WO2000004123A2 - Detergent tablet - Google Patents

Detergent tablet Download PDF

Info

Publication number
WO2000004123A2
WO2000004123A2 PCT/US1999/014861 US9914861W WO0004123A2 WO 2000004123 A2 WO2000004123 A2 WO 2000004123A2 US 9914861 W US9914861 W US 9914861W WO 0004123 A2 WO0004123 A2 WO 0004123A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
detergent
tablet
mould
acid
Prior art date
Application number
PCT/US1999/014861
Other languages
English (en)
French (fr)
Other versions
WO2000004123A3 (en
Inventor
Patrizio Ricci
Brenda Frances Bennie
Christopher James Binder
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26314049&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000004123(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB9815525.2A external-priority patent/GB9815525D0/en
Priority to BR9912834-9A priority Critical patent/BR9912834A/pt
Priority to AU49642/99A priority patent/AU762815B2/en
Priority to US09/743,932 priority patent/US6589932B1/en
Priority to SK64-2001A priority patent/SK642001A3/sk
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP99933625A priority patent/EP1097191A2/en
Priority to PL99345972A priority patent/PL189558B1/pl
Priority to CA002333388A priority patent/CA2333388C/en
Priority to JP2000560222A priority patent/JP2002520478A/ja
Publication of WO2000004123A2 publication Critical patent/WO2000004123A2/en
Publication of WO2000004123A3 publication Critical patent/WO2000004123A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0086Laundry tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/221Mono, di- or trisaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3792Amine oxide containing polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38609Protease or amylase in solid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention relates to multi-phase detergent tablets.
  • the present invention therefore seeks to find a balance between tablet robustness and tablet dissolution.
  • Multi-phase detergent tablets described in the prior art are prepared by compressing a first composition in a tablet press to form a substantially planar first layer. A further detergent composition is then delivered to the tablet press on top of the first layer. This second composition is then compressed to form another substantially planar second layer.
  • the first layer is generally subjected to more than one compression as it is also compressed during the compression of the second composition.
  • the first and second compression forces are in the same order of magnitude. The Applicant has found that where this is the case, because the compression force must be sufficient to bind the first and second compositions together, the force used in both the first and second compression steps must be in the range of from about 4,000 to about 20,000 kg (assuming a tablet cross-section of about 10 cm 2 ).
  • EP-B-0,055,100 describes a lavatory block formed by combining a slow dissolving shaped body with a tablet.
  • the lavatory block is designed to be placed in the cistern of a lavatory and dissolves over a period of days, preferably weeks.
  • solubility control agents are paradichlorobenzene, waxes, long chain fatty acids and alcohols and esters thereof and fatty alkylamides.
  • Detergent tablets for use in laundry or automatic dishwashing must substantially dissolve within one cycle of the washing or dishwashing machine, i.e. within 15 to 120 minutes.
  • a multi-phase detergent tablet for use in a washing machine, the tablet comprising: a) a first phase in the form of a shaped body having at least one mould therein; and b) a second phase in the form of a particulate solid compressed within said mould.
  • the first phase is a compressed shaped body prepared at an applied compression pressure of at least about 40 kg/ cm 2 , preferably at least about 250 kg/ cm 2 , more preferably at least about 350 kg/cm 2 (3.43 kN/cm 2 ), even more preferably from about 400 to about 2000, and especially from about 600 to about 1200 kg/cm 2 (compression pressure herein is the applied force divided by the cross-sectional area of the tablet in a plane transverse to the applied force - in effect, the transverse cross- sectional area of the die of the rotary press).
  • the particulate solid of the second phase (which terminology is intended to include the possibility of multiple 'second' phases, sometimes referred to herein as Optional subsequent phases') be compressed into said mould at an applied compression pressure less than that applied to the first phase and preferably at a compression pressure of less than about 350 kg/cm 2 , preferably in the range from about 40 kg/cm 2 to about 300 kg/cm 2 and more preferably from about 70 to about 270 kg/cm 2 , such tablets being preferred herein from the viewpoint of providing optimum tablet integrity and strength (measured for example by the Child Bite Strength [CBS] test) and product dissolution characteristics.
  • CBS Child Bite Strength
  • the tablets of the invention preferably have a CBS of at least about 6kg, preferably greater than about 8kg, more preferably greater than about 10kg, especially greater than about 12kg, and more especially greater than about 14kg, CBS being measured per the US Consumer Product Safety Commission Test Specification.
  • the compression pressures applied to the first and second phases will generally be in a ratio of at least about 1.2:1, preferably at least about 2:1, more preferably at least about 4:1.
  • a multi-phase detergent tablet for use in a washing machine, the tablet comprising: a) a first phase in the form of a compressed shaped body having at least one mould therein, the shaped body being prepared at a compression pressure of at least about 350 kg/cm 2 ; and b) a second phase in the form of a particulate solid compressed within said mould, the second phase being compressed at a pressure of less than about 350 kg/cm 2 .
  • the second phase is in the form of a compressed or shaped body adhesively contained, for example by physical or chemical adhesion, within the at least one mould of the first body.
  • the first and second phases are in a relatively high weight ratio to one another, for example at least about 6:1, preferably at least about 10:1; also that the tablet composition contain one or more detergent actives (for example enzymes, bleaches, bleach activators, bleach catalysts, surfactants, chelating agents etc) which is predominantly concentrated in the second phase, for example, at least about 50%, preferably at least about 60%, especially about 80% by weight of the active (based on the total weight of the active in tablet) is in the second phase of the tablet.
  • detergent actives for example enzymes, bleaches, bleach activators, bleach catalysts, surfactants, chelating agents etc
  • compositions are optimum for tablet strength, dissolution, cleaning, and pH regulation characteristics providing, for example, tablet compositions capable of dissolving in the wash liquor so as to deliver at least 50%, preferably at least 60%, and more preferably at least 80% by weight of the detergent active to the wash liquor within 10, 5, 4 or even 3 minutes of the start of the wash process.
  • a multi-phase detergent tablet for use in a washing machine, the tablet comprising: a) a first phase in the form of a shaped body having at least one mould therein, and b) a second phase in the form of a particulate solid compressed within said mould , and wherein the tablet comprises at least one detergent active and is formulated such that at least 50%, preferably at least 60%, more preferably at least 80% by weight of the detergent active is delivered to the wash within the first 10 minutes, preferably within the first 5 minutes, and more preferably within the first 3 minutes of the wash process.
  • An additional benefit of the invention is the ability to achieve differential dissolution of the phases, such that one phase of the tablet will dissolve significantly before another phase, and may even dissolve essentially completely before the other phase has dissolved. This is particularly valuable for the differential delivery of detergent actives.
  • a multi -phase detergent tablet comprising: a) a first phase in the form of a shaped body having at least one mould therein; and b) a second phase in the form of a compressed body adhesively contained within said mould, wherein the tablet composition comprises one or more detergent actives which is predominantly concentrated in the second phase, and wherein the second phase additionally comprises a binder.
  • the one or more detergent actives are selected from enzymes, bleaches, bleach activators, bleach catalysts, surfactants, chelating agents, crystal growth inhibitors and mixtures thereof, the enzyme actives being particularly preferred for boosting cleaning performance during the very initial cool-water stage of the washing or cleaning operation.
  • enzyme detergent actives and especially enzymes and enzyme mixtures comprising one or more enzymes having enhanced or optimum activity in the temperature range from 25°C to 55°C and at a pH value in the range of 8 to 10 (e.g. Natalase).
  • a multi-phase detergent tablet comprising: a) a first phase in the form of a shaped body having at least one mould therein; and b) a second phase in the form of a compressed body adhesively contained within said mould, and wherein the second phase additionally comprises an enzyme.
