WO2000020352A1 - Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe - Google Patents

Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe Download PDF

Info

Publication number
WO2000020352A1
WO2000020352A1 PCT/DE1999/003155 DE9903155W WO0020352A1 WO 2000020352 A1 WO2000020352 A1 WO 2000020352A1 DE 9903155 W DE9903155 W DE 9903155W WO 0020352 A1 WO0020352 A1 WO 0020352A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
metal silicide
composite material
starting material
metal
Prior art date
Application number
PCT/DE1999/003155
Other languages
English (en)
French (fr)
Inventor
Guenter Knoll
Gert Lindemann
Friederike Lindner
Matthias Wiedmaier
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US09/555,777 priority Critical patent/US6737015B1/en
Priority to EP99955824A priority patent/EP1047649A1/de
Priority to JP2000574474A priority patent/JP4755342B2/ja
Publication of WO2000020352A1 publication Critical patent/WO2000020352A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Definitions

  • the invention relates to a method for producing a composite material from silicon nitride and a starting material containing metal silicide by gas pressure sintering in a nitrogen-containing atmosphere and a silicon-containing composite material, the silicon-containing components of which consist of Si3 4 and a metal silicide.
  • Composite materials containing silicon nitride and metal silicide and processes for their production are known.
  • the production of such materials by uniaxial hot pressing is described in DE 37 34 274 C2 and DE 36 06 403 C2, the starting material containing Si3 4 and MoSi2 as silicide, and in EP 0335 382 AI, the starting material Si3N4, M ⁇ 5Si3 as silicide and contains carbon and the material produced contains as metal silicide M ⁇ 5Si3C or more precisely Mo 5-X si 3 c lY (0 • $ X ⁇ 2; 0 ⁇ Y $ 1).
  • the electrical properties of the materials produced in this way can be specifically adjusted.
  • the method is apparatus and complex in terms of energy consumption. More complex geometric structures can only be produced using expensive hard machining.
  • the inventors found a way to take advantage of the gas pressure sintering process and still manufacture composite materials with specified electrical properties. They found that a defined setting of the electrical properties when using N2 partial pressures outside a certain pressure range is not possible. In experiments, they found a range of the N2 ⁇ partial pressures in which it can be prevented that the finished composite material contains components other than Si3N4 and Me5Si3 containing silicon. In this way, they succeeded in producing composite materials with specified electrical properties.
  • the gas pressure sintering process requires a much simpler sintering device than hot pressing. Dense high-strength materials can be produced with the method according to the invention. Compared to materials containing MeSi2, the temperature dependence of the electrical conductivity is very low for those containing M ⁇ 5Si3.
  • the metal silicide in the composite material has a carbon content (preferably between about 0.3 and about 0.6 mass% based on the composite material), i.e. is present as Me5Si3 (C).
  • Fig. 1 in a diagram plotted against the sintering temperature, the logarithm of the lower and upper limit values of the ⁇ partial pressures which can be used in the method according to the invention for the production of a composite material containing M ⁇ 5Si3 and
  • FIG. 2 shows the same as FIG. 1 but for the production of a composite material containing N 5Si3.
  • the exemplary embodiments of the method according to the invention described below are particularly advantageous, but it should be clarified that they are only mentioned by way of example and that diverse deviations from them are possible within the scope of the claims.
  • a preconditioned Si3N4 powder with sintering additives such as Al2O3, ⁇ 2 ° 3 ° pole. , which - based on the total inorganic content - make up less than about 10 Ma%, Ma% stands for mass percent, Me5Si3 in appropriate mass fractions and optionally organic press and / or binding agents with the addition of an organic solvent - preferably - mixed in an attritor mill .
  • the attrited suspension is dried, for example, in a rotary evaporator.
  • Shaped articles can be produced from the dried powder by cold isostatic pressing at pressures between about 150 and about 250 MPa, and can be given their final shape after green processing by pressing.
  • CIM ceramic injection molding
  • extrusion After the introduction of appropriate binders, further possibilities for processing are ceramic injection molding (CIM) or extrusion.
