WO2000007245A1 - Leistungshalbleiter mit reduziertem sperrstrom - Google Patents

Leistungshalbleiter mit reduziertem sperrstrom Download PDF

Info

Publication number
WO2000007245A1
WO2000007245A1 PCT/DE1999/002000 DE9902000W WO0007245A1 WO 2000007245 A1 WO2000007245 A1 WO 2000007245A1 DE 9902000 W DE9902000 W DE 9902000W WO 0007245 A1 WO0007245 A1 WO 0007245A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
power semiconductor
emitter
reverse current
recombination
Prior art date
Application number
PCT/DE1999/002000
Other languages
English (en)
French (fr)
Inventor
Hans-Joachim Schulze
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to DE19981445T priority Critical patent/DE19981445B4/de
Priority to AU58475/99A priority patent/AU5847599A/en
Publication of WO2000007245A1 publication Critical patent/WO2000007245A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the invention relates to a power semiconductor which has a reduced reverse current and which comprises a first layer of a first conductivity type, a first layer of a second conductivity type, a second layer of the first conductivity type and a second layer of the second conductivity type.
  • the invention relates to an insulated-gate bipolar transistor (IGBT) in which the first layer of the first conductivity type is an (anode-side) p-emitter, the first layer of the second conductivity type is an n ⁇ base, and the second layer of the first conductivity type is p + Base and the second layer of the second conductivity type is a (cathode-side) n + emitter.
  • IGBT insulated-gate bipolar transistor
  • a power semiconductor of the type mentioned above is, for example, a fast switch implemented with IGBT, which is in the on state most of the time and only blocks relatively rarely in order to switch off a short-circuit current.
  • the anode-side (collector-side) emitter is provided with a relatively high doping concentration and an increased depth of penetration, so that the emitter efficiency is just below one.
  • the life of the wearer in the base zones of the IGBT is made as long as possible in order to increase the transport factor.
  • the partial transistor gain factor ⁇ p n p assumes a value that is relatively close to one.
  • the transistor amplification results in a large reverse current at a high applied voltage, which leads to the heating of the component.
  • this reverse current which is unavoidably flowing in the blocking state, must not become too high. so that the heating effects do not lead to the destruction of the component.
  • the object on which the invention is based is to create a power semiconductor which has both a low forward voltage and a low reverse current.
  • recombination centers are installed according to the invention which are practically ineffective in the forward state of the semiconductor, that is to say with high charge carrier injection, but have a high efficiency in the blocked state, that is to say with low charge carrier densities.
  • These recombination centers are installed in a region of the silicon wafer which, viewed from the anode-side (collector-side) wafer surface, is located just below the surface through the p-
  • the power semiconductor according to the invention which comprises a first layer of a first conduction type, a first layer of a second conduction type, a second layer of the first conduction type and a second layer of the second conduction type, is characterized by a recombination area with recombination centers directly on the first layer of the first conduction type, the recombination centers comprising oxygen excretions.
  • the recombination region preferably has a vertical extent between 20 and 50 ⁇ m.
  • FIG. 1 shows schematically a first power semiconductor with the recombination region according to the invention in cross section.
  • FIG. 2 schematically shows a further power semiconductor with the recombination area according to the invention in cross section.
  • the power semiconductor shown in FIG. 1 is a non punch through (NPT) IGBT, on the basis of which the invention is first explained below.
  • the NPT-IGBT comprises a semiconductor 1, which in the embodiment shown is weakly n-doped and acts as an n " base.
  • the n " base 1, which is a first base, is followed by a p + as a second base Base 2, on the surface of which a first n + emitter structure 3 is arranged.
  • Charge carriers injected from the emitter 3 pass through a channel in the p + base 2 into the n ⁇ base 1 and from there to an anode-side p emitter 5 on the side of the n ⁇ base 1 opposite the p base 2.
  • the current of the charge carriers through the channel is controlled by a gate 4 on the surface of the semiconductor component, which is separated from the semiconductor by an insulator layer 8.
  • the two emitters 3 and 5 are each electrically connected to an external emitter connection via metallizations 7.
  • the n " base 1 forms a homogeneous layer.
  • the space charge zone that is spanned in the n ⁇ base 1 and the p + base 2 does not reach the anode-side (collector-side) emitter.
  • the lifespan of the charge carriers in the event of a block between the edge of the space charge zone and the anode-side (collector-side) emitter should be as low as possible.
  • the lifespan of the charge carriers should be as long as possible.
  • a recombination region 6 is generated immediately in front of the anode-side (collector-side) emitter 5.
  • a non-doping substance is added during the manufacture of the semiconductor component, by means of which 6 recombination centers are created in the recombination region and the life of the charge carriers is shortened.
  • the recombination area 6 directly adjoins the anode-side (collector-side) p-emitter 5.
  • the area 6 in an NPT-IGBT is thus, seen from the anode or the collector at the bottom in FIG. 1, just below the pn junction formed by the p-emitter 5 and the n _ base 1.
  • the recombination region 6 preferably has a thickness on the order of 20 to 50 ⁇ m.
  • the recombination area 6 is flooded with charge carriers.
  • the recombination centers installed in this area 6 should have the least possible effect in the on state in the high charge carrier injection. In the locked state, i.e. at low charge carrier densities, however, they should have a very high efficiency.
  • Oxygen excretions are particularly suitable as a suitable, non-doping additive in region 6. From T. Falter, D. Hellmann, P. Eichinger; Conference proceedings the SPIE conference, Austin (1994), p. 109, it is known that the carrier lifetime set by oxygen excretions is typically more than two orders of magnitude higher in the case of high carrier injections than in the case of low carrier injection. This means that in the case of blocking in the event of a very low charge carrier injection, the charge carrier concentration in the region 6 is reduced by recombinations, in particular since the current amplification by the p-emitter on the anode side is reduced by the recombinations.
  • the charge carrier injection by the emitter 5 increases, ie if the power semiconductor changes from the blocking state to the conductive state, the charge carrier concentration in the region 6 rises sharply, that is to say the semiconductor is flooded with charge carriers and the charge carriers hardly take up the region 6 true, since at high injection the recombination rate due to the oxygen excretion is relatively low.
  • the desired vertical distribution of the oxygen separations in the area 6 can be e.g. Manufacture by implanting oxygen atoms in the anode side (collector side) of the component, which are distributed to the desired depth by a subsequent high-temperature process and accumulate there during the cooling process at the end of the high-temperature process to form oxygen precipitates.
  • the oxygen atoms can be introduced into the crystal by anode-side or collector-side oxidation of the silicon surface, it being possible for the cathode side (emitter side) to be covered beforehand with a protective layer, for example from an SiO 2 / Si 3 N 4 layer package, in order to form a cathode side Avoid diffusion of oxygen atoms.
  • a protective layer for example from an SiO 2 / Si 3 N 4 layer package
  • NPT-IGBT As a power semiconductor.
  • the technical teaching disclosed also applies to other re power components such as punch through (PT) IGBTs, thyristors and switchable (GTO) thyristors can be used.
  • PT punch through
  • thyristors thyristors
  • GTO switchable thyristors
  • the collector-side emitter is preceded by a highly doped stop zone 9, which is of a line type that is opposite to the line type of the emitter 5.
  • a weakly doped (n ⁇ -) layer 1 is only connected to the stop zone 9.
  • the recombination region 6 in such a PT-IGBT is preferably in the transition region between the anode-side (collector-side) emitter 5 and the heavily doped stop zone 6 or is part of the stop zone 9 or the emitter 5.
  • Reference symbols designate identical regions as in FIG. 1.