  • the time within which the multi-phase tablet or a phase thereof or a detergent active component dissolves is determined according to DIN 44990 using a dishwashing machine available from Bosch on the normal 65 °C washing program with water hardness at 18 ⁇ using a minimum of six replicates or a sufficient number to ensure reproducibility.
  • the multi-phase detergent tablet of the present invention comprises a first phase, a second and optionally subsequent phases.
  • the first phase is in the form of a shaped body of detergent composition comprising one or more detergent components as described below.
  • Preferred detergent components include, builder, bleach, enzymes and surfactant.
  • the components of the detergent composition are mixed together by, for example admixing dry components or spray ing-on liquid components.
  • the components are then formed into a first phase using any suitable equipment, but preferably by compression, for example in a tablet press.
  • the first phase can be prepared by extrusion, casting, etc.
  • the first phase can take a variety of geometric shapes such as spheres, cubes, etc but preferred embodiments have a generally axially-symmetric form with a generally round, square or rectangular cross-section.
  • the first phase is prepared such that it comprises at least one mould in the surface of the shaped body.
  • the mould or moulds can also vary in size and shape and in their location, orientation and topology relative to the first phase.
  • the mould or moulds can be generally circular, square or oval in cross-section; they can form an internally- closed cavity or recess in the surface of the shaped body, or they can extend between unconnected regions of the body surface (for example axially-opposed facing surfaces) to form one or more topological 'holes' in the shaped body; and they can be axially or otherwise symmetrically-disposed relative to the first phase or they can be asymmetrically disposed.
  • the mould is created using a specially designed tablet press wherein the surface of the punch that contacts the detergent composition is shaped such that when it contacts and presses the detergent composition it presses a mould, or multiple moulds into the first phase of the multi -phase detergent tablet.
  • the mould will have an inwardly concave or generally concave surface to provide improved adhesion to the second phase.
  • the mould can be created by compressing a preformed body of detergent composition disposed annularly around a central dye, thereby forming a shaped body having a mould in the form of a cavity extending axially between opposing surfaces of the body.
  • the tablets of the invention also include one or more additional phases prepared from a composition or compositions which comprise one or more detergent components as described below.
  • At least one phase preferably takes the form of a particulate solid (which term encompasses powders, granules, agglomerates, and other particulate solids including mixtures thereof with liquid binders, meltable solids, spray-ons, etc) compressed into/within the one or more moulds of the first phase of the detergent tablet such that the second phase itself takes the form of a shaped body.
  • a particulate solid which term encompasses powders, granules, agglomerates, and other particulate solids including mixtures thereof with liquid binders, meltable solids, spray-ons, etc
  • optionally further phases include one or more compositions in the form a separate layer or layers.
  • Preferred detergent components include builders, colourants, binders, surfactants, disrupting agents and enzymes, in particular amylase and protease enzymes.
  • the second and optionally subsequent phases comprise a disrupting agent that may be selected from either a disintegrating agent or an effervescent agent.
  • Suitable disintegrating agents include agents that swell on contact with water or facilitate water influx and/or efflux by forming channels in the detergent tablet. Any known disintegrating or effervescing agent suitable for use in laundry or dishwashing applications is envisaged for use herein.
  • Suitable disintegrating agent include starches (such as natural, modified, and pregelatinized starches, eg those derived from corn, rice and potato starch), starch derivatives such as U- Sperse (tradename), Primojel (tradename) and Explotab (tradename), celluloses, microcrystalline celluloses and cellulose derivatives such as Arbocel (tradename) and Vivapur (tradename) both available from Rettenmaier, Nymcel (tradename) available from Metsa-serla , Avicel (tradename), Lattice NT (tradename) and Hanfloc (tradename), alginates, acetate trihydrate, burkeite, monohydrated carbonate formula Na 2 CO 3 .H 2 O, hydrated STPP with a phase I content of at least about 40% , carboxymethylcellulose (CMC), CMC-based polymers, sodium acetate, aluminium oxide.
  • CMC carboxymethylcellulose
  • CMC-based polymers sodium acetate, aluminium oxide.
  • Suitable effervescing agents are those that produce a gas on contact with water. Suitable effervesing agents may be oxygen, nitrogen dioxide or carbon dioxide evolving species. Examples of preferred effervescent agents may be selected from the group consisting of perborate, percarbonate, carbonate, bicarbonate in combination with carboxylic or other acids such as citric, sulphamic, malic or maleic acid.
  • the components of the detergent composition are mixed together by for example admixing dry components and admixing or spraying-on liquid components.
  • the components of the second and optionally subsequent phases are then fed into and retained within the mould provided by the first phase.
  • the preferred embodiment of the present invention comprises two phases; a first and a second phase.
  • the first phase will normally comprise one mould and the second phase will normally consist of a single detergent active composition.
  • the first phase may comprise more than one mould and the second phase may be prepared from more than one detergent active composition.
  • the second phase may comprise more than one detergent active composition contained within one mould. It is also envisaged that several detergent active compositions are contained in separate moulds. In this way potentially chemically sensitive detergent components can be separated in order to avoid any loss in performance caused by components reacting together and potentially becoming inactive or exhausted.
  • the first, second and/or optionally subsequent phases may comprise a binder.
  • the binder is selected from the group consisting of organic polymers, for example polyethylene and/or polypropylene glycols, especially those of molecular weight 4000, 6000 and 9000, paraffins, poly vinyl pyrolindone (PVP), especially PVP of molecular weight 90 000, polyacrylates, sugars and sugar derivatives, starch and starch derivatives, for example hydroxy propyl methyl cellulose (HPMC) and carboxy methyl cellulose (CMC); and inorganic polymers, such as hexametaphosphate.
  • PVP poly vinyl pyrolindone
  • HPMC hydroxy propyl methyl cellulose
  • CMC carboxy methyl cellulose
  • inorganic polymers such as hexametaphosphate.
  • the binder is valuable both for tablet integrity and to help achieve differential dissolution of the first and second phases as described below.
  • the first phase weighs greater than about 3g, preferably greater than about 4g, more preferably greater than about 5g. More preferably the first phase weighs from about lOg to about 30g, even more preferably from about 15g to about 25g and most preferably from about 18g to about 24g.
  • the second and optionally subsequent phases weigh less than 4g. More preferably the second and/or optionally subsequent phases weigh between about O.lg and about 3.5g, preferably between about lg and about 3.5g, most preferably from about 1.3g to about 2.5g.
  • a barrier layer comprising a barrier layer composition is located between the first and second phase and/or optionally subsequent phases or indeed between the second and optionally subsequent phases.
  • the barrier layer composition comprises at least one binder selected from the group as described above.
  • the components of the second and optionally subsequent phases are preferably compressed at a very low compression force relative to compression force normally used to prepare tablets.
  • a very low compression force is used heat, force or chemically sensitive detergent components can be incorporated into the detergent tablet without sustaining the consequential loss in performance usually encountered when incorporating such components into tablets.
  • the second phase or phases can be compressed at the same or higher compression force than the first phase in order to achieve differential dissolution of the phases as described below.
  • a further advantage of the present invention is the improved protection of the second phase against damage caused by for example handling and transportation.
  • multi-phase detergent tablets have been prepared where the second layer is compressed at a lower compression force than the first layer.
  • the second layer of these tablets becomes vulnerable to damage, tending to crumble or chip on contact.