  • CIM ceramic injection molding
  • the moldings are treated at about 600 ° C. under a pressure of 1 bar in an inert gas atmosphere for about two hours, the organic components are removed practically without residue.
  • the main sintering then follows preferably in a gas pressure sintering furnace at a temperature in the range between approximately 1700 and approximately 1900 ° C. and preferably between approximately 1800 and approximately 1900 ° C.
  • N 2 partial pressure total pressure between approximately 0.1 MPa and approximately 10 MPa , which is determined in such a way that the Si3N4 ⁇ phase and the Me5Si3 ⁇ or Me5Si3 (C) phase are in thermodynamic equilibrium during sinter densification, ie no chemical reactions occur.
  • the range of N2 partial pressure that can be used at a certain temperature depends on the metal silicide. 1 and 2 are the - D _
  • the criterion that no reaction took place is that only the desired silicon-containing phases are found in the X-ray diffractogram of the sintered material.
  • the above-mentioned equations were then determined on the basis of these values, known data, such as enthalpies of formation, and thermodynamic functions.
  • the sintering takes about two to about five hours.
  • the specific electrical resistance of the composite materials produced according to the invention is set via the choice of the metal in the silicide and the proportion and distribution of the silicide in the composite material. Outside the respective percolation range, materials with N 5Si3 (C) containing specific electrical resistances between about 1.7 • 10 _4 - ⁇ .cm and about 1'10 12 -Qcm and materials containing M ⁇ 5Si3 (C) between about 1'10 _5 _Qcm and about 1 • 10 ⁇ - Q cm can be set reproducibly.
  • the specific resistance is measured using the four-tip method.
  • the sintered materials - apart from the carbon content and without taking the organic components into account - have the same composition as the mixture that was used in the manufacture.
  • the carbon in the metal silicide is preferably present in a proportion based on the composite material of between approximately 0.3 and approximately 0.6 mass% and particularly preferably of approximately 0.5 mass%.
  • the room temperature strengths of the composite materials are not less than 500 MPa.
  • Me can stand with comparable success for all metals of the 5th and 6th subgroup of the periodic table, in particular for vanadium, tantalum, chromium and tungsten.
  • the starting material was mixed from 36 Ma% Si3 4, 1.7 Ma% Al2O3, 2.38_Ma% _ Y2O3, 60 Nb 5 Si3 Ma% and conventional pressing and binding aids.
  • the average grain size of the Si3N4 was 0.7 ⁇ m and that of the Nb5Si3 was 7 ⁇ m.
  • pre-sintering was carried out at up to 600 ° C under an inert gas, using argon (nitrogen could also have been used). Sintering was then carried out at an N2 ⁇ partial pressure of 0.5 MPa (total pressure 1 MPa) and 1800 ° C. in a graphite furnace.
  • the composite material obtained had a density of 97% of the material density.
  • the X-ray phase analysis carried out after the sintering revealed only Si3N4 and b5Si3 (C) as silicon-containing phases.
  • As more specific electrical resistance was 3.6 • 10 ⁇ 3 .Ticm. determined at 25 ° C.
  • the temperature coefficient of the specific electrical resistance was 2'10 "4 K " 1 .
  • the material density achieved was also 97%
  • the X-ray phase analysis showed only silicon-containing phases as Si3N4 and b5Si3 (C)
  • the specific electrical resistance was 2'10 cm at 25 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Um Siliciumnitrid und Metallsilicid enthaltende Kompositwerkstoffe mit festgelegten elektrischen Eigenschaften mit geringem apparativem Aufwand und energiesparend herzustellen, wobei es möglich sein soll, Formkörper aus den Kompositwerkstoffen vor dem Sintern endkonturnah zu erzeugen, und Vertreter solcher Kompositwerkstoffe anzugeben, wird ein Verfahren, bei dem ein Si3N4 und Metallsilicid enthaltendes Ausgangsmaterial dem Gasdrucksintern in einer stickstoffhaltigen Atmosphäre unterworfen wird, bei dem als Metallsilicid Me5Si3 in das Ausgangsmaterial eingebracht wird, bei dem der Stickstoffpartialdruck in Abhängigkeit von der Sintertemperatur derart festgelegt wird, dass an der unteren Grenze des anwendbaren Bereichs Si3N4 noch stabil ist und an der oberen Grenze Me5Si3, und ein siliciumhaltiger Kompositwerkstoff vorgeschlagen, dessen siliciumhaltige Komponenten aus Si3N4 und einem Metallsilicid bestehen, wobei das Metallsilicid aus der Gruppe Nb5Si3, V5Si3, Ta5Si3 und W5Si3 ausgewählt ist.

