WO2000003051A1 - Alliage amorphe presentant une excellente resistance a la flexion et aux chocs et son procede de production - Google Patents

Alliage amorphe presentant une excellente resistance a la flexion et aux chocs et son procede de production Download PDF

Info

Publication number
WO2000003051A1
WO2000003051A1 PCT/JP1999/003385 JP9903385W WO0003051A1 WO 2000003051 A1 WO2000003051 A1 WO 2000003051A1 JP 9903385 W JP9903385 W JP 9903385W WO 0003051 A1 WO0003051 A1 WO 0003051A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
amorphous
amorphous alloy
strength
impact
Prior art date
Application number
PCT/JP1999/003385
Other languages
English (en)
French (fr)
Inventor
Akihisa Inoue
Tau Zhang
Nobuyuki Nishiyama
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to EP99926803A priority Critical patent/EP1036854B1/en
Priority to US09/486,948 priority patent/US6582538B1/en
Priority to DE69928217T priority patent/DE69928217T2/de
Publication of WO2000003051A1 publication Critical patent/WO2000003051A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys

Definitions

  • the present invention relates to an amorphous alloy having excellent bending strength and impact strength.
  • an amorphous metal material having various shapes such as a ribbon shape, a filament shape, and a granular material shape can be obtained by rapidly cooling a molten alloy.
  • Amorphous alloy ribbons can be easily produced by methods such as the single-necked-roll method, twin-roll method, and spinning-in-rotating-liquid spinning method, which provide high cooling rates.
  • amorphous alloys exhibit industrially extremely important properties such as high corrosion resistance and high strength that cannot be obtained with crystalline metal materials, and have been used in new fields such as structural materials, medical materials, and chemical materials. Application is expected.
  • amorphous alloys obtained by the above-described manufacturing method are limited to thin ribbons and thin wires, and it is difficult to process them into a final product shape using them. Was limited.
  • amorphous alloy ingots with dimensions sufficient to meet the requirements of structural materials.
  • an amorphous alloy lump having a diameter of 30 mm and a length of 50 mm (see the Journal of the Japan Institute of Metals, 1995, 36, 1184), and Pd-Ni-Cu- In the P series, amorphous alloy ingots with a diameter of 72 and a length of 75 mm have been obtained (see Journal of the Japan Institute of Metals, European, 1997, 38, 179).
  • These amorphous alloy ingots have a tensile strength of 1700 MPa or more and a Vickers hardness of 500 or more, and are expected to be extremely high-strength structural materials. Disclosure of the invention
  • the above-mentioned amorphous alloy ingot has poor elastic-plastic deformation ability at room temperature due to its disordered atomic structure (glassy), and is not accompanied by strength due to bending strength and impact load. Poor sex. Therefore, there has been a demand for the development of an amorphous alloy having improved strength against bending and impact loads without deteriorating the high strength properties due to the amorphous structure, and a method for producing the same.
  • the present inventors provide an amorphous alloy having improved bending strength and impact strength that can be used practically without impairing the high strength characteristics due to the amorphous structure.
  • As a result of diligent research on the purpose of this study as a result of pressurizing and solidifying the molten alloy with the ability to form an amorphous body at a pressure exceeding 1 atm, and by appropriately adjusting the cooling rate during solidification, fine crystals are formed in the amorphous alloy.
  • An amorphous alloy ingot having a structure in which is dispersed is obtained, and it is found that this amorphous alloy ingot has high strength against bending and impact load, The present invention has been completed.
  • the present inventors have compared the amorphous alloy with improved bending strength and impact strength with elements such as boron, carbon, oxygen, nitrogen, and fluorine having a smaller atomic radius than a metal element. Bending strength of the amorphous alloy by penetrating from the surface of the amorphous alloy to form a high melting point compound and leaving a continuous compressive stress layer from the surface of the amorphous alloy due to volume reduction when the compound is generated It has been found that the impact strength is further improved, and the present invention has been completed.
  • the molten alloy having the ability to form an amorphous body is pressurized and solidified at a pressure exceeding 1 atm, and the cooling rate during the solidification is adjusted so that the average crystal grain size in the amorphous alloy ingot is reduced.
  • ⁇ ⁇ ! To provide an amorphous alloy having a minimum thickness of 2 mm or more and excellent in bending strength and impact strength, in which fine crystals having a crystal volume fraction of 5 to 40 ⁇ m and a crystal volume fraction of 5 to 40% are dispersed, and a method for producing the same. It is.
  • the present invention provides a high melting point compound of at least one of boron, carbon, oxygen, nitrogen, and fluorine, which has permeated from the surface of the amorphous alloy mass produced by the above method, and an element forming an amorphous alloy. Is deposited inside the alloy, and the structure is inclined from the surface layer toward the inside, whereby an amorphous alloy having excellent bending strength and impact strength in which a compressive stress layer is formed on the surface of the alloy and a method for producing the same. Is provided.
  • the ability to form an amorphous alloy differs depending on the alloy system to be manufactured, so that the cooling rate (critical cooling rate) required for forming an amorphous alloy differs.
  • the cooling rate critical cooling rate
  • the ability to form an amorphous alloy differs depending on the alloy system to be manufactured, so that the cooling rate (critical cooling rate) required for forming an amorphous alloy differs.
  • critical cooling rate For example, about 100 ° C / sec for the Zr and La systems, about 1.6 ° C / sec for the Pd system, and about 100 ° C / sec for the Fe system.
  • the amorphous alloy of the present invention has a minimum thickness of 2 mm or more by the above-described manufacturing method.
  • the thickness is less than 2 mm, a sufficient cooling rate for amorphization can be obtained and an amorphous alloy plate can be easily prepared, but the critical cooling rate of the alloy is reduced by about 20 to 50%. It becomes difficult to solidify the molten alloy while adjusting the cooling rate to obtain an amorphous alloy having a crystal grain size and a crystal volume fraction as defined in claim 1.
  • the thickness of the amorphous forming alloy which has been found up to now has reached a thickness of 72 mm, but the crystal grain size and the crystal size specified in claim 1 have been defined. If the thickness exceeds about 1 Omm in the range of the cooling rate at which the volume fraction can be realized, coarse intermetallic compounds are precipitated inside the alloy, and the mechanical properties are significantly impaired. Therefore, the thickness of the amorphous alloy is preferably 2 mm or more, and is preferably about 1 Omm or less in terms of mechanical strength.
