WO2000000582A1 - Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern - Google Patents

Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern Download PDF

Info

Publication number
WO2000000582A1
WO2000000582A1 PCT/EP1999/004196 EP9904196W WO0000582A1 WO 2000000582 A1 WO2000000582 A1 WO 2000000582A1 EP 9904196 W EP9904196 W EP 9904196W WO 0000582 A1 WO0000582 A1 WO 0000582A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
zeolite
granules
acid
weight
Prior art date
Application number
PCT/EP1999/004196
Other languages
English (en)
French (fr)
Inventor
Andreas Lietzmann
Monika Böcker
Hans-Friedrich Kruse
René ARTIGA GONZÁLEZ
Christian Block
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP99929255A priority Critical patent/EP1090103A1/de
Priority to KR1020007014804A priority patent/KR20010053205A/ko
Priority to JP2000557335A priority patent/JP2002519478A/ja
Publication of WO2000000582A1 publication Critical patent/WO2000000582A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions

Definitions

  • the present invention relates to a process for the production of moldings which have washing and cleaning properties.
  • the invention relates to a method for producing detergent tablets for textile washing in a household washing machine, which are briefly referred to as detergent tablets.
  • the dichotomy between a sufficiently hard molded body and a sufficiently fast disintegration time is a central problem. Since sufficiently stable, i.e. Shaped and unbreakable moldings can only be produced by relatively high pressure, there is a strong compression of the mold components and a consequent delayed disintegration of the molded body in the aqueous liquor and thus to a slow release of the active substances in the washing or cleaning process .
  • the delayed disintegration of the moldings has the further disadvantage that conventional detergent tablets cannot be washed in via the washing-in chamber of household washing machines, since the tablets do not disintegrate into secondary particles that are small enough to be washed into the washing drum from the washing-in chamber to become.
  • EP-A-0 466 484 discloses detergent tablets in which the premix to be compressed has particle sizes between 200 and 1200 ⁇ m, the upper and lower limits of the particle sizes not differing by more than 700 ⁇ m. None is said in this document about the surface treatment of individual ingredients.
  • EP-A-0 522 766 also relates to moldings made from a compact, particulate detergent composition containing surfactants, builders and disintegration aids (for example based on cellulose), at least some of the particles being coated with the disintegration agent, which is both binder - As well as disintegration effect when dissolving the moldings in water.
  • This font also shows the general difficulty towards producing shaped bodies with adequate stability and at the same time good solubility.
  • the particle size in the mixture to be ve ⁇ ress should be above 200 microns, the upper and lower limits of the individual particle sizes should not differ by more than 700 microns.
  • DE 40 10 533 (Henkel KGaA) discloses a process for the production of compacts from pre-compressed granules.
  • the granules produced by extrusion and cutting in a first stage are mixed with other ingredients and auxiliaries and tabletted, if necessary.
  • the proportion of the pre-compacted granules in the compacts is up to 100% in this document.
  • Pretreatment of the optionally used admixing components is not disclosed.
  • detergent tablets produced according to the documents mentioned have sufficient hardness, they have disintegration speeds which do not allow metering via a dispenser of a household washing machine.
  • dissolution times of less than 10 minutes and residue values of less than 50% are designated as good, such values being completely inadequate for the use of detergent tablets via the dispenser.
  • the present invention was based on the object of providing a process for the production of detergent tablets which makes it possible to to produce bodies that are free from the disadvantages mentioned. It should be easy and highly reproducible to be able to produce detergent tablets which have a high level of hardness, are distinguished by a rapid dissolution rate and can also be used via the induction chamber of household washing machines. The hardness should not only be limited to a high diametrical breaking stress, but also ensure the stability of the molded body during transport (rubbing / shaking stress) and falling.
  • the molded articles produced by the process to be provided should not experience any change in their advantageous property profile even when stored open, so that airtight packaging of individual tablets can be dispensed with.
  • detergent tablets can be produced with the advantages mentioned if premixes are pressed which consist of granules containing surfactant which contain zeolite P and / or zeolite X and further processing components.
  • the invention therefore relates to a process for producing detergent tablets by mixing a surfactant-containing granulate with finely divided preparation components and subsequent shaping in a manner known per se, in which the surfactant-containing granulate is a zeolite of the P and / or X type contains.
  • press agglomeration processes can also be used, for example.
  • the granulation can be carried out in a large number of apparatuses customarily used in the detergent and cleaning agent industry. For example, it is possible to use the rounding agents commonly used in pharmacy. In such turntable devices, the residence time of the granules is usually less than 20 seconds.
  • Conventional mixers and mixing granulators are also suitable for granulation. Both high-intensity mixers (“high-shear mixers”) and normal mixers with lower circulation speeds can be used as mixers.
  • Suitable mixers are, for example Eirich ® mixer Series R or RV (trademark of Maschinenfabrik Gustav Eirich, Hardheim), the Schugi ® Flexomix, the Fukae ® FS-G mixers (trade marks of Fukae Powtech, Kogyo Co., Japan), the Lödige ® FM, KM and CB mixers (trademark of Lödige Maschinenbau GmbH, Paderborn) or the Drais ® series T or KT (trademark of Drais-Werke GmbH, Mannheim).
  • the residence times of the granules in the mixers are in the range of less than 60 seconds, the residence time also being dependent on the circulation speed of the mixer. The dwell times are reduced accordingly the faster the mixer runs.
  • the residence times of the granules in the mixer / rounder are preferably less than one minute, preferably less than 15 seconds. Dwell times of up to 20 minutes are set in slow-running mixers, for example a Lödige KM, dwell times below 10 minutes being preferred because of the process economy.
  • the surfactant-containing granules are compressed under pressure and under the action of shear forces, homogenized in the process and then discharged from the apparatus in a shaping manner.
  • the most technically significant press agglomeration processes are extrusion, roller compaction, pelleting and tableting.
  • Press agglomeration processes containing granules are extrusion, roller compacting and pelletizing.
  • the surfactant-containing granulate is preferably fed continuously to a planetary roller extruder or a 2-shaft extruder or 2-screw extruder with co-rotating or counter-rotating screw guide, the housing and the extruder granulating head of which are heated to the predetermined extrusion temperature could be.
  • the premix is compressed, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head and finally, under pressure, which is preferably at least 25 bar, but can also be lower at extremely high throughputs depending on the apparatus used the extrudate is preferably reduced to approximately spherical to cylindrical granules by means of a rotating knife.
  • the hole diameter of the perforated nozzle plate and the strand cut length are matched to the selected granulate dimension.
  • the production of granules of an essentially uniformly predeterminable particle size succeeds, and in particular the absolute particle sizes can be adapted to the intended use.
  • Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range from 0.8 to 5 mm and in particular in the range from approximately 1.0 to 3 mm.
  • the length / diameter ratio of the chipped primary granules is in the range from about 1: 1 to about 3: 1.
  • extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press or in the extruder.
  • the production process for the surfactant-containing granules is carried out by means of roller compaction.
  • the surfactant-containing granulate is deliberately placed between two smooth or Rolls of defined shape are metered in and rolled out under pressure between the two rolls to form a leaf-shaped compact, the so-called Schülpe.
  • the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
  • smooth rollers smooth, unstructured sliver belts are obtained, while by using structured rollers, correspondingly structured slugs or individual pellets can be produced, in which, for example, certain shapes of the later granules or moldings can be specified.
  • the sliver belt is subsequently broken up into smaller pieces by a knocking-off and crushing process and can be processed into granules in this way, which can be further tempered, in particular in an approximately spherical shape, by further known surface treatment processes.
  • the preparation of the surfactant-containing granules is carried out by means of pelleting.
  • the granules containing surfactant are applied to a perforated surface and pressed through the holes by means of a pressure-producing body.
  • the surfactant-containing granules are compressed under pressure, plasticized, pressed through a perforated surface in the form of fine strands by means of a rotating roller and finally comminuted to granules with a knock-off device.
  • the most varied configurations of the pressure roller and perforated die are conceivable here.
  • the press rolls can also be conical in the plate devices, in the ring-shaped devices dies and press roll (s) can have the same or opposite direction of rotation.
  • An apparatus suitable for carrying out the method according to the invention is described, for example, in German laid-open specification DE 38 16 842 (Schlüter GmbH).
  • the ring die press disclosed in this document consists of a rotating ring die penetrated by press channels and at least one press roller which is operatively connected to its inner surface and which presses the material supplied to the die space through the press channels into a material discharge.
  • ring die and press roller can be driven in the same direction, so that a reduced shear stress and thus a lower temperature increase of the premix can be achieved.
  • heatable or coolable rollers in the pelletizing in order to set a desired temperature of the premix.
  • the surfactant-containing granules contain surfactants.
  • surfactants come from the group of anionic, nonionic, zwitterionic or cationic surfactants, anionic surfactants being clearly preferred for economic reasons and because of their range of services.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C 9 . 13 - Alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as those obtained from C 12 . 18- Monoolefmen with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products. Alkanesulfonates which are derived from C 12 are also suitable.
  • esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • sulfonated fatty acid glycerol esters are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol become.
  • Preferred sulfated fatty acid glycerol esters are the sulfate products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) yl sulfates are the alkali and especially the sodium salts of the sulfuric acid half-esters of C 12 -C 18 fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or C 10 -C 20 -Oxo alcohols and those half esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical which is produced on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates as well as C ] 4 -C 15 alkyl sulfates are preferred for reasons of washing technology.
  • 2,3-alkyl sulfates which are produced for example in accordance with US Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7.21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide, such as 2-methyl-branched C 9 . ⁇ alcohols with an average of 3.5 moles of ethylene oxide (EO) or C 12.18 fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 _ 18 fatty alcohol radicals or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof. Soaps are particularly suitable as further anionic surfactants. Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • surfactant granules are preferred as process end products of intermediate step a), which each contain 5 to 50% by weight, preferably 7.5 to 40% by weight and in particular 10 to 20% by weight of anionic surfactant (s) based on the granules.
  • preferred surfactant granules have a soap content which exceeds 0.2% by weight, based on the total weight of the detergent tablets produced in step d).
  • the preferred anionic surfactants are the alkylbenzenesulfonates and fatty alcohol sulfates, with preferred detergent tablets 2 to 20% by weight, preferably 2.5 to 15% by weight and in particular 5 to 10% by weight of fatty alcohol sulfate (s) in each case based on the weight of the detergent tablets