Abstract

Die Erfindung betrifft einen Leistungshalbleiter, der einen reduzierten Sperrstrom aufweist und der eine erste Schicht von einem ersten Leitungstyp, eine erste Schicht von einem zweiten Leitungstyp, eine zweite Schicht von dem ersten Leitungstyp und eine zweite Schicht von dem zweiten Leitungstyp umfaßt. Um einen Leistungshalbleiter zu schaffen, der sowohl eine niedrige Durchlaßspannung als auch einen geringen Sperrstrom hat, wird ein Rekombinationsbereich (6) mit Rekombinationszentren unmittelbar auf der ersten Schicht (5) des ersten Leitungtyps, wobei die Rekombinationszentren Sauerstoffausscheidungen umfassen, vorgeschlagen.

Description

Beschreibung
Leistungshalbleiter mit reduziertem Sperrstrom
Die Erfindung betrifft einen Leistungshalbleiter, der einen reduzierten Sperrstrom aufweist und der eine erste Schicht von einem ersten Leitungstyp, eine erste Schicht von einem zweiten Leitungstyp, eine zweite Schicht von dem ersten Leitungstyp und eine zweite Schicht von dem zweiten Leitungstyp umfaßt. Insbesondere betrifft die Erfindung einen insulated- gate-Bipolartransistor (IGBT), bei dem die erste Schicht vom ersten Leitungstyp ein (anodenseitiger) p-Emitter, die erste Schicht vom zweiten Leitungstyp eine n~-Basis, die zweite Schicht vom ersten Leitungstyp eine p+-Basis und die zweite Schicht vom zweiten Leitungstyp ein (kathodenseitiger) n+- Emitter ist.
Man ist allgemein bestrebt, bei Leistungshalbleitern die über das Bauelement im Durchlaßzustand abfallende Spannung zu mi- nimieren, um so die Verlustleistung des Bauelements zu senken. Ein Leistungshalbleiter der oben genannten Art ist z.B. ein mit IGBT realisierter Schnellschalter, der sich die meiste Zeit im Durchlaßzustand befindet und nur relativ selten sperrt, um einen Kurzschlußstrom abzuschalten. Beispielsweise wird bei einem IGBT zur Minimierung der Durchlaßspannung im Stand der Technik der anodenseitige (kollektorseitige) Emitter mit einer relativ hohen Dotierungskonzentration und einer erhöhten Eindringtiefe versehen, so daß der Emitterwirkungsgrad dicht unterhalb von Eins liegt. Außerdem wird die Trä- gerlebensdauer in den Basiszonen des IGBT so hoch wie möglich gemacht, um damit den Transportfaktor zu erhöhen. Durch die Summe dieser Maßnahmen nimmt der Teiltransistorverstärkungs- faktor αpnp einen Wert an, der relativ nahe bei Eins liegt. Durch die Transistorverstärkung ergibt sich aber bei einer hohen angelegten Spannung ein großer Sperrstrom, der zum Aufheizen des Bauelements führt. Dieser im Sperrzustand unvermeidbar fließende Sperrstrom darf jedoch nicht zu hoch wer- den, damit die Aufheizeffekte nicht zur Zerstörung des Bauelements führen.
Die der Erfindung zugrundeliegende Aufgabe ist es, einen Lei- stungshalbleiter zu schaffen, der sowohl eine niedrige Durchlaßspannung als auch einen geringen Sperrstrom hat.
Die Aufgabe wird durch einen Leistungshalbleiter nach Anspruch 1 gelöst. Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
Um bei einem Bauelement mit niedriger DurchlaßSpannung den Sperrstrom zu begrenzen, werden erfindungsgemäß Rekombinationszentren eingebaut, die im Durchlaßzustand des Halbleiters, also bei hoher Ladungsträgerinjektion praktisch wirkungslos sind, jedoch im Sperrzustand, also bei niedrigen Ladungsträgerdichten eine hohe Effizienz haben. Diese Rekombinationszentren werden in einem Bereich der Siliziumscheibe eingebaut, der von der anodenseitigen (kollektorseitigen) Schei- benoberfläche aus gesehen dicht unterhalb des durch den p-