Description

Verfahren zur Herstellung von Kompositwerkstoffen und Vertreter solcher Kompositwerkstoffe
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kompositwerkstoffs aus Siliciumnitrid und ein Metallsilicid enthaltendem Ausgangsmaterial durch Gasdrucksintern in einer stickstoffhaltigen Atmosphäre und einen siliciumhaltigen Kompositwerkstoff, dessen siliciumhaltige Komponenten aus Si3 4 und einem Metallsilicid bestehen.
Kompositwerkstoffe, die Siliciumnitrid und Metallsilicid enthalten, und Verfahren zu ihrer Herstellung sind bekannt. Die Herstellung solcher Werkstoffe durch einaxiales Heißpressen ist in den DE 37 34 274 C2 und DE 36 06 403 C2 , wobei das Ausgangsmaterial Si3 4 und als Silicid MoSi2 enthält, und in der EP 0335 382 AI beschrieben, wobei das Ausgangsmaterial Si3N4, Mθ5Si3 als Silicid und Kohlenstoff enthält und der hergestellte Werkstoff als Metallsilicid Mθ5Si3C oder genauer Mo5-Xsi3cl-Y (0 •$ X < 2; 0 ^ Y $ 1) enthält. Die elektrischen Eigenschaften der so hergestellten Werkstoffe lassen sich gezielt einstellen. Das Verfahren ist apparativ und bezüglich des Energieverbrauchs aufwendig. Komplexere geometrische Strukturen können bei Anwendung des Verfahrens nur mittels einer teuren Hartbearbeitung hergestellt werden.
Die Herstellung hochwarmfester Siliciumnitrid-Kompositwerk- stoffe, die eine Verstärkungkomponente aus Me5Si3 und darüber hinaus MeSi2 oder MeSi2 und Silicide anderer Stöchiometrien enthalten, ist in der DE 195 00 832 AI bzw. der EP 0 721 925 A2 offenbart, wobei Me für Metall steht. Ins Ausgangsmaterial werden als Metallsilicid MeSi2 und Mβ5Si3 oder nur MeSi2 gemischt. Die Metalle sind bevorzugt aus der Gruppe Molybdän, Wolfram, Chrom, Tantal, Niob, Mangan und Vanadium ausgewählt. Das Sintern erfolgt durch Gasdrucksintern (bei ^-Drücken von lOObar) , was die endkonturnahe Herstellung von Formkörpern durch Keramikspritzguß oder Pressen mit nachfolgender Grünbearbeitung ermöglicht, oder Heißpressen. Spezielle elektrische Eigenschaften können nicht eingestellt werden.
Die Erfindung und ihre Vorteile
Es ist die Aufgabe der Erfindung, ein apparativ einfaches und energiesparendes Verfahren zur Herstellung von Siliciumnitrid und Metallsilicid enthaltenden Kompositwerkstoffen mit festgelegten elektrischen Eigenschaften, welches es gestattet, Formkörper aus dem Kompositwerkstoff vor dem Sintern endkonturnah herzustellen, und Vertreter solcher Kompositwerkstoffe anzugeben.
Diese Aufgabe wird mit einem Verfahren der eingangs genannten Art, bei dem Me5Si3 als das Metallsilicid in das Ausgangsmaterial eingebracht wird, wobei der Stickstoffpartialdruck in Abhängigkeit von der Sintertemperatur derart festgelegt wird, daß an der unteren Grenze des anwendbaren Bereichs Si3N4 noch thermodynamich stabil ist und an der oberen Grenze Me5Si3, und einem Kompositwerkstoff der eingangs genannten Art gelöst, bei dem das Metallsilicid aus der Gruppe b5Si3, V5Si3, a5Si3 und W5Si3 ausgewählt ist.
Die Erfinder fanden einen Weg, die Vorteile des Gasdrucksinterverfahrens auszunutzen, und trotzdem Kompositwerkstoffe mit festgelegten elektrischen Eigenschaften herzustellen. Sie stellten fest, daß eine definierte Einstellung der elektrischen Eigenschaften bei Anwendung von N2-Partialdrücken außerhalb eines bestimmten Druckbereichs nicht möglich ist. Bei Versuchen fanden sie einen Bereich der N2~Partialdrücke bei dem verhindert werden kann, daß im ferti-gen Kompositwerkstoff außer Si3N4 und Me5Si3 noch andere Silicium enthaltende Komponenten enthalten sind. Auf diese Weise gelang es ihnen, Kompositwerkstoffe mit festgelegten elektrischen Eigenschaften herzustellen. Das Gasdrucksinterverfahren kommt im Vergleich zum Heißpressen mit einer wesentlich einfacheren Sintervorrichtung aus. Mit dem erfindungsgemäßen Verfahren lassen sich dichte hochfeste Werkstoffe herstellen. Gegenüber MeSi2 enthaltenden Werkstoffen ist bei Mβ5Si3 enthaltenden die Temperaturabhängigkeit der elektischen Leitfähigkeit sehr gering.
