DE19847281A1 - Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren - Google Patents

Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren

Info

Publication number
DE19847281A1
DE19847281A1 DE1998147281 DE19847281A DE19847281A1 DE 19847281 A1 DE19847281 A1 DE 19847281A1 DE 1998147281 DE1998147281 DE 1998147281 DE 19847281 A DE19847281 A DE 19847281A DE 19847281 A1 DE19847281 A1 DE 19847281A1
Authority
DE
Germany
Prior art keywords
acid
weight
detergent tablets
organic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1998147281
Other languages
English (en)
Inventor
Christian Block
Monika Boecker
Andreas Lietzmann
Markus Semrau
Kathrin Schnepp-Hentrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE1998147281 priority Critical patent/DE19847281A1/de
Priority to PCT/EP1999/007369 priority patent/WO2000022087A1/de
Publication of DE19847281A1 publication Critical patent/DE19847281A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittelformkörper, welche feste organische Oligocarbonsäuren enthalten. Diese Formkörper besitzen vorteilhafte anwendungstechnische Eigenschaften, wenn mindestens 80 Gew.-% der genannten Oligocarbonsäuren Teilchengrößen oberhalb 800 mum aufweisen.

Description

Die vorliegende Erfindung liegt auf dem Gebiet der kompakten Formkörper, die wasch- und reinigungsaktive Eigenschaften aufweisen. Solche Wasch- und Reinigungsmittelformkörper umfassen beispielsweise Waschmittelformkörper für das Waschen von Textilien, Reinigungsmittelformkörper für das maschinelle Geschirrspülen oder die Reinigung harter Oberflächen, Bleichmittelformkörper zum Einsatz in Wasch- oder Geschirrspülmaschinen, Wasserenthärtungsformkörper oder Fleckensalztabletten. Insbesondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper, die zum Waschen von Textilien in einer Haushaltswaschmaschine eingesetzt und kurz als Waschmitteltabletten bezeichnet werden.
Wasch- und Reinigungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Wasch- und Reinigungsmittel haben gegenüber pulverförmigen eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Auch in der Patentliteratur sind Wasch- und Reinigungsmittelformkörper folglich umfassend beschrieben. Ein Problem, das bei der Anwendung von wasch- und reinigungsaktiven Formkörpern immer wieder auftritt, ist die zu geringe Zerfalls- und Lösegeschwindigkeit der Formkörper unter Anwendungsbedingungen. Da hinreichend stabile, d. h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrücke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Formkörper hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus Einspülkammer in die Waschtrommel eingespült zu werden. Zusätzlich besteht bei der Herstellung von wasch- und reinigungsaktiven Formkörpern das Problem der Rezepturanpassung. Während bei pulverförmigen oder flüssigen Wasch- und Reinigungsmitteln die Rezepturen mit nur geringem Aufwand beispielsweise an veränderte Anforderungen hinsichtlich des Wasch- oder Reinigungsvermögens oder an nationale Gegebenheiten angepaßt werden können, führt die Veränderung der Inhaltsstoffe oder ihrer Mengen bei zu verpressenden Vorgemischen oft dazu, daß sich die Tablettiereigenschaften der Mischung drastisch ändern und Formkörper resultieren, die bei gewünschter Härte keine ausreichenden Zerfallszeiten mehr aufweisen.
Zur Überwindung der Dichotomie zwischen Härte, d. h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formkörper sind im Stand der Technik viele Lösungsansätze entwickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformkörper ausgedehnter Ansatz ist die Inkorporation bestimmter Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungsvorschläge aus der Patentliteratur beschreiben die Verpressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formkörpers mit Bindemitteln.
Der Einsatz von Citronensäure in Wasch- und Reinigungsmittelformkörpern ist im Stand der Technik ebenfalls breit beschrieben. Üblicherweise dient die Citronensäure dabei als Bestandteil eines Kohlendioxid entwickelnden Brausesystems, dessen zweite Komponente ein Carbonat und/oder Hydrogencarbonat ist.
Beispielsweise beschreibt die europäische Patentanmeldung EP 687 464 (Allphamed Arzneimittel GmbH) ein Verfahren zur Herstellung von Brausetabletten, bei dem ein Wirkstoff oder eine Wirkstoffkombination in einem klimatisierten Raum mit den Brausezusätzen vermischt und unter Zugabe von Glycerin oder Propylenglycol als Bindemittel tablettiert wird. Diese Schrift befaßt sich nicht mit Wasch- und Reinigungsmitteln, und auch Angaben zur Teilchengröße der eingesetzten Citronensäure fehlen völlig.