  • the lightly compressed phase(s) of the detergent tablets of the present invention however are protected within the mould provided by the first phase of the detergent tablet.
  • Yet another advantage of the present invention is the ability to prepare a multi-phase detergent tablet wherein one phase can be designed to dissolve, preferably significantly before another phase.
  • the second and optionally subsequent phase(s) dissolves before the first phase.
  • the first phase dissolves in from 5 to 20 minutes, more preferably from 10 to 15 minutes and the second and/or optionally subsequent phases dissolve in less than 5 minutes, more preferably less than 4.5 minutes, most preferably less than 4 minutes.
  • the second phase can dissolve after the first or other phases, for example, where it is desired to deliver cleaning or rinsing benefits towards the end of the washing operation.
  • the time in which the first, second and/or optionally subsequent phase dissolve are independent from each other.
  • differential dissolution of the phases is achieved.
  • a particular benefit of being able to achieve differential dissolution of the multi -phase detergent tablet is that a component that is chemically inactivated by the presence of another component can be separated into a different phase.
  • the component that is inactivated is preferably located in the second and optionally subsequent phase(s).
  • Yet another advantage of the present invention is the improved adherence between the phases of the multi-phase tablet. It is believed that the improved adherence is achieved by reducing exposure of the second phase in comparison to multi-phase tablets known in the art, resulting in the tablets of the present invention being less susceptible to fracture along the line of contact between the phases.
  • the multi-phase detergent tablets are prepared using any suitable tabletting equipment, e.g., a Courtoy R253. Preferably the tablets are prepared by compression in a tablet press capable of preparing a tablet comprising a mould.
  • the first phase is prepared using a specially designed tablet press following the procedure described below. The punch(es) of this tablet press are modified so that the surface of the punch that contacts the detergent composition has a convex surface.
  • a first detergent composition is delivered into the die of the tablet press and the punch is lowered to contact and then compress the detergent composition to form a first phase.
  • the first detergent composition is compressed using an applied pressure generally of at least about 250 kg/cm 2 , preferably between about 350 and about 2000 kg/cm 2 , more preferably about 500 to about 1500 kg/cm 2 , most preferably about 600 to about 1200 kg/cm 2 .
  • the punch is then elevated, exposing the first phase containing a mould.
  • a second and optionally subsequent detergent composition(s) is then delivered into the mould.
  • the specially designed tablet press punch is then lowered a second time to lightly compress the second and optionally subsequent detergent composition(s) to form the second and optionally subsequent phase(s).
  • the optionally subsequent phase is prepared in an optionally subsequent compression step substantially similar to the second compression step described above.
  • the second and optionally subsequent detergent composition(s) is compressed at a pressure of preferably less than about 350 kg/cm 2 , more preferably from about 40 to about 300 kg/cm 2 , most preferably from about 70 to about 270 kg/cm 2 .
  • the punch is elevated a second time and the multi -phase detergent tablet is ejected from the tablet press.
  • the first and second and or optionally subsequent phases of the multi-phase detergent tablet described herein are prepared by compression of one or more compositions comprising detergent active components.
  • the compositions used in any of these phases may include a variety of different detergent components including builder compounds, surfactants, enzymes, bleaching agents, alkalinity sources, colourants, perfume, lime soap dispersants, organic polymeric compounds including polymeric dye transfer inhibiting agents, crystal growth inhibitors, heavy metal ion sequestrants, metal ion salts, enzyme stabilisers, corrosion inhibitors, suds suppressers, solvents, fabric softening agents, optical brighteners and hydrotropes.
  • Surfactants are preferred detergent active components of the compositions described herein. Suitable surfactants are selected from anionic, cationic, nonionic ampholytic and zwitterionic surfactants and mixtures thereof. Automatic dishwashing machine products should be low foaming in character and thus the foaming of the surfactant system for use in dishwashing methods must be suppressed or more preferably be low foaming, typically nonionic in character. Sudsing caused by surfactant systems used in laundry cleaning methods need not be suppressed to the same extent as is necessary for dishwashing. The surfactant is typically present at a level of from 0.2% to 30% by weight, more preferably from 0.5% to 10% by weight, most preferably from 1% to 5% by weight of the composition of active detergent components.
  • nonionic surfactants useful for detersive purposes can be included in the detergent tablet.
  • Preferred, non-limiting classes of useful nonionic surfactants are listed below.
  • alkyl ethoxylate condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
  • a suitable endcapped alkyl alkoxylate surfactant is the epoxy-capped poly(oxyalkylated) alcohols represented by the formula:
  • R ⁇ is a linear or branched, aliphatic hydrocarbon radical having from 4 to 18 carbon atoms
  • R2 is a linear or branched aliphatic hydrocarbon radical having from 2 to 26 carbon atoms
  • x is an integer having an average value of from 0.5 to 1.5, more preferably 1
  • y is an integer having a value of at least 15, more preferably at least 20.
  • the surfactant of formula I at least 10 carbon atoms in the terminal epoxide unit [CH2CH(OH)R2].
  • Suitable surfactants of formula I are Olin Corporation's POLY-TERGENT® SLF-18B nonionic surfactants, as described, for example, in WO 94/22800, published October 13, 1994 by Olin Corporation.
  • R! and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 6 to 22 carbon atoms with 8 to 18 carbon atoms being most preferred. H or a linear aliphatic hydrocarbon radical having from 1 to
  • Particularly preferred surfactants as described above include those that have a low cloud point of less than 20°C. These low cloud point surfactants may then be employed in conjunction with a high cloud point surfactant as described in detail below for superior grease cleaning benefits.
  • a C12/14 fatty alcohol (100.00 g, 0.515 mol.) and tin (IV) chloride (0.58 g, 2.23 mmol, available from Aldrich) are combined in a 500 mL three-necked round-bottomed flask fitted with a condenser, argon inlet, addition funnel, magnetic stirrer and internal temperature probe. The mixture is heated to 60 °C. Epichlorhydrin (47.70 g, 0.515 mol, available from Aldrich) is added dropwise so as to keep the temperature between 60-65 ° C. After stirring an additional hour at 60 °C, the mixture is cooled to room temperature.
  • Neodol® 91-8 (20.60 g, 0.0393 mol ethoxylated alcohol available from the Shell chemical Co.) and tin (IV) chloride (0.58 g, 2.23 mmol) are combined in a 250 mL three- necked round-bottomed flask fitted with a condenser, argon inlet, addition funnel, magnetic stirrer and internal temperature probe. The mixture is heated to 60 °C at which point Ci 2/14 alkyl glycidyl ether (11.00 g, 0.0393 mol) is added dropwise over 15 min. After stirring for 18 h at 60 °C, the mixture is cooled to room temperature and dissolved in an equal portion of dichloromethane.
  • the solution is passed through a 1 inch pad of silica gel while eluting with dichloromethane.
  • the filtrate is concentrated by rotary evaporation and then stripped in a kugelrohr oven (100 °C, 0.5 mm Hg) to yield the surfactant as an oil.
  • the ethoxylated Cg-Ci g fatty alcohols and Cg-Cjg mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble.
  • the ethoxylated fatty alcohols are the Ci o-Cj ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C ⁇ -C j g ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from 2500 to 3000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • the detergent tablet comprises a mixed nonionic surfactant system comprising at least one low cloud point nonionic surfactant and at least one high cloud point nonionic surfactant.
  • Cloud point is a well known property of nonionic surfactants which is the result of the surfactant becoming less soluble with increasing temperature, the temperature at which the appearance of a second phase is observable is referred to as the “cloud point” (See Kirk Othmer's Encyclopedia of Chemical Technology, 3 rd Ed. Vol. 22, pp. 360-379).
  • a "low cloud point" nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of less than 30°C, preferably less than 20°C, and most preferably less than 10°C.
  • Typical low cloud point nonionic surfactants include nonionic alkoxylated surfactants, especially ethoxylates derived from primary alcohol, and polyoxypropylene/polyoxyethylene/polyoxypropylene (PO/EO/PO) reverse block polymers.