  • the nonionic surfactants used are preferably alkoxy-hardened, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical is branched linearly or preferably in the 2-position methyl can be or linear and can contain methyl-branched radicals in the mixture, as are usually present in oxo alcohol residues.
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 . 14 - alcohols with 3 EO or 4 EO, C 9 . n -Alcohol with 7 EO, C 13-l5 - alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 . 18 - alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 . 14 -alcohol with 3 EO and C 12.18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxy-hard, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl esters as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • alkyl polyglycosides Another class of nonionic surfactants that can be used advantageously are the alkyl polyglycosides (APG).
  • Alkypolyglycosides that can be used satisfy the general formula RO (G) z , in which R denotes a linear or branched, in particular methyl-branched, saturated or unsaturated, aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is Is a symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of glycosidation z is between 1.0 and 4.0, preferably between 1.0 and 2.0 and in particular between 1.1 and 1.4.
  • Linear alkyl polyglucosides, ie alkyl polyglycosides, in which the polyglycosyl radical is a glucose radical and the alkyl radical is an n-alkyl radical are preferably used.
  • the end products of the process in intermediate step a) can preferably contain alkyl polyglycosides, with APG contents of more than 0.2% by weight, based on the entire molded body, being preferred.
  • Particularly preferred detergent tablets contain APG in amounts of 0.2 to 10% by weight, preferably 0.2 to 5% by weight and in particular 0.5 to 3% by weight.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • surfactants are polyhydroxy fatty acid amides of the formula (II),
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (III)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms
  • C - alkyl or phenyl radicals being preferred
  • [Z] representing a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated, derivatives of this rest.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the surfactant content of the surfactant-containing granules produced in step a) is 5 to 60% by weight. , preferably 10 to 50 wt .-% and in particular 15 to 40 wt .-%, each based on the surfactant granules.
  • the surfactant granules can be used in the detergent tablets in varying amounts. Processes according to the invention in which the proportion of the surfactant Granules containing the detergent tablets 40 to 95 wt .-%, preferably 45 to 85 wt .-% and in particular 55 to 75 wt .-%, each based on the weight of the detergent tablets, are preferred .
  • the surfactant granules used in the process according to the invention contain a zeolite of the P and / or X type.
  • Zeolite P belongs to the zeolite structure group 1 (compare Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, page 72) and can by the secondary formation unit of a single four-ring (S4R).
  • the zeolites of the zeolite structure group 1 are interchangeable, so that, in addition to the synthetic zeolite P, the mineral or synthetic zeolites Analcime, Wairakit, Viseit, Kehoeit, Harmotom, Phillipsit, Gismondin, Garronit, Paulingit, Laumonit and Yugawaralit can be used as a P-type zeolite.
  • pure zeolite P is preferably used, which can be described by the formula Na 6 [(AlO 2 ) 6 (SiO 2 ) 10 ] '15 H 2 O.
  • the two most common types of zeolite P are a cubic and a tetragonal modification, whereby the cubic zeolite P is also referred to in the literature as zeolite B or zeolite P c , while the teragonal type is called P t .
  • Zeolite P preferably has a density of 2.01 "3 , and the structure has a void volume of 41%.
  • the three-dimensional network of the zeolite P used in the process according to the invention has pores of 2.6 ⁇ (dehydrated) or 3.1 '4.4 ⁇ and 2.8' 4.9 ⁇ (hydrated) Zeolite MAP® (commercial product from Crosfield) is particularly preferred as zeolite P.
  • the mineral faujasite belongs to the faujasite types within the zeolite structure group 4, which is characterized by the double six-ring subunit D6R (compare Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, page 92).
  • D6R double six-ring subunit
  • the latter two synthetic zeolites have no mineral analogues. All of the representatives of the zeolite structure group 4 mentioned can be exchanged for the zeolite X in the context of the present, whereby, as with the P-type zeolites, the use of the zeolite X is clearly preferred.
  • Faujasite-type zeolites are made up of ß-cages which are tetrahedral linked by D6R subunits, the ß-cages being arranged similar to the carbon atoms in the diamond.
  • the three-dimensional network of the faujasite-type zeolites used in the process according to the invention has pores of 2.2 and 7.4 ⁇ , the unit cell also contains 8 cavities with a diameter of approximately 13 ⁇ and can be determined using the formula Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] '264 H 2 O.
  • the network of zeolite X contains a void volume of approximately 50%, based on the dehydrated crystal, which represents the largest empty space of all known zeolites (zeolite Y: approx. 48% o void volume, faujasite: approx. 47% void volume). (All data from: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, pages 145, 176, 177).
  • Mixtures or cocrystallisates of zeolites of the P and / or X type with other zeolites which do not necessarily have to belong to the zeolite structural group 1 or 4 can be used according to the invention, the advantages of the process according to the invention being particularly evident if at least 50 wt .-% of the zeolite contained in the surfactant granules consist of one or more zeolites of the P and / or X type.
  • the aluminum silicates used in the process according to the invention are commercially available and the methods for their preparation are described in standard monographs.
  • Examples of commercially available X-type zeolites can be described by the following formulas: Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] - ⁇ H 2 O,
  • x can have values between 0 and 276 and the pore sizes range from 8.0 to 8.4 ⁇ .
  • zeolite X and zeolite A (ca. 80 wt .-% zeolite X) which is marketed by CONDEA Augusta SpA under the trade name VEGOBOND AX ® and through the formula
  • the P and / or X type zeolite content of the surfactant-containing granules can vary depending on other optional ingredients.
  • methods are preferred in which the content of zeolite P and / or zeolite X in the granules containing surfactant is 20 to 80% by weight, preferably 25 to 70% by weight and in particular 30 to 50% by weight, each based on the surfactant granules.
  • the surfactant granules containing zeolite P and / or X are then mixed with further preparation components to form a premix which can then be pressed into detergent tablets.
  • the premix to be treated can be used as processing components, as well as other ingredients customary in washing and cleaning agents, in particular from Group of builders, disintegration aids, bleaching agents, bleach activators, enzymes, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, graying inhibitors, color transfer inhibitors and corrosion inhibitors.
  • the washing and cleaning agent shaped bodies according to the invention can contain all of the builders normally used in washing and cleaning agents, in particular thus zeolites, silicates, carbonates, organic cobuilders and - where there are no ecological prejudices against their use - the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + 1 'H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 "yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO-A-91/08171 .
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amo ⁇ h” is also understood to mean “roentgenamo ⁇ h”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections as are typical for crystalline substances, but at most one or more maxima of the scattered ones X-rays having a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be integrated in such a way that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Particularly preferred are compressed / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray silicates.
  • zeolite of the P and / or X type introduced by the surfactant granules can be inco ⁇ orated into the premix by adding zeolite as a treatment component.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably a type A, P, X or Y zeolite.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates as builder substances, provided that such use should not be avoided for ecological reasons.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons, and mixtures of these this.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, Adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • tablet disintegrants In order to facilitate the disintegration of highly compressed moldings, it is possible to incorporate disintegration aids, so-called tablet disintegrants, in order to shorten the disintegration times.
  • tablet disintegrants or accelerators of decay are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in absorbable form.
  • Preferred detergent tablets contain 0.5 to 10% by weight, preferably 3 to 8% by weight and in particular 4 to 6% by weight of a disintegration aid, in each case based on the molded article weight.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred detergent tablets form such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 8% by weight and in particular Contain 4 to 6 wt .-%.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, viewed formally, is a ß-1,4-polyacetal of cellobiose, which in turn consists of two Molecules of glucose is built up. Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxyl hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, to granules with an average particle size of 200 ⁇ m.
  • the premix to be treated has a bulk density. points that comes close to the usual compact detergent.
  • the premix to be ve ⁇ ress has a bulk density of at least 500 g / 1, preferably at least 600 g / 1 and in particular above 700 g / 1.
  • bleaching agents that serve as bleaching agents and supply H 2 O 2 in water
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Even when using the bleaching agents it is possible to dispense with the use of surfactants and / or builders, so that pure bleach tablets can be produced.
  • bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are (a) peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monophthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidopercapid [Phthaloiminoperoxyhexanoic acid (PAP)], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1, 9-diperoxyacelysacidacidacidacid, 2-decyldiperoxybutane-1,4-diacid, N, N-terephthaloy
  • Chlorine or bromine-releasing substances can also be used as bleaching agents in molded articles for automatic dishwashing.
  • appropriate chlorine or bromine releasing materials come, for example, heterocyclic N-bromo- and N-chloramides, for example trichloroisocyanuric acid, tribromoisocyanuric acid,
  • Dibromo isocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium are considered.
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • bleach activators can be incorporated as the sole component or as an ingredient of component b).
  • Compounds which, under perhydrolysis conditions, give ahphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid can be used as bleach activators.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylene diamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetate, ethylene glycol, Diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetylethylene diamine
  • DADHT 1,5
  • bleach catalysts can also be incorporated into the moldings.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof.
  • Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used. Enzyme mixtures, for example of protease and amylase or protease and lipase or protease and cellulase or of cellulase and lipase or of protease, amylase and lipase or protease, lipase and cellulase, but in particular mixtures containing cellulase, are of particular interest. Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules in the shaped bodies according to the invention can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the detergent tablets can also contain components that positively influence the oil and fat washability from textiles (so-called soil repellents). This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight, in each case based on the nonionic cellulose ether and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • the shaped bodies can contain derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-mo ⁇ holino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the Mo ⁇ holino- Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used.
  • Dyes and fragrances are added to the detergent tablets according to the invention in order to improve the aesthetic impression of the products and, in addition to the softness, provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • Individual fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzyl-carbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycate, allyl cyclohexyl propyl propylate loxyl propyl.
  • the ethers include, for example, benzylethyl ether, the aldehydes, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones, cc -Isomethyl ionone and methyl cedryl ketone, the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and te ⁇ ineol, the hydrocarbons mainly include tephenols such as limonene and pinene.
  • Perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linseed oil denflower oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the dye content of the plasticizers according to the invention is usually below 0.01% by weight, while fragrances can make up up to 2% by weight of the entire formulation.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • the agents according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity to textile fibers, in order not to dye them.
  • the premix Before the particulate premix is pressed into detergent tablets, the premix can be "powdered” with finely divided surface treatment agents. This can be of advantage for the quality and physical properties of both the premix (storage, pressing) and the finished detergent tablets.
  • Finely divided powdering agents are well known in the art, mostly zeolites, silicates or other inorganic salts being used.
  • the premix is preferably “powdered” with finely divided zeolite, zeolites of the faujasite type being preferred.
  • the term “faujasite-type zeolite” denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4 (see Donald W.
  • the or one of the subsequently mixed fine-particle treatment components is a faujasite-type zeolite with particle sizes below 100 ⁇ m, preferably below 100 ⁇ m and in particular below 5 ⁇ m and at least 0.1 2% by weight, preferably at least 0.5% by weight and in particular more than 1% by weight of the premix to be treated.
  • the premix is compacted in a so-called die between two punches to form a solid compact.
  • This process which is briefly referred to as tableting in the following, is divided into four sections: metering, compression (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, the filling quantity and thus the weight and the shape of the molded body being formed being determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosing, even at high mold throughputs, is preferably achieved by volumetric dosing of the premix.
  • the upper punch touches the premix and lowers further in the direction of the lower punch.
  • the particles of the premix are pressed closer together, the void volume within the filling between the punches continuously decreasing. From a certain position of the upper punch (and thus from a certain pressure on the premix), the plastic deformation begins, in which the particles flow together and the molded body is formed.
  • the premix particles are also crushed and sintering of the premix occurs at even higher pressures.
  • the phase of the elastic deformation is shortened further and further, so that the resulting molded body more or may have smaller cavities.
  • the finished molded body is pressed out of the die by the lower punch and transported away by subsequent transport devices. At this point in time, only the weight of the molded body is finally determined, since the compacts can still change their shape and size due to physical processes (stretching, crystallographic effects, cooling, etc.).
  • Tableting takes place in commercially available tablet presses, which can in principle be equipped with single or double punches. In the latter case, not only is the upper stamp used to build up pressure, the lower stamp also moves towards the upper stamp during the pressing process, while the upper stamp presses down.
  • eccentric tablet presses are preferably used, in which the punch or stamps are fastened to an eccentric disc, which in turn is mounted on an axis with a certain rotational speed. The movement of these rams is comparable to that of a conventional four-stroke engine.
  • the pressing can take place with one upper and one lower punch, but several punches can also be attached to one eccentric disk, the number of die holes being increased accordingly.
  • the throughputs of eccentric presses vary depending on the type from a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies is arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are also commercially available.
  • Each die on the die table is assigned an upper and lower punch, and again the pressure can be built up actively only by the upper or lower punch, but also by both stamps.
  • the die table and the stamps move about a common vertical axis, the stamps being brought into the positions for filling, compaction, plastic deformation and ejection by means of rail-like cam tracks during the rotation.
  • these cam tracks are before supporting low-pressure pieces, low-tension rails and lifting tracks.
  • the die is filled via a rigidly arranged feed device, the so-called filling shoe, which is connected to a storage container for the premix.
  • the pressing pressure on the premix can be individually adjusted via the pressing paths for the upper and lower punches, the pressure being built up by rolling the punch shaft heads past adjustable pressure rollers.
  • Rotary presses can also be provided with two filling shoes to increase the throughput, with only a semicircle having to be run through to produce a tablet.
  • several filling shoes are arranged one behind the other without the slightly pressed first layer being ejected before further filling.
  • jacket and dot tablets can also be produced in this way, which have an onion-shell-like structure, the top side of the core or the core layers not being covered in the case of the dot tablets and thus remaining visible.
  • Rotary tablet presses can also be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses are over one million molded articles per hour.
  • Tableting machines suitable within the scope of the present invention are available, for example, from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) and Courtoy NV, Halle (BE / LU).
  • the hydraulic double pressure press HPF 630 from LAEIS, D. is particularly suitable.
  • the molded body can be manufactured in a predetermined spatial shape and a predetermined size. Practically all sensibly manageable configurations come into consideration as the spatial form, for example the design as a board, the rod or bar form, cubes, cuboids and corresponding spatial elements with flat side surfaces and in particular cylindrical configurations with a circular or oval cross section. This last embodiment covers the presentation form from the tablet to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each be designed as separate individual elements that correspond to the predetermined dosage of the detergents and / or cleaning agents. It is also possible, however, to form compacts which connect a plurality of such mass units in one compact, the portioned smaller units being easy to separate, in particular by predetermined predetermined breaking points.
  • the portioned compacts as tablets, in cylinder or cuboid form can be expedient, with a diameter / height ratio in the range from about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, eccentric presses or rotary presses are suitable devices, in particular for the production of such pressed articles.
  • the spatial shape of another embodiment of the molded body is adapted in its dimensions to the detergent dispenser of commercially available household washing machines, so that the molded body can be metered directly into the dispenser without metering aid, where it dissolves during the dispensing process.
  • the detergent tablets without problems using a metering aid and is preferred in the context of the present invention.
  • Another preferred molded body that can be produced has a plate-like or plate-like structure with alternating thick long and thin short segments, so that individual segments of this "bolt" at the predetermined breaking points, which represent the short thin segments, broken off and into the Machine can be entered.
  • This principle of the "bar-shaped" shaped body detergent can also be realized in other geometric shapes, for example vertically standing triangles, which are connected to one another only on one of their sides along the side.
  • the various components are not pressed into a uniform tablet, but that shaped bodies are obtained which have several layers, that is to say at least two layers. It is also possible that these different layers have different dissolving speeds. This can result in advantageous application properties of the molded body.
  • the layer structure of the molded body can take place in a stack-like manner, with the inner layer (s) already loosening at the edges of the molded body when the outer layers have not yet been completely removed, but it is also possible for the inner layer (s) to be completely encased ) can be achieved by the layer (s) lying further outwards, which leads to the premature dissolution of components of the inner layer (s).
  • a molded body consists of at least three layers, i.e. two outer and at least one inner layer, at least one of the inner layers containing a peroxy bleaching agent, while in the case of the stacked molded body the two cover layers and in the case of the shell-shaped molded body the outermost layers, however, are free of peroxy bleach. Furthermore, it is also possible to spatially separate peroxy bleaching agents and any bleach activators and / or enzymes that may be present in a molded body.
  • Such multilayer molded bodies have the advantage that they can be used not only via a dispensing chamber or via a metering device which is added to the washing liquor; rather, in such cases it is also possible to put the molded body into direct contact with the textiles in the machine without the risk of bleaching from bleaching agents and the like. Similar effects can also be achieved by coating individual constituents of the detergent and cleaning agent composition to be treated or the entire molded article.
  • the bodies to be coated can, for example, be sprayed with aqueous solutions or emulsions, or else they can be coated using the melt coating method.
  • the breaking strength of cylindrical shaped bodies can be determined via the measured variable of the diametrical breaking load. This can be determined according to
  • stands for diametral fracture stress (DFS) in Pa
  • P is the force in N that leads to the pressure exerted on the molded body that causes the molded body to break
  • D is the molded body diameter in meters and t the height of the molded body.
  • Another object of the present invention is the use of zeolite of the P and / or X type in surfactant-containing granules which, after being mixed with finely divided preparation components, are pressed in a manner known per se to form detergent and shaped bodies for improving stability and solubility of detergent tablets.
  • zeolite of the P and / or X type in surfactant-containing granules which, after being mixed with finely divided preparation components, are pressed in a manner known per se to form detergent and shaped bodies for improving stability and solubility of detergent tablets.
  • a polymer compound was produced by spray drying and was used as the basis for a granulate containing tenside.
  • the tower powder was granulated with other components (zeolite, fatty alcohol sulfate, NaOH, anionic surfactant, nonionic surfactant, silicate, polymer) in a 50 liter ploughshare mixer from Lödige.
  • the amounts of the solids and liquids used and the order of addition to the mixer are given in Table 3.
  • Zeolite P and X were used in the granulation batches El and E2 according to the invention; in comparative example V, the surfactant granules were produced using zeolite A.
  • the granules were dried in a fluidized bed apparatus from Glatt at a supply air temperature of 60 ° C. over a period of 30 minutes. After drying, fine particles ⁇ 0.6 mm and coarse particles> 1.6 mm were screened off. To determine the water content of the granules, each 2 g of the granules were heated for 10 minutes at 130 ° C. on an MA 30 device from Sartorius and the drying loss was determined gravimetrically.
  • the surfactant granules E1 and E2 or VI were then prepared with further components to form a compressible premix, after which the pressing into tablets (diameter: 44 mm, height: 22 mm, weight: 37.5 g) was carried out in a Korsch eccentric press . The pressure was adjusted so that two series of molded bodies were obtained (El, E2 and VI or El ', E2' and VI '), which differ in their hardness.
  • the composition of the spray-dried polymer compound is shown in Table 1, and the composition of the premixes to be treated (and thus the molded article) is shown in Table 4.
  • Table 1 Composition of the polymer compound [% by weight>]
  • Sokalan ® CP5 is an acrylic acid-malien acid copolymer from BASF AG, Ludwigshafen
  • composition 92 wt .-% C 12 _, 8 fatty alcohol sulfate 3 wt .-% of sodium carbonate 5 wt .-% water, salts
  • the hardness of the tablets was measured by deforming the tablet until it broke, the force acting on the side surfaces of the tablet and the maximum force which the tablet withstood being determined.
  • the detergent tablets that contain a surfactant-containing granulate which contain a zeolite of the P or X type, disintegrate significantly faster than detergent tablets; in which the surfactant granules used are zeolite A-based.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern, die sich sowohl durch eine hohe Härte und damit Transport- und Handhabungsstabilität auszeichnen, als auch ausgezeichnete Zerfallseigenschaften besitzen. Dieses vorteilhafte Eigenschaftsprofil wird dadurch erreicht, daß die Formkörper ein Tensidgranulat enthalten, welches Zeolith vom P- und/oder X-Typ enthält.