Wasch- und Reinigungsmittelformkörper in Form von Brausetabletten werden in der WO 87/02052 (Ockhuizen et al.) beschreiben. Die in dieser Schrift offenbarten Formkörper enthalten 2 bis 6 Gew.-% Waschmittelkonzentrat sowie 40 bis 60 Gew.-% Natriumhydrogencarbonat und 33 bis 53 Gew.-% fester organischer Säure, vorzugsweise Citronensäure. Die Mengen an waschaktiver Substanz, die in dieser Schrift offenbart werden, sind für Anwendungen bei der Textilwäsche deutlich zu gering, und auch in dieser Schrift fehlen nähere Angaben zu den Teilchengrößen der verwendeten festen organischen Säuren.
Eine Waschmittelzusammensetzung, die Aniontensid, Kationtensid sowie eine Säure- und eine Alkaliquelle enthalten, welche gemeinsam als Brausesystem fungieren, wird in der WO 97/43366 (Procter & Gamble) beschrieben. Diese Schrift lehrt, daß die Säurequelle (beispielsweise Citronensäure) vorzugsweise vollständig aus Teilchen mit Größen unter 710 µm besteht. Wasch- und Reinigungsmittelformkörper werden in dieser Schrift nicht erwähnt.
Die WO 98/04672 (Procter & Gamble) offenbart ein Verfahren zur Herstellung von Compounds für Waschmittelzusammensetzungen, bei dem ein Tensid und eine Säurequelle vermischt und agglomeriert (gegebenenfalls tablettiert) und nachfolgend mit einer Alkaliquelle vermischt werden. Diese Schrift lehrt weder die Herstellung von Wasch- und Reinigungsmittelformkörper hoher Härte und mit guten Zerfallseigenschaften, noch werden Angaben zur Teilchengröße gemacht.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, Formkörper bereitzustellen, die sich bei vorgegebener Härte durch kurze Zerfallszeiten auszeichnen und sich somit auch über die Einspülkammer haushaltsüblicher Waschmaschinen dosieren lassen. Dabei sollte eine Einarbeitungsform für organische Oligocarbonsäuren gefunden werden, die die Herstellung von Formkörpern mit optimalen Eigenschaften ermöglicht.
Gegenstand der Erfindung sind Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, die feste organische Oligocarbonsäure(n) in Mengen von 0,1 bis 20 Gew.-%, bezogen auf den Formkörper, enthalten, wobei mindestens 80 Gew.-% der organischen Oligocarbonsäure-Partikel eine Teilchengrößen oberhalb 800 µm aufweisen.
Durch den Einsatz dieser grobteiligen organischen Oligocarbonsäuren werden die physikalischen Eigenschaften von Wasch- und Reinigungsmittelformkörpern in vorteilhafter Weise beeinflußt. Während man geneigt ist, zu glauben, daß feinteilige Säurekomponenten sich wegen der deutlich größeren Oberfläche wesentlich schneller lösen und demzufolge zu einer schnelleren Zerfallszeit beitragen, zeigt die vorliegende Erfindung, daß genau das Gegenteil der Fall ist. Die genannten festen organischen Oligocarbonsäuren sind im Handel in den unterschiedlichsten Qualitäten erhältlich, wobei auch die Korngrößen in weiten Bereichen variieren.
Der Begriff "feste organische Oligocarbonsäure" kennzeichnet im Rahmen der vorliegenden Erfindung Stoffe, die bei Raumtemperatur im festen Aggregatzustand vorliegen und ihren sauren Charakter der Existenz mindestens zweier Carboxylgruppen verdanken. Diese Stoffe werden weiter unten ausführlich beschrieben.
Die organische(n) Oligocarbonsäure(n) sind in bevorzugten Wasch- und Reinigungsmittelformkörpern in Mengen von 1 bis 15 Gew.-%, vorzugsweise von 2 bis 10 Gew.-% und insbesondere von 3 bis 7 Gew.-%, enthalten.
Erfindungsgemäß weisen mindestens 80 Gew.-% der Partikel der organischen Oligocarbonsäure(n) Größen oberhalb 800 µm auf, wobei höhere Anteile an Teilchen mit Größen über 800 µm und gröbere Qualitäten der organischen Oligocarbonsäuren bevorzugt sind. Insbesondere sind im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen mindestens 85 Gew.-%, vorzugsweise mindestens 90 Gew.-% und insbesondere die Gesamtmenge der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen. Besonders bevorzugt sind dabei Wasch- und Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß mindestens 20 Gew.-%, vorzugsweise mindestens 25 Gew.-%, besonders bevorzugt mindestens 30 Gew.-% und insbesondere mindestens 35 Gew.-% der organischen Oligocarbonsäure-Partikel Teilchengrößen im Bereich von 1000 µm bis 1400 µm aufweisen.