  • the effective pressing force at the time of solidifying the molten metal is more than 1 atm, more preferably 2 atm or more. If the applied pressure is less than 1 atm, defects generated during fabrication cannot be crushed and eliminated.
  • injection molding methods such as die compression by hydraulic pressure, pneumatic pressure, electric drive and the like, die casting and squeeze casting are preferably used.
  • the average particle size of the crystals contained in the amorphous phase is 1 ⁇ !
  • the crystal volume fraction was defined as 5 to 40%. This requirement is indispensable for improving the strength against bending and impact load, which is the basis of the present invention. That is, when the average crystal grain size is less than 1 nm, the fine crystals do not effectively act on the improvement of bending strength and impact strength. On the other hand, if it exceeds 50 Atm, this coarsely grown crystal acts as a starting point of fracture, lowering the strength against bending and impact loads, but also deteriorating the original amorphous high-strength properties. . More preferably, 10 On! ⁇ 10 / m.
  • the volume fraction has a correlation with the crystal grain size, and the volume fraction generally decreases as the crystal grain size decreases. If the crystal volume fraction is less than 5%, as in the case of an average crystal grain size of less than 1 nm, the fine crystals do not effectively improve the strength against bending and impact loads. If the crystal volume fraction exceeds 40%, the crystal breaks down as in the case of the average crystal grain size exceeding 50 ⁇ m. It acts as a point and impairs not only the bending and impact but also the high strength properties inherent to amorphous. More preferably, it is 10% to 30%.
  • Ordinary metal crystals have an axis of easy deformation that is easily deformed in part because of their regular atomic arrangement.
  • the strength of the metal crystal material is defined by the axis of easy deformation.
  • amorphous alloys are structurally characterized by an isotropic and disordered atomic arrangement, and therefore do not have anisotropy, which tends to cause partial elasto-plastic deformation.
  • there is no partially low strength axis and hence the amorphous alloy exhibits high strength properties.
  • the lack of the elasto-plastic easy axis causes a decrease in bending strength and strength against impact load.
  • the crystal when a crystal having a constant grain size and a constant volume fraction is dispersed in an amorphous alloy, the crystal acts to relieve internal stress generated in the amorphous due to externally applied stress. Having. In addition, since the crystal shrinks during solidification, it solidifies while giving residual compressive stress to the surrounding amorphous phase, and thus has the effect of improving the strength of the amorphous phase itself.
  • Equation (1) uses the amorphous and crystalline thermal expansion coefficients ⁇ and Is expressed as the following equation (2).
  • f v 3 (a-a ') ⁇ / (1 + ⁇ ) ⁇ ⁇ ⁇ (2)
  • E in the above equation (2) indicates the elastic modulus.
  • the elastic modulus (E) and the volumetric strain ( ⁇ V) have the relationship of the following equation (3).
  • This value substantially corresponds to the improvement in bending strength of an amorphous alloy in which crystalline particles are mixed, which will be described later. Therefore, the amorphous solidified with the mixture of the crystalline remains large internal stress, and it is presumed that this internal stress improves the strength against bending and impact loads.
  • a surface treatment method using a salt bath and gas is more preferably used. Control of the thickness and texture gradient of the residual compressive stress layer on the surface is easily achieved by the processing temperature and time.
  • the surface of the sample that has been subjected to diffusion treatment at 500 ° C. for 3 minutes, which is the supercooled liquid region of the alloy, has ⁇ -ZrC (melting point: 3430 ° C) was identified by X-ray diffraction, and the hardness of the cross section showed a gradual hardening over a depth of about 100 m from the surface.
  • a high melting point compound was formed on the surface of the amorphous alloy by ion implantation and diffusion treatment, and that the compound had a composition gradient from the surface toward the inside.
  • the cause of the compressive stress remaining on the amorphous surface due to the permeation of the element and the cause of the improvement in the bending strength and impact strength of the amorphous alloy due to the residual compressive stress will be described.
  • An ordinary metal crystal has an axis of easy deformation that is partially deformable due to its regular atomic arrangement.
  • the strength of the crystalline metal material is defined by the axis of easy deformation.
  • amorphous alloys are structurally characterized by isotropic and disordered atomic arrangements, and therefore do not have anisotropy, which tends to cause partial plastic deformation. Therefore, there is no partially low-strength axis, and therefore, the amorphous alloy exhibits high strength and high elasticity limit characteristics.
  • the lack of an axis of easy plastic deformation causes a decrease in bending strength and strength against impact loads.
  • amorphous substance particularly an oxide glass
  • the glass is cooled by a wind force during solidification to leave a compressive stress in the surface layer, thereby improving the mechanical properties of the glass.
  • Tempered glass is generally commercially available.
  • the essence of this strengthening mechanism lies in the residual compressive stress of the surface layer.
  • a metal generally requires a large cooling rate for amorphization, it is difficult to precisely control the application of residual compressive stress by the cooling rate. Leaving compressive stress on the surface of the amorphous alloy, as shown in the present invention, has the same effect as wind-strengthening usually used for oxide glass.
  • Infiltration elements used in the present invention generally have a smaller atomic radius than metal elements. This suggests that penetrating elements can be easily diffused into amorphous alloys having relatively large voids (free volume) compared to crystalline alloys. In addition, some amorphous alloys transition to a supercooled liquid state before crystallization when heated at a constant heating rate, and the free volume increases rapidly. In the case of crystalline alloys, the penetration of elements is extremely concentrated near the surface, whereas in the case of amorphous alloys that transition to the supercooled liquid state due to this transition phenomenon, the penetration depth is greatly increased.
  • these infiltration elements generate compounds and elements constituting the amorphous alloy.
  • This compound for example, Z r with respect to base amorphous alloys, boron, carbon, oxygen and infiltrated and diffused nitrogen, the resulting compounds, respectively, Z r B 2, ⁇ - Z r C, ⁇ - Z r 0 2 -x, a Z r N.
  • These compounds generally have a melting point of about 300 ° C. and a hardness sufficient to form a tool edge.
  • a compound obtained by reacting a known amorphous alloy with a base metal also has similar properties. These formed compounds have crystallinity and condense and decrease in volume upon formation.
