WO2000014271A1 - METHOD FOR STUDYING PROTEIN INTERACTIONS $i(IN VIVO) - Google Patents

METHOD FOR STUDYING PROTEIN INTERACTIONS $i(IN VIVO) Download PDF

Info

Publication number
WO2000014271A1
WO2000014271A1 PCT/US1999/020207 US9920207W WO0014271A1 WO 2000014271 A1 WO2000014271 A1 WO 2000014271A1 US 9920207 W US9920207 W US 9920207W WO 0014271 A1 WO0014271 A1 WO 0014271A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
complexed
acceptor fluorophore
cell
luciferase
Prior art date
Application number
PCT/US1999/020207
Other languages
English (en)
French (fr)
Inventor
Aladar A. Szalay
Yubao Wang
Gefu Wang-Pruski
Original Assignee
Loma Linda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loma Linda University filed Critical Loma Linda University
Priority to AU58056/99A priority Critical patent/AU752675B2/en
Priority to JP2000569011A priority patent/JP2002524087A/ja
Priority to EP99945460A priority patent/EP1109931A4/en
Priority to CA002341314A priority patent/CA2341314A1/en
Publication of WO2000014271A1 publication Critical patent/WO2000014271A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the method could be used with a wide variety of proteins and in a wide variety of living cells. Also preferably, the method could be used to determine the interactions between molecules other than proteins.
  • a method for determining whether a first protein interacts with a second protein within a living cell comprises providing the first protein complexed to a donor luciferase and the second protein complexed to an acceptor fluorophore within the cell.
  • the donor luciferase is capable of luminescence resonance energy transfer to the acceptor fluorophore when the first protein is in proximity to the second protein.
  • the complexed first protein and the complexed second protein are allowed to come into proximity to each other within the cell.
  • any fluorescence from the acceptor fluorophore is detected. Fluorescence of the acceptor fluorophore resulting from luminescence resonance energy transfer from the donor luciferase to acceptor fluorophore the indicates that the first protein has interacted with the second protein.
  • providing the first protein complexed to a donor luciferase and the second protein complexed to an acceptor fluorophore comprises genetically engineering DNA and transferring the genetically engineered DNA to the living cell causing the cell to produce the first protein complexed to a donor luciferase and the second protein complexed to an acceptor fluorophore.
  • the cell which is provided with the first protein complexed to a donor luciferase and the cell which is provided with the second protein complexed to an acceptor fluorophore are mammalian cells.
  • the donor luciferase provided is Renilla luciferase.
  • the acceptor fluorophore provided is an Aequorea green fluorescent protein.
  • the detection of acceptor fluorophore fluorescence is performed using spectrofluorometery.
  • the present invention includes a method for determining whether a first protein interacts with a second protein in a living cell using luminescent resonance energy transfer (LRET).
  • LRET luminescent resonance energy transfer results from the transfer of excited state energy from a donor luciferase to an acceptor fluorophore.
  • LRET luminescent resonance energy transfer
  • the efficiency of luminescence resonance energy transfer is dependent on the distance separating the donor luciferase and the acceptor fluorophore, among other variables. Generally, significant energy transfers occur only where the donor luciferase and acceptor fluorophore are less than about 80 A of each other.
  • the present invention utilizes luminescence resonance energy transfer to determine whether an interaction takes place between a first protein and a second protein in a living cell. This is accomplished by complexing a first protein to the donor luciferase and complexing the second protein to the acceptor fluorophore and placing the complexed first protein and the complexed second protein in the cell under conditions suitable for an interaction between the first protein and the second protein to take place. If the first protein interacts with the second protein, the donor luciferase will come close enough to the acceptor fluorophore for luminescence resonance energy transfer to take place and the acceptor fluorophore will fluoresce.