Um eine vorteilhafte homogene Teilchengrößenverteilung zu besitzen, sollte(n) die eingesetzte(n) organische(n) Oligocarbonsäure(n) insbesondere frei von feinen bzw. Staubanteilen sein, also keine Teilchen unter 400 µm Durchmesser enthalten. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten organische Oligocarbonsäure-Partikel, die substantiell frei von Teilchen mit Größen unterhalb 0,2 mm sind.
Unter "substantiell frei" werden im Rahmen der vorliegenden Erfindung Gehalte unter 2 Gew.-%, vorzugsweise unter 1 Gew.-% und insbesondere unter 0,5 Gew.-%, jeweils bezogen auf die Gesamtheit der Teilchen, verstanden.
Es ist erfindungsgemäß auch möglich, die organische(n) Oligocarbonsäure(n) mit anderen Rohstoffen zu granulieren und durch Mahl- und Sieboperationen auf das erforderliche Partikelspektrum einzustellen. Erfindungsgemäß sind demnach auch Compounds einsetzbar, die zu mindestens 60 Gew.-%, bezogen auf das Compound, aus organische(n) Oligocarbonsäure(n) bestehen, wobei diese Compounds dann den erfindungsgemäßen Partikelgrößenkriterien entsprechen müssen, d. h., daß mindestens 80 Gew.-% der Compounds Teilchengrößen oberhalb 800 µm aufweisen. Erfindungsgemäß bevorzugt sind also auch Wasch- und Reinigungsmittelformkörper, die organische Oligocarbonsäure- haltige Compounds enthalten, welche mindestens 60 Gew.-% organische Oligocarbonsäure, jeweils bezogen auf das Gewicht des Compounds, enthalten, wobei mindestens 80 Gew.-% der Compounds Teilchengrößen oberhalb 800 µm aufweisen.
Die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern enthaltene(n) organische(n) Oligocarbonsäure(n) ist/sind dabei Carbonsäuren mit zwei oder mehr Carboxylgruppen. Beginnend mit der C2-Dicarbonsäure (Oxalsäure), sind neben den Dicarbonsäuren steigender Kettenlängen (beispielsweise Malonsäure, Bernsteinsäure, Adipinsäure) auch ungesättigte und/oder C-Kettensubstituierte Dicarbonsäuren einsetzbar. Beispiele für die genannten Verbindungen sind Maleinsäure, Fumarsäure, Äpfelsäure (Hydroxybernsteinsäure) und Weinsäure (2,3-Dihydroxybernsteinsäure).
Selbstverständlich sind auch Tri- und höhere Carbonsäuren einsetzbar, die ebenfalls in der C-Kette gesättigt oder ungesättigt, verzweigt oder substituiert sein können. Als bekanntestes Beispiel aus dieser Gruppe ist dabei die Citronensäure (2-Hydroxy-1,2,3- propantricarbonsäure) zu nennen. Im Rahmen der vorliegenden Erfindungen sind Mischungen der genannten Säuren ebenfalls einsetzbar. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper sind daher dadurch gekennzeichnet, daß sie als organische Oligocarbonsäure(n) eine oder mehrere Säuren aus der Gruppe Adipinsäure, Äpfelsäure, Citronensäure, Fumarsäure, Maleinsäure, Malonsäure, Oxalsäure und Weinsäure enthalten.
Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformkörper, die als organische Oligocarbonsäure Citronensäure enthalten.
Citronensäure, chemisch exakt 2-Hydroxy-1,2,3-propantricarbonsäure ist in Form farbloser Rhomben kommerziell als wasserfreie Substanz (Dichte 1,665, Schmelzpunkt 153°C) oder als Monohydrat (Dichte 1,542, Schmelzpunkt 100°C) erhältlich. Citronensäure wurde 1784 erstmals von Scheele aus Zitronensaft isoliert, Liebig bestimmte die Struktur 1838. Die Herstellung erfolgt aus Zitronensaft durch Ausfällen mit Kalkmilch als Calciumcitrat, das durch Schwefelsäure in Calciumsulfat und freie Citronensäure zerlegt wird. Techn. wird Citronensäure zu 90% durch Fermentation von Zucker-Lösungen (aus Kohlenhydrat­ haltigen Abfällen wie Melasse, Sulfitablaugen usw.) gewonnen. Das frühere Oberflächenverfahren mit Aspergillus niger-Kulturen ist dem Submersverfahren weitgehend gewichen. In jüngerer Zeit wurden auch Verfahren zur Fermentation von n-Alkanen mit best. Citronensäure-bildenden Hefe-Arten (Candida) entwickelt. Chemische Herstellungsverfahren, z. B. aus Oxalessigsäureanhydrid und Keten sind gegenüber der fermentativen Erzeugung ohne Bedeutung. Zur Zeit werden weltweit ca. 400 000 t Citronensäure jährlich erzeugt.
Neben der/den erfindungsgemäß eingesetzten organischen Oligocarbonsäure(n) enthalten die Wasch- und Reinigungsmittelformkörper übliche Inhaltsstoffe von Wasch- und Reinigungsmitteln, insbesondere aus den Gruppen der Tenside und/oder der Gerüststoffe und/oder der Bleichmittel. Weitere Inhaltsstoffe, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzt werden können, sind beispielsweise Bleichaktivatoren, Enzyme, Farb- und Duftstoffe, optische Aufheller, Polymere, Schauminhibitoren usw.