  • This volume reduction causes compressive stress to remain in the amorphous alloy around the crystal.
  • the fracture behavior of the amorphous is attributed to the breaking of bonds between atoms. This bond is easily broken by tensile stress, but it is said that it is difficult to crush the bond by compressive stress. Furthermore, it is said that the origin of this bond breaking is the stress concentration area near the surface flaw ("Invitation to Glass", Tsutomu Minami, Sangyo Tosho, 1993, pp. 98). Therefore, applying compressive stress to the amorphous surface in advance can be said to be an effective method to prevent the destruction of the amorphous alloy.
  • the compound consisting of the infiltrating element and the constituent element of the amorphous alloy is the mechanism for generating the surface residual compressive stress, and the bending and impact strength can be effectively improved by this stress.
  • Example 1 For a material having the alloy composition shown in Table 1 (Examples 1 to 3), a 3 mm-thick non- A crystalline alloy ingot was prepared. Tensile strength ( ⁇ f) and hardness were measured using an Instron tensile tester and a Vickers microhardness tester. Impact value and bending strength were evaluated by Charpy impact test and three-point bending test.
  • the cooling rate is intentionally increased or decreased with an amorphous alloy lump (Comparative Examples 1 and 2) and a compression molding apparatus by a normal pressureless die casting, and is defined in the claims.
  • Amorphous alloy blocks (Comparative Examples 4 to 8) which did not satisfy the average crystal grain size or the crystal volume fraction were prepared.
  • d av is the average grain size
  • Vf is the crystal volume fraction
  • Hv is the Vickers hardness
  • P max, ⁇ , and ab are the bending, respectively. Indicates the maximum load, maximum deflection and bending strength in the test.
  • Comparative Examples 1 and 2 in which the mold was manufactured under no pressure conditions despite having the same composition as Examples 1 and 2 and satisfying the crystal grain size and volume fraction specified in the claims.
  • the impact value and the bending strength are not improved at around 70 and 170 OMPa, respectively.
  • Comparative Examples 3 and 4 the pressurizing conditions and the alloy composition at the time of fabrication were the same as in Examples 1 and 2, but the cooling rate was not adjusted and the quenching was sufficiently performed to determine the scope of the claims. Satisfying the average crystal grain size but not satisfying the crystal volume fraction j. In Comparative Examples 3 and 4, the original tensile strength and hardness of the amorphous alloy were not impaired, but the impact value and flexural strength were equivalent to those of Comparative Examples 1 and 2, and the effect of dispersion of fine crystals was obtained. It is not allowed.
  • Comparative Examples 5 and 6 growth was performed at a higher temperature than the optimum manufacturing conditions in Examples 1 to 3, thereby lowering the cooling rate and growing more than 50 ⁇ , which specifies the average crystal grain size in the claims. It was made. Due to the growth of crystal grains, the impact value and bending strength of the alloy are lower than that of the amorphous single-phase material without pressure structure (Comparative Examples 1 and 2), and the presence of coarse grains adversely affects the impact value and bending strength. It is understood that In addition, the intrinsic tensile strength of the amorphous is significantly impaired by the increase in the average crystal grain size.
  • the average particle size 1 ⁇ ⁇ ! By producing an amorphous alloy block in which fine crystals of up to 50 / Xm are dispersed with a volume fraction of 5 to 40%, the impact load can be maintained without impairing the original tensile strength of the amorphous alloy. And bending loads
  • the strength with respect to 20 can be greatly improved.
  • Examples 4 and 5 consisting of the alloy composition shown in Table 2, a pressure of 3 atm and a water-cooled copper mold were used to request a thickness of 3 mm using a pressure forming machine capable of compressing the mold by air pressure.
  • Amorphous alloy samples satisfying the average crystal grain size and crystal volume fraction specified in paragraph 1 were prepared, and then processed by various surface compressive stress application methods shown in Table 2. (Examples 4 and 5) were prepared.
  • an amorphous single-phase alloy (Comparative Examples 9 and 10) produced by a normal pressureless die casting and an average crystal grain size specified in claim 1 were measured using a pressure casting apparatus.
  • the amorphous alloys satisfying the crystal volume fraction but not subjected to the subsequent strengthening treatment (Comparative Examples 11 and 12) were used as the amorphous single-phase alloys by the normal non-pressing die structure.
  • Amorphous alloy samples (Comparative Examples 13 and 14) treated by various surface compressive stress applying methods embodying the strengthening method of the present invention were produced.
  • Tensile strength ( ⁇ ( ) and hardness were measured using an Insulin tensile tester and Vickers hardness tester. Impact value and bending strength were evaluated by a Charpy impact test and a three-point bending test.
  • the amorphous alloys of Examples 4 and 5 had 180 kJ / m It has an impact value of more than 2 and a flexural strength of more than 400 OMPa, and the tensile strength of bow I shows a value of about 160 OMPa.
  • the presence of the appropriate crystallites and subsequent strengthening have achieved a significant improvement in bending and impact strength with little loss of the intrinsic tensile strength of the amorphous.
  • Comparative Examples 9 and 10 in which the mold was manufactured under no pressure conditions had impact values and flexural strengths of about 70 and 170 OMPa, respectively, despite having the same composition as Examples 4 and 5. It is about.
  • Comparative Examples 11 and 12 the average particle size and volume fraction of the microcrystals were the same as in Examples 4 and 5, but the impact value and flexural strength were measured because no strengthening treatment was performed after production. Inferior to Examples 4 and 5. Further, in Comparative Examples 13 and 14, the amorphous single-phase sample produced by the die production under no pressure was subjected to a strengthening treatment, but the impact value and the bending strength were about 120 and respectively. It is about 270 OMPa.
  • an amorphous alloy mass in which fine crystals having an average crystal grain size of 1 nm to 50 / m are dispersed with a volume fraction of 5 to 40% by an appropriate pressurizing condition and cooling rate is produced, After that, boron, carbon, oxygen, nitrogen, and fluorine with a small atomic radius are heated in a gas, and then subjected to a strengthening treatment such as a diffusion heat treatment after ion implantation, so that the intrinsic tensile strength of the amorphous material is hardly impaired. Significant improvements in strength against bending and impact loads can be achieved.
  • the present invention can provide an amorphous alloy having excellent strength against bending and impact loads and having high reliability as a practical structural material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)