  • this method allows for the detection of interaction between the first protein and the second protein even though the interaction cannot be detected by optical methods such as conventional microscopy.
  • the specific labeling of the proteins in living cells can be achieved through genetic engineering methods where the introduction of fluorescent dyes into living cells is very difficult. Further, fluorescent dyes photobleach quickly while light emission of a luciferase such as Renilla luciferase originates from an enzymatic reaction that is relatively stable if substrate and oxygen are supplemented.
  • complexing a first protein to the donor luciferase refers to joining the donor luciferase to the first protein in a manner that the donor luciferase and the first protein stay in essentially the same proximity to one another during interaction between the first protein and the second protein.
  • complexing a second protein to the acceptor fluorophore refers to joining the acceptor fluorophore to the second protein in a manner that the acceptor fluorophore and the second protein stay in essentially the same proximity to one another during interaction between the first protein and the second protein.
  • Such complexing can be done, for example, by genetically engineering the cell to produce a fusion protein containing the donor luciferase and first protein, and the acceptor fluorophore and the second protein.
  • the present invention uses Renilla luciferase as the donor luciferase and "humanized" Aequorea green fluorescent protein ('humanized' GFP) as the acceptor fluorophore.
  • Renilla luciferase is a 34 kDa enzyme purified from Renilla reniformis. The enzyme catalyzes the oxidative decarboxylation of coelenterazine in the presence of oxygen to produce blue light with an emission wavelength maximum of 471 nm.
  • Renilla luciferase was used as the donor luciferase because it requires an exogenous substrate rather than exogenous light for excitation. This, advantageously, eliminates background noise from an exogenous light source and from autofluorescence, and allows easy and accurate quantitative determination of light production.
  • 'Humanized' GFP is a 27 kDa protein fluorophore that has an excitation maximum at 480 nm. It has a single amino acid difference from wild-type Aequorea green fluorescent protein. 'Humanized' GFP was chosen as the acceptor fluorophore because its excitation spectrum overlaps with the emission spectra of Renilla luciferase. Additionally, emissions from 'humanized' GFP can be visualized in living cells. Further, 'humanized'
  • GFP is expressed well in the mammalian cells transfected with 'humanized' GFP cDNA that were used to demonstrate this method.
  • IGFBP 6 insulin-like growth factor binding protein 6
  • IGF- II insulin-like growth factor II
  • the Renilla luciferase cDNA was fused to IGFBP 6 cDNA and 'humanized' GFP cDNA was fused to IGF-II cDNA.
  • Living cells were transfected with the fused cDNAs and the fusion proteins were expressed. Cell extracts were produced and mixed.
  • the substrate for the Renilla luciferase moiety of the fused Renilla luciferase-IGFPB 6 protein was added. Finally, fluorescence from the 'humanized' GFP moiety of the fused 'humanized' GFP-IGF-II protein was detected. Demonstration one method according to the present invention will now be described in greater detail.
  • IGFBP-6 cDNA SEQ ID NO: l, GenBank accession number M69054, encoded IGFBP-6, SEQ ID NO:2, which was used as the first protein.
  • Renilla luciferase cDNA SEQ ID NO:3, GenBank accession number M63501, encoded Renilla luciferase, SEQ ID NO:4, which was used as the donor luciferase.
  • Insulin cDNA SEQ ID NO:9, accession number AH002844, encoded insulin, SEQ ID NO: 10.
  • Insulin, fused to 'humanized' GFP was used as a control protein because insulin is homologous to IGF-II, but it does not bind to IGFBP-6.
  • the cDNA of prepro-IGF-II carried on an EcoRI fragment was cloned into pBluescript KS (+) II vector.
  • the insert was sequenced using T7 and T3 primers and confirmed to contain the known cDNA sequence of prepro-IGF-II.
  • the 5' end of the IGF-II precursor was connected to the T7 promoter in the pBluescript KS (+) II vector.
  • An IGF-II 3' primer was designed to generate a Notice of Allowance restriction site, to remove the D and E domains of prepro-IGF-II, and to maintain the Notice of Allowance fragment of the 'humanized' GFP in frame with the open reading frame of IGF-II.