Es ist unkritisch, wenn das Verfahren so durchgeführt wird, daß das Metallsilicid im Kompositwerkstoff einen Kohlenstoffanteil (bevorzugt zwischen etwa 0,3 und etwa 0,6 Ma% bezogen auf den Kompositwerkstoff) aufweist, d.h. als Me5Si3(C) vorliegt.
Weitere vorteilhafte Ausgestaltungen des erfindungsge äßen Verfahrens und der erfindungsgemäßen Kompositwerkstoffe sind in den Unteransprüchen aufgeführt.
Die Zeichnung
Im folgenden wird die Erfindung anhand von durch Zeichnungen erläuterten Ausführungsbeispielen detailliert beschrieben. Es zeigen
Fig. 1 in einem Diagramm aufgetragen über der Sintertemperatur den Logarithmus der unteren und oberen Grenzwerte der beim erfindungsgemäßen Verfahren anwendbaren ^-Partialdrücke für die Herstellung eines Mθ5Si3 enthaltenden Kompositwerkstof s und
Fig. 2 dasselbe wie die Fig. 1 jedoch für die Herstellung eines N 5Si3 enthaltenden Kompositwerkstoffs. Die im folgenden beschriebenen Ausführungsbeispiele des erfindungsgemäßen Verfahrens sind zwar besonders vorteilhaft, es sei aber klargestellt, daß sie nur beispielhaft genannt sind, und daß mannigfaltige Abweichungen von ihnen im Rahmen der Ansprüche möglich sind.
Zur Herstellung der Kompositwerkstoffe wird zunächst ein vorkonditioniertes Si3N4~Pulver mit Sinteradditiven, wie AI2O3, γ2°3 ° Sä . , die - bezogen auf den gesamten anorganischen Anteil - weniger als etwa 10 Ma% ausmachen, wobei Ma% für Massenprozent steht, Me5Si3 in zweckentsprechenden Masseanteilen und gegebenenfalls organischen Press- und/oder Bindehilfsmitteln unter Zufügung eines organischen Lösungsmittels - bevorzugt - in einer Attritormühle gemischt. Die attritierte Suspension wird beispielsweise in einem Rotationsverdampfer getrocknet. Aus dem getrockneten Pulver können durch kaltisostatisches Pressen bei Drücken zwschen etwa 150 und etwa 250 MPa Formkörper hergestellt werden, die nach dem Preßvorgang durch Grünbearbeitung ihre endgültige Form erhalten können. Weitere Möglichkeiten der Verarbeitung stellen nach dem Einbringen entsprechender Bindemittel der Keramikspritzguß (CIM) oder die Extrusion dar. Zur Entbinderung und/oder zum Vorsintern werden die Formkörper bei etwa 600°C unter einem Druck von 1 bar in einer Inertgasatmosphäre etwa zwei Stunden lang behandelt, wobei die organischen Bestandteile praktisch rückstandslos entfernt werden. Es folgt dann die Hauptsinterung bevorzugt in einem Gasdrucksinterofen bei einer Temperatur im Bereich zwischen etwa 1700 und etwa 1900°C und bevorzugt zwischen etwa 1800 und etwa 1900 °C unter einem definierten N2~Partialdruck (Gesamtdruck zwischen etwa 0,1 MPa und etwa 10 MPa), der so festgelegt wird, daß die Si3N4~Phase und die Me5Si3~ bzw. Me5Si3 (C) -Phase während der Sinterverdichtung im thermodynamischen Gleichgewicht vorliegen, d.h. keine chemischen Reaktionen eingehen. Der bei einer bestimmten Temperatur brauchbare Bereich des N2-Partialdrucks hängt vom Metallsilicid ab. In den Diagrammen der Fig. 1 und 2 sind die - D _
Bereiche der brauchbaren, in bar gemessenen N2~Partialdrücke (PN2) für Mθ5Si3 bzw. Nb5Si3 enthaltende Mischungen als log(PN2 [Dar]) in Abhängigkeit von der Temperatur aufgetragen. Die jeweils obere und untere begrenzende Kurve genügen für Mo- haltige Mischungen den Gleichungen
Yl = 5,3071 • ln(T) - 37,014 bzw. y2 = 7,3494 • ln(T) - 54,124 und für Nb-haltige Mischungen den Gleichungen