Description

明 細 書 曲げ強度および衝撃強度に優れた非晶質合金とその製法 技術分野
本発明は、 曲げ強度および衝撃強度に優れた特性を有する非晶質合金に関する ものである。 背景技術
従来より溶融状態の合金を急冷することにより薄帯状、 フィラメント状、 粉粒 体状等、 種々の形状を有する非晶質金属材料が得られることはよく知られている。 非晶質合金薄帯は、 大きな冷却速度の得られる片口ール法、 双ロール法、 回転液 中紡糸法等の方法によって容易に製造できるので、 これまでにも、 Fe系、 Ni系、
Co系、 Pd系、 Cu系、 Zr系、 または Ti系合金について数多くの非晶質合金が得られ ている。
これらの非晶質合金は、 結晶質金属材料では得られない高耐食性、 高強度等の 工業的に極めて重要な特性を示すために、 新たな構造材料、 医用材料、 化学材料 等の分野への応用が期待されている。
しかしながら、 前記した製造方法によって得られる非晶質合金は、 薄帯や細線 に限られており、 それらを用いて最終製品形状へ加工することも困難なことから、 工業的にみてその用途がかなり限定されていた。
最近、 上記非晶質合金の非晶質形成能向上、 最適組成化および製造方法の検討 が行われ、 構造材料としての要求に充分応えられる寸法をもった非晶質合金塊の 作製が行われている。 例えば、 Zr- Al- Cu - Ni 系においては、 直径 30mm、 長さ 50mm の非晶質合金塊 (日本金属学会誌欧文誌: 1995年 36卷 1184項参照) 、 さらに、 Pd - Ni- Cu- P系では、 直径 72誦、 長さ 75mmの非晶質合金塊 (日本金属学会誌欧文誌 : 1997年 38卷 179 項参照) が得られている。 これらの非晶質合金塊は、 1700MPa 以上の引張強度と 500 以上のビッカース硬度を有しており、 極めて高強度な構造 材料として期待されている。 発明の開示
(発明が解決しようとする課題)
しかしながら、 上記非晶質合金塊は、 その乱れた原子構造 (ガラス質) 故に、 常温での弾塑性変形能に乏しい上に、 曲げ強度および衝撃荷重による強度が伴わ ず、 実用構造材料としての信頼性に乏しい。 したがって、 非晶質構造故の高強度 特性を損なわずに曲げおよび衝撃荷重に対する強度を向上した非晶質合金および その製造方法の開発が望まれていた。
(課題を解決するための手段)
そこで、 本発明者らは、 上述の課題を解決するために、 非晶質構造故の高強度 特性を損なわずに実用に耐え得る曲げ強度および衝撃強度を向上した非晶質合金 を提供することを目的として鋭意研究した結果、 非晶質形成能をもつ合金溶湯を 1気圧を超える圧力で加圧凝固するとともに、 凝固時の冷却速度の適切な調整に より、 非晶質合金中に微細結晶が分散した組織を有する非晶質合金塊が得られ、 この非晶質合金塊が曲げおよび衝撃荷重に対し高い強度を有することを見出し、 本発明を完成するに至った。
また、 本発明者らは、 上記の曲げ強度および衝撃強度を向上した非晶質合金に 対して、 金属元素に比べ原子半径が小さなほう素、 炭素、 酸素、 窒素、 ふつ素等 の元素を非晶質合金表面より浸透させ高融点化合物を形成せしめ、 該化合物が生 成する際の体積減少により非晶質合金表面部より連続した圧縮応力層を残留させ ることにより非晶質合金の曲げ強度および衝撃強度がさらに向上することを見出 し、 本発明を完成するに至った。
すなわち、 本発明は、 非晶質形成能をもつ合金溶湯を 1気圧を超える圧力で加 圧凝固させるとともに、 凝固中の冷却速度を調整することにより該非晶質合金塊 中に平均結晶粒径 1 η π!〜 5 0 μ m、 結晶体積分率 5〜 4 0 %の微細結晶を分散 させた、 2 mm以上の最小厚みを有する曲げ強度および衝撃強度に優れた非晶質 合金およびその製法を提供するものである。
さらに、 本発明は、 上記方法で製造した非晶質合金塊表面より浸透したほう素、 炭素、 酸素、 窒素、 ふつ素の少なくとも 1種以上と非晶質合金を形成する元素と の高融点化合物が合金内部に析出して表層部より内部へ向けて組織傾斜しており、 これにより該合金表面部に圧縮応力層が形成されている曲げ強度および衝撃強度 に優れた非晶質合金およびその製法を提供するものである。
上述の微細結晶分散による非晶質合金の製法と非晶質合金の表面部よりの元素 浸透による強化方法は、 ともに残留圧縮応力を用いる点では類似している。 しか しながら、 応力の発生する部位が異なる点および浸透元素による化合物が非晶質 表面を保護する点で互いに両立可能であるばかり力 それぞれの相乗効果で非晶 質合金の曲げ強度およぴ衝撃強度を大幅に向上させることができる。 発明を実施するための最良の形態
以下に、 まず、 請求の範囲第 1項記載の本発明の合金およびその製法について、 好ましい実施態様を説明する。
一般に、 製造する合金系によって非晶質合金形成能が異なるため、 非晶質形成 に要する冷却速度 (臨界冷却速度) が異なる。 例えば、 Z r系および L a系では、 約 1 0 0 °C/秒、 P d系では、 約 1 . 6 °C/秒、 F e系では、 約 1 0 0 0 0 °C/ 秒との報告があり、 合金系によりかなりの差がある。
しかしながら、 これら全ての非晶質形成合金で、 その臨界冷却速度を 2 0〜5 0 %程度減少させると非晶質中に一部結晶が混在した非晶質合金が製造できる。 また、 請求の範囲で規定する結晶粒径および結晶体積分率を有する非晶質合金を 製造するためには、 製造装置が幅広い範囲で任意に冷却速度に制御可能であるこ とが望ましい。 この冷却速度調整は、 金型の熱容量増減、 金型冷却水の水量調節 および合金溶湯の铸造時の注湯温度制御等によりに好ましく達成される。
また、 本発明の非晶質合金は、 上記のような製造方法により 2 mm以上の最小 厚みとする。 2 mm未満の厚みでは、 非晶質化には十分な冷却速度が得られ非晶 質合金板が容易に作成できるものの、 その合金の臨界冷却速度の 2 0〜5 0 %程 度減少させた冷却速度に調整しながら該溶融合金を凝固させ、 請求の範囲第 1項 で規定する結晶粒径および結晶体積分率を有する非晶質合金とすることが困難と なる。
また、 現在までに見い出されている非晶質形成合金での全量非晶質化する厚さ は 7 2 mmにも達しているが、 請求の範囲第 1項で規定する結晶粒径および結晶 体積分率が実現できる冷却速度の範囲では厚みが 1 O mm程度を超えた場合、 該 合金内部に粗大な金属間化合物が析出し、 著しく機械的性質が損なわれる。 した がって、 非晶質合金の厚みは、 好ましくは 2 m m以上であり、 機械的強度の点で は 1 O m m程度以下が好ましい。
さらに、 本発明の非晶質合金の破壊の起点となり得る铸造欠陥を効果的に消滅 させるため、 加圧鎵造が好ましい。 加圧铸造装置において、 溶湯凝固時の効果的 な加圧力は 1気圧超であり、 さらに好ましくは 2気圧以上である。 加圧力が 1気 圧以下では铸造時に発生する欠陥を押しつぶして消滅させることができない。 こ の加圧力は、 油圧、 空圧、 電気駆動等による金型圧縮、 ダイカス トキャスティン グおよびスクイズキャスティング等の射出铸造法が好ましく用いられる。
また、 本発明の非晶質合金は、 その非晶質相中に含まれる結晶の平均粒径を 1 η π!〜 5 0 z mに、 結晶体積分率を 5〜 4 0 %に規定した。 この規定は、 本発明 の根幹となる曲げぉよび衝撃荷重に対する強度の向上に必要不可欠である。 即ち、 平均結晶粒径が 1 n m未満であれば、 事実上微細結晶が曲げ強度および衝撃強度 の向上に効果的に作用しない。 一方、 5 0 At m超であれば、 この粗大に成長した 結晶が破壊の起点として作用し、 曲げおよび衝撃荷重に対する強度を低下させる ばかり力、 本来の非晶質の高強度特性まで損なってしまう。 より、 好ましくは、 1 0 O n!〜 1 0 / mである。