Emitter und die angrenzende n-dotierte Schicht gebildeten pn- Übergangs liegt.
Der erfindungsgemäße Leistungshalbleiter, der eine erste Schicht eines ersten Leitungstyps, eine erste Schicht eines zweiten Leitungstyps, eine zweite Schicht des ersten Leitungstyps und eine zweite Schicht des zweiten Leitungstyps umfaßt, ist gekennzeichnet durch einen Rekombinationsbereich mit Rekombinationszentren unmittelbar auf der ersten Schicht des ersten Leitungstyps, wobei die Rekombinationszentren Sauerstoffausscheidungen umfassen.
Der Rekombinationsbereich hat vorzugsweise eine vertikale Ausdehnung zwischen 20 und 50 μm.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung bevorzugter Ausführungsformen der Erfindung, bei der bezug genommen wird auf die beigefügten Zeichnungen.
Fig. 1 stellt schematisch einen ersten Leistungshalbleiter mit dem erfindungsgemäßen Rekombinationsbereich im Querschnitt dar.
Fig. 2 stellt schematisch einen weiteren Leistungshalbleiter mit dem erfindungsgemäßen Rekombinationsbereich im Quer- schnitt dar.
Der in Fig. 1 dargestellte Leistungshalbleiter ist ein non punch through- (NPT-) IGBT, anhand dessen die Erfindung im folgenden zunächst erläutert wird. Der NPT-IGBT umfaßt einen Halbleiter 1, der in der gezeigten Ausführungsform schwach n- dotiert ist und als n"-Basis wirkt. An die n"-Basis 1, die eine erste Basis ist, schließt sich als eine zweite Basis eine p+-Basis 2 an, auf deren Oberfläche eine erste n+- Emitterstruktur 3 angeordnet ist. Von dem Emitter 3 injizierte Ladungsträger gelangen durch einen Kanal in der p+-Basis 2 in die n~-Basis 1 und von dort zu einem anodenseitigen p-Emitter 5 auf der der p-Basis 2 gegenüberliegenden Seite der n~-Basis 1. Der Strom der Ladungsträger durch den Kanal wird durch ein Gate 4 auf der Oberfläche des Halbleiterbauelements gesteu- ert, das durch eine Isolatorschicht 8 vom Halbleiter getrennt ist.
Die beiden Emitter 3 und 5 werden über Metallisierungen 7 elektrisch jeweils mit einem externen Emitteranschluß verbun- den.
Bei den NPT-IGBT-Bauelementen bildet die n"-Basis 1 eine homogene Schicht. Die Raumladungszone, die im Sperrfall in der n~-Basis 1 und der p+-Basis 2 aufgespannt wird, erreicht den anodenseitigen (kollektorseitigen) Emitter nicht. Um den
Sperrstrom klein zu halten, muß die Lebensdauer der Ladungsträger im Sperrfall zwischen dem Rand der Raumladungszone und dem anodenseitigen (kollektorseitigen) Emitter möglichst gering sein.
Für gute Durchlaßeigenschaften des Leistungshalbleiters soll- te die Lebensdauer der Ladungsträger dagegen möglichst groß sein.
Erfindungsgemäß wird ein Rekombinationsbereich 6 unmittelbar vor dem anodenseitigen (kollektorseitigen) Emitter 5 erzeugt. Dazu wird bei der Herstellung des Halbleiterbauelements ein nichtdotierender Stoff zugesetzt, durch den in dem Rekombinationsbereich 6 Rekombinationszentren geschaffen werden und die Lebensdauer der Ladungsträger verkürzt wird. Der Rekombinationsbereich 6 schließt sich unmittelbar an den anodensei- tigen (kollektorseitigen) p-Emitter 5 an. Der Bereich 6 liegt also bei einem NPT-IGBT von der Anode bzw. dem Kollektor unten in Fig. 1 aus gesehen dicht unterhalb des durch den p- Emitter 5 und die n_-Basis 1 gebildeten pn-Übergangs . Er befindet sich damit bei Anlegen der vollen Sperrspannung an den kathodenseitigen pn-Übergang auf der Seite des Emitters 3 zwischen der p-Basis 2 und der n-Basis 1 in der neutralen, d.h. raumladungsfreien Zone innerhalb der n~-Basis 1 und unterdrückt zuverlässig den Sperrstrom.