Description

"Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern'
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Formkörpern, die wasch- und reinigungsaktive Eigenschaften besitzen. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern für die Tex- tilwäsche in einer Haushaltswaschmaschine, die kurz als Waschmitteltabletten bezeichnet werden.
Handelsübliche Wasch- und Reinigungsmittel werden heutzutage in Form von Flüssigprodukten oder Feststoffen angeboten. Bei der letzteren Angebotsform unterscheidet man herkömmliche Pulver oder Konzentrate, die beispielsweise durch Granulation oder Extrusion erhältlich sind. Gegenüber den herkömmlichen Pulvern weisen konzentrierte Wasch- und Reinigungsmittel den Vorteil auf, daß ein verringerter Verpackungsaufwand betrieben werden muß und pro Waschgang mengenmäßig weniger dosiert werden muß. Auch werden durch die verringerten Packungsgrößen die Transport- und Lagerkosten reduziert. Die höchstkonzentrierte Form, in der Wasch- und Reinigungsmittel gegenwärtig in einigen Ländern im Markt angeboten werden, sind verpreßte Wasch- und Reinigungsmittelformkörper. Während Wasserenthärter und maschinelle Geschirrspülmittel in dieser Angebotsform weit verbreitet sind, tauchen bei Textilwaschmitteln vielfältige Probleme auf, die einer weiten Verbreitung und Verbraucherakzeptanz bislang entgegenstehen. Aufgrund der deutlich höheren Tensidgehalte werden die üblicherweise bei der Angebotsform des Formkörpers auftretenden Probleme noch potenziert. Besonders problematisch sind Waschmit- teltabletten, welche alkoxyherte nichtionische Tenside enthalten, da diese Tensidklasse sich neagtiv auf die Löslichkeit der Tabletten auswirkt - andererseits sind gerade diese Tenside wegen ihres hohen Waschvermögen ausdrücklich erwünscht.
Insbesondere die Dichotomie zwischen einem genügen harten Formkörper und einer hinreichend schnellen Zerfallszeit ist dabei ein zentrales Problem. Da hinreichend stabile, d.h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrucke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Formkörper hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus Einspülkammer in die Waschtrommel eingespült zu werden.
Zur Lösung dieses Problems existieren im Stand der Technik vielfältige Ansätze. Neben dem Einsatz spezieller Inhaltsstoffe, die die Desintegration fördern sollen, werden auch die Beschichtung einzelner Inhaltsstoffe sowie das Absieben der zu verpressenden Vorgemische vorgeschlagen.
So offenbart die EP-A-0 466 484 (Unilever) Waschmitteltabletten, bei denen das zu verpressende Vorgemisch Teilchengrößen zwischen 200 und 1200 μm aufweist, wobei Ober- und Untergrenze der Teilchengrößen um nicht mehr als 700 μm differieren. Über die Oberflächenbehandlung einzelner Inhaltsstoffe wird in dieser Schrift nichts ausgeführt.
Auch die EP-A-0 522 766 (Unilever) betrifft Formkörper aus einer kompaktierten, teil- chenförmigen Waschmittelzusammensetzung, enthaltend Tenside, Builder und Desintegrationshilfsmittel (beispielsweise auf Cellulosebasis), wobei zumindest ein Teil der Partikel mit dem Desintegrationsmittel beschichtet ist, das sowohl Binder- als auch Desintegrationswirkung beim Auflösen der Formkörper in Wasser zeigt. Diese Schrift weist auch auf die generelle Schwierigkeit hin, Formköφer mit adäquater Stabilität bei gleichzeitig guter Löslichkeit herzustellen. Die Teilchengröße im zu veφressenden Gemisch soll dabei oberhalb von 200 μm liegen, wobei Ober- und Untergrenze der einzelnen Teilchengrößen um nicht mehr als 700 μm voneinander abweichen sollen.
Die DE 40 10 533 (Henkel KGaA) offenbart ein Verfahren zur Herstellung von Preßlingen aus vorverdichteten Granulaten. Hierbei werden die in einer ersten Arbeitsstufe durch Strangpressen und Zerteilen hergestellten Granulate gegebenenfalls mit weiteren Inhaltsund Hilfsstoffen vermischt und tablettiert. Der Anteil des vorverdichteten Granulats an den Preßlingen beträgt in dieser Schrift bis zu 100%. Eine Vorbehandlung der optional eingesetzten Zumischkomponenten wird nicht offenbart.
Die nach den genannten Dokumenten hergestellten Waschmitteltabletten weisen zwar eine ausreichende Härte auf, haben aber Zerfallsgeschwindigkeiten, die eine Dosierung über eine Einspülkammer einer Haushaltswaschmaschine nicht ermöglichen. In den zitierten Schriften des Standes der Technik werden Auflösezeiten von unter 10 Minuten und Rückstandswerte unter 50 % als gut bezeichnet, wobei solche Werte für den Einsatz von Waschmitteltabletten über die Einspülkammer völlig unzureichend sind.
Ein weiterer Nachteil der nach dem Stand der Technik hergestellten Formköφer liegt in deren mangelnder Resistenz gegenüber schockartig auftretenden Belastungen. Gegenüber Druck, der langsam steigend auf sie einwirkt, sind die Tabletten hinreichend stabil, während sie beispielsweise beim Fall auf harten Untergrund zerbersten. Beim Fall oder beim Transport der Tabletten können auch Kantenbrucherscheinungen auftreten, gegen die die herkömmlichen Tabletten nicht ausreichend stabil sind. Zusätzlich haben übliche Wasch- und Reinigungsmittelformköφer den Nachteil, daß sie bei Lagerung nachhärten bzw. zerfließen, so daß sie vor der Umgebungsluft geschützt werden müssen, was üblicherweise durch eine Einzelveφackung realisiert wird.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformköφern bereitzustellen, das es ermöglicht, Form- köφer herzustellen, die frei von den genannten Nachteilen sind. Es sollen dabei auf einfache und höchst reproduzierbare Weise Wasch- und Reinigungsmittelformköφer hergestellt werden können, die eine hohe Härte aufweisen, sich durch eine schnelle Auflösegeschwindigkeit auszeichnen und auch über die Einspülkammer von Haushaltswaschmaschinen einsetzbar sind. Dabei soll sich die Härte nicht nur auf eine hohe diametrale Bruchspannung beschränken, sondern auch bei Transport (Reibe-/Schüttelbelastung) und Fall die Stabilität der Formköφer gewährleisten.
Außerdem sollen die nach dem bereitzustellenden Verfahren hergestellten Formköφer auch bei offener Lagerung keine Veränderung ihres vorteilhaften Eigenschaftsprofils erfahren, so daß auf eine luftdichte Veφackung einzelner Tabletten verrzichtet werden kann.
Es wurde nun gefunden, daß sich Wasch- und Reinigungsmittelformköφer mit den genannten Vorteilen herstellen lassen, wenn man Vorgemische veφreßt, die aus einem ten- sidhaltigen Granulat, welches Zeolith P und/oder Zeolith X enthält, sowie weiteren Aufbe- reitungskomponenten bestehen.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Wasch- und Reini- gungsmittelformköφern durch Abmischen eines tensidhaltigen Granulats mit feinteiligen Aufbereitungskomponenten und nachfolgendes formgebendes Veφressen in an sich bekannter Weise, bei dem das tensidhaltige Granulat einen Zeolith vom P- und/oder X-Typ enthält.
Die Herstellung tensidhealtiger Granulate ist im Stand der Technik breit beschreiben, wobei neben umfangreicher Patentliteratur auch auf zahlreiche Übersichtsartikel und Monographien zurückgegriffen werden kann. So beschreibt W.Hermann de Groot, I. Adami, G.F. Moretti "The Manufacture of Modern Detergent Powders ", Hermann de Groot Academic Publisher, Wassenaar, 1995 verschiedene Sprühtrocknungs-, Misch- und Granulierverfahren zur Herstellung von Wasch- und Reinigungsmitteln. Aus energetischen Gründen ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das tensidhaltige Granulat nicht durch Sprühtrocknung, sondern über ein Granulierverfahren hergestellt wird. Neben den herkömmlichen Granulier- und Agglomerationsverfahren, die in den unterschiedlichsten Mischgranulatoren und Mischagglomeratoren durchgeführt werden können, sind beispielsweise auch Preßagglomerationsverfahren einsetzbar. Die Granulierung kann in einer Vielzahl von in der Wasch- und Reinigungsmittelindustrie üblicherweise eingesetzten Apparaten durchgeführt werden. So ist es beispielsweise möglich, die in der Pharmazie gängigen Verrunder zu verwenden. In solchen Drehtellerapparaturen beträgt die Verweilzeit der Granulate üblichrweise weniger als 20 Sekunden. Auch herkömmliche Mischer und Mischgranulatoren sind zur Granulierung geeignet. Als Mischer können dabei sowohl Hochintensitätsmischer ("high-shear mixer") als auch normale Mischer mit geringeren Umlaufgeschwindigkeiten verwendet werden. Geeignete Mischer sind beispielsweise Eirich®-Mischer der Serien R oder RV (Warenzeichen der Maschinenfabrik Gustav Eirich, Hardheim), der Schugi® Flexomix, die Fukae® FS-G-Mischer (Warenzeichen der Fukae Powtech, Kogyo Co., Japan), die Lödige® FM-, KM- und CB- Mischer (Warenzeichen der Lödige Maschinenbau GmbH, Paderborn) oder die Drais®- Serien T oder K-T (Warenzeichen der Drais-Werke GmbH, Mannheim). Die Verweilzeiten der Granulate in den Mischern liegen im Bereich von weniger als 60 Sekunden, wobei die Verweilzeit auch von der Umlaufgeschwindigkeit des Mischers abhängt. Hierbei verkürzen sich die Verweilzeiten entsprechend, je schneller der Mischer läuft. Bevorzugt betragen die Verweilzeiten der Granulate im Mischer/Verrunder unter einer Minute, vorzugsweise unter 15 Sekunden. In langsam laufenden Mischern, z.B. einem Lödige KM, werden Verweilzeiten von bis zu 20 Minuten eingestellt, wobei Verweilzeiten unter 10 Minuten wegen der Verfahrensökonomie bevorzugt sind.