  • Low cloud point nonionic surfactants additionally comprise a polyoxyethylene, polyoxypropylene block polymeric compound.
  • Block polyoxyethylene- polyoxypropylene polymeric compounds include those based on ethylene glycol, propylene glycol, glycerol, trimethylolpropane and ethylenediamine as initiator reactive hydrogen compound.
  • Certain of the block polymer surfactant compounds designated PLURONIC®, REVERSED PLURONIC®, and TETRONIC® by the BASF-Wyandotte Corp., Wyandotte, Michigan, are suitable in ADD compositions of the invention.
  • Preferred examples include REVERSED PLURONIC® 25R2 and TETRONIC® 702, Such surfactants are typically useful herein as low cloud point nonionic surfactants.
  • a "high cloud point" nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of greater than 40°C, preferably greater than 50°C, and more preferably greater than 60°C.
  • the nonionic surfactant system comprises an ethoxylated surfactant derived from the reaction of a monohydroxy alcohol or alkylphenol containing from 8 to 20 carbon atoms, with from 6 to 15 moles of ethylene oxide per mole of alcohol or alkyl phenol on an average basis.
  • the high cloud point nonionic surfactant further have a hydrophile-lipophile balance ("HLB"; see Kirk Othmer hereinbefore) value within the range of from 9 to 15, preferably 11 to 15.
  • HLB hydrophile-lipophile balance
  • Such materials include, for example, Tergitol 15S9 (supplied by Union Carbide), Rhodasurf TMD 8.5 (supplied by Rhone Poulenc), and Neodol 91-8 (supplied by Shell).
  • high cloud point nonionic surfactant is derived from a straight or preferably branched chain or secondary fatty alcohol containing from 6 to 20 carbon atoms (Cg-C20 alcohol), including secondary alcohols and branched chain primary alcohols.
  • high cloud point nonionic surfactants are branched or secondary alcohol ethoxylates, more preferably mixed C9/11 or CI 1/15 branched alcohol ethoxylates, condensed with an average of from 6 to 15 moles, preferably from 6 to 12 moles, and most preferably from 6 to 9 moles of ethylene oxide per mole of alcohol.
  • the ethoxylated nonionic surfactant so derived has a narrow ethoxylate distribution relative to the average.
  • anionic surfactants useful for detersive purposes are suitable. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C, -C, R monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C ⁇ -C, . diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Alkyl sulfate surfactants are preferably selected from the linear and branched primary Cl0"Cl8 alkyl sulfates, more preferably the Ci 1 -Ci 5 branched chain alkyl sulfates and the C12-C14 linear chain alkyl sulfates.
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the ClO"Clg alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule.
  • a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH2 ⁇ ) x
  • Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR ⁇ -CHR2-O)-R3 wherein R is a C6 to C j g alkyl group, x is from 1 to 25, R ⁇ and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water- soluble salts of 2-methyl-l -undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l- nonanoic acid, 2-butyl-l-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
  • alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R* is a C1 -C4 alkyl group and M is an alkali metal ion.
  • R is a C5-C17 linear or branched alkyl or alkenyl group
  • R* is a C1 -C4 alkyl group
  • M is an alkali metal ion.
  • Suitable amine oxides include those compounds having the formula R 3 (OR4) X NO(R5)2 wherein R 3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R ⁇ is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
  • Preferred are CI Q-CI g alkyl dimethylamine oxide, and CI Q-18 acylamido alkyl dimethylamine oxide.
  • a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
  • Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • Cationic ester surfactants used in this invention are preferably water dispersible compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
  • suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-Cj6 > preferably Cg-CjQ N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Preferred enzymes include protease, amylase, lipase, peroxidases, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes.
  • suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO94/21801, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and WO91/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in WO96/34092, WO96/17994 and WO95/24471.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034.
  • Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P".
  • lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • lipases such as Ml Lipase ⁇ anc * Lipomax ⁇ (Gist-Brocades) and Lipolase ⁇ and Lipolase
  • cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).
  • the lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN').
  • One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo.
  • proteases include KANNASE®, ALCALASE®, DURAZYM® and SAVINASE® from Novo and MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® (protein engineered Maxacal) from Gist-Brocades.
  • proteases also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A" herein.
  • Protease C is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274.
  • Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
  • a preferred protease referred to as "Protease D” is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO95/10591 and in the patent application of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes
  • protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo.
  • Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo.
  • a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble.
  • a recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo.
  • Other suitable proteases are described in EP 516 200 by Unilever.
  • protease enzymes which are a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived by replacement of a plurality of amino acid residues of a precursor carbonyl hydrolase with different amino acids, wherein said plurality of amino acid residues replaced in the precursor enzyme correspond to position +210 in combination with one or more of the following residues: +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218 and +222, where the numbered positions correspond to naturally-occurring subtilisin from Bacillus amyloliquefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins (such as Bacillus lentus subtilisin).
  • Preferred enzymes of this type include those having position changes +210,
  • the proteolytic enzymes are incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.001% to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
  • Amylases ( ⁇ and/or ⁇ ) can be included for removal of carbohydrate-based stains.
  • WO94/02597 Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also WO95/10603, Novo Nordisk A/S, published April 20, 1995.
  • Other amylases known for use in cleaning compositions include both ⁇ - and ⁇ -amylases.
  • ⁇ -Amylases are known in the art and include those disclosed in US Pat. no.
  • amylases are stability-enhanced amylases described in WO94/18314, published August 18, 1994 and WO96/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, WO95/26397 and WO96/23873 (all by Novo Nordisk).
  • Examples of commercial ⁇ -amylases products are Purafect Ox Am® from Genencor and
  • WO95/26397 describes other suitable amylases : ⁇ -amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25 °C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay. Suitable are variants of the above enzymes, described in WO96/23873 (Novo Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in WO95/35382.
  • Preferred amylase enzymes include those described in WO95/26397 and in co-pending application by Novo Nordisk PCT/DK96/00056.
  • the amylolytic enzymes are incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition
  • detergent tablets of the present invention comprise amylase enzymes, particularly those described in WO95/26397 and co-pending application by Novo Nordisk PCT/DK96/00056 in combination with a complementary amylase.
  • complementary it is meant the addition of one or more amylase suitable for detergency purposes.
  • Examples of complementary amylases ( ⁇ and/or ⁇ ) are described below.
  • WO94/02597 and WO95/10603, Novo Nordisk A/S describe cleaning compositions which incorporate mutant amylases.
  • Other amylases known for use in cleaning compositions include both ⁇ - and ⁇ -amylases.
  • ⁇ -Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no. 1,296,839 (Novo).
  • amylases are stability-enhanced amylases described in WO94/18314, and WO96/05295, Genencor and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603. Also suitable are amylases described in EP 277 216 (Novo Nordisk). Examples of commercial ⁇ -amylases products are Purafect Ox Am® from Genencor and
  • Termamyl®, Ban® ,Fungamyl® and Duramyl® all available from Novo Nordisk A/S Denmark.
  • WO95/26397 describes other suitable amylases : ⁇ -amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25 °C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay. Suitable are variants of the above enzymes, described in WO96/23873 (Novo Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in WO95/35382.