Zur Entfaltung der Waschleistung können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper grenzflächenaktive Substanzen aus der Gruppe der anionischen, nichtionischen, zwitterionischen oder kationischen Tenside enthalten, wobei anionische Tenside aus ökonomischen Gründen und aufgrund ihres Leistungsspektrums deutlich bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13- Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansul­ fonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Be­ tracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin er­ halten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20- Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16- Alkylsulfate und C12-C15 Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3- Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% uns insbesondere 10 bis 20 Gew.-% anionische Tensid(e), jeweils bezogen auf das Formkörpergewicht, enthalten.
Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Wasch- und Reinigungsmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Wasch- und Reinigungsmittelformkörper 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Formkörpergewicht, enthalten.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C1214-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14- Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebro­ chene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homolo­ genverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt wer­ den.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.
Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um be­ kannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C14-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydrox­ ylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Neben den waschaktiven Substanzen sind Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmitteln. In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, die erfindungsgemäß innerhalb eines bestimmten Teilchengrößenbereichs eingesetzten Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate. Die genannten Gerüststoffe können auch in tensidfreien Formkörpern eingesetzt werden, so daß es erfindungsgemäß möglich ist, Formkörper herzustellen, die zur Wasserenthärtung oder als Bleichmitteltabletten eingesetzt werden können.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP- A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natrium­ disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/­ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S. p. A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung PCT/EP 98/1203 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Technisch möglich ist auch die Beschichtung des Formkörpers, mit einem Coating, das den gesamten Formkörper überzieht. Solche beschichteten Wasch- und Reinigungsmittelformkörper können durch Aufsprühen einer Schmelze oder Lösung des Coatingmaterials auf den Formkörper oder Eintauchen des Formkörpers in die Schmelze oder Lösung hergestellt werden. In bevorzugten Ausführungsformen der vorliegenden Erfindung sind die Wasch- und Reinigungsmittelformkörper allerdings nicht mit einem Coating, das den gesamten Formkörper überzieht, beschichtet.
Durch den erfindungsgemäßen Einsatz der Hilfsstoffe im genannten Teilchengrößenbereich und optional durch den Einsatz von Desintegrationshilfsmitteln unterstützt (siehe unten), lassen sich erfindungsgemäß Wasch- und Reinigungsmittelformkörper herstellen, welche bei hohen Härten in Wasser äußerst schnell in ihre Bestandteile zerfallen. Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformkörper, die in Wasser bei 30°C in weniger als 60 Sekunden vollständig in ihre Sekundärpartikel zerfallen, welche so klein sind, daß sie sich über die Einspülkammer einer haushaltsüblichen Waschmaschine einspülen lassen.
Die Herstellung wasch- und reinigungsaktiver Formkörper geschieht durch Anwendung von Druck auf ein zu verpressendes Gemisch, das sich im Hohlraum einer Presse befindet. Im einfachsten Fall der Formkörperherstellung, die nachfolgend vereinfacht Tablettierung genannt wird, wird die zu tablettierende Mischung direkt, d. h. ohne vorhergehende Granulation verpreßt. Die Vorteile dieser sogenannten Direkttablettierung sind ihre einfache und kostengünstige Anwendung, da keine weiteren Verfahrensschritte und demzufolge auch keine weiteren Anlagen benötigt werden. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So muß eine Pulvermischung, die direkt tablettiert werden soll, eine ausreichende plastische Verformbarkeit besitzen und gute Fließeigenschaften aufweisen, weiterhin darf sie während der Lagerung, des Transports und der Befüllung der Matrize keinerlei Entmischungstendenzen zeigen. Diese drei Voraussetzungen sind bei vielen Substanzgemischen nur außerordentlich schwierig zu beherrschen, so daß die Direkttablettierung insbesondere bei der Herstellung von Wasch- und Reinigungsmittel­ tabletten nicht oft angewendet wird. Der übliche Weg zur Herstellung von Wasch- und Reinigungsmitteltabletten geht daher von pulverförmigen Komponenten ("Primärteilchen") aus, die durch geeignete Verfahren zu Sekundärpartikeln mit höherem Teilchendurchmesser agglomeriert bzw. granuliert werden. Diese Granulate oder Gemische unterschiedlicher Granulate werden dann mit einzelnen pulverförmigen Zuschlagstoffen vermischt und der Tablettierung zugeführt.
Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch formgebendes Verpressen eines teilchenförmigen Vorgemischs, das feste organische Oligocarbonsäure(n) in Mengen von 0,1 bis 20 Gew.-%, bezogen auf das Vorgemisch, enthält, wobei mindestens 80 Gew.-% der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen.
Auch beim erfindungsgemäßen Verfahren ist der Einsatz der genannten organischen Oligocarbonsäure(n) in einer Teilchengrößenverteilung bevorzugt, in der deutlich mehr als 80 Gew.-% der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen. Erfindungsgemäß bevorzugte Verfahren sind dadurch gekennzeichnet, daß das Vorgemisch organische Oligocarbonsäure(n) in Mengen von 1 bis 15 Gew.-%, vorzugsweise von 2 bis 10 Gew.-% und insbesondere von 3. bis 7 Gew.-% enthält und mindestens 85 Gew.-%, vorzugsweise mindestens 90 Gew.-% und insbesondere die Gesamtmenge der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen, wobei vorzugsweise mindestens 20 Gew.-%, vorzugsweise mindestens 25 Gew.- %, besonders bevorzugt mindestens 30 Gew.-% und insbesondere mindestens 35 Gew.-% der organische(n) Oligocarbonsäure-Partikel Teilchengrößen im Bereich von 1000 µm bis 1400 µm aufweisen.
Selbstverständlich ist es auch möglich, die organischen Oligocarbonsäure(n) mit anderen Rohstoffen zu granulieren und durch Mahl- und Sieboperationen auf das erforderliche Partikelspektrum einzustellen. Im erfindungsgemäßen Verfahren sind demnach auch Compounds einsetzbar, die zu mindestens 60 Gew.-%, bezogen auf das Compound, aus organischer/organischen Oligocarbonsäure(n) bestehen, wobei diese Compounds dann den o. g. Partikelgrößenkriterien entsprechen müssen, d. h., daß mindestens 80 Gew.-% der Compounds Teilchengrößen oberhalb 800 µm aufweisen.
Auch beim erfindungsgemäßen Verfahren sind die o. g. Oligocarbonsäuren bevorzugt einsetzbar, d. h. in bevorzugten Verfahren wird/werden als organische Oligocarbonsäure eine oder mehrere Säuren aus der Gruppe Adipinsäure, Äpfelsäure, Citronensäure, Fumarsäure, Maleinsäure, Malonsäure, Oxalsäure und Weinsäure, vorzugsweise Citronensäure, eingesetzt.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper werden durch Verpressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente erhalten. Die Herstellung der tensidhaltigen Granulate kann dabei durch übliche technische Granulationsverfahren wie Kompaktierung, Extrusion, Mischergranulation, Pelletierung oder Wirbelschichtgranulation erfolgen. Es ist dabei für die späteren Wasch- und Reinigungsmittelformkörper von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht aufweist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
Das tensidhaltige Granulat genügt in bevorzugten Verfahrensvarianten ebenfalls bestimmten Teilchengrößenkriterien. So sind erfindungsgemäße Verfahren bevorzugt, bei denen das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweist.
Neben den Aktivsubstanzen (anionische und/oder nichtionische und/oder kationische und/oder amphotere Tenside) enthalten die Tensidgranulate vorzugsweise noch Trägerstoffe, die besonders bevorzugt aus der Gruppe der Gerüststoffe stammen. Besonders vorteilhafte Verfahren sind dadurch gekennzeichnet, daß das tensidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und Gesamt- Tensidgehalte von mindestens 10 Gew.-%, vorzugsweise mindestens 20 Gew.-% uns insbesondere mindestens 25 Gew.-%, aufweist.