Bei dem Verfahren der Preßagglomeration wird das tensidhaltige Granulat unter Druck und unter Einwirkung von Scherkräften verdichtet und dabei homogenisiert und anschließend formgebend aus den Apparaten ausgetragen. Die technisch bedeutsamsten Preßagglomerationsverfahren sind die Extrusion, die Walzenkompaktierung, die Pelletierung und das Tablettieren. Im Rahmen der vorliegenden Erfindung bevorzugt zur Herstellung des tensid- haltige Granulats eingesetzte Preßagglomerationsverfahren sind die Extrusion, die Wal- zenkompaktierung und die Pelletierung.
In einer bevorzugten Ausführungsform der Erfindung wird dabei das tensidhaltige Granulat vorzugsweise kontinuierlich einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extru- diertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise mindestens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlagmessers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkörnern verkleinert. Der Lochdurchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulatdimension abgestimmt. In dieser Ausführungsform gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsichtigten Einsatzzweck angepaßt sein können. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Granulaten im Millimeterbereich, beispielsweise im Bereich von 0,8 bis 5 mm und insbesondere im Bereich von etwa 1,0 bis 3 mm vor. Das Länge/Durchmesser- Verhältnis der abgeschlagenen primären Granulate liegt dabei in einer wichtigen Ausführungsform im Bereich von etwa 1:1 bis etwa 3:1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkörner erhalten werden können. Alternativ können Extrusionen/Veφressungen auch in Niedrigdruckextrudern, in der Kahl-Presse oder im Bextruder durchgeführt werden.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird das Herstellverfahren für das tensidhaltige Granulat mittels einer Walzenkompaktierung durchgeführt. Hierbei wird das tensidhaltige Granulat gezielt zwischen zwei glatte oder mit Vertie- fungen von definierter Form versehene Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmigen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Verwendung strukturierter Walzen entsprechend strukturierte Schülpen oder einzelne Pellets erzeugt werden können, in denen beispielsweise bestimmte Formen der späteren Granulate bzw. Formkörper vorgegeben werden können. Das Schülpenband wird nachfolgend durch eine Abschlag- und Zerkleinerungsvorgang in kleinere Stücke gebrochen und kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch weitere an sich bekannte Oberflächen- behandlungsverfahren weiter vergütet, insbesondere in annähernd kugelförmige Gestalt gebracht werden können.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird die Herstellung des tensidhaltigen Granulats mittels einer Pelletierung durchgeführt. Hierbei wird das tensidhaltige Granulat auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Köφers durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pellt- pressen wird das tensidhaltige Granulat unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Granulatkörnern zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und perforierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurchgepreßt wird. Die Preßrollen können bei den Tellergeräten auch konisch geformt sein, in den ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen. Ein zur Durchführung des erfindungsgemäßen Verfahrens geeigneter Apparat wird beispielsweise in der deutschen Offenlegungsschrift DE 38 16 842 (Schlüter GmbH) beschrieben. Die in dieser Schrift offenbarte Ringmatrizenpresse besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ring- matrize und Preßrolle gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturerhöhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen.
Die tensidhaltigen Granulate enthalten neben Füll- und Trägerstoffen sowie optional einzusetzenden Inhlatsstoffen von Wasch- und Reinigungsmitteln und zusätzlichen Granulierhilfsmitteln Tenside. Diese grenzflächenaktive Substanzen stammen aus der Gruppe der anionischen, nichtionischen, zwitterionischen oder kationischen Tenside, wobei anionische Tenside aus ökonomischen Gründen und aufgrund ihres Leistungsspektrums deutlich bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.13- Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansul- fonaten sowie Disulfonaten, wie man sie beispielsweise aus C12.18-Monoolefmen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12.18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce- rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfieφrodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca- prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure. Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalko- hol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf pe- trochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15- Alkylsulfate sowie C]4-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.21 -Alkohole, wie 2-Methyl-verzweigte C9.π -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12.18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8_18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Tensidgranulate als Verfahrensendprodukte des Zwischenschritts a) bevorzugt, die 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% uns insbesondere 10 bis 20 Gew.-% anionische Tensid(e), jeweils bezogen auf das Granulat, enthalten.
Bei der Auswahl der anionischen Tenside, die in den Verfahrensendprodukten des Zwischenschritts a) zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Tensidgranulate weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des in Schritt d) hergestellten Wasch- und Reinigungsmittelformköφers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Wasch- und Reinigungsmittelformköφer 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformköφer, enthalten
Als nichtionische Tenside werden vorzugsweise alkoxyherte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalko- holresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12.14- Alkohole mit 3 EO oder 4 EO, C9.n-Alkohol mit 7 EO, C13-l5- Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12. 18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.14-Alkohol mit 3 EO und C12.18-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxyherte, vorzugsweise ethoxylierte oder ethoxylierte und pro- poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl- kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2- Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glyko- seeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungs- grad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4. Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Die Verfahrensendprodukte des Zwischenschritts a) können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformköφer enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka- nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),
R1
R-CO-N-[Z] (II)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuk- kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie- rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),
R^O-R2
R-CO-N-[Z] (III)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C - Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Poly- hydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überfuhrt werden.
Unabhängig davon, ob anionische oder nichtionische Tenside oder Mischungen aus diesen Tensidklassen sowie gegebenenfalls amphotere oder kationische Tenside im Tensidgranulat eingesetzt werden, sind errfϊndungsgemäße Verfahren bevorzugt, bei denen der Tensid- gehalt des in Schritt a) hergestellten tensidhaltigen Granulats 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
Das Tensidgranulat kann in den Wasch- und Reinigungsmittelformköφern in variierenden Mengen eingesetzt werden. Erfindungsgemäße Verfahren, in denen der Anteil des tensid- haltigen Granulats an den Wasch- und Reinigungsmittelformköφern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformköφer, beträgt, sind dabei bevorzugt.
Erfindungsgemäß enthalten die Tensidgranulate, die im erfindungsgemäßen Verfahren eingesetzt werden, einen Zeolith vom P- und/oder X-Typ.
Zeolith P gehört der Zeolith-Strukturgruppe 1 an (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 72) und kann durch die sekundäre Biildungseinheit eines einzelnen Vierrings (S4R) gekennzeichnet werden. Im Rahmen der vorliegenden Erfindung sind die Zeolithe der Zeolith-Strukturgruppe 1 untereinander austauschbar, so daß neben dem synthetischen Zeolith P auch die mineralischen oder synthetischen Zeolithe Analcime, Wairakit, Viseit, Kehoeit, Harmotom, Phillipsit, Gismondin, Garronit, Paulingit, Laumonit und Yugawaralit als Zeolith vom P-Typ einsetzbar sind. Bevorzugt wird allerdings der reine Zeolith P eingesetzt, der durch die Formel Na6[(AlO2)6(SiO2)10] ' 15 H20 beschrieben werden kann. Die zwei verbreitetsten Typen des Zeolith P sind eine kubische und eine tetragonale Modifikation, wobei der kubische Zeolith P in der Literatur auch als Zeolith B oder Zeolith Pc bezeichnet wird, während der teragonale Typ die Bezeichnung Pt trägt.