  • Preferred complementary amylases for the present invention are the amylases sold under the tradename Purafect Ox Am ⁇ - described in WO 94/18314, WO96/05295 sold by Genencor; Termamyl®, Fungamyl®, Ban® Natalase and Duramyl®, all available from Novo Nordisk A/S and Maxamyl® by Gist-Brocades.
  • the above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used. Also included by definition, are mutants of native enzymes. Mutants can be obtained e.g. by protein and/or genetic engineering, chemical and/or physical modifications of native enzymes. Common practice as well is the expression of the enzyme via host organisms in which the genetic material responsible for the production of the enzyme has been cloned.
  • Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • the enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc... containing one enzyme ) or as mixtures of two or more enzymes ( e.g. cogranulates ).
  • Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981.
  • Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570.
  • a useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases is described in WO 9401532 A to Novo.
  • a highly preferred component of the composition of detergent components is a bleaching agent.
  • Suitable bleaching agents include chlorine and oxygen-releasing bleaching agents.
  • compositions of detergent components preferably include a hydrogen peroxide source, as an oxygen-releasing bleach.
  • Suitable hydrogen peroxide sources include the inorganic perhydrate salts.
  • the inorganic perhydrate salts are normally incorporated in the form of the sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
  • inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Sodium perborate can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2-3H2 ⁇ .
  • Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates for inclusion in compositions in accordance with the invention.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C ⁇ 3.3H 2 ⁇ 2, and is available commercially as a crystalline solid.
  • Sodium percarbonate, being a hydrogen peroxide addition compound tends on dissolution to release the hydrogen peroxide quite rapidly which can increase the tendency for localised high bleach concentrations to arise.
  • the percarbonate is most preferably incorporated into such compositions in a coated form which provides in-product stability.
  • a suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate.
  • the weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to 1 : 4, more preferably from 1 : 99 to 1 : 9, and most preferably from 1 : 49 to 1 : 19.
  • the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2SO4.n.Na2CO3 wherein n is from 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
  • Another suitable coating material providing in product stability comprises sodium silicate of Si ⁇ 2 : Na2 ⁇ ratio from 1.8 : 1 to 3.0 : 1, preferably 1.8:1 to 2.4:1, and/or sodium metasilicate, preferably applied at a level of from 2% to 10%, (normally from 3% to 5%) of Si ⁇ 2 by weight of the inorganic perhydrate salt.
  • Magnesium silicate can also be included in the coating. Coatings that contain silicate and borate salts or boric acids or other inorganics are also suitable.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of utility in the compositions herein.
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
  • peroxyacid bleach precursors may be represented as
  • Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A- 1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
  • L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilise for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of:
  • R is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms
  • R is an alkyl chain containing from 1 to 8 carbon atoms
  • R is H or
  • R , R5 is an alkenyl chain containing from 1 to 8 carbon atoms and Y is H or a solubilizing group.
  • Any ofR 1 , R3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammonium groups.
  • the preferred solubilizing groups are -SO 3 " M + , -CO 2 " M + , -SO 4 " M + , -N + (R 3 ) 4 X " and
  • M is an alkyl chain containing from 1 to 4 carbon atoms
  • M is a cation which provides solubility to the bleach activator
  • X is an anion which provides solubility to the bleach activator.
  • M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred
  • X is a halide, hydroxide, methylsulfate or acetate anion.
  • Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
  • Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, including for example benzoyl oxybenzene sulfonate:
  • benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents including for example: OBz
  • Perbenzoic acid precursor compounds of the imide type include N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
  • Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole and other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • perbenzoic acid precursors include the benzoyl diacyl peroxides, the benzoyl tetraacyl peroxides, and the compound having the formula:
  • Suitable N-acylated lactam perbenzoic acid precursors have the formula:
  • n is from 0 to 8, preferably from 0 to 2
  • R is a benzoyl group.
  • Perbenzoic acid derivative precursors provide substituted perbenzoic acids on perhydrolysis.
  • Suitable substituted perbenzoic acid derivative precursors include any of the herein disclosed perbenzoic precursors in which the benzoyl group is substituted by essentially any non-positively charged (i.e.; non-cationic) functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl and amide groups.
  • R! may be aryl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R 2 .
  • the substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
  • R ⁇ is preferably H or methyl. R and R ⁇ should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
  • the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
  • the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
  • a preferred cationically substituted alkyl oxybenzene sulfonate has the formula:
  • Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams, particularly trimethyl ammonium methylene benzoyl caprolactam:
  • N-acylated caprolactam class examples include the trialkyl ammonium methylene alkyl caprolactams:
  • n is from 0 to 12, particularly from 1 to 5.
  • Another preferred cationic peroxyacid precursor is 2-(N,N,N-trimethyl ammonium) ethyl sodium 4-sulphophenyl carbonate chloride.
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
  • Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N- ,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • TAED Tetraacetyl ethylene diamine
  • alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and penta acetyl glucose.
  • Amide substituted alkyl peroxyacid precursor compounds are also suitable, including those of the following general formulae: R 1 — c — N — R 2 — c — L R 1 — N — c — R 2 c — L
  • R* is an alkyl group with from 1 to 14 carbon atoms
  • R 2 is an alkylene group containing from 1 to 14 carbon atoms
  • R is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • Rl preferably contains from 6 to 12 carbon atoms.
  • R 2 preferably contains from 4 to 8 carbon atoms.
  • Rl may be straight chain or branched alkyl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R 2 .
  • the substitution can include alkyl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
  • R ⁇ is preferably H or methyl, R! and R ⁇ should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • precursor compounds of the benzoxazin-type as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
  • R is H, alkyl, alkaryl, aryl, arylalkyl, and wherein R , R-, R ,, and R ⁇ - may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkyl amino, COOR - (wherein R fi is H or an alkyl group) and carbonyl functions.
  • a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae: R 1 — c — N — R 2 — c — OOH R 1 — N — C — R 2 — C — OOH
  • Controlled rate of release - means
  • a means may be provided for controlling the rate of release of bleaching agent, particularly oxygen bleach to the wash solution.
  • polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C10-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole.
  • solvents such as water, propylene glycol and the above mentioned C10-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole.
  • binders include the Ci 0-C2O mono- and diglycerol ethers and also the Ci 0-C2O f at ty acids.
  • One method for applying the coating material involves agglomeration.
  • Preferred agglomeration processes include the use of any of the organic binder materials described hereinabove. Any conventional agglomerator/mixer may be used including, but not limited to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
  • Suitable means of providing the required controlled release include mechanical means for altering the physical characteristics of the bleach to control its solubility and rate of release. Suitable protocols could include compression, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
  • Still another type of bleach catalyst is a water- soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylithol, arabitol, adonitol, meso- erythritol, meso-inositol, lactose, and mixtures thereof.
  • U.S. Pat. 5,114,611 teaches a bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand.
  • Said ligands are of the formula:
  • Preferred ligands include pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, and triazole rings.
  • said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and nitro.
  • Particularly preferred is the ligand 2,2'-bispyridylamine.
  • Preferred bleach catalysts include Co, Cu, Mn, Fe,-bispyridylmethane and -bispyridylamine complexes.
  • Highly preferred catalysts include Co(2,2'-bispyridylamine)Cl2,
  • Preferred examples include binuclear Mn complexes with tetra-N-dentate and bi-N- dentate ligands, including N4Mn II] l(u-O)2Mn IV N4) + and [Bipy 2 MnIH(u-
  • the bleach-catalyzing manganese complexes of the present invention have not been elucidated, it may be speculated that they comprise chelates or other hydrated coordination complexes which result from the interaction of the carboxyl and nitrogen atoms of the ligand with the manganese cation.
  • the oxidation state of the manganese cation during the catalytic process is not known with certainty, and may be the (+11), (+III), (+IV) or (+V) valence state. Due to the ligands' possible six points of attachment to the manganese cation, it may be reasonably speculated that multi- nuclear species and/or "cage" structures may exist in the aqueous bleaching media.
  • bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S.
  • T may be selected from the group consisting of non- traditional inorganic anions such as anionic surfactants (e.g., linear alkylbenzene sulfonates (LAS), alkyl sulfates (AS), alkylethoxysulfonates (AES), etc.) and/or anionic polymers (e.g., polyacrylates, polymethacrylates, etc.).
  • anionic surfactants e.g., linear alkylbenzene sulfonates (LAS), alkyl sulfates (AS), alkylethoxysulfonates (AES), etc.
  • anionic polymers e.g., polyacrylates, polymethacrylates, etc.
  • the M moieties include, but are not limited to, for example, F", SO4' 2 , NCS", SCN", S2O3" 2 , NH3, PO4- and carboxylates (which preferably are mono-carboxylates, but more than one carboxylate may be present in the moiety as long as the binding to the cobalt is by only one carboxylate per moiety, in which case the other carboxylate in the M moiety may be protonated or in its salt form).
  • carboxylates which preferably are mono-carboxylates, but more than one carboxylate may be present in the moiety as long as the binding to the cobalt is by only one carboxylate per moiety, in which case the other carboxylate in the M moiety may be protonated or in its salt form).
  • Cobalt catalysts suitable for incorporation into the detergent tablets of the present invention may be produced according to the synthetic routes disclosed in U.S. Patent Nos. 5,559,261, 5,581,005, and 5,597,936, the disclosures of which are herein incorporated by reference.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids, modified polycarboxylates or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A- 1,596,756.
  • the colourant may be incorporated into the phases by any suitable method. Suitable methods include mixing all or selected detergent components with a colourant in a drum or spraying all or selected detergent components with the colourant in a rotating drum.
  • Suitable organic silver coating agents herein include fatty esters of mono- or polyhydric alcohols having from 1 to 40 carbon atoms in the hydrocarbon chain.
  • Preferred fatty esters herein are ethylene glycol, glycerol and sorbitan esters wherein the fatty acid portion of the ester normally comprises a species selected from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Suitable sorbitan esters include sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monobehenate, sorbitan mono-oleate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate, and also mixed tallowalkyl sorbitan mono- and di-esters.
  • Waxes including microcrystalline waxes are suitable organic silver coating agents herein.
  • Preferred waxes have a melting point in the range from 35°C to 110°C and comprise generally from 12 to 70 carbon atoms.
  • Preferred are petroleum waxes of the paraffin and microcrystalline type which are composed of long-chain saturated hydrocarbon compounds.
  • Polymeric soil release agents can also be used as an organic silver coating agent.
  • the detergent tablets of the present invention suitable for use in dishwashing methods may contain a water-soluble bismuth compound, preferably present at a level of from 0.005% to 20%, more preferably from 0.01% to 5%, most preferably from 0.1% to 1% by weight of the compositions.
  • the tablets of the present invention may contain a lime soap dispersant compound, preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
  • a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
  • Preferred lime soap disperant compounds are disclosed in PCT Application No. WO93/08877.
  • the detergent tablets of the present invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
  • Optical brightener The detergent tablets suitable for use in laundry washing methods as described herein, also optionally contain from 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula:
  • R ⁇ is anilino
  • R2 is N-2-bis-hydroxy ethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine- 2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNP A-GX by Ciba- Geigy Corporation. Tinopal-UNP A-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • R is anilino
  • R2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
  • Cationic fabric softening agents can also be incorporated into compositions in accordance with the present invention which are suitable for use in methods of laundry washing.
  • Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
  • compositions of the invention include perfumes and filler salts, with sodium sulfate being a preferred filler salt.
  • the detergent tablets of the present invention are preferably not formulated to have an unduly high pH, in preference having a pH measured as a 1% solution in distilled water of from 8.0 to 12.5, more preferably from 9.0 to 11.8, most preferably from 9.5 to 11.5.
  • a preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, silverware, metallic items, cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a detergent tablet in accord with the invention.
  • an effective amount of the detergent tablet it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
  • the detergent tablets are from 15g to 40g in weight, more preferably from 20g to 35g in weight.
  • Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent tablet composition in accord with the invention.
  • an effective amount of the detergent tablet composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
  • the dispensing device containing the detergent product is placed inside the drum.
  • water is introduced into the drum and the drum periodically rotates.
  • the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
  • the device may possess a number of openings through which the product may pass.
  • the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
  • the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
  • Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
  • the dispensing device may be a flexible container, such as a bag or pouch.
  • the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
  • it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968.
  • a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
  • the following illustrates examples detergent tablets of the present invention suitable for use in a dishwashing machine.
  • the multi-phase tablet compositions are prepared as follows.
  • the detergent active composition of phase 1 is prepared by admixing the granular and liquid components and is then passed into the die of a conventional rotary press.
  • the press includes a punch suitably shaped for forming the mould.
  • the cross-section of the die is approximately 30x38 mm.
  • the composition is then subjected to to a compression force of 940 kg/cm 2 and the punch is then elevated exposing the first phase of the tablet containing the mould in its upper surface.
  • the detergent active composition of phase 2 is prepared in similar manner and is passed into the die.
  • the particulate active composition is then subjected to a compression force of 170 kg/cm 2 , the punch is elevated, and the multi-phase tablet ejected from the tablet press.
  • the resulting tablets dissolve or disintegrate in a washing machine as described above within 12 minutes, phase 2 of the tablets dissolving within 5 minutes.
  • the tablets provide excellent dissolution and cleaning characteristics together with good tablet integrity and strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
PCT/US1999/014861 1998-07-17 1999-07-09 Detergent tablet WO2000004123A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000560222A JP2002520478A (ja) 1998-07-17 1999-07-09 洗剤タブレット
CA002333388A CA2333388C (en) 1998-07-17 1999-07-09 Detergent tablet
AU49642/99A AU762815B2 (en) 1998-07-17 1999-07-09 Detergent tablet
US09/743,932 US6589932B1 (en) 1998-07-17 1999-07-09 Detergent tablet
SK64-2001A SK642001A3 (en) 1998-07-17 1999-07-09 Detergent tablet
BR9912834-9A BR9912834A (pt) 1998-07-17 1999-07-09 Tablete detergente
EP99933625A EP1097191A2 (en) 1998-07-17 1999-07-09 Detergent tablet
PL99345972A PL189558B1 (pl) 1998-07-17 1999-07-09 Sposób wytwarzania wielofazowej tabletki detergentowej

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB9815525.2A GB9815525D0 (en) 1998-07-17 1998-07-17 Detergent tablet
GB9815525.2 1998-07-17
GB9911217A GB2339790B (en) 1998-07-17 1999-05-17 Detergent tablet
GB9911217.9 1999-05-17

Publications (2)

Publication Number Publication Date
WO2000004123A2 true WO2000004123A2 (en) 2000-01-27
WO2000004123A3 WO2000004123A3 (en) 2000-04-13

Family

ID=26314049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/014861 WO2000004123A2 (en) 1998-07-17 1999-07-09 Detergent tablet

Country Status (21)

Country Link
EP (2) EP0979864B1 (es)
JP (1) JP2002520478A (es)
CN (1) CN1309693A (es)
AT (2) ATE211503T1 (es)
AU (1) AU762815B2 (es)
BR (1) BR9912834A (es)
CA (1) CA2333388C (es)
DE (2) DE69908139T2 (es)
DK (1) DK0979864T3 (es)
ES (2) ES2168835T3 (es)
FI (1) FI4406U1 (es)
FR (1) FR2782089B1 (es)
IE (1) IES990569A2 (es)
IT (2) ITMI991509A1 (es)
NL (1) NL1012583C1 (es)
PL (1) PL189558B1 (es)
PT (1) PT979864E (es)
RU (1) RU2205869C2 (es)
SK (1) SK642001A3 (es)
TR (1) TR200100094T2 (es)
WO (1) WO2000004123A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504936A (ja) * 2000-07-31 2004-02-19 エス.シー. ジョンソン アンド サン、インコーポレイテッド 漏洩を最小限とするエーロゾル状液体散布方法及び装置
US7300911B2 (en) * 2000-03-04 2007-11-27 Henkel Kommanditgesellschaft Auf Aktien Method of preparing multiphase laundry detergent and cleaning product shaped bodies having noncompressed parts