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittelformkörpern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reinigungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpuderungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpuderungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die aus einem teilchenförmigen Vorgemisch bestehen, das granulare Komponenten und nachträglich zugemischte pulverförmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit- Typ mit Teilchengrößen unterhalb 140 µm, vorzugsweise unterhalb 10 µm und insbesondere unterhalb 5 µm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Neben den genannten Bestandteilen Tensid, Builder und Desintegrationshilfsmittel, oder an ihrer Stelle können im erfindungsgemäßen Verfahren die zu verpressenden teilchenförmigen Vorgemische zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium­ monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N- nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelain­ säure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2- Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel in Formkörpern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N- Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5- dimethylhydanthoin sind ebenfalls geeignet.
Um beim Waschen oder Reinigen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren als alleiniger Bestandteil oder als Inhaltsstoff der Komponente b) eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4- dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy- 2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mi­ schungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Formkörpern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese Öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl- Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Die Formkörper können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4- morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen.
Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)- diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Farb- und Duftstoffe werden den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parflimöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl­ carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl­ glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8- 18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝- Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Weichmacher an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Die Herstellung der erfindungsgemäßen Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und an­ schließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmli­ che Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Niederzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehrschichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu verpressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formkörpers erreichen. Hierzu können die zu beschichtenden Körper beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Beispiele
Zur Herstellung von Wasch- und Reinigungsmittelformkörpern, welche organische Oligocarbonsäure enthalten, wurde ein Tensidgranulat mit weiteren Aufbereitungskomponenten vermischt und auf einer Exzenter-Tablettenpresse zu Formkörpern verpreßt. Die über die Aufbereitungskomponenten zugegebene Citronensäure als Beispiel für eine bevorzugt einzusetzende organische Oligocarbonsäure wies dabei je nach Formkörper-Serie unterschiedliche Teilchengrößenverteilungen auf. Die Zusammensetzung des Tensidgranulats ist in der folgenden Tabelle 1 angegeben, die Zusammensetzung der zu verpressenden Vorgemische (und damit die Zusammensetzung der Formkörper) findet sich in Tabelle 2. Tabelle 3 zeigt die Teilchengrößenverteilungen der in den unterschiedlichen Formkörpern eingesetzten Citronensäure-Typen.
Tabelle 1
Zusammensetzung der Granulate [Gew.-%]
Tabelle 2
Zusammensetzung der Aufbereitung [Gew.-%]
Tabelle 3
Siebzahlen der Citronensäure-Typen in % [mm]
Die tablettierfähigen Vorgemische wurden in einer Korsch-Exzenterpresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) verpreßt. Dabei wurde der Preßdruck so eingestellt, daß jeweils zwei Serien von Formkörpern erhalten wurden (E1, E1', E2, E2', E3, E3', V1, V1' und V2, V2'), die sich in ihrer Härte unterscheiden.
Die Härte der Tabletten wurde durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600 ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Die experimentellen Daten der einzelnen Tablettenserien zeigen die Tabellen 4 und 5:
Tabelle 4
Waschmitteltabletten [physikalische Daten]
Tabelle 5
Waschmitteltabletten [physikalische Daten]