Zeolith P weist eine Dichte von 2,01 gern"3 auf, und die Struktur besitzt ein Hohlraumvolumen von 41 %. Das dreidimensionale Netzwerk des im erfindungsgemäßen Verfahren eingesetzten Zeolith P weist Poren von 2,6 Ä (dehydratisiert) bzw. von 3,1 ' 4,4 Ä und 2,8 ' 4,9 Ä (hydratisiert) auf. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt.
Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga. Alle genannten Vertreter der Zeolith-Strukturgruppe 4 lassen sich im Rahmen der vorliegenden gegen den Zeolith X austauschen, wobei wie bei den Zeolithen vom P-Typ der Einsatz des Zeolith X deutlich bevorzugt ist.
Zeolithe vom Faujasit-Typ sind aus ß-Käfigen aufgebaut, die tetrahedral über D6R- Untereinheiten verknüpft sind, wobei die ß-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Ä auf, die Elementarzelle enthält darüberhinaus 8 Kavitäten mit ca. 13 Ä Durchmesser und läßt sich durch die Formel Na86[(AlO2)86(SiO2)106] ' 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisier- ten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48%o Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Auch Mischungen oder Cokristallisate von Zeolithen des P- und/oder X-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 1 oder 4 angehören müssen, sind erfindungsgemäß einsetzbar, wobei die Vorteile des erfindungsgemäßen Verfahrens besonders deutlich zu Tage treten, wenn mindestens 50 Gew.-% des im Tensidgranulat enthaltenen Zeoliths aus einem oder mehreren Zeolithen vom P- und/oder X-Typ bestehen. Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien beschrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden: Na86[(AlO2)86(SiO2)106] - χ H2O,
86[(AlO2)86(SiO2)106] - χ H2O,
Ca40Na6[(AlO2)86(SiO2)106] x H2O,
Sr21Ba22[(AlO2)86(SiO2)106] - χ H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Ä aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa^ (l-n)K2O Al2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann.
Der Gehalt des tensidhaltigen Granulats an Zeolith vom P- und/oder X-Typ kann je nach anderen optionalen Inhaltsstoffen variieren. Im Rahmen der vorliegenden Erfindung sind Verfahren bevorzugt, bei denen der Gehalt des tensidhaltigen Granulats an Zeolith P und/oder Zeolith X 20 bis 80 Gew.-%, vorzugsweise 25 bis 70 Gew.-% und insbesondere 30 bis 50 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
Das Zeolith P- und/oder X enthaltende Tensidgranulat wird anschließend mit weiteren Aufbereitungskomponenten zu einem Vorgemisch vermischt, das danach zu Wasch- und Reinigungsmittelformköφern veφreßt werden kann. Das zu veφressende Vorgemisch kann dabei als Aufbereitungskomponenten außer den bereits genannten Inhaltsstoffen weitere in Wasch- und Reinigungsmitteln übliche Inhaltsstoffe, insbesondere aus der Gruppe der Gerüststoffe, Desintegrationshilfsmittel, Bleichmittel, Bleichaktivatoren, Enzyme, pH- Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibito- ren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
Neben den waschaktiven Substanzen sind Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmitteln. In den erfindungsgemäßen Wasch- und Reinigungsmittel- formköφern können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 'H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A- 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si2O5 " yH2O bevorzugt, wobei ß-Natrium- disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amoφhe Natriumsilikate mit einem Modul Na^ : SiO2 von 1 :2 bis 1 :3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1 :2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amoφhen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amoφh" auch "röntgenamoφh" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenrefiexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften fuhren, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu inteφretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor- phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amoφhe Silikate, compoundierte amoφhe Silikate und übertrocknete röntgenamoφhe Silikate.
Falls gewünscht, kann über die durch das Tensidgranulat eingebrachte Menge an Zeolith vom P- und/oder X-Typ hinaus weiterer Zeolith in das Vorgemisch inkoφoriert werden, indem Zeolith als Aufbereitungskomponente zugegeben wird. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise ein Zeolith vom Typ A, P, X oder Y. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-%o an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub- stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Py- rophosphate und insbesondere der Tripolyphosphate.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutar- säure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Um den Zerfall hochverdichteter Formköφer zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 8 Gew.-% und insbesondere 4 bis 6 Gew.-% eines Desintegrationshilfsmittels , jeweils bezogen auf das Formköφergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformköφer ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 8 Gew.-%> und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein ß-l,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Cellulo- seester und -ether sowie Aminocellulosen.
Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amoφhen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kom- paktierbar sind.
Es ist im erfindungsgemäßen Verfahren für die späteren Wasch- und Reinigungsmittelformköφer von Vorteil, wenn das zu veφressende Vorgemisch ein Schüttgewicht auf- weist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu veφressende Vorgemisch ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere oberhalb von 700 g/1, aufweist.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyro- phosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Per- benzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandi- säure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unbhängig davon, welche weiteren Inhaltsstoffe in den Formköφern enthalten sind. Werden Reinigungsoder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxy- benzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monopeφhthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxy- stearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o- Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N- nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diper- oxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-l,4-disäure, N,N- Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel in Formköφern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N- Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure,
Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor- 5,5-dimethylhydanthoin sind ebenfalls geeignet.
Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren als alleiniger Bestandteil oder als Inhaltsstoff der Komponente b) eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen ahphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5- Diacetyl-2,4-dioxohexahydro-l,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzol- sulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5- Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formköφer eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar. Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Formköφern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-%> betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformköφer auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methyl- cellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäu- re-Polymere. Die Formköφer können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4- moφholino-l,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Moφholino-Gruppe eine Diethanolaminogruppe, eine Me- thylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)- diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Färb- und Duftstoffe werden den erfindungsgemäßen Wasch- und Reinigungsmittelform- köφern zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfüfung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riech- stoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p- tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethyla- cetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropio- nat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzyle- thylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citro- nellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bour- geonal, zu den Ketonen z.B. die Jonone, cc-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Teφineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Teφene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lin- denblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Weichmacher an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-%> der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unemp- findlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Vor der Veφressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittel- formköφern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Veφressung) als auch der fertigen Wasch- und Reini- gungsmittelformköφer von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, To- ronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Im Rahmen der vorliegenden Erfindung sind Verfahren zur Herstellung von Wasch- und Reinigungsmittelformköφern bevorzugt, bei denen die bzw. eine der nachträglich zugemischten feinteiligen Aufbereitungskomponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb lOOμm, vorzugsweise unterhalb lOμm und insbesondere unterhalb 5μm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu veφressenden Vorgemischs ausmacht.