  • the IGF-II fragment was amplified with PCR using the T7 promoter primer and the IGF-II 3' primer.
  • the PCR-amplified IGF-II fragment was digested by EcoRI and Not I and cloned into pCDNA3.1 (+) vector (Invitrogen, Carlsbad, CA, US) producing pCDNA-IGF-II.
  • the Notice of Allowance fragment of the 'humanized' GFP was inserted into the Not I site of pCDNA-IGF-II producing pC-IGF-II-GFP.
  • the cDNA for precursor of insulin which contained a signal peptide the B, C and A domains, was modified in a manner corresponding to the IGF-II fragment, above.
  • the 'humanized' GFP cDNA was then linked to the 3' end of the modified insulin cDNA to produce pC-INS-GFP.
  • IGFBP 6 cDNA was amplified by PCR from a plasmid named
  • Rat-tagged human IGFBP6 Rat-tagged human IGFBP6.
  • the stop codon of IGFBP 6 was removed and the open reading frame of IGFBP 6 was in frame with Renilla luciferase cDNA from pCEP4-RUC (Mayerhofer R, Langridge WHR, Cormier MG and Szalay AA. Expression of recombinant Renilla luciferase in trans genie plants results in high levels of light emission. The Plant Journal 1995 ;7; 1031-8).
  • the linking of the Renilla luciferase cDNA to the 3' end of modified IGFBP 6 cDNA produced pC-IGFBP 6-RUC.
  • COS-7 cells African green monkey kidney cell, American Type Culture Collection CRL 1651
  • DMEM Dulbecco's Modified Eagle Medium
  • streptomycin 100 mg/ml antibiotic antimycotic solution containing a final concentration of penicillin 100 unit/ml, streptomycin 100 mg/ml and amphotericin B 250 ng/ml (Sigma-Aldrich Co., St. Louis, MO, US) in 5% CO 2 .
  • Groups of 1x10° of these cells were plated the day before transfection and were approximately 50% to 60% confluent at the time of transfection. Forty mg of each plasmid fusion DNA were precipitated and resuspended into
  • fusion proteins IGF-II-GFP and IGFBP 6-RUC having the expected molecular weights of about 36 kDa and 56 kDa, respectively, were detected using immunoblot analysis. This confirmed the presence of both fusion proteins in the transiently transfected cells.
  • cell extracts from these transiently transfected cells were used to carry out a protein binding assay based on energy transfer between the Renilla luciferase and 'humanized' GFP moieties of the fusion proteins.
  • the COS cells were washed twice with PBS and harvested using a cell scraper in luciferase assay buffer containing 0.5 M NaCl, 1 mM EDTA and 0.1 M potassium phosphate at a pH 7.5.
  • the harvested cells were sonicated 3 times for 10 seconds with an interval of 10 seconds using a Fisher Model 550 Sonic Dismembrator (Fisher Scientific, Pittsburgh, PA, US) to produce cell extracts.
  • the cell extracts containing IGF-II-GFP and IGFBP 6-RUC were mixed and 0.1 ⁇ g of coelenterazine was immediately added.
  • Spectrofluorometry was performed using a SPEX FluoroMax ® (Instruments S.A., Inc., Edison, NJ). The spectrum showed a single emission peak at 471 nm, which corresponds to the known emission of Renilla luciferase.
  • the spectrofluorometry of the cell extracts was carried out at a longer time, but the spectral pattern did not change over time.
  • Control cell extract mixtures from cells transfected with pC-INS-GFP and pC-IGFBP 6-RUC were made similarly and their spectra traced.
  • the traces showed only one peak at 471 nm, which corresponds to the emission peak of Renilla luciferase.
  • the spectral pattern did not change over time.
  • protein-protein interactions were also detected by the detection of LRET using corresponding methods in E. coli cells and mammalian cells which were co-transformed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)
PCT/US1999/020207 1998-09-03 1999-09-02 METHOD FOR STUDYING PROTEIN INTERACTIONS $i(IN VIVO) WO2000014271A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU58056/99A AU752675B2 (en) 1998-09-03 1999-09-02 Method for studying protein interactions (in vivo)
JP2000569011A JP2002524087A (ja) 1998-09-03 1999-09-02 インビボにおいてタンパク質相互作用を調べる方法
EP99945460A EP1109931A4 (en) 1998-09-03 1999-09-02 METHOD FOR STUDYING PROTEIN INTERACTIONS $ i (IN VIVO)
CA002341314A CA2341314A1 (en) 1998-09-03 1999-09-02 Method for studying protein interactions in vivo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9906898P 1998-09-03 1998-09-03
US60/099,068 1998-09-03
US13583599P 1999-05-24 1999-05-24
US60/135,835 1999-05-24