Der Rekombinationsbereich 6 hat vorzugsweise eine Dicke in der Größenordnung von 20 bis 50 um. Im Durchlaßbetrieb des Halbleiters wird der Rekombinationsbereich 6 mit Ladungsträgern überschwemmt. Die in diesem Bereich 6 eingebauten Rekombinationszentren sollen erfindungsgemäß im Durchlaßzustand bei der hohen Ladungsträgerinjektion eine möglichst geringe Wirkung aufweisen. Im Sperrzustand, d.h. bei niedrigen Ladungsträgerdichten sollen sie jedoch eine sehr hohe Effizienz haben.
Als hierfür geeigneter, nichtdotierender Zusatzstoff in dem Bereich 6 kommen insbesondere Sauerstoffausscheidungen in Frage. Aus T. Falter, D. Hellmann, P. Eichinger; Tagungsband der SPIE-Konferenz, Austin (1994), S. 109 ist bekannt, daß die durch Sauerstoffausscheidungen eingestellte Ladungsträgerlebensdauer im Fall hoher Ladungsträgerinjektionen typischerweise um mehr als zwei Größenordnungen höher liegt als im Fall niedriger Ladungsträgerinjektion. Das bedeutet, daß im Sperrfall bei einer sehr niedrigen Ladungsträgerinjektion die Ladungsträgerkonzentration in dem Bereich 6 durch Rekombinationen reduziert wird, insbesondere da sich durch die Rekombinationen die Stromverstärkung durch den anodenseitigen p-Emitter verringert. Nimmt die Ladungsträgerinjektion durch den Emitter 5 zu, d.h. geht der Leistungshalbleiter von dem sperrenden Zustand in den leitenden Zustand über, so steigt die Ladungsträgerkonzentration in dem Bereich 6 stark an, d.h. der Halbleiter wird mit Ladungsträgern überschwemmt und die Ladungsträger nehmen den Bereich 6 kaum noch wahr, da bei hoher Injektion die durch die Sauerstoffausscheidungen bedingte Rekombinationsrate relativ gering ist.
Die gewünschte vertikale Verteilung der Sauerstoffausschei- düngen in dem Bereich 6 läßt sich z.B. dadurch herstellen, daß in die Anodenseite (Kollektorseite) des Bauelements Sauerstoffatome implantiert werden, die durch einen nachfolgenden Hochtemperaturprozeß in die gewünschte Tiefe verteilt werden und sich dort während des Abkühlvorgangs am Ende des Hochtemperaturprozesses zu Sauerstoffausscheidungen zusammenlagern.
Ebenso können die Sauerstoffatome durch eine anodenseitige bzw. kollektorseitige Oxidation der Siliziumoberfläche in den Kristall eingebracht werden, wobei die Kathodenseite (Emitterseite) vorher mit einer Schutzschicht z.B. aus einem Si02/Si3N4-Schichtpaket bedeckt werden kann, um eine kathoden- seitige Eindiffusion von Sauerstoffatomen zu vermeiden.
Die Erfindung wurde anhand eines NPT-IGBT als Leistungshalbleiter beschrieben. Es ist für den Fachmann jedoch selbstverständlich, daß die offenbarte technische Lehre auch auf ande- re Leistungsbauelemente wie punch through- (PT-) IGBTs, Thyristoren und abschaltbare (GTO-) Thyristoren angewendet werden kann. So ist beispielsweise bei einem in Fig. 2 dargestellten PT-IGBT dem kollektorseitigen Emitter eine hoch do- tierte Stoppzone 9 vorgelagert, die von einem Leitungstyp ist, der dem Leitungstyp des Emitters 5 entgegengesetzt ist. Erst an die Stoppzone 9 schließt sich eine schwächer dotierte (n~-) Schicht 1 an. Der Rekombinationsbereich 6 befindet sich bei einem solchen PT-IGBT vorzugsweise in dem Übergangsbe- reich zwischen dem anodenseitigen (kollektorseitigen) Emitter 5 und der stark dotierten Stoppzone 6 bzw. ist ein Teil der Stoppzone 9 oder des Emitters 5. Die übrigen, bereits oben erläuterten Bezugszeichen bezeichnen identische Bereiche wie in Fig. 1.