Y! = 7,8968 ln(T) - 58,8 bzw. y2 = 8,2598 ln(T) - 62,064, wobei γι und y2 für lg(PN2 [bar])-Werte stehen. Unterhalb des begrenzten Bereichs findet eine Reaktion des Si3 4 mit Me5Si3 statt. Oberhalb des begrenzten Bereichs reagiert das Me5Si3 mit Stickstoff. Ermittelt wurden die Kurven in Reihenversuchen, indem bei einer festgelegten Temperatur zwischen etwa 1700 und etwa 1900°C die N2~Partialdrücke ermittelt wurden, bei denen das Mβ5Si3 und das S13N4 thermodynamisch stabil vorliegen. Das Kriterium, daß keine Reaktion stattfand, ist jeweils, daß im Röntgendiffraktogramm des gesinterten Werkstoffs nur die gewünschten siliciumhaltigen Phasen gefunden werden. Basierend auf diesen Werten, bekannten Daten, wie Bildungsenthalpien, und thermodynamischen Funktionen wurden dann die o.g. Gleichungen ermittelt. Das Sintern dauert etwa zwei bis etwa fünf Stunden.
Die Einstellung des spezifischen elektrischen Widerstands der erfindungsgemäß hergestellten Kompositwerkstoffe erfolgt über die Wahl des Metalls im Silicid und den Anteil und die Verteilung des Silicids im Kompositwerkstoff. Außerhalb des jeweiligen Percolationsbereichs können mit N 5Si3(C) enthaltenden Werkstoffen spezifische elektrische Widerstände zwischen etwa 1,7 10_4-Ω.cm und etwa l'1012-Qcm und mit Mθ5Si3(C) enthaltenden Werkstoffen zwischen etwa l'10_5_Qcm und etwa 1 lO^-Qcm reproduzierbar eingestellt werden. Gemessen wird der spezifische Widerstand mittels der Vierspitzenmethode. Mittels qualitativer und quantitativer chemischer und physikalisch-chemischer Analysen und der röntgenographischen Phasenanalyse kann nachgewiesen werden, daß die gesinterten Werkstoffe - abgesehen vom Kohlenstoffgehalt und ohne Berücksichtigung der organischen Bestandteile - dieselbe Zusammensetzung haben wie die Mischung, von der bei der Herstellung ausgegangen wurde. Der Kohlenstoff in dem Metallsilicid ist bei Sinterung in einem Graphitofen bevorzugt mit einem auf den Kompositwerkstoff bezogenen Anteil zwischen etwa 0,3 und etwa 0,6 Ma% und besonders bevorzugt von etwa 0,5 Ma% enthalten. Die Raumtemperaturfestigkeiten der Kompositwerkstoffe liegen nicht unter 500 MPa.
Me kann außer für Niob und Molybdän mit vergleichbaren Erfolgen für alle Metalle der 5. und 6. Nebengruppe des Periodensystems, insbesondere für Vanadium, Tantal, Chrom und Wolfram, stehen.
Das erfindungsgemäße Verfahren wird im folgenden anhand von zwei speziellen Beispielen noch genauer beschrieben.
Beispiel 1
Das Ausgangsmaterial wurde aus 36 Ma% Si3 4, 1,7 Ma% AI2O3, 2,38_Ma%_ Y2O3, 60 Nb5Si3 Ma% und üblichen Preß- und Bindehilfsmitteln gemischt. Die mittlere Korngröße des Si3N4 war 0,7 μm und die des Nb5Si3 7μm. Nach der kaltisostatischen Verdichtung bei 200 MPa erfolgte bei bis zu 600°C eine Vorsinterung unter einem Inertgas, wobei Argon verwendet wurde (es hätte auch Stickstoff eingesetzt werden können) . Anschließend wurde bei einem N2~Partialdruck von 0,5 MPa (Gesamtdruck 1 MPa) und 1800°C in einem Graphitofen gesintert.
Der erhaltene Kompositwerkstoff hatte eine Dichte von 97% der Werkstoffdichte. Die nach dem Sintern durchgeführte röntgeno- graphische Phasenanalyse ergab als siliciumhaltige Phasen ausschließlich Si3N4 und b5Si3(C). Als spezifischer elektrischer Widerstand wurde 3.6 • 10~3.Ticm. bei 25°C ermittelt. Der Temperaturkoeffizient des spezifischen elektrischen Widerstands betrug 2'10"4 K"1.
Beispiel 2
Außer daß die anorganischen Bestandteile des Ausgangsmaterials aus 54 Ma% Si3N , 2,6 Ma% A1203, 3,4 Ma% Y2O3, 40 Nb5Si3 Ma% bestanden, wurde das Verfahren in derselben Weise wie im Beispiel 1 durchgeführt.
Gemäß den Untersuchungen des gesinterten Werkstoffs betrug die erzielte Werkstoffdichte ebenfalls 97%, ergab die röntgenogra- phische Phasenanalyse als siliciumhaltige Phasen ausschließlich Si3N4 und b5Si3(C), als spezifischer elektrischer Widerstand wurde 2'10 ücm bei 25°C ermittelt.

Claims

Ansprüche
1. Verfahren zur Herstellung eines Kompositwerkstoffs aus einem Siliciumnitrid und Metallsilicid enthaltenden Ausgangsmaterial durch Gasdrucksintern in einer stickstoffhaltigen Atmosphäre, dadurch gekennzeichnet, daß als Metallsilicid Me5Si3 in das Ausgangsmaterial eingebracht wird, daß der Stickstoffpartialdruck in Abhängigkeit von der Sintertemperatur derart festgelegt wird, daß an der unteren Grenze des anwendbaren Bereichs Si3N noch stabil ist und an der oberen Grenze Me5Si3-
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Metall im Silicid aus einem Metall der 5. oder 6. Nebengruppe ausgewählt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Metall aus der Gruppe Mo, Nb, V, Nb, Ta und W ausgewählt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Gewichtsverhältnis von Si3 4:Mβ5Si3 zwischen etwa 20:80 und etwa 80:20 eingestellt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß dem Ausgangsmaterial Sinteradditive zugefügt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als Sinteradditive Aluminiumoxid und/oder Yttriumoxid und/oder ähnlich wirkende Materialien zugefügt werden.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, - -
daß der Anteil der Sinteradditive in der Ausgangsmischung bei < etwa 10 Gew.-% gehalten wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß dem Ausgangsmaterial Press- und/oder Bindehilfsmittel zugesetzt werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Ausgangsmaterial gemahlen wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Ausgangsmaterial durch Keramikspritzguß oder isostatisches Kaltpressen und ggf. anschließende Grünbearbeitung in eine gewünschte Form gebracht wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Ausgangsmaterial kaltisostatisch bei einem Druck zwischen etwa 100 und etwa 300 MPa verdichtet wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Ausgangsmaterial vor dem Sintern einem Vorsintern unterworfen wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß bei einer Temperatur zwischen etwa 500 und etwa 700°C vorgesintert wird.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß bei einem Druck zwischen etwa 0,05 und etwa 0,2 MPa vorgesintert wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß zwischen etwa 1700 und etwa 1900°C gesintert wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß bei einem N2"Partialdruck zwischen etwa 0,5 und etwa 1,0 MPa gesintert wird.
17. Verfahren nach einem der Ansprüche 2 bis 16, dadurch gekennzeichnet, daß als Metall Molybdän verwendet wird, und daß in Abhängigkeit von der Temperatur die obere Grenze des N2~ Partialdrucks (PN2) gemäß der Gleichung
Yl = 5,3071 • ln(T) - 37,014 und die untere Grenze gemäß der Gleichung y2 = 7,3494 ln(T) - 54,124 festgelegt wird, wobei y^ und y2 für lg(PN2 [bar])-Werte stehen.
18. Verfahren nach einem der Ansprüche 2 bis 15, dadurch gekennzeichnet, daß als Metall Niob verwendet wird, und daß in Abhängigkeit von der Temperatur die obere Grenze des N2"Partialdrucks (PN2) gemäß der Gleichung
Y! = 7,8968 • ln(T) - 58,8 und die untere Grenze gemäß der Gleichung y2 = 8,2598 ln(T) - 62,064 festgelegt wird, wobei y^ und Y2 für lg(PN2 [bar]) -Werte stehen.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß das Sintern in einem Gasdrucksinterofen durchgeführt wird.
20. Siliciumhaltiger Kompositwerkstoff, dessen siliciumhaltige Komponenten aus Si3N4 und einem Metallsilicid bestehen, dadurch gekennzeichnet, daß das Metallsilicid aus der Gruppe Nb5Si3, V5Si3, Ta5Si3 und 5Si3 ausgewählt ist.
21. Kompositwerkstoff nach Anspruch 20, dadurch gekennzeichnet, daß das Metallsilicid Kohlenstoff enthält.
22. Kompositwerkstoff nach Anspruch 21, dadurch gekennzeichnet, _ T i _
daß das Metallsilicid Kohlenstoff mit einem auf den Kompositwerkstoff bezogenen Anteil von etwa 0,3 bis etwa 0,6 Ma% enthält.
23. Kompositwerkstoff nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, daß das Massenverhältnis von Si3N4:Me5Si3 zwischen etwa 20:80 und etwa 80:20 liegt.
24. Kompositwerkstoff nach einem der Ansprüche 20 bis 23, dadurch gekennzeichnet, daß dem Ausgangsmaterial Sinteradditive zugefügt werden.
25. Kompositwerkstoff nach Anspruch 24, dadurch gekennzeichnet, daß die Sinteradditive aus Aluminiumoxid und/oder Yttriumoxid und/oder ähnlich wirkenden Materialien bestehen.
26. Kompositwerkstoff nach Anspruch 24 oder 25, dadurch gekennzeichnet, daß der Anteil der Sinteradditive in der Ausgangsmischung bei < etwa 10 Gew.-% liegt.
27. Kompositwerkstoff nach einem der Ansprüche 20 bis 26, dadurch gekennzeichnet, daß das Metallsilicid Nb5Si3 ist.
PCT/DE1999/003155 1998-10-02 1999-10-01 Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe WO2000020352A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/555,777 US6737015B1 (en) 1998-10-02 1999-10-01 Method for producing composite materials and examples of such composite materials
EP99955824A EP1047649A1 (de) 1998-10-02 1999-10-01 Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe
JP2000574474A JP4755342B2 (ja) 1998-10-02 1999-10-01 複合材料の製造方法およびこの複合材料の代表的材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19845532.1 1998-10-02
DE19845532A DE19845532A1 (de) 1998-10-02 1998-10-02 Verfahren zur Herstellung von Kompositwerkstoffen und Vertreter solcher Kompositwerkstoffe