Publications (1)

Publication Number Publication Date
WO2000014271A1 true WO2000014271A1 (en) 2000-03-16

Family

ID=26795497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/020207 WO2000014271A1 (en) 1998-09-03 1999-09-02 METHOD FOR STUDYING PROTEIN INTERACTIONS $i(IN VIVO)

Country Status (6)

Country Link
EP (1) EP1109931A4 (ja)
JP (1) JP2002524087A (ja)
CN (1) CN1160470C (ja)
AU (1) AU752675B2 (ja)
CA (1) CA2341314A1 (ja)
WO (1) WO2000014271A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533619A2 (en) 2003-11-20 2005-05-25 F. Hoffmann-La Roche Ag Specific markers for metabolic syndrome
US7771952B2 (en) 2002-06-26 2010-08-10 Abott Laboratories Modulators and modulation of the interaction between RGM and Neogenin
WO2011083147A1 (en) 2010-01-08 2011-07-14 Cemm-Forschungsinstitut Für Molekulare Medizin Gmbh Wave1 inhibition in the medical intervention of inflammatory diseases and/or infections caused by a pathogen
WO2011131626A1 (en) 2010-04-19 2011-10-27 Medizinische Universität Innsbruck Tmem195 encodes for tetrahydrobiopterin-dependent alkylglycerol monooxygenase activity
US8647887B2 (en) 2009-01-29 2014-02-11 Commonwealth Scientific And Industrial Research Organisation Measuring G protein coupled receptor activation
US8906864B2 (en) 2005-09-30 2014-12-09 AbbVie Deutschland GmbH & Co. KG Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
US9102722B2 (en) 2012-01-27 2015-08-11 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of diseases associated with neurite degeneration
US9175075B2 (en) 2009-12-08 2015-11-03 AbbVie Deutschland GmbH & Co. KG Methods of treating retinal nerve fiber layer degeneration with monoclonal antibodies against a retinal guidance molecule (RGM) protein
US10415960B2 (en) 2015-04-06 2019-09-17 Worldvu Satellites Limited Elevation angle estimating system and method for user terminal placement
US11579149B2 (en) 2017-11-01 2023-02-14 Queen's University At Kingston Hippo pathway bioluminescent biosensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1920021B (zh) * 2005-08-24 2010-05-05 中国医学科学院基础医学研究所 胰岛素样生长因子结合蛋白-6介导的有活性胰岛素样生长因子-ⅱ的制备方法
CN101620233B (zh) * 2009-05-27 2012-10-31 华中科技大学 一种蛋白质相互作用的检测方法
CN102798717B (zh) * 2012-06-15 2014-11-26 杭州师范大学 一种o6-甲基鸟嘌呤-dna甲基转移酶活性检测方法
CN103616502B (zh) * 2013-09-12 2016-05-25 西北农林科技大学 基于细菌荧光素酶bret技术检测蛋白质相互作用的方法
CN110794129B (zh) * 2018-08-01 2020-12-01 清华大学 细胞内检测生物分子间相互作用及其调控因子的方法与所用试剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318707A (en) * 1978-11-24 1982-03-09 Syva Company Macromolecular fluorescent quencher particle in specific receptor assays
US4604364A (en) * 1974-01-04 1986-08-05 Kosak Kenneth M Bioluminescent tracer composition and method of use in immunoassays
US5418155A (en) * 1989-12-29 1995-05-23 University Of Georgia Research Foundation, Inc. Isolated Renilla luciferase and method of use thereof
US5491084A (en) * 1993-09-10 1996-02-13 The Trustees Of Columbia University In The City Of New York Uses of green-fluorescent protein
US5683888A (en) * 1989-07-22 1997-11-04 University Of Wales College Of Medicine Modified bioluminescent proteins and their use
US5811238A (en) * 1994-02-17 1998-09-22 Affymax Technologies N.V. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US5866348A (en) * 1993-02-10 1999-02-02 Parkard Instrument Company, Inc. Bioluminescence measurement system
US5891646A (en) * 1997-06-05 1999-04-06 Duke University Methods of assaying receptor activity and constructs useful in such methods