Claims

Patentansprüche
1. Leistungshalbleiter, der eine erste Schicht (3) eines ersten Leitungstyps, eine erste Schicht (2) eines zweiten Lei- tungstyps, eine zweite Schicht (1) des ersten Leitungstyps und eine zweite Schicht (5) des zweiten Leitungstyps umfaßt, g e k e n n z e i c h n e t d u r c h einen Rekombinationsbereich (6) mit Rekombinationszentren unmittelbar auf der ersten Schicht (5) des ersten Leitungstyps, wobei die Rekombinationszentren Sauerstoffausscheidungen umfassen.
2. Leistungshalbleiter nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die vertikale Ausdehnung des Rekombinationsbereichs (6) zwischen 20 und 50 um liegt.
PCT/DE1999/002000 1998-07-29 1999-07-01 Leistungshalbleiter mit reduziertem sperrstrom WO2000007245A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19981445T DE19981445B4 (de) 1998-07-29 1999-07-01 Leistungshalbleiter mit reduziertem Sperrstrom
AU58475/99A AU5847599A (en) 1998-07-29 1999-07-01 Power semiconductor having a reduced reverse current

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19834214 1998-07-29
DE19834214.4 1998-07-29

Publications (1)

Publication Number Publication Date
WO2000007245A1 true WO2000007245A1 (de) 2000-02-10

Family

ID=7875751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002000 WO2000007245A1 (de) 1998-07-29 1999-07-01 Leistungshalbleiter mit reduziertem sperrstrom

Country Status (3)