Publications (1)

Publication Number Publication Date
WO2000020352A1 true WO2000020352A1 (de) 2000-04-13

Family

ID=7883261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003155 WO2000020352A1 (de) 1998-10-02 1999-10-01 Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe

Country Status (5)

Country Link
US (1) US6737015B1 (de)
EP (1) EP1047649A1 (de)
JP (1) JP4755342B2 (de)
DE (1) DE19845532A1 (de)
WO (1) WO2000020352A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024623B4 (de) * 2005-05-30 2007-08-23 Beru Ag Verfahren zum Herstellen eines keramischen Glühstiftes für eine Glühkerze
DE102014212685A1 (de) * 2014-07-01 2016-01-07 Heraeus Deutschland GmbH & Co. KG Herstellung von Cermets mit ausgewählten Bindemitteln
ITUB20150793A1 (it) * 2015-05-22 2016-11-22 Nuovo Pignone Srl Materiale composito a base di siliciuro e processo per produrlo
CN105523766B (zh) * 2016-03-03 2018-11-06 广东金润源陶瓷股份有限公司 一种氮化硅-硅化钽复合陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335382A1 (de) * 1988-03-29 1989-10-04 Nippondenso Co., Ltd. Elektrisch leitfähiger Keramikwerkstoff
EP0520211A1 (de) * 1991-06-24 1992-12-30 Lanxide Technology Company, Lp Siliciumnitridkeramik mit einer dispergierten Pentamolybdäntrisilicidphase

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782905B2 (ja) 1985-02-28 1995-09-06 日本電装株式会社 セラミックヒータおよびセラミックヒータ用発熱体の製造方法
US4814581A (en) 1986-10-09 1989-03-21 Nippondenso Co., Ltd. Electrically insulating ceramic sintered body
JPH0710601B2 (ja) * 1987-08-26 1995-02-08 株式会社日立製作所 感熱ヘツド
JPH01115872A (ja) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd 窒化ケイ素セラミックス
JP2745030B2 (ja) * 1990-01-29 1998-04-28 日本特殊陶業株式会社 窒化珪素焼結体およびその製造方法
US5234643A (en) * 1992-01-27 1993-08-10 Matsumoto Roger L K Silicon nitride ceramics containing crystallized grain boundary phases
DE4233602C2 (de) * 1992-10-06 1996-01-25 Bayer Ag Verfahren zur Herstellung eines dichten Si¶3¶N¶4¶-Werkstoffes sowie dessen Verwendung
JP2774761B2 (ja) * 1993-08-03 1998-07-09 株式会社東芝 高熱伝導性窒化けい素焼結体およびその製造方法
JPH07223866A (ja) * 1994-02-15 1995-08-22 Ube Ind Ltd 窒化珪素基複合セラミックス及びその製造方法
JP3212450B2 (ja) * 1994-07-11 2001-09-25 日本特殊陶業株式会社 窒化珪素焼結体
DE19500832C2 (de) 1995-01-13 1998-09-17 Fraunhofer Ges Forschung Dichter Siliziumnitrid-Kompositwerkstoff und Verfahren zu seiner Herstellung
US5948717A (en) * 1995-01-13 1999-09-07 Fraunhofer-Gesellschaft Dense silicon nitride composite material
JPH09169570A (ja) * 1995-12-19 1997-06-30 Isuzu Ceramics Kenkyusho:Kk 窒化ケイ素複合焼結体
JPH10182237A (ja) * 1996-12-26 1998-07-07 Kyocera Corp 窒化珪素質複合焼結体およびその製造方法
JP2000072553A (ja) * 1998-08-31 2000-03-07 Kyocera Corp 窒化珪素質耐摩耗性部材及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335382A1 (de) * 1988-03-29 1989-10-04 Nippondenso Co., Ltd. Elektrisch leitfähiger Keramikwerkstoff
EP0520211A1 (de) * 1991-06-24 1992-12-30 Lanxide Technology Company, Lp Siliciumnitridkeramik mit einer dispergierten Pentamolybdäntrisilicidphase