Claims (17)

1. Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, dadurch gekennzeichnet, daß sie feste organische Oligocarbonsäure(n) in Mengen von 0,1 bis 20 Gew.-%, bezogen auf den Formkörper, enthalten, wobei mindestens 80 Gew.-% der organischen Oligocarbonsäure-Partikel eine Teilchengrößen oberhalb 800 µm aufweisen.
2. Wasch- und Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß sie organische Oligocarbonsäure(n) in Mengen von 1 bis 15 Gew.-%, vorzugsweise von 2 bis 10 Gew.-% und insbesondere von 3 bis 7 Gew.-%, enthalten.
3. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß mindestens 85 Gew.-%, vorzugsweise mindestens 90 Gew.-% und insbesondere die Gesamtmenge der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen.
4. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens 20 Gew.-%, vorzugsweise mindestens 25 Gew.-%, besonders bevorzugt mindestens 30 Gew.-% und insbesondere mindestens 35 Gew.-% der organischen Oligocarbonsäure-Partikel Teilchengrößen im Bereich von 1000 µm bis 1400 µm aufweisen.
5. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die organischen Oligocarbonsäure-Partikel substantiell frei von Teilchen mit Größen unterhalb 0,2 mm sind.
6. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie organische Oligocarbonsäure-haltige Compounds enthalten, welche mindestens 60 Gew.-% organische Oligocarbonsäure, jeweils bezogen auf das Gewicht des Compounds, enthalten, wobei mindestens 80 Gew.-% der Compounds Teilchengrößen oberhalb 800 µm aufweisen.
7. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als organische Oligocarbonsäure(n) eine oder mehrere Säuren aus der Gruppe Adipinsäure, Äpfelsäure, Citronensäure, Fumarsäure, Maleinsäure, Malonsäure, Oxalsäure und Weinsäure enthalten.
8. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie als organische Oligocarbonsäure Citronensäure enthalten.
9. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
10. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie nicht mit einem Coating, das den gesamten Formkörper überzieht, beschichtet sind.
11. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie in Wasser bei 30°C in weniger als 60 Sekunden vollständig in ihre Sekundärpartikel zerfallen.
12. Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch formgebendes Verpressen eines teilchenförmigen Vorgemischs, dadurch gekennzeichnet, daß das Vorgemisch feste organische Oligocarbonsäure(n) in Mengen von 0,1 bis 20 Gew.-%, bezogen auf das Vorgemisch, enthält, wobei mindestens 80 Gew.-% der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Vorgemisch organische Oligocarbonsäure(n) in Mengen von 1 bis 15 Gew.-%, vorzugsweise von 2 bis 10 Gew.- % und insbesondere von 3 bis 7 Gew.-% enthält und mindestens 85 Gew.-%, vorzugsweise mindestens 90 Gew.-% und insbesondere die Gesamtmenge der organischen Oligocarbonsäure-Partikel Teilchengrößen oberhalb 800 µm aufweisen, wobei vorzugsweise mindestens 20 Gew.-%, vorzugsweise mindestens 25 Gew.-%, besonders bevorzugt mindestens 30 Gew.-% und insbesondere mindestens 35 Gew.-% der organische(n) Oligocarbonsäure-Partikel Teilchengrößen im Bereich von 1000 µm bis 1400 µm aufweisen.
14. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß als organische Oligocarbonsäure eine oder mehrere Säuren aus der Gruppe Adipinsäure, Äpfelsäure, Citronensäure, Fumarsäure, Maleinsäure, Malonsäure, Oxalsäure und Weinsäure, vorzugsweise Citronensäure, eingesetzt werden.
15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch zusätzlich tensidhaltige(s) Granulat(e) enthält und ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweist.
17. Verfahren nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
DE1998147281 1998-10-14 1998-10-14 Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren Withdrawn DE19847281A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1998147281 DE19847281A1 (de) 1998-10-14 1998-10-14 Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren
PCT/EP1999/007369 WO2000022087A1 (de) 1998-10-14 1999-10-05 Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998147281 DE19847281A1 (de) 1998-10-14 1998-10-14 Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren

Publications (1)

Publication Number Publication Date
DE19847281A1 true DE19847281A1 (de) 2000-04-20

Family

ID=7884396

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998147281 Withdrawn DE19847281A1 (de) 1998-10-14 1998-10-14 Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren

Country Status (2)

Country Link
DE (1) DE19847281A1 (de)
WO (1) WO2000022087A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831180A1 (fr) * 2001-10-23 2003-04-25 Rhodia Polyamide Intermediates Formulation solide bicomposant pour le lavage automatique de la vaisselle et procede de lavage automatique de la vaisselle
FR2831181A1 (fr) * 2001-10-23 2003-04-25 Rhodia Polyamide Intermediates Tablette antitartre acide et son utilisation en lavage automatique de la vaisselle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130697A1 (it) * 2013-04-29 2014-10-30 Fem2 Ambiente S R L Prodotto detergente ecosostenibile a base di acido citrico

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9120657D0 (en) * 1991-09-27 1991-11-06 Unilever Plc Detergent powders and process for preparing them
CZ371898A3 (cs) * 1996-05-17 1999-03-17 The Procter & Gamble Company Složení detergentu

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831180A1 (fr) * 2001-10-23 2003-04-25 Rhodia Polyamide Intermediates Formulation solide bicomposant pour le lavage automatique de la vaisselle et procede de lavage automatique de la vaisselle
FR2831181A1 (fr) * 2001-10-23 2003-04-25 Rhodia Polyamide Intermediates Tablette antitartre acide et son utilisation en lavage automatique de la vaisselle
WO2003035819A1 (fr) * 2001-10-23 2003-05-01 Rhodia Polyamide Intermediates Tablette antitartre acide et son utilisation en lavage automatique de la vaisselle

Also Published As

Publication number Publication date
WO2000022087A1 (de) 2000-04-20

Similar Documents

Publication Publication Date Title
EP1056833B1 (de) Wasch- und reinigungsmittelformkörper mit bleichmittel
EP1051474B1 (de) Mehrphasige waschmitteltabletten
EP1037960B1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
DE19903288A1 (de) Mehrphasige Waschmitteltabletten
EP1051475B1 (de) Mehrphasige waschmitteltabletten
DE19847283A1 (de) Wasch- und Reinigungsmittelformkörper mit wasserfrei granuliertem Brausesystem
DE19807321A1 (de) Wasch- und Reinigungsmittelformkörper mit verbessertem Eigenschaftsprofil
DE19841146A1 (de) Waschmitteltabletten mit Bindemitteln
DE19860189C1 (de) Formoptimierter Waschmittelformkörper
DE19847281A1 (de) Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren
DE19908026A1 (de) Abriebstabile Wasch- und Reinigungsmittelformkörper mit festen Additiven
EP1155111B1 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
DE19754292A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
DE19852136A1 (de) Parfümfreie Wasch- und Reinigungsmittelformkörper
DE19818965A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
DE19851442A1 (de) Wasch- und Reinigungsmittelformkörper mit feinteiligen Lösungsvermittlern
DE19843938A1 (de) Wasch- und Reinigungsmittelformkörper mit grobteiligen Aufbereitungskomponenten
DE19841362A1 (de) ABS-haltige Wasch- und Reinigungsmittelformkörper
DE19847277A1 (de) Bleichaktivator-haltige Wasch- und Reinigungsmittelformkörper
DE19850984A1 (de) Formoptimierte Waschmittelformkörper
DE19849630A1 (de) FAS-haltige Wasch- und Reinigungsmittelformkörper
DE19824743A1 (de) Bruchstabile und schnellösliche Wasch- und Reinigungsmittelformkörper
DE19828577A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE19841360A1 (de) Wasch- und Reinigungsmittelformkörper mit speziellem Tensidgranulat
DE19843773A1 (de) Wasch- und Reinigungsmittelformkörper mit feinteiligen Aufbereitungskomponenten

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee