WO2000003962A1 - Procede pour produire du fluoroethane - Google Patents

Procede pour produire du fluoroethane Download PDF

Info

Publication number
WO2000003962A1
WO2000003962A1 PCT/JP1999/003868 JP9903868W WO0003962A1 WO 2000003962 A1 WO2000003962 A1 WO 2000003962A1 JP 9903868 W JP9903868 W JP 9903868W WO 0003962 A1 WO0003962 A1 WO 0003962A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
hcfc
catalyst
fluorination
fluorinated
Prior art date
Application number
PCT/JP1999/003868
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Takahashi
Satoru Kono
Takashi Shibanuma
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16475439&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000003962(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US09/743,468 priority Critical patent/US6455745B1/en
Priority to EP99929890.4A priority patent/EP1110936B2/en
Priority to DE69937244.5T priority patent/DE69937244T3/de
Publication of WO2000003962A1 publication Critical patent/WO2000003962A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Definitions

  • HCFC-125 1,1,1,2,2-pentafluoroethane
  • HCFC-123 2-alk ⁇ -row 1,1,1, 2-tetrafluoroethane
  • HCFC-123 Z or 2,2-dichloro-1,1,1-trifluoroethane
  • HFC-125 Since HFC-125 has an ozone depletion potential of 0, it is used as an alternative refrigerant component gas for 1.1-chloro-1,1-difluoromethane (HCFC-22) refrigerant.
  • HCFC-22 1.1-chloro-1,1-difluoromethane
  • a patent was issued in the United States to control the production of CFCs (which are currently prohibited because of the risk of damaging the ozone layer) in the production of HFC-125 from HCFC-124.
  • Patent manufacturing method using chromium oxide (Cr 2 0 3) as a catalyst in the 5,475,167 discloses are described. The method described in this publication states that the conversion to HC FC-125 must be 50% or more.
  • the catalyst (NH 4 ) 2 Cr 2 ⁇ ⁇ Cr 2 ⁇ 3 catalyst having a high specific surface area prepared, or C_ ⁇ it uses a Cr 2 0 3 catalyst was treated with H 2, H 2 0.
  • the amount of CFCs produced is 0.3 mol1 ⁇ 2 with respect to HFC-125.
  • JP-A-6-247883 discloses that a catalyst obtained by fluorinating alumina by 70% or more in the fluorination reaction of HCFC-123 or HCFC-124 is used to reduce the amount of CFCs produced.
  • a method for producing HF C-125 is disclosed. According to this production method, the amount of CFCs generated in the HCFC-123 fluorination reaction of alumina was 350 at the reaction temperature. In C, it is 0.5%, but the ratio of CFCs ZHFC-125 is as large as about 1.1%.
  • JP-A-8- two hundred sixty-eight thousand nine hundred and thirty-three discloses a fluorination method of tetrachlorethylene ⁇ mouth ethylene using a mixed catalyst of MgO and Cr 2 0 3. Wherein the examined had some mixed catalyst Nitsu for changing the ratio of MgO amount and Cr 2 0 3 amount is performed. ⁇ ? For catalysts with a Cr content that minimizes the 3 ⁇ 4? (— 125 ratio, the conversion of tetrachloroethylene is about 9 B% in reaction 320, and the CFC / HFC-125 ratio is 2.9%.
  • the present invention has been made in view of the above circumstances, and an object thereof is to include tetrachloroethylene or HCFC-123 or HCFC-124 as a starting material and HFC-125 as a main reaction product by a fluorination reaction.
  • the method for producing a fluorinated ethane of the present invention comprises the step of fluorinating at least one selected from the group consisting of tetrachloroethylene, HCFC-123 and HCFC-124 with hydrogen fluoride to obtain a fluorinated ethane containing HFC-125 as a main component.
  • the method is characterized in that chromium oxide, which has a fluorine content of 30% by weight or more, is used as a catalyst when producing tutanethane.
  • the fluorinated ethane to be produced usually contains not only HFC-125 but also HCF C-123 and / or HCFC-124 as described later.
  • the starting material is selected from tetrachloroethylene, HCFC-123 and HCFC-124, each of which is used alone or in combination of two or more.
  • the HCFC-124 can be obtained, for example, by reduction of HCFC-123 by reduction of fluoridation or CFC-114a (2,2-dic ⁇ -row 1,1,1,2-tetrafluoroethane).
  • the HCFC-123 may be, for example, fluorine of tetrachloroethylene or chlorination of HCFC-133a (2-chloro-1,1,1-trifluoroethane) or CFC-113a. (1,1,1-trichloro-2,2,2-trifluoroethane).
  • the above-mentioned tetrachloroethylene is also produced by an industrially well-known method of, for example, chlorinating a hydrocarbon or a chlorine derivative thereof by thermal decomposition.
  • the ratio of CFCs / HFC-125 cannot be kept small by the conventional methods.
  • the mechanism of by-products of CFCs is as described below.
  • the starting material is HCFC-124
  • the conversion to HCFC-125 cannot be 100% under normal reaction conditions, and unreacted HCFC-124 is present in the reactor.
  • the unreacted HCFC-124 reacts with by-produced HC1 to produce HCFC-123.
  • the starting material is HCFC-123
  • the organic matter at the outlet of the reactor after the fluorination reaction is mainly chlorinated by fluorinated HCFC-124 and HFC-125 and by-product HC1. Tetrachloroethylene and unreacted HCFC-123.
  • the organic matter at the outlet of the reactor is mainly HCFC-123, HCFC-124, and HFC-125.
  • the HFC-125-based gas is separated to improve the yield, and the remainder is recycled to the reactor. Therefore, irrespective of the amount of the starting material, the fluorination of a mixture of tetrachloroethylene, HCFC-123 and HCFC-124 mainly proceeds, although the amount is large or small in the reactor. For this reason, HCFC-133a and HFC-134a (1,1,1,2-tetrafluoroethane), which are by-products when tetrachloroethylene is used as a raw material, and CFC-11 of CFCs 3 a. CFC— 1 1 a. CFC— 1 15 is generated.
  • CFCs produced in these reactions are not converted to HFC-125 by the fluorination reaction, which is a loss in production.
  • reaction gas is recycled, all CFC-114a is converted to CFC-115.
  • This CFC-115 has a boiling point close to that of HFC-125 and a specific volatility close to 1, making it difficult to separate it with a normal rectification column. To remove these, equipment such as extractive distillation is required separately, It causes cost increase.
  • CFCs are also substances whose production is banned as an ozone depleting substance as described above, and their release must be minimized in order to protect the global environment. For these reasons, the amount of CFCs produced, including CFC-115, must be reduced as much as possible.
  • the present inventors have conducted intensive studies on the fluorination reaction of tetrachloroethylene, HCFC-123, and HCFC-124. As a result, the fluorination reaction was performed using a chromium oxyfluoride catalyst having a fluorine content of 30% by weight or more.
  • Class ZHFC-125 ratio (in the case of tetrachloroethylene raw material, the ratio of CFCs to the total of HCFC-123, HCFC-124, and HFC-125) is 0 in the reaction iK300 C in the case of tetrachloroethylene raw material.
  • the present invention was found to be 5% or less, and that the HCFC-123 raw material and HCFC-12 raw material can be reduced to 1.0% or less and 0.1% or less at a reaction temperature of 315 ° C, respectively. Reached.
  • such an oxide film is further fluorinated to a fluorine content of 30% by weight or more, and is subjected to a reaction. Therefore, as an example, when the reactor is filled with chromium oxide (unfluorinated), this chromium oxide may be fluorinated at least immediately before the fluorination reaction of the starting material to form chromium fluorinated oxide. In monkey.
  • the fluorination of chromium oxide may be performed based on a known method, for example, a method described in JP-A-5-146680.
  • oxidized chromium is treated with HF at a high temperature for a long time. Good.
  • fluorinated chromium oxide having a fluorine content of 31.4% by weight is obtained.
  • chromium oxide fluoride prepared by a method other than the above can also be used as a suitable catalyst. It is chromium oxyfluoride used as a catalyst in the fluorination reaction of halogenated hydrocarbons. That is, the anti-J Iii was a chromium oxyfluoride having a low fluorine content, but when it is used for a long time in the fluorination reaction of the halogenated hydrocarbon, the fluorine content applicable to the present invention becomes 30%. It can be chromium oxide fluoride having a high fluorine content of not less than% by weight.
  • the present inventor has found that it is extremely important to fluorinate chromium oxide so that its fluorine content is not less than 30% by weight, not merely fluorinated. According to the findings of the present inventors, the target HFC-125 can be obtained with a high selectivity only when the fluorination rate (fluorine content) of chromium oxide is 30% by weight or more, and the formation of CFCs is sufficiently suppressed. Is done. This preferred range of fluorine content lies between 30 and 45% by weight.
  • the specific surface area of the chromium oxyfluoride of the catalyst is not particularly limited, it is usually in the range of 25 m 2 ng to 30 m 2 Zg, preferably 40 m 2 ng to 10 Om 2 .
  • Fluorination reaction by HF starting material in the present invention is usually 250 to 40 O e C, preferably carried out at a reaction temperature of 280 to 350 ° C, contact temperature At the same temperature and molar ratio, the higher the reaction temperature, the higher the conversion to HFC-125. However, since the reaction transfer greatly affects the amount of by-products generated, it must be carefully selected.
  • the ratio of HF used for the fluorination reaction to the above-mentioned starting materials is not particularly limited in the present invention.
  • the molar ratio of HF to tetrachloroethylene, HF to HCFC-124, and HF to HCFC-123 is usually selected in the range of 1.5: 1 to 15: 1, preferably 2: 1 to 9: 1.
  • the pressure at which the starting material is reacted with fluorine is not particularly limited, but the separation and purification steps of the product are more preferably performed under pressurized conditions. It is good to decide after putting. In general, the range of the reaction pressure that is often used is 0.01 MPa to 2. OMPaG.
  • a gas containing HFC-125 as a main component produced by the fluorination reaction of the starting material is once separated and collected, It is then desirable to recycle the residue containing HCFC-123 and Z or HCFC-124 to the reactor multiple times. This is because the yield of HFC-125 is improved.
  • One of the remarkable effects of the present invention is that the production of CFCs is suppressed by this recycling.
  • 0.1 mol% to 10 mol of oxygen is added to the starting material as a measure for effectively preventing the deterioration of the catalyst when it becomes a particular problem.
  • At least one selected from the group consisting of HCFC-123 and HCFC-124 is selected as the starting material, and when it is fluorinated with hydrogen fluoride, the fluorine content is as high as 30% by weight or more. Since the specified chromium oxyfluoride is used as a catalyst, fluorinated ethane containing HFC-125 as a main component can be produced while minimizing the production of CFCs.
  • Female chromium oxide fluoride was prepared as follows. First, 10% aqueous ammonia was added to a 5.7% aqueous solution of chromium nitrate 7652, and the obtained precipitate was filtered and washed, dried in air for 120 hours, and dried for 12 hours to obtain chromium hydroxide. This chromium hydroxide was formed into a pellet having a diameter of 3.0 mm and a height of 3.0 mm, and the pellet was 400 in a nitrogen stream. The mixture was baked at C for 2 hours to obtain an oxidized film.
  • Amount of catalyst 1 0 g HCFC- 124 & 5 ONml mi n HFSfifi: 1 0 ONml / mi n W / F o: 4 (g ⁇ sec ⁇ Nm 1 - 1), HF / HCFC- 124 molar ratio: 4 Reaction: 3 15 ° Co
  • the reaction was carried out by filling the catalyst into a Hastelloy C ⁇ reaction tube having an inner diameter of 15 mm.
  • the reaction gas was washed with water and analyzed by gas chromatography on a Volapack Q column. The results are shown in Table 1 below.
  • the fluorination reaction of HCFC-124 was carried out under the same conditions as in Example 1 except that chromium oxyfluoride (fluorine content: 41.5 weight) used in the fluorination reaction of HCFC133a was used. went. The results of the reaction are shown in Table 3 below.
  • HCFC-124 was used under the same conditions as in Example 2 except that HCFC-12 was set to 10 ONmlZmin, HF flow rate was set to 20 ONml / min, and WZFo was set to 2 (g ⁇ sec ⁇ Nm1 "O.
  • the fluorination reaction was carried out 7. The results of the reaction are shown in Table 5 below.
  • the fluorination of HCFC-124 was carried out under the same conditions as in Example 1 except that the catalyst used for the fluorination of chromium oxide was 365 and the time was 155 hours (fluorine content: 25% by weight). The reaction went. The results of the reaction are shown in Table 6 below.
  • Example 8 Under the same conditions as in Example 2 except that the HF / HCFC-124 molar ratio was set to 4, the HCFC-124 flow rate was set to 3 ON ml min, and the HF flow rate was set to 120 Nm 1 ⁇ in.
  • the results of the reaction are shown in Table 8 below.
  • the fluorination reaction was performed under the same conditions as in Example 2 except that the reaction temperature was set at 315. The results of the reaction are shown in Table 10 below.
  • Example 7 the fluorination reaction of tetrachloroethylene was carried out under the same conditions as in Example 7, except that the catalyst used was the same as the catalyst used in Comparative Example 1. The results of the reaction are shown in Table 13 below.
  • Example 8 In the reaction of Example 8, the same catalyst as that used in Comparative Example 1 was used. The fluorination reaction of tetrachloroethylene was carried out under the same conditions as in Example 8 except that the above conditions were used. The results of the reaction are shown in Table 15 below.

Description

W 明細書 含フッ素ェタンの製造方法 産業上の利用分野
本発明は、 主な反応生成物として 1, 1, 1, 2, 2—ペンタフルォ ロェタン (以下、 HFC- 125と略称することがある。 ) の外に 2— ク πロー 1, 1, 1, 2—テトラフルォロェタン (以下、 HCFC— 1 24と略称することがある。 ) 及び Z又は 2, 2—ジクロロ— 1, 1, 1—トリフルォロェタン (以下、 HCFC- 123と略称することがあ る。 ) を得るための、 含フッ素ェタンの製造方法に関する。
従来の技術
HFC- 125はオゾン破壊係数が 0であることから、 1一クロロー 1, 1ージフルォロメタン (HCFC— 22)冷媒の代替冷媒成分ガス として使用されている。 HCFC— 124を原料とする HFC— 125 の製造方法で CFC類(オゾン層を損傷する恐れがあるため現在、 製造 が禁止されているものである。 ) の生成抑制を目的とした特許として、 米国特許第 5475167号公報に触媒として酸化クロム (Cr2 03 ) を用いる製造方法が記載されている。 この公報に記載の方法では HC FC- 125への転化を 50 %以上にすることが必要であるとしている 0 また、 実施例記載の方法では、 触媒として (NH4 ) 2 Cr2 Οτ よ り調製した高比表面積の Cr 23 触媒、 もしくはそれを C〇、 H2 、 H2 0で処理した Cr 2 03 触媒を用いている。 これらの触媒を使用し た場合、 CFC類の生成量は HFC— 125に対し 0. 3mo l½であ る。 さらに、 米国特許第 5334787号公報には、 HCFC— 1 23あ るいは HCFC— 1 24から、 Cr 2 03 を触媒とした気相反応で HF C一 125を製造する方法について記載がある。 これによれば、 CFC 類の生成比を 2%以下に抑制するためには、 HFC- 125の生成率を 高くする必要がある、 としている。 しかし、 実際の生成比についての詳 細な説明はない。 同様に米国特許第 5399549号公報にも、 上記と 同じ出発原料から Cr 2 Os触媒を用いて気相反応により HFC— 12 5を製造する方法について記載があるが、 C F C類の生成比に関する詳 細な記載はない。
一方、 特開平 6 - 247883号公報には、 HCFC— 1 23又は H CFC- 1 24のフッ素化反応にアルミナを 70%以上フッ素化した触 媒を使用し、 C F C類の生成量を低く抑えることを特徵とする HF C— 125の製造方法が開示されている。 この製造方法によると、 アルミナ の HCFC— 1 23フッ素化反応における CFC類生成量は、 反応 温度 350。Cにおいて 0. 5%であるが、 CFC類 ZHFC— 125の 比は約 1. 1%と大きい。
フヅ素ィ匕したアルミナを触媒としたテトラクロ口エチレンのフッ素ィ匕 方法が特開平 3— 505328号公報に記載されており、 90重量%以 上の A1 F3 を含むアルミナに Cr、 Mnなどの金属を担持した触媒に よる方法が開示されている。 しかし、 この公報には CFC類などの不純 物についての記載はない。
その他、 特開平 6 - 247884号公報ゃ特開平 5— 97725号公 報にも同様の手法が開示されているが、 前者の方法では反応温度 350 でで C F C類の生成量が 1. 7%、 後者の方法では反応温度 360でで 2〜3%と、 いずれも CFC類の生成量が多い。 また、 クロム触媒を用いたテトラクロロエチレンのフッ素化反応とし ては、 特開平 1— 1 46832号公報にその方法が開示されている。 触 媒はアンモニゥムジクロメートの熱分解により調製された Cr 2 03 で ある。 しかし、 CFC類の生成量についてまったく触れられていない。 特開平 8— 268933号公報には、 MgOと Cr 2 03 の混合触媒 によるテトラク π口エチレンのフッ素化方法について開示されている。 そこでは MgO量と Cr 2 03 量の比を変えたいくつかの混合触媒につ いて検討が行われている。 〇?じ類 ¾?( — 125比を最小にする C r含有率の触媒では、 テトラクロロェチレンの転化率は反応 320 での時約 9 B%, CFC /HFC- 125比は 2. 9%である。 CF C類の生成量自体は M g 0の比率が髙レ、ほうが少なレ、が、 テトラクロ口 エチレンの転化率は低く、 高い転化率を得るために C r含有率を増加さ せると、 結局 C F C類の生成量が最大 2倍まで増加することが示されて いる。
発明の目的
本発明は上記事情に鑑みてなされたもので、 その目的とするところは 、 テトラクロロエチレン又は HCFC— 123又は HCFC— 1 24を 出発原料としてフッ素化反応により H F C— 125を主な反応生成物と する含フッ素エタンを得るに際し、 そのフッ素化反応に使用する触媒に 改良を加えることにより、 副生成物である C F C類の生成を極力抑制で きる含フッ素ェタンの製造方法を匪することにある。
発明の構成
本発明の含フッ素ェタンの製造方法は、 テトラクロロエチレン、 HC FC- 123及び HCFC— 1 24からなる群より選ばれる少なくとも 1種をフッ化水素でフッ素化して、 HFC- 125を主成分とする含フ ツ素ェタンを製造する際に、 フッ^ 有量が 30重量%以上である酸化 フツイ匕クロムを触媒として用いることを特徴とする。
このように酸化フツイ匕クロム触媒のフッ素含有量を増してやると、 そ の触媒を前記出発原料のフッ素化反応に適用した場合、 副生成物の C F C類の生成を極力抑えながら、 HFC— 1 25を主成分とする含フッ素 エタンを製造することができる。 ただしこの際、 製造される含フッ素ェ タンとしては、 後述する如く通常 HFC— 1 25ばかりでなく、 HCF C一 123及び/又は HCFC— 1 24をも含有する。
本発明において出発原料となるものは、 テトラクロロェチレンと H C FC— 123と HCFC— 1 24とから選ばれ、 それぞれを単独に用い るか、 あるいは 2種以上を混合して用いる。
前記 HCFC— 1 24は、 たとえば HCFC— 1 23のフッ素ィ匕もし くは CFC— 1 14 a (2, 2—ジク πロー 1, 1, 1, 2—テトラフ ルォロェタン) の還元によって得ることができる。 また、 前記 HCFC 一 1 23は、 たとえばテトラクロロエチレンのフッ素^や HCFC— 1 33 a (2—クロ口一 1, 1, 1一トリフルォロェタン) の塩素化、 あ るいは CFC— 1 1 3 a (1, 1, 1—トリクロロー 2, 2, 2—トリ フルォロェタン) の還元と言った方法により得ることができる。 さらに 、 前記テトラクロロエチレンも、 たとえば炭化水素又はその塩素誘導体 を熱分解 で塩素化するという、 工業的によく知られた方法により製 造されるものである。
ところで、 これらの物質を出発材料に選択し、 HFによるフッ素化反 応を実施しても、 これまでの方法では CFC類/ HFC— 1 25比を小 さく抑えることはできない。 その CFC類の副生のメカニズムは、 以下 に述べるとおりである。 出発原料が H CFC- 1 24の場合、 通常の反応条件では H FC- 1 25への転化率は 1 00%にはなり得ず、 反応器には未反応の HCFC 一 1 24が存在する。 この未反応の HCFC— 124は、 副生する HC 1と反応して HCFC— 1 23を生成する。
一方、 出発原料が HCFC— 1 23の場合、 そのフッ素化反応後の反 応器出口における有機物は、 主に、 フッ素化された HCFC— 124、 HFC- 125と、 副生物の HC 1により塩素化されたテトラクロロェ チレン、 それに未反応の HCFC— 1 23である。
同様にして、 出発原料をテトラクロロエチレンとした場合、 反応器出 口における有機物は、 主に HCFC— 1 23、 HCFC— 1 24、 およ び HFC— 1 25である。
これらの反応器を通過したガスは、 収率向上のために HFC— 125 を主としたガスを分離した後に残りを反応器にリサイクルさせる。 した がって、 出発原料が何であれ、 反応器では量の大小はあるものの主とし てテトラクロロエチレン、 HCFC— 123と HCFC— 1 24の混合 物のフッ素化が進行していることになる。 そのため、 テトラクロロェチ レンを原料とする場合の副生成物である HCFC— 1 33 a、 HFC— 1 34 a (1, 1, 1, 2—テトラフルォロェタン) 、 および CFC類 の CFC— 1 1 3 a. CFC— 1 1 a. CFC— 1 1 5が生成する。 これらの反応において生成する C F C類は、 フッ素化反応により H F C - 1 25に転化することはないので、 生産においてロスとなる。 反応ガ スをリサイクルすると CFC— 1 1 3 a. CFC— 1 14 aはすべて C FC— 1 1 5にフッ素ィ匕される。 この CFC— 1 1 5は HFC— 1 25 と沸点が近く、 また比揮発度が 1に近いので通常の精留塔では分離が困 難である。 これらを除去するには抽出蒸留等の設備が別途必要となり、 コストアップの原因となる。 また、 CFC類は既述したようにオゾン層 破壊物質としてその生産が禁止されている物質でもあり、 地球環境保護 上その放出は最小限にする必要がある。 これらの理由から、 CFC- 1 1 5を初めとする CFC類の生成量は、 なるべくこれを少なくしなけれ ばならない。
本発明者はテトラクロロエチレン、 HCFC— 123、 HCFC- 1 24のフッ素化反応について鋭意検討の結果、 フッ素含量 30重量%以 上の酸化フッ化クロム触媒を用いてフッ素化反応を行うことにより、 C FC類 ZHFC— 125比 (テトラクロロエチレン原料の場合は、 CF C類と HCFC— 1 23、 HCFC— 1 24、 HFC— 1 25の合計と の比) が、 テトラクロロエチレン原料の場合に反応 iK300 Cにおい て 0. 5%以下になり、 また HCFC— 1 23原料の場合と HCFC— 12 原料の場合には反応温度 31 5 °Cにおいてそれぞれ 1. 0 %以下 、 0. 1%以下にできることを発見し、 本発明に至った。
上謙媒の調製に必要な酸化クロムについては、 たとえば特開平 5—
146680号公報に開示されているような、 活性の高い比表面積が 1
20m2 Zg以上のものが好ましい。 本発明では、 このような酸化ク o ムをさらにフッ素化してフッ素含有量を 30重量%以上とし、 反応に供 する。 したがって、 一例として、 反応器に酸化クロム (未フッ素化物) を充填した場合は、 この酸化クロムは、 前記出発原料のフッ素化反応の 少なくとも直前の段階でフッ素化し、 酸化フッ化クロムにすることがで さる。
酸化クロムのフッ素化は公知の方法、 たとえば特開平 5— 1 4668 0号公報に記載の方法に基づいて行なえばよい。 そのフッ素含有率を髙 めるためには、 たとえば酸ィ匕クロムを高温で長時間かけて HFで処理す るとよい。 実際、 酸化クロムを 360で、 220時間、 HFで処理した とき、 フッ^ ^有率が 3 1. 4重量%の酸化フッ化クロムが得られてい る。
本発明では、 上記以外の方法で調製した酸化フッ化クロムも、 目的に 適う触媒として通用することができる。 それは、 ハロゲン化炭化水素の フッ素化反応で触媒として使われた酸化フッ化ク αムである。 すなわち 、 反 J Iiiは低フッ素含有率の酸化フッ化クロムであったものが、 ハロゲ ン化炭化水素のフッ素化反応に長時間かけて使用してやると、 本発明に 適用可能なフッ素含有率が 30重量%以上という、 高フッ素含有率の酸 化フッ化クロムとすることができる。 事実、 HCFC- 1 33 aのフッ 素化反応を反応温度 350で、 HF/HCFC- 1 33 aモル比 4で 1 40時間行なつた実験によると、 フッ ^有率が 35. 2重量%もの酸 化フッ化クロムが得られている。
本発明者は、 酸化クロムを単にフッ素化するのではなく、 そのフッ素 含有量が 30重量%以上となるようにフッ素化することがきわめて重要 であることを見出したのである。 本発明者の知見によると、 酸化クロム のフッ素化率(フッ素含有量) を 30重量%以上としてはじめて、 目的 とする HFC— 125が高選択率で得られ、 CFC類の生成が十分に抑 制される。 このフッ素含有量の好ましい範囲は 30〜45重量%の間に 存在している。
本発明では、 触媒の酸化フッ化クロムの比表面積について特に限定条 件はっけないものの、 通常は 25m2ノ g〜l 30m2 Zg、 好ましく は 40m2 ノ g〜l 0 Om2 の範囲である。
本発明における出発原料の HFによるフッ素化反応は、 通常 250〜 40 OeC、 好ましくは 280〜350 °Cの反応温度で実施され、 接触温 度及びモル比が同じであれば、 反応温度が高いほど HFC— 125への 転化率は高くなる。 ただし、 反応渡は副生成物の生成量に大きく影響 するので、 慎重に選ぶ必要がある。
フッ素化反応に用いる HFと既述した出発原料との比についても、 本 発明では特に限定はしない。 が、 HFとテトラクロロエチレン、 HFと HCFC— 124、 HFと HCFC— 123のモル比は通常 1. 5 : 1 から 15 : 1の範囲で選ばれ、 好ましくは 2 : 1から 9 : 1である。 特 に H F量の比率を高めてフッ素化反応を行なうことは、 C F C類の生成 量を少なくする上ではなるほど好ましいのであるが、 その反面 HFのリ サイクル量が増加するのでプロセス自体の経済性は低下し、 その点から すると不利である。 したがつてこの両者を同時に考慮に入れながら、 個 々の反応条件のバランスをとりつつフッ素化反応を行なうのがより現実 的である。
本発明においては、 出発原料のフッ素ィ 応の圧力は特に限定される ものではないが、 生成物の分離、 精製工程は加圧条件下の方が有利であ るので、 これらの条件も頭に入れた上で決定するのがよい。 通常、 よく 採用される反応圧力の範囲は、 0. 01MPaG〜2. OMPaGであ 本発明では、 出発原料のフッ素化反応により生成した HFC— 125 を主成分に含むガスを、 いったん分離回収し、 しかるのち HCFC— 1 23及び Z又は H CFC- 124を含む残分を、 複数回反応器へリサイ クルさせることが望ましい。 これは、 HFC— 125の収量が向上する からであるが、 このリサイクルによっても C F C類の生成が抑えられる ことは本発明の顕著な効果の 1つである。
なお、 本発明の実施に際しては、 経時的な触媒の劣化と言う現象に注 意しなければならなレ、場合がある。
本発明ではこの触媒の劣化が特に問題になる場合に備えて、 それを効 果的に防ぐ対策として出発原料に 0. 1モル%から 1 0モル の酸素を 同伴させることが好ましい。
産 の利用可能性
本発明の含フッ素エタンの製造方法によれば、 テトラクロロエチレン
、 HCFC- 1 23、 HCFC- 1 24からなる群より選ばれる少なく とも 1種を出発原料に選び、 それをフッ化水素によりフッ素化する際に 、 フッ^^有量が 30重量%以上と高く特定された酸化フッ化クロムを 触媒に用いるので、 CFC類の生成を極力抑えながら、 HFC- 1 25を主 成分とする含フッ素エタンを製造することができる。
実施例
以下、 本発明を実施例に基づいてさらに具体的に説明する。 なお、 本 発明がそれに限定されないことは言うまでもないことである。
実施例 1
雌である酸化フツ化クロムは以下のようにして調製した。 まず、 硝 酸クロムの 5. 7%水溶液7652に1 0%のアンモニア水を加え、 得 られた沈澱をろ過洗浄後、 空気中で 1 20て、 12時間乾燥し水酸化ク ロムを得た。 この水酸化クロムを直径 3. 0mm、 高さ 3. 0mmのぺ レツトに成形し、 このペレツトを窒素気流中 400。Cで 2時間焼成し、 酸ィ匕ク αムを得た。
次に、 この酸化クロムを 200。C〜360。Cまで段階的に ¾Κを上げ ながら 360てに到達後、 フッ化水素により 220時間フッ素化し、 酸 化フ 化クロムを得た。 この酸化フッ化クロムの B E T法による比表面 積の結果は 70m2 /g、 フッ^有量は 3 1. 4重量%であった。 次に、 この酸化フッ化クロムを触媒として、 :》じ?〇— 1 24のフッ 素化反応を下記の条件で行なった。 触媒量: 1 0 g. HCFC- 124 & 5 ONml mi n HFSfifi: 1 0 ONml/m i n. W/F o : 4 (g · s e c · Nm 1 -1)、 HF/HCFC- 124モル比: 4 、 反応 : 3 1 5 °Co なお、 反応は触媒を内径 1 5 mmのハステロイ C^ 応管に充填して行なった。 反応ガスは水洗後、 ボラパック Qカラ ムのガスクロマトグラフィにより分析した。 その結果を下記の表 1に示 す。
表 1
Figure imgf000012_0001
* W:触媒重量(g)、 Fo: 標準状態換算のガス流量(ral/sec) 。 実施例 2
HCFC- 1 33 aのフッ素化反応に用いた酸化フッ化クロム 〔フッ 素含有量: 35. 2重量 〕 を用いたこと以外は、 実施例 1と同様の条 件で H CFC— 124のフッ素化反応を行った。 反応の結果を下記の表 2に示す。 表 2
Figure imgf000013_0001
実施例 3
HCFC 1 33 aのフッ素化反応に用いた酸化フッ化クロム 〔フッ素 含有量: 4 1. 5重量 〕 を用いたこと以外は、 実施例 1と同様の条件 で H C F C— 1 24のフッ素化反応を行った。 反応の結果を下記の表 3 に示す。
表 3
Figure imgf000013_0002
比較例 1
酸化クロムのフッ素化条件を 200で、 2時間とした触媒 (比表面積 : 1 0m2 Zg、 フッ素含有量: 12重量 。 以下 「低フッ素ィ 媒 J とする。 ) を用いたこと以外は実施例 1と同様の条件で HCFC— 1 24のフッ素化反応を行った。 反応の結果を下記の表 4に示す。
表 4
Figure imgf000014_0001
実施例 4
HCFC- 1 2 を 1 0 ONmlZmi n、 HF流量を 20 ON ml /mi n及び WZFoを 2 (g · s e c · Nm 1 "O としたこと以 外は実施例 2と同様の条件で H C F C— 124のフッ素化反応を行-つ 7こ 。 反応の結果を下記の表 5に示す。
W 表 5
Figure imgf000015_0001
比較例 2
酸化クロムのフッ素化条件を 3 6 0で、 1 55時間とした触媒 〔フッ ^有量: 25重量%〕 を用いたこと以外は、 実施例 1と同様の条件で HCFC— 1 24のフッ素化反応を行つた。 反応の結果を下記の表 6に 示す。
表 6
Figure imgf000015_0002
比較例 3
使用する触媒を比較例 1で使用した低フッ素ィ 媒とした以外は実施 例 4と同様の条件で H CFC— 1 24のフッ素化反応を行った。 反応の 結果を下記の表 7に示す。
表 7
Figure imgf000016_0001
実施例 5
HF/HCFC- 1 24モル比を 4、 HCFC— 1 24流量を 3 ON ml mi n, HF流量を 1 20 Nm 1 Ζπ i nとしたこと以外は実施 例 2と同様の条件で HC F C— 1 24のフツ素化反応を行った。 反応の 結果を下記の表 8に示す。
表 8
W/Fo HF/HCFC 反応温度 有機物中濃度 (% CFCS/
- 124 (°C) HFC-125 モル比 HCFC HCFC HFC CFC類 {%)
-123 -124 -125
4 4 315 6.5 40.7 52.7 0.044 0.084 比較例 4
使用する触媒を比較例 1で使用した低フッ素化触媒とした以外は実施 例 5と同様の条件で H C F C— 1 24のフッ素化反応を行った。 反応の 結果を下記の表 9に示す。
表 9
Figure imgf000017_0001
実施例 6
HCFC- 123を出発原料とし、 HCFC— 123流量を 30 Nm IZmi n、 HF流量を 12 ONmlノ mi n、 WZFoを 4 (g · s e c • Nml-1)、 HF/HCFC- 123モル比を 4、 反応温度を 3 1 5でとしたこと以外は実施例 2と同様の条件でフッ素化反応を行った 。 反応の結果を下記の表 1 0に示す。
表 1 0
Figure imgf000018_0001
比較例 5
使用する触媒を比較例 1で用いた低フッ素化触媒とした以外は実施例 6と同様の条件で HCFC— 1 23のフッ素化反応を行った。 反応の結 果を下記の表 1 1に示す。
表 1 1
Figure imgf000018_0002
実施例 7
実施例 2と同じ触媒を使用し、 テトラクロロエチレン (表中では C2 C l 4 とする。 ) を出発原料としたフッ素化反応を行なった。 テトラク ロロエチレン供給量 : 0. 22 g/m i n、 HF驢: 270 Nm 1 / mi n、 HFZテトラクロロエチレン モル比 9、 WZFo = 2で反応 を行った。 反応の結果を下記の表 12に示す。 ただしテトラクロロェチ レンの反応においては、 表中では CFC類と HCFC— 1 23、 HCF C— 1 24、 HFC- 1 25の合計(¾TF 1 2Xとする。 ) との比を示 す。
表 1 2
Figure imgf000019_0001
比較例 6
実施例 7の反応において、 触媒を比較例 1で使用した触媒と同じもの とした以外は実施例 7と同様の条件でテトラクロ口エチレンのフッ素化 反応を行った。 反応の結果を下記の表 1 3に示す。
表 1 3
Figure imgf000020_0001
実施例 8
反応ガス中にテトラクロロェチレンに対し 1 m 0 1 %の酸素を同伴し た以外は実施例 7と同様の条件でテトラクロ口エチレンのフッ素化反応 を行った。 反応の結果を下記の表 1 4に示す。 劣化による目立った触媒 活性の低下は、 1 0 0 0時間反応後でも見られなかった。
表 1 4
Figure imgf000020_0002
比較例 7
実施例 8の反応において、 触媒を比較例 1で使用した触媒を同じもの とした以外は実施例 8と同様の条件でテトラクロ口エチレンのフッ素化 反応を行った。 反応の結果を下記の表 1 5に示す。
表 1 5
Figure imgf000021_0001
各実施例に示すように、 本発明の条件を満たす触媒を出発原料のフッ 素化反応に用いれば、 反応条件や出発原料を変更しても、 目的物を良い 選択率で得ながら、 C F C類の生成を十二分に抑制できることが分かる 。 それに対し、 各比較例に示すように本発明の条件から外れた触媒を用 いた場合は、 顕著な C F C類生成抑制効果を奏することはできない。

Claims

請求の範囲
1. テトラクロロエチレン、 2, 2—ジクロロー 1, 1, 1 - トリフルォロェタン及び 2—クロロー 1, 1, 1, 2—テトラフルォロ ェタンからなる群より選ばれる少なくとも 1種をフツ化水素でフッ素化 して、 1, 1, 1, 2, 2—ペンタフルォロエタンを主成分とする含フ ッ素ェタンを製造する際に、 フッ^"有量が 30重量%以上である酸化 フツイ匕クロムを触媒として用いることを特徴とする含フッ素エタンの製 造方法。
2. 前記酸化フッ化クロム触媒のフッ素含有量を 30〜45重 量%とする、 請求項 1に記載の含フッ素ェタンの製造方法。
3. 2—クロ口一 1, 1, 1, 2—テトラフルォロェタン及び Z又は 2, 2—ジクロロ— 1, 1, 1一トリフルォロェタンをも前言阪 応生成物として含む含フッ素エタンを得る、 請求項 1に記載の含フッ素 ェタンの製造方法。
4. 反応混合物から主として 2—クロ口— 1, 1, 1, 2—テ トラフルォロェタン及び Z又は 2, 2—ジクロロー 1, 1, 1—トリフ ルォロエタンを前記フッ素化反応に循環させる、 請求項 1に記載の含フ ッ素ェタンの製造方法。
5. 前記酸化フッ化クロム触媒を、 酸化クロムのフッ素化反応 により調製する、 請求項 1に記載の含フッ素エタンの製造方法。
6. 前記酸化フッ化クロム触媒として、 ハロゲン化炭化水素の フッ素化反応で生じた酸化フッ化ク口ム触媒を用いる、 請求項 1に記載 の含フッ素エタンの製造方法。
PCT/JP1999/003868 1998-07-17 1999-07-16 Procede pour produire du fluoroethane WO2000003962A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/743,468 US6455745B1 (en) 1998-07-17 1999-07-16 Manufacturing method for fluorine-containing ethane
EP99929890.4A EP1110936B2 (en) 1998-07-17 1999-07-16 Process for producing fluoroethane
DE69937244.5T DE69937244T3 (de) 1998-07-17 1999-07-16 Verfahren zur herstellung von fluoroethan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/203515 1998-07-17
JP20351598A JP4378779B2 (ja) 1998-07-17 1998-07-17 含フッ素エタンの製造方法

Publications (1)

Publication Number Publication Date
WO2000003962A1 true WO2000003962A1 (fr) 2000-01-27

Family

ID=16475439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003868 WO2000003962A1 (fr) 1998-07-17 1999-07-16 Procede pour produire du fluoroethane

Country Status (9)

Country Link
US (1) US6455745B1 (ja)
EP (1) EP1110936B2 (ja)
JP (1) JP4378779B2 (ja)
KR (1) KR100415739B1 (ja)
CN (1) CN1212297C (ja)
AT (1) ATE374738T1 (ja)
DE (1) DE69937244T3 (ja)
ES (1) ES2293727T3 (ja)
WO (1) WO2000003962A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055277A (ja) * 2001-08-16 2003-02-26 Showa Denko Kk ヘキサフルオロエタンの製造方法およびその用途
US7074974B2 (en) 2002-03-11 2006-07-11 Showa Denko K.K. Process for the production of fluoroethane and use of the same
GB0525699D0 (en) 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525701D0 (en) * 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525700D0 (en) * 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
ES2523694T3 (es) * 2006-07-13 2014-11-28 E.I. Du Pont De Nemours And Company Procesos de producción catalítica para preparar 1,2,3,3,3-pentafluoropropeno
FR2907449B1 (fr) * 2006-10-20 2009-01-02 Arkema France Procede de fabrication du pentafluorethane.
JP4849058B2 (ja) 2007-11-21 2011-12-28 ダイキン工業株式会社 含フッ素オレフィンの製造方法
US8975455B2 (en) * 2007-12-14 2015-03-10 Daikin Industries, Ltd. Method for producing pentafluoroethane
ES2879276T3 (es) 2008-09-05 2021-11-22 Mexichem Fluor Sa De Cv Catalizador de fluoración fluorado y procedimiento para la producción de hidrocarburos fluorados
GB0816208D0 (en) 2008-09-05 2008-10-15 Ineos Fluor Holdings Ltd Catlyst and process using the catalyst
JP5418603B2 (ja) 2009-04-23 2014-02-19 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
ES2643322T3 (es) 2009-06-03 2017-11-22 The Chemours Company Fc, Llc Proceso de fabricación del 2,3,3,3-tetrafluoropropeno
US9284240B2 (en) 2010-10-22 2016-03-15 Arkema France Process for the manufacture of 2-chloro-3,3,3-trifluoropropene by gas phase fluorination of pentachloropropane
CN102617271A (zh) * 2012-03-05 2012-08-01 常熟三爱富氟化工有限责任公司 五氟乙烷的制备方法
JP6806174B2 (ja) * 2019-02-19 2021-01-06 ダイキン工業株式会社 1,1,2−トリフルオロエタン(hfc−143)の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262946A (ja) * 1988-04-13 1989-10-19 Daikin Ind Ltd クロム系フッ素化触媒の賦活方法
JPH05146680A (ja) * 1991-05-24 1993-06-15 Daikin Ind Ltd フツ素化触媒およびハロゲン化炭化水素のフツ素化方法
US5334787A (en) * 1991-05-06 1994-08-02 E. I. Du Pont De Nemours And Company Process for the manufacture of pentafluoroethane
WO1995032168A1 (en) * 1994-05-25 1995-11-30 Alliedsignal Inc. Single stage process for producing hydrofluorocarbons from perchloroethylene
JPH0838904A (ja) * 1993-09-07 1996-02-13 Showa Denko Kk クロム系フッ素化触媒、その製法及びフッ素化方法
JPH09141105A (ja) * 1995-11-24 1997-06-03 Daikin Ind Ltd フッ素化用成形触媒及びハロゲン化炭化水素の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158675A (en) * 1977-09-23 1979-06-19 Imperial Chemical Industries Limited Manufacture of halogenated compounds
FR2661906B1 (fr) 1990-05-11 1993-10-01 Atochem Procede de fabrication du 1,1,1,2-tetrafluoro-chloroethane et du pentafluoroethane.
US5155082A (en) 1991-04-12 1992-10-13 Allied-Signal Inc. Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons
ZA923274B (en) 1991-05-06 1993-11-08 Du Pont Process for the manufacture of pentafluoroethane
CA2069149C (en) * 1991-05-24 2002-09-03 Takashi Shibanuma Fluorination catalyst and process for fluorinating halogenated hydrocarbon
EP0844226B1 (en) * 1993-03-05 2001-10-31 Daikin Industries, Limited Method of purifying 1,1,1,2,2-pentafluoroethane
GB9406813D0 (en) 1994-04-06 1994-05-25 Ici Plc Production of pentafluoroethane
WO1995031945A1 (en) 1994-05-19 1995-11-30 Scimed Life Systems, Inc. Improved tissue supporting devices
US5475167A (en) 1995-02-17 1995-12-12 E. I. Du Pont De Nemours And Company Process for the manufacture of pentafluoroethane
ES2159718T3 (es) 1995-02-24 2001-10-16 Daikin Ind Ltd Procedimiento de produccion de pentafluoroetano y de tetrafluoroetano.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262946A (ja) * 1988-04-13 1989-10-19 Daikin Ind Ltd クロム系フッ素化触媒の賦活方法
US5334787A (en) * 1991-05-06 1994-08-02 E. I. Du Pont De Nemours And Company Process for the manufacture of pentafluoroethane
JPH05146680A (ja) * 1991-05-24 1993-06-15 Daikin Ind Ltd フツ素化触媒およびハロゲン化炭化水素のフツ素化方法
JPH0838904A (ja) * 1993-09-07 1996-02-13 Showa Denko Kk クロム系フッ素化触媒、その製法及びフッ素化方法
WO1995032168A1 (en) * 1994-05-25 1995-11-30 Alliedsignal Inc. Single stage process for producing hydrofluorocarbons from perchloroethylene
JPH09141105A (ja) * 1995-11-24 1997-06-03 Daikin Ind Ltd フッ素化用成形触媒及びハロゲン化炭化水素の製造方法

Also Published As

Publication number Publication date
ES2293727T3 (es) 2008-03-16
EP1110936B1 (en) 2007-10-03
ATE374738T1 (de) 2007-10-15
EP1110936B2 (en) 2015-11-18
JP2000034237A (ja) 2000-02-02
CN1212297C (zh) 2005-07-27
KR100415739B1 (ko) 2004-01-24
EP1110936A4 (en) 2003-07-16
EP1110936A1 (en) 2001-06-27
US6455745B1 (en) 2002-09-24
CN1308596A (zh) 2001-08-15
DE69937244T2 (de) 2008-07-24
DE69937244T3 (de) 2016-03-10
KR20010071826A (ko) 2001-07-31
JP4378779B2 (ja) 2009-12-09
DE69937244D1 (de) 2007-11-15

Similar Documents

Publication Publication Date Title
EP0931043B1 (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
JP3518321B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
US7312367B2 (en) Method of making 1,1,3,3,3-pentafluoropropene
US5763706A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3,3-hexafluoropropane
EP0734366B1 (en) Production of pentafluoroethane
US20150259266A1 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP2001503771A (ja) ハイドロクロロカーボン及びハイドロクロロフルオロカーボンの液相接触フッ素化
JP2014500858A (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JPH09183740A (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
WO2000003962A1 (fr) Procede pour produire du fluoroethane
JP5146466B2 (ja) ペンタフルオロエタンの製造方法
KR100515463B1 (ko) 히드로플루오로알칸의제조방법
JP2001524460A (ja) 弗素含有有機化合物の製造
US5902913A (en) Production of hydrofluoroalkanes
JP3173010B2 (ja) 1,1,1,2,2−ペンタフルオロエタンの製造方法
JP3853397B2 (ja) ペンタフルオロエタンの製造方法及びペンタフルオロエタンに転化するのに適当な組成物
JPH11116510A (ja) 1,1,1,2,2−ペンタフルオロエタンの製造方法
EP1542949B1 (en) A process for the production of difluoromethane
JP2016006110A (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP2002502834A (ja) ヘプタフルオロプロパンの製造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99808327.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999929890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09743468

Country of ref document: US

Ref document number: 1020017000393

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999929890

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017000393

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017000393

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999929890

Country of ref document: EP