Also Published As

Publication number Publication date
JP4755342B2 (ja) 2011-08-24
DE19845532A1 (de) 2000-04-06
EP1047649A1 (de) 2000-11-02
JP2002526374A (ja) 2002-08-20
US6737015B1 (en) 2004-05-18

Similar Documents

Publication Publication Date Title
DE69721565T2 (de) Verfahren zur herstellung eines dichten keramischen werkstückes
DE3205877C2 (de)
DE3010545C2 (de) Gesinterte Keramik, insbesondere für Zerspanungswerkzeuge, und Verfahren zur Herstellung derselben
EP1664362B1 (de) Ods-molybdän-silizium-bor-legierung
EP0433856B1 (de) Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen
EP1999087A1 (de) Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung
DE69032117T2 (de) Verfahren zur herstellung von gesinterten keramischen materialien
DE68918473T2 (de) Funktionaler keramischer Formkörper und Verfahren zu seiner Herstellung.
DE69018868T2 (de) Siliciumnitridkeramik mit einer Metallsilizidphase.
EP0372382B1 (de) Sinterfähiges Keramikpulver, Verfahren zu seiner Herstellung, daraus hergestellte Siliziumnitridkeramik, Verfahren zu deren Herstellung sowie deren Verwendung
EP3041631B1 (de) Chrommetallpulver
WO1994018140A1 (de) VERFAHREN ZUR HERSTELLUNG VON FEINKÖRNIGEN Al2O3 ENTHALTENDEN KERAMISCHEN FORMKÖRPERN UNTER VERWENDUNG VON PULVERFÖRMIGEM ALUMINIUMMETALL
WO2000020352A1 (de) Verfahren zur herstellung von kompositwerkstoffen und vertreter solcher kompositwerkstoffe
DE3881777T2 (de) Gesinterte Siliziumcarbid-Verbundkörper und Verfahren zu ihrer Herstellung.
DE69206148T2 (de) Cermets auf Uebergangsmetallboridbasis, ihre Herstellung und Anwendung.
AT502394B1 (de) Verfahren zur herstellung eines keramischen werkstoffes und keramischer werkstoff
EP0918735B1 (de) Verfahren zur herstellung von formkörpern aus einem keramischen verbundgefüge
DE3939989C2 (de) Verfahren zur Herstellung eines Sinterkörpers auf Siliziumnitridbasis und Sinterkörper auf Siliziumnitridbasis
EP0321975A1 (de) Polykristalline Sinterkörper auf Basis von Aluminiumnitrid und Verfahren zu ihrer Herstellung
WO1995033079A1 (de) Bildung von intermetallischähnlichen vorlegierungen
DE69111537T2 (de) Verfahren zur Wärmebehandlung eines Sinterkörpers aus Siliziumnitrid.
EP0721925B1 (de) Dichter Siliciumnitrid-Kompositwerkstoff und Verfahren zu seiner Herstellung
EP0600255B1 (de) Verbundwerkstoffe auf der Basis von Titandiborid und Verfahren zu ihrer Herstellung
DE10335167B4 (de) Verfahren zur Herstellung eines keramischen Leuchtstoffs
WO1988007029A1 (en) Process for the hot isostatic compression of silicon nitride bodies reinforced with carbide fibres and carbide whiskers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999955824

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09555777

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999955824

Country of ref document: EP