また、 体積分率は結晶粒径と相関があり、 一般的に結晶粒径の減少に伴い体積 分率も減少する。 結晶体積分率が 5 %未満であれば平均結晶粒径 1 n m未満と同 様、 微細結晶が曲げおよび衝撃荷重に対する強度の向上に効果的に作用しない。 結晶体積分率が 4 0 %超であれば平均結晶粒径 5 0 μ m超と同様結晶が破壊の起 点として作用し、 曲げおよび衝撃のみならず非晶質本来の高強度特性をも損なつ てしまう。 より、 好ましくは、 1 0 %〜3 0 %である。
ここで、 請求の範囲で規定した粒径および体積分率を有する結晶の存在による 非晶質合金の曲げ強度および衝撃強度の向上原因について記す。
通常の金属結晶はその規則的原子配列故に、 部分的にヒり変形し易い変形容易 軸を有する。 この変形容易軸をもって金属結晶材料の強度は定義されている。 し かしながら、 非晶質合金は、 等方的かつ乱れた原子配列が構造的特徴であり、 こ れ故に部分的に弾塑性変形し易い異方性を持たない。 したがって、 部分的に強度 の低い軸が存在せず、 これ故に非晶質合金は高強度特性を示す。 しかしながら、 この弾塑性変形容易軸をもたないことが曲げ強度および衝撃荷重に対する強度の 低下を起こしている。
本発明で示されるように、 非晶質合金中に一定粒径および一定体積分率の結晶 を分散させると、 この結晶は、 外部印加応力により非晶質中に発生する内部応力 を緩和する作用を有する。 しかも、 この結晶は、 凝固時に収縮するために、 その 周辺の非晶質相に残留圧縮応力を与えたまま固化するため非晶質相そのものの強 度を向上させる効果も兼備する。
この非晶質中に残留する圧縮応力を見積もった。 次式 (1 ) は、 ある体積 (V) 中に起こった体積変化 (A V) に起因する体積歪み V ) の関係を示し ている。 ε v = A V/V · · · ( 1 )
上記の体積歪みが、 ある冷却に伴う非晶質と結晶質の熱膨張係数の差に起因す ると仮定すると、 (1 ) 式は、 非晶質および結晶質の熱膨張係数 αおよび を 用いて次式 (2 ) のように表される。 f v = 3 {a - a' ) ΕΔΤ/ ( 1 + α ΔΤ) · ♦ · (2) ここで、 上記の (2) 式中の Eは、 弾性係数を示す。 一方、 弾性係数 (E) と 体積歪み (∑ V) には次式 (3) の関係がある。
Ε= σΖ ε ν · · · (3)
したがって、 式 (1) 、 (2) 、 (3) により、 冷却に伴い発生する内部応力 σは、 下記の式 (4) で示される。
σ = 3 E {a - a' ) ΔΤ/ ( 1 + 3 α ΔΤ) · · · (4)
ここで、 実験により求めた実測値、 ひ = 2 1 X 1 0—β、 α = 8 Χ ΐ Ο— β、 Ε = l O OGP aを用いて、 温度差 40 OKの冷却で発生する内部応力は、 1 600 MP a程度と見積もられる。 この値は、 後述の結晶質粒子が混在した非晶質合金 の曲げ強度向上分にほぼ対応している。 したがって、 結晶質を混在したまま凝固 した非晶質は、 大きな内部応力を残留しており、 この内部応力が曲げおよび衝撃 荷重に対する強度を向上させるものと推察される。
溶融状態から片ロール法、 双ロール法、 回転液中紡糸法、 アトマイズ法等の種 々の方法で冷却固化させ、 薄帯状、 フィラメント状、 粉粒体状の非晶質固体を得 ることができる非晶質形成能が大きな合金に対し、 上述の好ましい製造方法を用 いることによって、 引張強度、 曲げ強度および衝撃荷重に対する強度に優れた非 晶質合金塊を容易に得ることができる。
次に、 請求の範囲第 2項記載の本発明の合金およびその製法について、 好まし い実施態様を説明する。
非晶質を構成する金属元素に比べ原子半径が小さなほう素、 炭素、 酸素、 窒素、 ふつ素等の元素を非晶質合金表面より浸透せしめるためには、 これらの浸透元素 を含むガス中での加熱、 これらの元素のイオン注入後の拡散熱処理、 または従来 より結晶質合金の表面硬化法として用いられる固体、 塩浴、 ガスを用いた浸炭法、 窒化法、 ほう化法等が好ましく用いられる。
しかしながら、 非晶質合金塊形状が既に最終製品形状で複雑な場合には、 塩浴 およびガスによる表面処理法がさらに好ましく用いられる。 また、 表面の残留圧 縮応力層の厚さおよび組織傾斜の制御は、 処理温度および時間により容易に達成 される。
例えば、 後述の実施例のとおり、 Z r系非晶質合金に炭素原子をイオン注入し た後、 本合金の過冷却液体領域である 5 0 0 °Cで 3分間拡散処理した試料表面に は γ— Z r C (融点 3 4 3 0 °C) が X線回折法により同定され、 断面の硬さ測定 では、 表面より深さ方向に約 1 0 0 mにわたり緩やかな硬化が認められた。 こ のことより、 イオン注入および拡散処理で非晶質合金表面部に高融点化合物が生 成しており、 その化合物は表面より内部に向かい組成傾斜していることがわかる。 ここで、 元素の浸透で非晶質表面に圧縮応力が残留する原因、 および残留圧縮 応力による非晶質合金の曲げ強度および衝撃強度の向上原因について記す。
通常の金属結晶は、 その規則的原子配列故に、 部分的に り変形し易い変形容 易軸を有する。 この変形容易軸をもって結晶質金属材料の強度は定義されている。 しかしながら、 非晶質合金は等方的かつ乱れた原子配列が構造的特徴であり、 こ れ故に部分的に塑性変形し易い異方性を持たない。 したがって、 部分的に強度の 低い軸が存在せず、 これ故に非晶質合金は、 高強度、 高弾性限特性を示す。 しか しながら、 この塑性変形容易軸をもたないことが曲げ強度および衝撃荷重に対す る強度の低下を起こしている。 非晶質物質、 特に酸化物ガラスにおいては、 該ガラスは、 凝固の際、 表面を風 力を用いて冷却することにより表層部に圧縮応力を残留させることで該ガラスの 機械的性質を向上させた強化ガラスが一般に商用されている。 この強化機構の本 質は、 表層部の残留圧縮応力にある。 しかしながら、 金属は一般に非晶質化に大 きな冷却速度を必要とするため、 冷却速度による精密な残留圧縮応力の付与制御 が難しい。 本発明で示されるように非晶質合金表面に圧縮応力を残留させること は、 通常酸化物ガラスで用いられている風力強化と同様の効果を与える。
本発明で用いる浸透元素は、 一般に金属元素に比べて小さな原子半径を有する。 このことは、 結晶質合金に比べて比較的大きな空隙 (自由体積) を有する非晶質 合金中に浸透元素が容易に拡散できることを示唆している。 また、 非晶質合金の 中には、 一定昇温速度での加熱において結晶化する前に過冷却液体状態に遷移し、 急激に自由体積が増加するものがある。 結晶質合金では、 元素の浸透が極く表面 近傍に集中するのに対して、 この遷移現象により過冷却液体状態に遷移する非晶 質合金では、 大幅に浸透深さが増大する。
一方、 非晶質合金の加熱により、 これらの浸透元素は、 非晶質合金を構成する 元素と化合物を生成する。 この化合物は、 例えば、 Z r基非晶質合金に対して、 ほう素、 炭素、 酸素、 窒素を浸透 ·拡散させると、 生成する化合物は、 それぞれ、 Z r B 2 、 γ— Z r C、 γ - Z r 02-x 、 Z r Nである。 これらの化合物は、 一 般に 3 0 0 0 °C程度の融点と工具刃先を構成できるほどの硬さを有している。 ま た、 公知の非晶質合金の基金属との反応による化合物も同様の性質を有する。 こ れらの生成化合物は、 結晶性を有するとともに、 生成に際して凝縮し体積減少す る。 この体積減少が結晶周囲の非晶質合金に圧縮応力を残留させる原因である。 また、 非晶質の破壊挙動は、 原子間の結合の分断によるとされる。 この結合は、 引張応力により分断され易いが、 圧縮応力で結合を押しつぶすことは困難である といわれる。 さらに、 この結合分断の起点は、 表面のキズ付近の応力集中部であ るといわれる ( 「ガラスへの誘い」 、 南 努著、 産業図書、 1993年、 98項) 。 し たがって、 非晶質の表面部に予め圧縮応力を印加しておくことは、 非晶質合金の 破壊を防ぐ効果的な方法であるといえる。 本発明では、 浸透元素と非晶質合金の 構成元素からなる化合物が表面残留圧縮応力の発現機構であり、 この応力により 効果的に曲げぉよび衝撃強度を向上させることができる。
