Bestimmung. Die Siebe wurden im Trockenschrank bei 40 °C ± 2 °C bis zur Gewichtskonstanz getrocknet und der Rückstand ausgewogen. Der Rückstand bei E10 betrug 7 Gew.-%, während der Rückstand von V2, das weniger Tensid und insbesondere weniger Fettalkoholsulfat enthält, 32 Gew.-% betrug.
Die Rieselfähigkeit der erfindungsgemäßen Compounds E8 und E9 wurde im Vergleich zu handelsüblichen Tensidcompounds - mit hohem Aniontensidgehalt und Natriumsulfat als Träger - (V3-V5, Tabelle 3) mit Hilfe eines Kiumptests überprüft. Hierzu wurden 15 ml des jeweiligen Compounds in einen 25 ml Meßzylinder abgemessen und in einen Edelstahlzylinder, der in einer Porzellanschale stand, überführt. Dann wurde ein Edelstahlstempel, ohne daß das Pulver zusammengedrückt wurde, in den Zylinder eingesetzt und mit einem Gewicht von 500 g belastet. Nach 30 Minuten bzw. 24 Stunden wurde das Gewicht entfernt, der Zylinder angehoben und das Mittel mit dem Stempel herausgedrückt. Der Test wurde bei Raumtemperatur bzw. bei 40°C durchgeführt. Zerfällt der Preßling beim Herausdrücken, so wird der Klumptest mit "0" benotet. Ansonsten wird auf die Schale mit dem Preßling ein Gefäß gesetzt, in das soviel Wasser gegeben wird, bis der Preßling zerbricht. Die benötigte Wassermenge wird in Gramm als Klumptestnote angegeben (Tabelle 4). Tabelle 3: Zusammensetzung der handelsüblichen Vergieichsbeispiele
Figure imgf000033_0001
Tabelle 4: Ergebnisse des Klumptests (angegeben ist die Wassermenge, die benötigt wurde, um den Preßling zum Zerbrechen zu bringen)
Figure imgf000033_0002

Claims

P a t e n t a n s p r ü c h e
1. Lösliche Tensid-Granulate, die sich als Zusatz in Wasch- und/oder Reinigungsmitteln eignen, dadurch gekennzeichnet, daß die Granulate 55 bis 95 Gew.-% Aniontensid und 5 bis 30 Gew-% Zeolith vom Faujasit-Typ enthalten.
2. Lösliche Tensid-Granulate nach Anspruch 1 , dadurch gekennzeichnet, daß die Granulate, neben Tensiden vom Sulfonat-Typ auch C12-C18-Alkylsulfate, insbesondere Cι2-C14-Alkylsulfate, enthalten, wobei das Gewichtsverhältnis von Sulfonat-Tensiden : Sulfat-Tensiden bevorzugt 1 :1 bis 20:1 , insbesondere 2:1 bis 10:1 beträgt.
3. Lösliche Tensid-Granulate nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Granulate weniger als 7 Gew.-% Wasser, insbesondere wenn der Tensidgehalt über 70 Gew.-% beträgt, bevorzugt weniger als 4,5 Gew.-% Wasser, enthalten.
4. Lösliche Tensid-Granulate nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es sich bei dem Zeolith vom Faujasit-Typ um Zeolith X handelt
5. Lösliche Tensid-Granulate nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Zeolith in einer übertrockneten Form eingesetzt wird, d.h. daß er einen bei 800°C entfernbaren Wassergehalt besitzt, der niedriger ist, als der Wassergehalt des verwendeten Zeolith-Typs im Gleichgewicht.
6. Lösliche Tensid-Granulate nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Granulate ein Alkalicarbonat, bevorzugt Soda und besonders bevorzugt calcinierte Soda, enthalten, wobei das Gewichtsverhältnis Alkalicarbonat zu Zeolith vom Faujasit-Typ in den Granulaten im Bereich 5:1 bis 1 :5, bevorzugt im Bereich 2:1 bis 1 :3, liegt.
7. Verfahren zur Herstellung von löslichen Tensid-Granulaten, die sich als Zusatz in Wasch- und/oder Reinigungsmitteln eignen, dadurch gekennzeichnet, daß eine wäßrige Paste mindestens eines Tensids oder einer Tensidvorstufe unter Verwendung einer anorganischen Trägerkomponente gemeinsam granuliert und vorzugsweise gleichzeitig getrocknet wird, wobei die flüssigen Komponenten entweder vor dem Einbringen in den Granulationsraum gemischt werden oder getrennt voneinander in den Granulationsraum eingesprüht werden, und als anorganische Trägerkomponente ein Zeolith vom Faujasit-Typ eingesetzt wird.
8. Verfahren zur Herstellung von löslichen Tensid-Granulaten nach Anspruch 7, dadurch gekennzeichnet, daß Aniontensidsäure als Tensidvorstufe eingesetzt wird und zur Sprühneutralisation eine wäßrige alkalische Lösung verwendet wird, wobei die Sprühneutralisation gleichzeitig mit der Granulation stattfindet.
9. Verfahren zur Herstellung von löslichen Tensid-Granulaten nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß es in einer Wirbelschichtapparatur durchgeführt wird.
10. Verfahren zur Herstellung von löslichen Tensid-Granulaten nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß der verwendete Zeolith in einer übertrockneten Form eingesetzt wird, d.h. daß er einen bei 800°C entfernbaren Wassergehalt besitzt, der niedriger ist als der Wassergehalt des verwendeten Zeolith-Typs im Gleichgewicht, und der Zeolith bevorzugt unmittelbar vor der Granulation übertrocknet wird.
11. Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, daß es neben anderen Bestandteilen mindestens ein lösliches Tensid-Granulat enthält, wobei das Tensid- Granulat ausgewählt ist aus den Tensid-Granulaten gemäß den Ansprüchen 1 bis 6 bzw. den Verfahrensendprodukten aus den Verfahren gemäß den Ansprüchen 7 bis 10.
PCT/EP1999/008278 1998-11-09 1999-10-30 Tensid-granulate durch wirbelschichtgranulation WO2000027961A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000581128A JP2002529581A (ja) 1998-11-09 1999-10-30 可溶性界面活性剤顆粒
EP99952638A EP1129161A1 (de) 1998-11-09 1999-10-30 Tensid-granulate durch wirbelschichtgranulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19851454.9 1998-11-09
DE1998151454 DE19851454B4 (de) 1998-11-09 1998-11-09 Tensid-Granulate durch Wirbelschichtgranulation