US5976796A (en) * 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK487784A (da) * 1983-10-13 1985-04-14 Univ Georgia Immunoassay
DE69928255T2 (de) * 1998-06-16 2006-11-09 PerkinElmer BioSignal Inc., Montréal Biolumineszentes resonanz-energie-transfersystem (bret) und seine anwendung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604364A (en) * 1974-01-04 1986-08-05 Kosak Kenneth M Bioluminescent tracer composition and method of use in immunoassays
US4318707A (en) * 1978-11-24 1982-03-09 Syva Company Macromolecular fluorescent quencher particle in specific receptor assays
US5683888A (en) * 1989-07-22 1997-11-04 University Of Wales College Of Medicine Modified bioluminescent proteins and their use
US5418155A (en) * 1989-12-29 1995-05-23 University Of Georgia Research Foundation, Inc. Isolated Renilla luciferase and method of use thereof
US5866348A (en) * 1993-02-10 1999-02-02 Parkard Instrument Company, Inc. Bioluminescence measurement system
US5491084A (en) * 1993-09-10 1996-02-13 The Trustees Of Columbia University In The City Of New York Uses of green-fluorescent protein
US5811238A (en) * 1994-02-17 1998-09-22 Affymax Technologies N.V. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US5976796A (en) * 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
US5891646A (en) * 1997-06-05 1999-04-06 Duke University Methods of assaying receptor activity and constructs useful in such methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1109931A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771952B2 (en) 2002-06-26 2010-08-10 Abott Laboratories Modulators and modulation of the interaction between RGM and Neogenin
EP2053409A1 (en) 2003-11-20 2009-04-29 F. Hoffmann-La Roche Ag Specific markers for metabolic syndrome
EP1533619A2 (en) 2003-11-20 2005-05-25 F. Hoffmann-La Roche Ag Specific markers for metabolic syndrome
US8906864B2 (en) 2005-09-30 2014-12-09 AbbVie Deutschland GmbH & Co. KG Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
US9605069B2 (en) 2008-02-29 2017-03-28 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM a protein and uses thereof
US8647887B2 (en) 2009-01-29 2014-02-11 Commonwealth Scientific And Industrial Research Organisation Measuring G protein coupled receptor activation
US9175075B2 (en) 2009-12-08 2015-11-03 AbbVie Deutschland GmbH & Co. KG Methods of treating retinal nerve fiber layer degeneration with monoclonal antibodies against a retinal guidance molecule (RGM) protein
WO2011083147A1 (en) 2010-01-08 2011-07-14 Cemm-Forschungsinstitut Für Molekulare Medizin Gmbh Wave1 inhibition in the medical intervention of inflammatory diseases and/or infections caused by a pathogen
WO2011131626A1 (en) 2010-04-19 2011-10-27 Medizinische Universität Innsbruck Tmem195 encodes for tetrahydrobiopterin-dependent alkylglycerol monooxygenase activity
US9102722B2 (en) 2012-01-27 2015-08-11 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of diseases associated with neurite degeneration
US9365643B2 (en) 2012-01-27 2016-06-14 AbbVie Deutschland GmbH & Co. KG Antibodies that bind to repulsive guidance molecule A (RGMA)
US10106602B2 (en) 2012-01-27 2018-10-23 AbbVie Deutschland GmbH & Co. KG Isolated monoclonal anti-repulsive guidance molecule A antibodies and uses thereof
US10415960B2 (en) 2015-04-06 2019-09-17 Worldvu Satellites Limited Elevation angle estimating system and method for user terminal placement
US11579149B2 (en) 2017-11-01 2023-02-14 Queen's University At Kingston Hippo pathway bioluminescent biosensor