(実施例 1〜 5、 比較例 1〜: L 4 )
以下、 請求の範囲第 1項記載の本発明の合金およびその製法の実施例について 説明する。
表 1に示す合金組成からなる材料 (実施例 1〜3 ) について、 空気圧による金 型圧縮が可能な加圧铸造装置を用いて、 3気圧の加圧力および水冷銅金型により 厚み 3 mmの非晶質合金塊を作製した。 引張強度 (σ f ) および硬さは、 インス トロン引張試験機およびビッカース微小硬度計を用いて測定した。 衝撃値および 曲げ強度はシャルピー衝撃試験および 3点曲げ試験により評価した。
また、 比較のため通常の無加圧金型铸造による非晶質合金塊 (比較例 1, 2 ) および加圧铸造装置で冷却速度を意図的に大きくするか小さくし、 請求の範囲で 規定する平均結晶粒径または結晶体積分率を満たさない非晶質合金塊 (比較例 4 〜8 ) を作製した。 表中の d avは、 平均結晶粒径、 Vf は、 結晶体積分率、 o f は、 破断引張強さ、 H vは、 ビッカース硬さを示し、 また P max 、 δ、 a b は、 それぞれ、 曲げ試験における最大荷重、 最大たわみ、 曲げ強度を示す。
Figure imgf000013_0001
表 1より明らかなように、 実施例 1〜3の非晶質合金は、 1 60 (k J/m2 ) を超える衝撃値と 300 OMP aを超える曲げ強度を有しているとともに、 引 張強さは、 1 35 OMP a以上を示す。 したがって、 加圧条件下で適切な平均結 晶粒径と結晶体積分率の結晶相を分散させることにより、 結晶質本来の引張強さ および硬さを損なうことなく、 曲げおよび衝撃荷重に対する強度の大幅な改善を 達成している。
しかしながら、 無加圧条件下で金型铸造した比較例 1および 2は、 実施例 1お よび 2と同一組成かつ請求の範囲で規定する結晶粒径および体積分率を満たして いるにもかかわらず衝撃値および曲げ強度は、 それぞれ、 70程度および 1 70 OMP a程度と改善が認められない。
また、 比較例 3および 4は、 铸造時の加圧条件および合金組成は、 実施例 1お よび 2と同一であるが、 冷却速度を調整せず充分に急冷することにより、 請求の 範囲で規定する平均結晶粒径は満たすものの、 結晶体積分率は満たさないもので j ある。 比較例 3および 4は、 非晶質合金本来の引張り強さおよび硬さは損なわれ ていないが、 衝撃値および曲げ強度は、 比較例 1および 2と同等であり、 微細結 晶の分散による効果は認められない。
比較例 5および 6は、 実施例 1〜3での最適作製条件よりも高温から铸造する 5 ことにより冷却速度を小さく して平均結晶粒径を請求の範囲で規定する 5 0 μ πι よりも成長させたものである。 結晶粒の成長により、 合金の衝撃値および曲げ強 度は無加圧铸造の非晶質単相材 (比較例 1および 2 ) よりも低く、 粗大結晶粒の 存在が衝撃値と曲げ強度に悪影響を及ぼすことが理解される。 また、 平均結晶粒 径の増大により非晶質本来の引張強さも大幅に損なわれる。
! 0 さらに、 比較例 7および 8は、 铸造時の加圧条件および合金組成は、 実施例 1 および 2と同一であるが、 小熱容量の金型を用いて意図的に冷却速度を小さくし て析出結晶の体積分率を請求の範囲で規定する 4 0 %よりも増加させたものであ る。 結晶体積分率の増加により非晶質本来の引張強さも大幅に損なわれるばかり 力、 衝撃値および曲げ強度も減少する。 以上のことより、 平均結晶粒径の増大と
! 5 結晶体積分率の増加は同様の影響を示し、 非晶質合金の機械的性質を大幅に低下 させることが理解される。
したがって、 適切な加圧条件および冷却速度によって平均粒径 1 η π!〜 5 0 /X mの微細な結晶を体積分率 5〜 4 0 %分散させた非晶質合金塊を製造することに より、 非晶質合金本来の引張強さを損なうことなく、 衝撃荷重および曲げ荷重に
2 0 対する強度を大幅に向上させることができる。
次に、 請求の範囲第 2項記載の本発明の合金およびその製法の実施例について 説明する。 表 2に示す合金組成からなる材料 (実施例 4、 5 ) について、 空気圧による金 型圧縮が可能な加圧铸造装置を用いて、 3気圧の加圧力および水冷銅金型により 厚み 3 mmの請求の範囲第 1項で規定する平均結晶粒径および結晶体積分率を満 たした非晶質合金塊を作製した後、 表 2に示す種々の表面圧縮応力印加法により 処理した非晶質合金試料 (実施例 4、 5 ) を作成した。
また、 比較のため通常の無加圧金型铸造による非晶質単相合金 (比較例 9、 1 0 ) および加圧铸造装置を用いて請求の範囲第 1項で規定する平均結晶粒径およ ぴ結晶体積分率を満たしながらも、 その後の強化処理を施さなかった非晶質合金 (比較例 1 1、 1 2 ) 、 通常の無加圧金型铸造による非晶質単相合金に本発明の 強化方法を具現化した種々の表面圧縮応力印加法により処理した非晶質合金試料 (比較例 1 3、 1 4 ) を作製した。 引張強度 (σ ( ) および硬さは、 インス ト口 ン引張試験機、 ビッカース硬度計を用いて測定した。 衝撃値および曲げ強度はシ ャルピー衝撃試験および 3点曲げ試験により評価した。
(表 2 )
Figure imgf000015_0001
表 2より明らかなように、 実施例 4および 5の非晶質合金は、 1 8 0 k J /m 2 を超える衝撃値と 4 0 0 O M P aを超える曲げ強度を有しているとともに、 弓 I 張強さは 1 6 0 O M P a程度の値を示す。 したがって、 適切な微結晶の存在と、 その後の強化処理により、 非晶質本来の引張強さをほとんど損なうことなく曲げ および衝撃荷重に対する強度の大幅な改善を達成している。
しかしながら、 無加圧条件下で金型铸造した比較例 9および 1 0は、 実施例 4 および 5と同一組成であるにもかかわらず衝撃値および曲げ強度はそれぞれ 7 0 程度および 1 7 0 O M P a程度である。
また比較例 1 1および 1 2は、 微結晶の平均粒径およぴ体積分率は実施例 4お よび 5と同一であるが、 製造後の強化処理をしないため衝撃値および曲げ強度は 実施例 4および 5に劣る。 さらに比較例 1 3および 1 4は、 無加圧条件下で金型 铸造した非晶質単相試料に強化処理を施したものであるが、 衝撃値および曲げ強 度はそれぞれ 1 2 0程度および 2 7 0 O M P a程度である。
以上のことから、 適切な加圧条件および冷却速度によって平均結晶粒径 1 n m 〜5 0 / mの微細な結晶を体積分率 5〜4 0 %分散させた非晶質合金塊を製造し、 その後に原子半径の小さなほう素、 炭素、 酸素、 窒素、 ふつ素をガス中加熱、 ィ オン注入後拡散熱処理等の強化処理を施すことにより、 非晶質本来の引張強さを ほとんど損なうことなく曲げおよび衝撃荷重に対する強度の大幅な改善を達成す ることができる。 産業上の利用の可能性
以上説明したように、 本発明は、 曲げおよび衝撃荷重に対する強度に優れ、 実 用構造材料としての信頼性のある非晶質合金を提供することができる。