Zur Herstellung der erfindungsgemäßen Formköφer wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formköφers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formköφerdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formköφers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formköφer mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formköφer durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formköφers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Ver- pressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenteφressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Be- füllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzli- ehe Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befül- lung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei -und mehrschichtiger Formköφer werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befullung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Veφressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formköφer pro Stunde.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formköφer können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe- Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenteφressen oder Rundläufeφressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formköφer ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formköφer ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformköφer über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formköφer, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegeiförmigen" Formköφerwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden. Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette veφreßt werden, sondern daß Formköφer erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formköφer resultieren. Falls beispielsweise Komponenten in den Formköφern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formköφer kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formköφers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formköφer aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapeiförmigen Formköφer die beiden Deckschichten und beim hüllenförmigen Formköφer die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formköφer voneinander zu trennen. Derartige mehrschichtige Formköφer weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formköφer im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären. Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu veφressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formköφers erreichen. Hierzu können die zu beschichtenden Köφer beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Veφressen weisen die Wasch- und Reinigungsmittelformköφer eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formköφer kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
2P σ = πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formköφer ausgeübten Druck führt, der den Bruch des Formköφers verursacht, D ist der Formköφerdurchmesser in Meter und t ist die Höhe der Formköφer.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Zeolith vom P- und/oder X-Typ in tensidhaltigen Granulaten, die nach Abmischung mit feinteiligen Aufbereitungskomponenten in an sich bekannter Weise zu Wasch- und Reinigungsmittel- formköφern veφreßt werden, zur Stabilitäts- und Löslichkeitsverbesserung von Wasch- und Reinigungsmittelformköφern. Durch den Einsatz der genannten Zeolithtypen in Wasch- und Reinigungsmittel-Granulaten, die nach Abmischung mit weiteren Komponenten zu Wasch- und Reinigungsmittelformköφern veφreßt werden, können die physikalischen Eigenschaften der Formköφer deutlich verbessert werden, wie die nachfolgenden Beispiele belegen. Beispiele:
Durch Sprühtrocknung wurde ein Polymercompound hergestellt, das als Basis für ein ten- sidhaltiges Granulat verwendet wurde. Das Turmpulver wurde mit weiteren Komponenten (Zeolith, Fettalkoholsulfat, NaOH, Aniontensid, Niotensid, Silikat, Polymer) in einem 50- Liter-Pflugscharmischer der Firma Lödige granuliert. Die Mengen der eingesetzten Feststoffe und Flüssigkeiten sowie die Reihenfolge der Zugabe in den Mischer sind in Tabelle 3 angegeben. Bei den erfindungsgemäßen Granulationsansätzen El und E2 wurde Zeolith P bzw. X eingesetzt, beim Vergleichsbeispiel V wurde das Tensidgranulat mit Zeolith A hergestellt.
Im Anschluß an die Granulation wurden die Granulate in einer Wirbelschichtapparatur der Firma Glatt bei einer Zulufttemperatur von 60°C über einen Zeitraum von 30 Minuten getrocknet. Nach der Trockung wurden Feinanteile < 0,6 mm und Grobkornanteile > 1 ,6 mm abgesiebt. Zur Bestimmung des Wassergehalts der Granulate wurden jeweiles 2 g des Granulats 10 Minuten bei 130°C auf einem Gerät Typ MA 30 der Firma Sartorius aufgeheizt und der Trocknungsverlust gravimetrisch bestimmt.
Die Tensidgranulate El und E2 bzw. VI wurden dann mit weiteren Komponenten zu einem preßfähigen Vorgemisch aufbereitet, wonach in einer Korsch-Exzenteφresse die Ver- pressung zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) erfolgte. Dabei wurde der Preßdruck so eingestellt, daß jeweils zwei Serien von Formköφern erhalten wurden (El, E2 und VI bzw. El ', E2' und VI '), die sich in ihrer Härte unterscheiden. Die Zusammensetzung des sprühgetrockneten Polymercompounds zeigt Tabelle 1 die Zusammensetzung der zu veφressenden Vorgemische (und damit der Formköφer) zeigt Tabelle 4. Tabelle 1 : Zusammensetzung des Polymercompounds [Gew.-%>]
Figure imgf000035_0001
Sokalan® CP5 ist ein Acrylsäure-Maliensäure-Copolymer der BASF AG, Ludwigshafen
Tabelle 2: Verwendete Zeolithtypen
Figure imgf000035_0002
Tabelle 3: Zusammensetzung der Granulationsansätze [g]
Figure imgf000035_0003
* Zusammensetzung: 92 Gew.-% C12_, 8-Fettalkoholsulfat 3 Gew.-% Natriumcarbonat 5 Gew.-% Wasser, Salze
** Hydroxyethan- 1 , 1 -diphosphonsäure
Tabelle 4: Zusammensetzung der Wasch- und Reinigungsmittelformköφer [Gew.-%]
Figure imgf000036_0001
Die Härte der Tabletten wurde nach zwei Tagen Lagerung durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Die experimentellen Daten zeigt Tabelle 5: Tabelle 5: Physikalische Daten der Wasch- und Reinigungsmittelformköφer
Figure imgf000037_0001
Bei vergleichbarer Härte zerfallen also die Wasch- und Reinigungsmittelformköφer, die ein tensidhaltiges Granulat enthalten, welches einen Zeolithen vom P- oder X-Typ enthalten, deutlich schneller, als Wasch- und Reinigungsmittelformköφer; bei denen das eingesetzte Tensidgranulat Zeolith A-basiert ist.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von Wasch- und Reinigungsmittelformköφern durch Abmischen eines tensidhaltigen Granulats mit feinteiligen Aufbereitungskomponenten und nachfolgendes formgebendes Veφressen in an sich bekannter Weise, dadurch gekennzeichnet, daß das tensidhaltige Granulat einen Zeolith vom P- und/oder X-Typ enthält.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das tensidhaltige Granulat nicht durch Sprühtrocknung hergestellt wurde.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Gehalt des tensidhaltigen Granulats an Zeolith P und/oder Zeolith X 20 bis 80 Gew.-%, vorzugsweise 25 bis 70 Gew.-% und insbesondere 30 bis 50 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Tensid- gehalt des tensidhaltigen Granulats 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Anteil des tensidhaltigen Granulats an den Wasch- und Reinigungsmittelformköφern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformköφer, beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere oberhalb von 700 g/1, aufweist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die bzw. eine der nachträglich zugemischten feinteiligen Aufbereitungskomponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb lOOμm, vorzugsweise unterhalb lOμm und insbesondere unterhalb 5μm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu veφressenden Vorgemischs ausmacht.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das zu verpressende Vorgmisch weiterhin einen oder mehrere Stoffe aus der Gruppe der Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
9. Verwendung von Zeolith vom P- und/oder X-Typ in tensidhaltigen Granulaten, die nach Abmischung mit feinteiligen Aufbereitungskomponenten in an sich bekannter Weise zu Wasch- und Reinigungsmittelformköφern veφreßt werden, zur Stabilitätsund Löslichkeitsverbesserung von Wasch- und Reinigungsmittelformköφern.
PCT/EP1999/004196 1998-06-26 1999-06-17 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern WO2000000582A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99929255A EP1090103A1 (de) 1998-06-26 1999-06-17 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
KR1020007014804A KR20010053205A (ko) 1998-06-26 1999-06-17 세제 형상체의 제조 방법
JP2000557335A JP2002519478A (ja) 1998-06-26 1999-06-17 洗剤タブレットの製法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19828577A DE19828577A1 (de) 1998-06-26 1998-06-26 Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE19828577.9 1998-06-26