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29911484U1 (de) * 1998-07-17 2000-02-24 Procter & Gamble Reinigungsmitteltablette
PT979865E (pt) * 1998-07-17 2002-09-30 Procter & Gamble Pastilhas detergentes
DK0976819T3 (da) * 1998-07-17 2002-05-13 Procter & Gamble Detergenttablet
DE19922578C2 (de) * 1999-05-17 2003-12-24 Benckiser Nv Verfahren zur Herstellung einer mehrschichtigen Tablette, insbesondere Reinigungsmitteltablette, sowie danach herstellbares Produkt
DE10007608A1 (de) * 2000-02-18 2001-08-30 Henkel Kgaa Protease und Percarbonat enthaltende Wasch- und Reinigungsmittel
DE10243311A1 (de) * 2002-09-18 2004-04-01 Henkel Kgaa Befüllte Muldentabletten und Verfahren zu ihrer Herstellung
DE10253479A1 (de) * 2002-11-16 2004-06-03 Henkel Kgaa Befüllte Muldentabletten und Verfahren zu ihrer Herstellung II
DE102007059968A1 (de) * 2007-12-11 2009-06-18 Henkel Ag & Co. Kgaa Reinigungsmittel
CN107090014B (zh) 2008-03-26 2023-04-25 诺维信公司 稳定化的液体酶组合物
GB0813460D0 (en) * 2008-07-23 2008-08-27 Reckitt Benckiser Nv Container
WO2010119076A1 (en) * 2009-04-16 2010-10-21 Purac Biochem Bv Cleaning with controlled release of acid
AU2010299953B2 (en) * 2009-09-25 2015-02-12 Novozymes A/S Detergent composition
EP2674475A1 (en) * 2012-06-11 2013-12-18 The Procter & Gamble Company Detergent composition
PL414778A1 (pl) 2015-11-13 2017-05-22 Skorut Systemy Solarne Spółka Z Ograniczoną Odpowiedzialnością Sposób modyfikacji laminatów stosowanych do wytwarzania obwodów drukowanych
CN109971562A (zh) * 2019-04-23 2019-07-05 南京巨鲨显示科技有限公司 一种缓释型医用手工多酶清洗片及其制备方法
CN110373287B (zh) * 2019-08-15 2021-11-09 广州立白企业集团有限公司 一种具有多相结构的自动洗碗机清洁片
CN112646672A (zh) * 2019-10-10 2021-04-13 杨子凡 一种洗衣机槽用清洁块及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1307387A (en) * 1969-02-18 1973-02-21 Lion Fat Oil Co Ltd Cleansing agent having a shell structure
EP0055100A1 (en) * 1980-12-18 1982-06-30 Jeyes Group Limited Lavatory cleansing blocks
EP0481793A1 (en) * 1990-10-19 1992-04-22 Unilever Plc Detergent composition in tablet form
EP0481547A1 (en) * 1990-10-17 1992-04-22 Unilever N.V. Machine dishwashing detergent tablets
GB2327949A (en) * 1997-08-02 1999-02-10 Procter & Gamble Detergent tablet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541146A1 (de) * 1985-11-21 1987-05-27 Henkel Kgaa Mehrschichtige reinigungsmitteltabletten fuer das maschinelle geschirrspuelen
GB9015503D0 (en) * 1990-07-13 1990-08-29 Unilever Plc Detergent composition
CA2226143C (en) * 1995-07-13 2007-11-20 Joh. A. Benckiser Gmbh Dish washer product in tablet form
US5837663A (en) * 1996-12-23 1998-11-17 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing tablets containing a peracid
GB9711829D0 (en) * 1997-06-06 1997-08-06 Unilever Plc Detergent compositions
ES2190120T3 (es) * 1997-11-10 2003-07-16 Procter & Gamble Procedimiento para la preparacion de una pastilla de detergente.
EP1032643B1 (en) * 1997-11-10 2003-05-21 The Procter & Gamble Company Multi-layer detergent tablet having both compressed and non-compressed portions
ES2198768T3 (es) * 1997-11-10 2004-02-01 THE PROCTER & GAMBLE COMPANY Procedimiento para fabricar una pastilla detergente.
ES2227900T3 (es) * 1997-11-26 2005-04-01 THE PROCTER & GAMBLE COMPANY Procedimiento para fabricar una pastilla detergente.
DE69830334T2 (de) * 1997-11-26 2006-02-02 The Procter & Gamble Company, Cincinnati Waschmitteltablette
ATE287944T1 (de) * 1997-11-26 2005-02-15 Procter & Gamble Waschmitteltablette
DE69805758T2 (de) * 1997-11-26 2003-01-30 Procter & Gamble Geschirrspülverfahren
WO2000004117A2 (en) * 1998-07-17 2000-01-27 The Procter & Gamble Company Detergent tablet
PT979865E (pt) * 1998-07-17 2002-09-30 Procter & Gamble Pastilhas detergentes
DE69920517T2 (de) * 1998-07-17 2005-11-10 The Procter & Gamble Company, Cincinnati Waschmitteltablette
DE29911484U1 (de) * 1998-07-17 2000-02-24 Procter & Gamble Reinigungsmitteltablette
DK0976819T3 (da) * 1998-07-17 2002-05-13 Procter & Gamble Detergenttablet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1307387A (en) * 1969-02-18 1973-02-21 Lion Fat Oil Co Ltd Cleansing agent having a shell structure
EP0055100A1 (en) * 1980-12-18 1982-06-30 Jeyes Group Limited Lavatory cleansing blocks
EP0481547A1 (en) * 1990-10-17 1992-04-22 Unilever N.V. Machine dishwashing detergent tablets
EP0481793A1 (en) * 1990-10-19 1992-04-22 Unilever Plc Detergent composition in tablet form
GB2327949A (en) * 1997-08-02 1999-02-10 Procter & Gamble Detergent tablet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300911B2 (en) * 2000-03-04 2007-11-27 Henkel Kommanditgesellschaft Auf Aktien Method of preparing multiphase laundry detergent and cleaning product shaped bodies having noncompressed parts
JP2004504936A (ja) * 2000-07-31 2004-02-19 エス.シー. ジョンソン アンド サン、インコーポレイテッド 漏洩を最小限とするエーロゾル状液体散布方法及び装置

Also Published As

Publication number Publication date
JP2002520478A (ja) 2002-07-09
DE69908139D1 (de) 2003-06-26
ES2194802T3 (es) 2003-12-01
PT979864E (pt) 2002-06-28
BR9912834A (pt) 2001-05-02
NL1012583A1 (nl) 2000-01-19
CN1309693A (zh) 2001-08-22
EP0979864A1 (en) 2000-02-16
ATE241004T1 (de) 2003-06-15
DK0979864T3 (da) 2002-04-22
DE69900736T2 (de) 2002-08-29
TR200100094T2 (tr) 2001-05-21
SK642001A3 (en) 2001-06-11
ITMI991568A0 (it) 1999-07-15
ITMI991568A1 (it) 2001-01-15
CA2333388C (en) 2005-04-05
ITMI991509A1 (it) 1999-12-18
AU762815B2 (en) 2003-07-03
EP1097191A2 (en) 2001-05-09
FR2782089A1 (fr) 2000-02-11
FIU990320U0 (fi) 1999-07-16
FI4406U1 (fi) 2000-05-18
CA2333388A1 (en) 2000-01-27
DE69900736D1 (de) 2002-02-28
ITMI991509A0 (it) 1999-07-09
EP0979864B1 (en) 2002-01-02
ATE211503T1 (de) 2002-01-15
WO2000004123A3 (en) 2000-04-13
AU4964299A (en) 2000-02-07
PL189558B1 (pl) 2005-08-31
PL345972A1 (en) 2002-01-14
FR2782089B1 (fr) 2004-11-05
NL1012583C1 (nl) 2000-01-25
ES2168835T3 (es) 2002-06-16
DE69908139T2 (de) 2004-04-08
RU2205869C2 (ru) 2003-06-10
IES990569A2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
AU761595B2 (en) Detergent tablet
CA2333388C (en) Detergent tablet
US6551982B1 (en) Detergent tablet
US6551981B1 (en) Detergent tablet
CA2337427C (en) Detergent tablet
EP1103596B1 (en) Detergent Tablets and their Production
EP1097192B1 (en) Detergent tablet
US6589932B1 (en) Detergent tablet
US6544943B1 (en) Detergent tablet
US6544944B1 (en) Detergent tablet
WO2000012671A1 (en) Detergent tablet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99808780.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2333388

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 642001

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 1999933625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/000571

Country of ref document: MX

Ref document number: 49642/99

Country of ref document: AU

Ref document number: 2001/00094

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2000 560222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09743932

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999933625

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 49642/99

Country of ref document: AU