Claims

! 請 求 の 範 囲
1 . 非晶質形成能をもつ合金溶湯が 1気圧を超える圧力で加圧凝固されるととも に、 凝固中の冷却速度の調整により平均結晶粒径 1 n m〜 5 0 μ m、 結晶体積分
5 率 5〜4 0 %の微細結晶が非晶質合金塊中に分散した、 2 mm以上の最小厚みを 有する曲げ強度および衝撃強度に優れた非晶質合金。
2 . 非晶質合金塊表面より浸透したほう素、 炭素、 酸素、 窒素、 ふつ素の少なく とも 1種以上と非晶質合金を形成する元素との高融点化合物が合金内部に析出し て表層部より内部へ向けて組織傾斜しており、 これにより該合金表面部に圧縮応 0 力層が形成されていることを特徴とする請求の範囲第 1項記載の曲げ強度および 衝撃強度に優れた非晶質合金。
3 . 非晶質形成能をもつ合金溶湯を 1気圧を超える圧力で加圧凝固させることに より铸造欠陥を消滅させるとともに、 凝固中の冷却速度を調整して非晶質合金塊 中に平均結晶粒径 1 η π!〜 5 0 μ m、 結晶体積分率 5〜 4 0 %の微細結晶を分散 5 させて該非晶質合金塊中に均一に残留圧縮応力を付与することを特徴とする請求 の範囲第 1項記載の曲げ強度および衝撃強度に優れた非晶質合金の製法。
4 . 請求の範囲第 3項記載の方法により製造した非晶質合金塊を一定昇温速度で 加熱し、 結晶化する前の過冷却液体状態において、 表面よりほう素、 炭素、 酸素、 窒素、 ふつ素の少なくとも 1種以上を浸透させて非晶質合金を形成する元素との 0 高融点化合物を合金内部に析出させることにより合金を強化することを特徴とす る請求の範囲第 2項記載の曲げ強度および衝撃強度に優れた非晶質合金の製法。
PCT/JP1999/003385 1998-07-08 1999-06-24 Alliage amorphe presentant une excellente resistance a la flexion et aux chocs et son procede de production WO2000003051A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99926803A EP1036854B1 (en) 1998-07-08 1999-06-24 Amorphous alloy having excellent bending strength and impact strength, and method for producing the same
US09/486,948 US6582538B1 (en) 1998-07-08 1999-06-24 Method for producing an amorphous alloy having excellent strength
DE69928217T DE69928217T2 (de) 1998-07-08 1999-06-24 Amorphe legierung mit hervorragender biegefestigkeit und schlagzähigkeit und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/210414 1998-07-08
JP21041498A JP3852805B2 (ja) 1998-07-08 1998-07-08 曲げ強度および衝撃強度に優れたZr基非晶質合金とその製法

Publications (1)

Publication Number Publication Date
WO2000003051A1 true WO2000003051A1 (fr) 2000-01-20

Family

ID=16588931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003385 WO2000003051A1 (fr) 1998-07-08 1999-06-24 Alliage amorphe presentant une excellente resistance a la flexion et aux chocs et son procede de production

Country Status (5)