Publications (1)

Publication Number Publication Date
WO2000000582A1 true WO2000000582A1 (de) 2000-01-06

Family

ID=7872150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/004196 WO2000000582A1 (de) 1998-06-26 1999-06-17 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern

Country Status (5)

Country Link
EP (1) EP1090103A1 (de)
JP (1) JP2002519478A (de)
KR (1) KR20010053205A (de)
DE (1) DE19828577A1 (de)
WO (1) WO2000000582A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129247A (en) * 1995-11-16 2000-10-10 Bespak Plc Seal arrangements for pressurized dispensing containers
WO2008077614A2 (de) 2006-12-22 2008-07-03 Roland Saur-Brosch Verwendung einer zusammensetzung aus mineralstoffen und gegebenenfalls acetogenen und/oder butyrogenen bakterien zur vermeidung oder reduzierung von gasbildung im dickdarm eines säugetiers und dadurch bedingter abdominaler beschwerden

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355626A1 (de) * 1988-08-17 1990-02-28 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung phosphatreduzierter Waschmitteltabletten
DE4010533A1 (de) * 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
EP0466484A2 (de) * 1990-07-13 1992-01-15 Unilever Plc Detergenszusammensetzungen
WO1998003064A1 (en) * 1996-07-23 1998-01-29 Fmc Corporation Disintegrant composition for dispersible solids
DE19650954A1 (de) * 1996-12-07 1998-06-10 Henkel Kgaa Stabilisierung von Alkalipercarbonat in Wasch- und Reinigungsmitteln
DE19743837A1 (de) * 1997-10-04 1999-04-08 Henkel Kgaa Verfahren zur Herstellung von stabilen und schnellöslichen Waschmitteltabletten

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355626A1 (de) * 1988-08-17 1990-02-28 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung phosphatreduzierter Waschmitteltabletten
DE4010533A1 (de) * 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
EP0466484A2 (de) * 1990-07-13 1992-01-15 Unilever Plc Detergenszusammensetzungen
WO1998003064A1 (en) * 1996-07-23 1998-01-29 Fmc Corporation Disintegrant composition for dispersible solids
DE19650954A1 (de) * 1996-12-07 1998-06-10 Henkel Kgaa Stabilisierung von Alkalipercarbonat in Wasch- und Reinigungsmitteln
DE19743837A1 (de) * 1997-10-04 1999-04-08 Henkel Kgaa Verfahren zur Herstellung von stabilen und schnellöslichen Waschmitteltabletten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129247A (en) * 1995-11-16 2000-10-10 Bespak Plc Seal arrangements for pressurized dispensing containers
WO2008077614A2 (de) 2006-12-22 2008-07-03 Roland Saur-Brosch Verwendung einer zusammensetzung aus mineralstoffen und gegebenenfalls acetogenen und/oder butyrogenen bakterien zur vermeidung oder reduzierung von gasbildung im dickdarm eines säugetiers und dadurch bedingter abdominaler beschwerden

Also Published As

Publication number Publication date
KR20010053205A (ko) 2001-06-25
JP2002519478A (ja) 2002-07-02
EP1090103A1 (de) 2001-04-11
DE19828577A1 (de) 1999-12-30

Similar Documents

Publication Publication Date Title
EP1060236A1 (de) Duftperlen in wasch- und reinigungsmittelformkörpern
WO1999045090A1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
WO1999038948A1 (de) Mehrphasige waschmitteltabletten
DE19847283A1 (de) Wasch- und Reinigungsmittelformkörper mit wasserfrei granuliertem Brausesystem
WO2000000582A1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
WO2000000581A1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
EP1025197A1 (de) Verfahren zur herstellung von stabilen und schnellöslichen waschmitteltabletten
EP1155111B1 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
WO2000029541A1 (de) Parfümfreie wasch- und reinigungsmittelformkörper
DE19908026A1 (de) Abriebstabile Wasch- und Reinigungsmittelformkörper mit festen Additiven
DE10129228B4 (de) Gelbildung verhindernde Zusätze zu Tensiden und Waschmittelformulierungen und ihre Anwendung in Wasch-und Reinigungsmitteln
WO1999055812A1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
DE19847281A1 (de) Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren
WO2000027985A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen lösungsvermittlern
DE19754292A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
DE19841360A1 (de) Wasch- und Reinigungsmittelformkörper mit speziellem Tensidgranulat
WO2000044871A1 (de) Abriebstabile wasch- und reinigungsmittelformkörper mit hohem niotensidanteil
WO2000053716A1 (de) Wasch- und reinigungsmittelformkörper mit tensid-builderkombination
WO2000004114A2 (de) Verfahren zur herstellung fettalkoholsulfathaltiger wasch- und reinigungsmittelformkörper
WO2000043487A1 (de) Abriebstabile wasch- und reinigungsmittelformkörper
WO2000044872A1 (de) Wasch- und reinigungsmittelformkörper mit definiertem aniontensidverhältnis
DE19849630A1 (de) FAS-haltige Wasch- und Reinigungsmittelformkörper
DE19847277A1 (de) Bleichaktivator-haltige Wasch- und Reinigungsmittelformkörper
WO2000060048A1 (de) Wasch- und reinigungsmittelformkörper mit speziellen tensidgranulaten
DE19841362A1 (de) ABS-haltige Wasch- und Reinigungsmittelformkörper

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999929255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007014804

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999929255

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007014804

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999929255

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007014804

Country of ref document: KR