Country Link
AU (1) AU5847599A (de)
DE (1) DE19981445B4 (de)
WO (1) WO2000007245A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027802A1 (de) * 2000-09-29 2002-04-04 Eupec Gesellschaft Für Leistungshalbleiter Mbh & Co. Kg Verfahren zum herstellen eines körpers aus halbleitermaterial mit reduzierter mittlerer freier weglänge
DE10030381B4 (de) * 2000-06-21 2005-04-14 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Leistungshalbleiterbauelement aufweisend einen Körper aus Halbleitermaterial mit Übergang zwischen zueinander entgegengesetzten Leiterfähigkeitstypen
DE102006006700A1 (de) * 2006-02-13 2007-08-23 Infineon Technologies Austria Ag Halbleiterbauelement insbesondere Leistungshalbleiterbauelement mit Ladungsträgerrekombinationszonen und Verfahren zur Herstellung desselben
CN100459151C (zh) * 2007-01-26 2009-02-04 北京工业大学 具有内透明集电极的绝缘栅双极晶体管
US11522047B2 (en) * 2019-06-12 2022-12-06 Mqsemi Ag Non-punch-through reverse-conducting power semiconductor device and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002202A1 (en) * 1984-09-28 1986-04-10 Motorola, Inc. Charge storage depletion region discharge protection
EP0327316A2 (de) * 1988-02-04 1989-08-09 Kabushiki Kaisha Toshiba Halbleitervorrichtung mit zusammengesetztem Substrat, hergestellt aus zwei Halbleitersubstraten in engem Kontakt
EP0556739A1 (de) * 1992-02-20 1993-08-25 Hitachi, Ltd. Gate-Turn-Off-Thyristor und diesen verwendenden Leistungswandler
DE4223914A1 (de) * 1992-06-30 1994-01-13 Fraunhofer Ges Forschung Verfahren zum Herstellen eines vertikalen Leistungsbauelementes mit reduzierter Minoritätsträgerlebensdauer in dessen Driftstrecke
WO1998015010A1 (de) * 1996-09-30 1998-04-09 Eupec Europäische Gesellschaft Für Leistungshalbleiter Mbh + Co. Kg Thyristor mit durchbruchbereich

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311534A (en) * 1980-06-27 1982-01-19 Westinghouse Electric Corp. Reducing the reverse recovery charge of thyristors by nuclear irradiation
GB2213988B (en) * 1987-12-18 1992-02-05 Matsushita Electric Works Ltd Semiconductor device
DE4036222A1 (de) * 1990-11-14 1992-05-21 Bosch Gmbh Robert Verfahren zur herstellung von halbleiterelementen, insbesondere von dioden

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002202A1 (en) * 1984-09-28 1986-04-10 Motorola, Inc. Charge storage depletion region discharge protection
EP0327316A2 (de) * 1988-02-04 1989-08-09 Kabushiki Kaisha Toshiba Halbleitervorrichtung mit zusammengesetztem Substrat, hergestellt aus zwei Halbleitersubstraten in engem Kontakt
EP0556739A1 (de) * 1992-02-20 1993-08-25 Hitachi, Ltd. Gate-Turn-Off-Thyristor und diesen verwendenden Leistungswandler
DE4223914A1 (de) * 1992-06-30 1994-01-13 Fraunhofer Ges Forschung Verfahren zum Herstellen eines vertikalen Leistungsbauelementes mit reduzierter Minoritätsträgerlebensdauer in dessen Driftstrecke
WO1998015010A1 (de) * 1996-09-30 1998-04-09 Eupec Europäische Gesellschaft Für Leistungshalbleiter Mbh + Co. Kg Thyristor mit durchbruchbereich