Country Link
US (1) US6582538B1 (ja)
EP (1) EP1036854B1 (ja)
JP (1) JP3852805B2 (ja)
DE (1) DE69928217T2 (ja)
WO (1) WO2000003051A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852809B2 (ja) * 1998-10-30 2006-12-06 独立行政法人科学技術振興機構 高強度・高靭性Zr系非晶質合金
JP3852810B2 (ja) 1998-12-03 2006-12-06 独立行政法人科学技術振興機構 高延性ナノ粒子分散金属ガラスおよびその製造方法
EP2460544A1 (en) 2006-06-30 2012-06-06 Tyco Healthcare Group LP Medical Devices with Amorphous Metals and Methods Therefor
JP2008155333A (ja) * 2006-12-25 2008-07-10 Japan Science & Technology Agency 金属ガラスを用いたマイクロマシン及びそれを用いたセンサ並びにその製造方法
CN101987396B (zh) * 2009-07-31 2014-02-19 鸿富锦精密工业(深圳)有限公司 锆基块体非晶合金激光焊接方法及焊接结构
CN102041461B (zh) * 2009-10-22 2012-03-07 比亚迪股份有限公司 一种锆基非晶合金及其制备方法
CN102080165B (zh) * 2009-11-30 2013-04-10 比亚迪股份有限公司 一种锆基非晶合金的制备方法
CN102240926B (zh) * 2010-05-13 2013-06-05 鸿富锦精密工业(深圳)有限公司 锆基块体非晶合金表面研磨方法
KR101376074B1 (ko) * 2011-12-06 2014-03-21 한국생산기술연구원 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법
US20160289813A1 (en) * 2013-04-26 2016-10-06 Korea Institute Of Industrial Technology Method for manufacuring amorphous alloy film and method for manufacturing nanostructured film comprising nitorgen
KR101501067B1 (ko) * 2013-06-07 2015-03-17 한국생산기술연구원 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법
CN103866209B (zh) * 2014-04-03 2017-01-25 东莞台一盈拓科技股份有限公司 锆基合金锭及其制备方法和制得的锆基非晶合金
CN104878328B (zh) * 2014-09-29 2016-10-05 中国科学院金属研究所 结构可控TiZr基非晶复合材料及其制备
KR102487913B1 (ko) * 2015-07-01 2023-01-13 삼성전자주식회사 비정질 합금 패터닝 방법, 그 방법으로 제조된 비정질 합금 패턴 구조물, 돔 스위치 및 돔 스위치 제조 방법
KR102193282B1 (ko) * 2019-08-21 2020-12-22 박상준 경도가 우수하며 정밀 사출이 가능한 친환경 합금 및 그 제조 방법
CN112024844A (zh) * 2020-09-09 2020-12-04 江西省科学院应用物理研究所 一种非晶合金的压铸成型方法
CN116497300B (zh) * 2023-05-09 2023-10-27 上海大学 一种采用低温热循环处理调控非晶合金残余应力和回春行为的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331586A (ja) * 1992-05-29 1993-12-14 Toyota Motor Corp 高強度アルミニウム合金
JPH10296424A (ja) * 1997-05-01 1998-11-10 Ykk Corp 金型で加圧鋳造成形された非晶質合金成形品の製造方法及び装置
JPH1171660A (ja) * 1997-08-29 1999-03-16 Akihisa Inoue 高強度非晶質合金およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191599A (en) * 1978-09-13 1980-03-04 Ford Motor Company Method of heat treating high carbon alloy steel parts to develop surface compressive residual stresses
US4365994A (en) * 1979-03-23 1982-12-28 Allied Corporation Complex boride particle containing alloys
JP2639455B2 (ja) * 1990-03-09 1997-08-13 健 増本 高強度非晶質合金
JP2619118B2 (ja) * 1990-06-08 1997-06-11 健 増本 粒子分散型高強度非晶質アルミニウム合金
JP3302031B2 (ja) * 1991-09-06 2002-07-15 健 増本 高靭性高強度非晶質合金材料の製造方法
JPH05245597A (ja) * 1992-03-06 1993-09-24 Takeshi Masumoto 鉄族基非晶質合金の製造方法
JP2945205B2 (ja) * 1992-03-18 1999-09-06 健 増本 非晶質合金材料とその製造方法
US5395459A (en) * 1992-06-08 1995-03-07 General Motors Corporation Method for forming samarium-iron-nitride magnet alloys
JPH06231917A (ja) * 1993-02-05 1994-08-19 Kawasaki Steel Corp 希土類−遷移金属系永久磁石およびその製造方法
JP3441757B2 (ja) * 1993-03-31 2003-09-02 新日本製鐵株式会社 表面の結晶化耐性を高めた非晶質合金薄帯
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331586A (ja) * 1992-05-29 1993-12-14 Toyota Motor Corp 高強度アルミニウム合金
JPH10296424A (ja) * 1997-05-01 1998-11-10 Ykk Corp 金型で加圧鋳造成形された非晶質合金成形品の製造方法及び装置
JPH1171660A (ja) * 1997-08-29 1999-03-16 Akihisa Inoue 高強度非晶質合金およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1036854A4 *

Also Published As

Publication number Publication date
JP3852805B2 (ja) 2006-12-06
US6582538B1 (en) 2003-06-24
DE69928217T2 (de) 2006-08-03
EP1036854A4 (en) 2004-10-27
DE69928217D1 (de) 2005-12-15
JP2000026944A (ja) 2000-01-25
EP1036854A1 (en) 2000-09-20
EP1036854B1 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
WO2000003051A1 (fr) Alliage amorphe presentant une excellente resistance a la flexion et aux chocs et son procede de production
JP3919946B2 (ja) 曲げ強度および衝撃強度に優れた非晶質合金板の製造方法
US6692590B2 (en) Alloy with metallic glass and quasi-crystalline properties
EP1471157A1 (en) Aluminium base alloy containing nickel and yttrium
JPS6032704B2 (ja) 超微細均一分散結晶質相を有する合金
WO1998010108A1 (fr) Alliage d'aluminium a forte resistance et a forte tenacite et procede de preparation de cet alliage
JPH01272742A (ja) 低密度アルミニウム合金団結物品及びその製造方法
JPS61250123A (ja) 圧縮態金属物品及びその製造方法
WO2006134980A1 (ja) マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法
US5632827A (en) Aluminum alloy and process for producing the same
JP2911708B2 (ja) 高強度、耐熱性急冷凝固アルミニウム合金及びその集成固化材並びにその製造方法
EP0819778B1 (en) High-strength aluminium-based alloy
EP0460234B1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
KR100666478B1 (ko) 저온 초소성 나노 결정립 티타늄 합금 및 이의 제조 방법
JP2807374B2 (ja) 高強度マグネシウム基合金およびその集成固化材
RU2711699C1 (ru) Способ получения композиционного материала Ti/TiB
CN114780899A (zh) 非共晶成分共晶高熵合金获得全共晶组织和性能调控方法
CN114480940A (zh) 一种l12纳米析出强化多主元合金及其制备方法
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
WO1990002824A1 (en) Reinforced composite material
JP3852806B2 (ja) 曲げ強度および衝撃強度に優れたZr基非晶質合金とその製法。
Nosenko et al. Influence of chemical composition and the processing conditions on structure, thermal stability and mechanical properties of rapidly cooled Al-TM-RE-based alloys
JPH10265919A (ja) 非平衡相合金材料の製造方法
JPS6213427B2 (ja)
CN116732444A (zh) 一种增材制造的马氏体时效钢及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09486948

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999926803

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09508117

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999926803

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999926803

Country of ref document: EP