Publications (1)

Publication Number Publication Date
WO2000027961A1 true WO2000027961A1 (de) 2000-05-18

Family

ID=7887074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008278 WO2000027961A1 (de) 1998-11-09 1999-10-30 Tensid-granulate durch wirbelschichtgranulation

Country Status (4)

Country Link
EP (1) EP1129161A1 (de)
JP (1) JP2002529581A (de)
DE (1) DE19851454B4 (de)
WO (1) WO2000027961A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747000B2 (en) 2000-05-05 2004-06-08 The Procter & Gamble Company Process for making solid cleaning components

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148851A1 (de) * 2001-10-04 2003-04-17 Henkel Kgaa Puder- und Färbehilfsstoffe
WO2007108418A1 (ja) * 2006-03-17 2007-09-27 Lion Corporation アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体
RU2018132032A (ru) * 2016-03-18 2020-03-10 Эвоник Дегусса Гмбх Гранулят, содержащий неорганический твердый носитель с по меньшей мере одним содержащимся на нем поверхностно-активным веществом биологического происхождения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1533496A (en) * 1975-12-04 1978-11-29 Mobil Oil Corp Zeolite-containing detergents
DE4232874A1 (de) * 1992-09-30 1994-03-31 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
DE4304062A1 (de) * 1993-02-11 1994-08-18 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
US5490954A (en) * 1993-07-05 1996-02-13 Lever Brothers Company, Division Of Conopco, Inc. Detergent composition or component containing anionic surfactant and process for its preparation
WO1997042300A1 (en) * 1996-05-07 1997-11-13 The Procter & Gamble Company Process for making agglomerated detergent compositions having improved flowability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4127323A1 (de) * 1991-08-20 1993-02-25 Henkel Kgaa Verfahren zur herstellung von tensidgranulaten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1533496A (en) * 1975-12-04 1978-11-29 Mobil Oil Corp Zeolite-containing detergents
DE4232874A1 (de) * 1992-09-30 1994-03-31 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
DE4304062A1 (de) * 1993-02-11 1994-08-18 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
US5490954A (en) * 1993-07-05 1996-02-13 Lever Brothers Company, Division Of Conopco, Inc. Detergent composition or component containing anionic surfactant and process for its preparation
WO1997042300A1 (en) * 1996-05-07 1997-11-13 The Procter & Gamble Company Process for making agglomerated detergent compositions having improved flowability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747000B2 (en) 2000-05-05 2004-06-08 The Procter & Gamble Company Process for making solid cleaning components

Also Published As

Publication number Publication date
DE19851454A1 (de) 2000-05-11
DE19851454B4 (de) 2010-11-04
EP1129161A1 (de) 2001-09-05
JP2002529581A (ja) 2002-09-10

Similar Documents

Publication Publication Date Title
WO1995022592A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
WO1997010325A1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
EP0863200A2 (de) Waschmittelformkörper
EP0804529B1 (de) Amorphes alkalisilikat-compound
EP0839178B1 (de) Amorphes alkalisilicat-compound
DE19851454B4 (de) Tensid-Granulate durch Wirbelschichtgranulation
EP1106678A2 (de) Niotensidgranulate durch Prillen
EP1518923A1 (de) Tensid-Compounds enthaltend Fettalkoholalkoxylate
EP1124628B1 (de) Polymer-granulate durch wirbelschichtgranulation
WO1984003708A1 (en) Granular free flowing detergent composition and separation method thereof
EP1163318A1 (de) Aniontensid-granulate
EP0853117B1 (de) Granulares Waschmittel mit verbessertem Fettauswaschvermögen
EP1043387A2 (de) Alkylbenzolsulfonat-Granulate
WO2000037595A1 (de) Kompaktat mit silicatischem builder
DE102004020010A1 (de) Verfahren zur Herstellung von Polymer-Granulaten
DE102004020016A1 (de) Verfahren zur Herstellung von Polymer-Granulaten
EP0919614B1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmitteln mit hoher Schüttdichte
WO2000071654A1 (de) Verfahren zur herstellung von tensidgranulaten
DE102004020011A1 (de) Verfahren zur Herstellung von Polymer-Granulaten
DE102004063801A1 (de) Verfahren zur Herstellung von Farbschutzwirkstoff-Granulaten
WO2001041913A1 (de) Granulate durch wirbelschichtgranulation
WO2000022076A1 (de) Posphonathaltige granulate
DE19805025A1 (de) Alkalimetallsilicat/Niotensid-Compound
DE19611014A1 (de) Verfahren zur Herstellung rieselfähiger Wasch- oder Reinigungsmittel
WO1998055568A1 (de) Wasch- oder reinigungsmittel mit erhöhter reinigungsleistung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ HU JP PL SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999952638

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 581128

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09831430

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999952638

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1999952638

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999952638

Country of ref document: EP