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030381B4 (de) * 2000-06-21 2005-04-14 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Leistungshalbleiterbauelement aufweisend einen Körper aus Halbleitermaterial mit Übergang zwischen zueinander entgegengesetzten Leiterfähigkeitstypen
WO2002027802A1 (de) * 2000-09-29 2002-04-04 Eupec Gesellschaft Für Leistungshalbleiter Mbh & Co. Kg Verfahren zum herstellen eines körpers aus halbleitermaterial mit reduzierter mittlerer freier weglänge
KR100898759B1 (ko) * 2000-09-29 2009-05-25 오이펙 오이로패이쉐 게젤샤프트 퓌어 라이스퉁스할브라이터 엠베하 평균자유경로길이가 줄어든 도핑된 반도체 재료로 이루어진 몸체의 제조방법 및 상기 도핑된 반도체 재료의 몸체
US9608128B2 (en) 2000-09-29 2017-03-28 Infineon Technologies Ag Body of doped semiconductor material having scattering centers of non-doping atoms of foreign matter disposed between two layers of opposing conductivities
DE102006006700A1 (de) * 2006-02-13 2007-08-23 Infineon Technologies Austria Ag Halbleiterbauelement insbesondere Leistungshalbleiterbauelement mit Ladungsträgerrekombinationszonen und Verfahren zur Herstellung desselben
DE102006006700B4 (de) * 2006-02-13 2008-03-13 Infineon Technologies Austria Ag Halbleiterbauelement insbesondere Leistungshalbleiterbauelement mit Ladungsträgerrekombinationszonen und Verfahren zur Herstellung desselben
DE102006006700B9 (de) * 2006-02-13 2008-07-10 Infineon Technologies Austria Ag Halbleiterbauelement insbesondere Leistungshalbleiterbauelement mit Ladungsträgerrekombinationszonen und Verfahren zur Herstellung desselben
CN100459151C (zh) * 2007-01-26 2009-02-04 北京工业大学 具有内透明集电极的绝缘栅双极晶体管
US11522047B2 (en) * 2019-06-12 2022-12-06 Mqsemi Ag Non-punch-through reverse-conducting power semiconductor device and method for producing same

Also Published As

Publication number Publication date
DE19981445D2 (de) 2001-02-22
DE19981445B4 (de) 2005-09-22
AU5847599A (en) 2000-02-21

Similar Documents

Publication Publication Date Title
DE102007043341B4 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE69034157T2 (de) Bipolartransistor mit isolierter Gate-Elektrode und Verfahren zur Herstellung
EP1097481B1 (de) Leistungshalbleiterbauelement für hohe sperrspannungen
EP0621640B1 (de) Leistungshalbleiterbauelement
EP0283496B1 (de) Halbleiterbauelement mit einer anodenseitigen p-zone und einer anliegenden schwach dotierten n-basiszone
DE102018215731B4 (de) Halbleitervorrichtung und Verfahren zum Herstellen derselben
DE102014101239A1 (de) Bipolarer halbleiterschalter und ein herstellungsverfahren dafür
WO2000042662A1 (de) Leistungshalbleiterbauelement mit mesa-randabschluss
DE3147075A1 (de) "halbleitergleichrichtereinrichtung"
DE102007015304A1 (de) Rückwärtsleitender (RC-) IGBT mit senkrecht angeordneter Ladungsträgerlebensdaueranpassung
DE19644504B4 (de) Halbleitervorrichtung mit hoher Durchbruchspannung und Verfahren zu deren Herstellung
DE19804580A1 (de) Leistungshalbleiterdiode
DE10240107B4 (de) Randabschluss für Leistungshalbleiterbauelement und für Diode sowie Verfahren zur Herstellung einer n-leitenden Zone für einen solchen Randabschluss
DE102004017723A1 (de) In Rückwärtsrichtung sperrendes Halbleiterbauteil und Verfahren zu seiner Herstellung
EP1017093A1 (de) Leistungshalbleiterelement und Verfahren zur Herstellung
EP1092238A1 (de) Universal-halbleiterscheibe für hochvolt-halbleiterbauelemente
DE3823795C2 (de)
EP0700095B1 (de) Abschaltbarer Thyristor für hohe Blockierspannungen und kleiner Bauelementdicke
DE102006046844A1 (de) Leistungshalbleiterbauelement mit Feldstoppzone und Verfahren zur Herstellung eines solchen Leitstungshalbleiterbauelements
WO2000007245A1 (de) Leistungshalbleiter mit reduziertem sperrstrom
EP0419898B1 (de) Verfahren zur Erhöhung der Spannungsfestigkeit eines mehrschichtigen Halbleiterbauelements
DE10245089A1 (de) Dotierverfahren und Halbleiterbauelement
DE102020110072A1 (de) Vertikale leistungs-halbleitervorrichtung und herstellungsverfahren
EP0389942B1 (de) Hochsperrendes Halbleiterbauelement
DE2941021A1 (de) Halbleiterbauelement mit mindestens einer emitter-basis-struktur, deren emitterwirksamkeit bei kleinen stromdichten klein ist und in einem gewuenschten hoeheren stromdichtebereich stark ansteigt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 19981445

Country of ref document: DE

Date of ref document: 20010222

WWE Wipo information: entry into national phase

Ref document number: 19981445

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607