Also Published As

Publication number Publication date
JP2002524087A (ja) 2002-08-06
CN1160470C (zh) 2004-08-04
AU5805699A (en) 2000-03-27
EP1109931A4 (en) 2004-12-15
CN1323353A (zh) 2001-11-21
AU752675B2 (en) 2002-09-26
EP1109931A1 (en) 2001-06-27
CA2341314A1 (en) 2000-03-16

Similar Documents

Publication Publication Date Title
EP1109931A1 (en) METHOD FOR STUDYING PROTEIN INTERACTIONS $i(IN VIVO)
JP4459058B2 (ja) 改善された生物発光を有する発光タンパク質
WO2019174633A1 (zh) 支链氨基酸荧光探针及其应用
CN113603756B (zh) 谷氨酸棒杆菌膜蛋白Ncgl2775及其表面展示系统和构建方法
KR20130084312A (ko) 오플로포러스-유래된 루시퍼라아제, 신규 코엘렌테라진 기질, 및 사용 방법
US20140329718A1 (en) Nicotinamide Adenine Dinucleotide Gene Encoding Fluorescent Probe, Preparation Method Therefor and Application Thereof
JP2007508841A5 (ja)
Wang et al. A study of protein-protein interactions in living cells using luminescence resonance energy transfer (LRET) from Renilla luciferase to Aequorea GFP
US8552151B2 (en) Mutant blue fluorescent protein and method of using the same for fluorescence energy transfer and blue fluorescent fish
CN113801211B (zh) 谷氨酸棒杆菌蛋白Ncgl0717及其表面展示系统和构建方法
AU2012227790B2 (en) Probe for analyzing biological tissue and method for utilizing same
JP2011211983A (ja) タンパク質分子対、タンパク質分子対をコードする遺伝子および遺伝子導入ベクターとタンパク質分子対を産生する細胞
JP6051438B2 (ja) 赤色蛍光蛋白質を用いたカルシウムセンサー蛋白質
CN111269324A (zh) 高斯荧光素酶和地高辛单链抗体的融合蛋白及其应用
EP1840213A1 (en) Target physiological function inactivator using photosensitizer-labeled fluorescent protein
CN104277120B (zh) 氧化型烟酰胺腺嘌呤二核苷酸基因编码荧光探针及其制备方法和应用
CN116068198B (zh) Ppi原位检测方法及其载体、诊断试剂、试剂盒和应用
KR20200137596A (ko) 급성 신장 이식 거부 반응 진단용 조성물 및 이를 포함하는 진단 키트
Zlobovskaya et al. Infrared fluorescent protein iRFP as an acceptor for resonance excitation energy transfer
CN102181465B (zh) 一种荧光筛选克隆载体及其制备与应用
KR102210877B1 (ko) 형광세기가 향상된 애기장대 유래 플라빈 모노뉴클레오타이드 결합 단백질 변이체들
WO2024113229A1 (zh) Ppi原位检测方法及其载体、诊断试剂、试剂盒和应用
WO2021253126A1 (en) Cleavable linkers for protein translation reporting
CN117551208A (zh) 一种基于环状重排荧光蛋白的l-2-羟基戊二酸生物传感器及其应用
WO2024056560A1 (en) Novel phagocytosis assay combining a synthetic cell death switch and a phagocytosis reporter system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811958.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09786377

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 569011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 58056/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999945460

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999945460

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref document number: 2341314

Country of ref document: CA

Ref document number: 2341314

Country of ref document: CA

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 58056/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999945460

Country of ref document: EP