EP1037960B1 - Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften - Google Patents

Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften Download PDF

Info

Publication number
EP1037960B1
EP1037960B1 EP98952701A EP98952701A EP1037960B1 EP 1037960 B1 EP1037960 B1 EP 1037960B1 EP 98952701 A EP98952701 A EP 98952701A EP 98952701 A EP98952701 A EP 98952701A EP 1037960 B1 EP1037960 B1 EP 1037960B1
Authority
EP
European Patent Office
Prior art keywords
weight
detergent tablets
detergent
acid
tablets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98952701A
Other languages
English (en)
French (fr)
Other versions
EP1037960A1 (de
Inventor
Monika Böcker
Andreas Lietzmann
Hans-Friedrich Kruse
Michael Feist
Gerhard Blasey
Christian Block
Heinke Jebens
Fred Schambil
Bernhard Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1037960A1 publication Critical patent/EP1037960A1/de
Application granted granted Critical
Publication of EP1037960B1 publication Critical patent/EP1037960B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0086Laundry tablets

Definitions

  • the present invention is in the field of compact moldings, the washing and have cleaning-active properties.
  • the invention relates to washing and Detergent tablets used for washing textiles in a household washing machine used and briefly referred to as detergent tablets.
  • Detergent tablets are widely described in the prior art are becoming increasingly popular with consumers because of the simple dosage.
  • Tableted detergents and cleaning agents have a number of powdered detergents Advantages: They are easier to dose and to use and because of their compact size Structure advantages in storage and transportation. Also in the patent literature detergent tablets are therefore comprehensively described.
  • a problem, that occurs again and again when using washing and cleaning active moldings, is the too slow rate of disintegration and dissolution of the shaped bodies under conditions of use. Since sufficiently stable, i.e. shape and break resistant molded articles only can be produced by relatively high pressure, there is a strong Compression of the molded parts and resulting in a delayed disintegration of the shaped body in the aqueous liquor and thus to a slow release the active substances in the washing or cleaning process.
  • the delayed disintegration of the Shaped bodies also have the disadvantage that they are customary shaped detergents and cleaning agents do not allow to wash in via the induction chamber of household washing machines, as the Tablets do not disintegrate into secondary particles that are small enough in a sufficiently quick time are to be washed into the washing drum from the washing-in chamber.
  • EP-A-0 522 766 discloses moldings made from a compacted, particulate detergent composition containing surfactants, builders and disintegration aids (for example based on cellulose), at least some of the particles being coated with the disintegration agent, which is both binder and also shows disintegration effects when the moldings are dissolved in water.
  • This document also indicates the general difficulty of producing moldings with adequate stability and good solubility at the same time.
  • the particle size in the mixture to be pressed should be above 200 ⁇ m, the upper and lower limits of the individual particle sizes should not differ from one another by more than 700 ⁇ m.
  • EP-A-0 716 144 (Unilever), which describes tablets with an external shell made of water-soluble material
  • EP-A-0 711 827 (Unilever), which contain a citrate with a defined solubility as an ingredient.
  • binders which may have an explosive action (in particular polyethylene glycol) is disclosed in EP-A-0 711 828 (Unilever), which describes detergent tablets which are formed by pressing a particulate detergent composition at temperatures between 28 ° C. and the melting point of the binder material be produced, always being pressed below the melting temperature. From the examples in this document it can be seen that the moldings produced in accordance with their teaching have higher breaking strengths when compression is carried out at elevated temperature.
  • the present invention is therefore based on the object of washing and cleaning agent tablets provide the desired properties of high hardness and mechanical Combine stability and nevertheless favorable decay speeds.
  • the invention accordingly relates to molded detergent and cleaning product bodies particulate detergents and cleaning agents, comprising surfactant (s), builders (e) and optionally further detergent and cleaning agent components, the Moldings contain 0.2 to 10% by weight of surfactant (s) from the group of the alkyl polyglycosides and the content of potassium carbonate in the molding is less than 5% by weight.
  • Linear alkyl polyglucosides ie alkyl polyglycosides, in which the polyglycosyl radical is a glucose radical and the alkyl radical is an n-alkyl radical are preferably used.
  • x is the degree of glycosidation z reduced by 1 described above, preferred values of x are therefore between 0 and 3, preferably between 0 and 1 and in particular between 0.1 and 0.4.
  • the number n of methylene groups is preferably between 7 and 21, preferably between 11 and 17, carbon atoms.
  • the alkyl polyglycosides used according to the invention can be produced by known processes based on known raw materials. For example becomes dextrose in the presence of an acid catalyst with n-butanol to give butyl polyglycoside mixtures implemented, which with long-chain alcohols also in the presence an acidic catalyst to the desired alkyl polyglycoside mixtures umglycosidiert become. It is also possible to add dextrose directly with the desired long chain alcohol to glycosidate to the desired alkyl polyglycoside mixtures.
  • the structure of the products can be varied within certain limits.
  • the alkyl radical is thereby the choice of long-chain alcohol.
  • the alcohols available from technical alcohol syntheses such as oxo alcohols and Brick alcohols can be used.
  • the polyglycosyl radicals G y are determined, on the one hand, by the selection of the carbohydrate and, on the other hand, by setting the average degree of polymerization (degree of glycosidation y), as is described, for example, in DE 19 43 689 .
  • polysaccharides for example starches, maltodextrins, dextrose, galactose, mannose, xylose, etc. can be used.
  • the commercially available carbohydrates starch, maltodextrins and in particular dextrose are preferred.
  • alkyl polyglycosides are always mixtures of oligomers, which in turn represent mixtures of different isomeric forms. They exist side by side with ⁇ - and ⁇ -glycosidic bonds in pyranose and furanose form. The junctions between two saccharide residues are also different.
  • Alkyl polyglycosides which can be used according to the invention can also be prepared by mixing alkyl polyglycosides with alkyl monoglycosides.
  • alkyl monoglycosides can be obtained or enriched from alkyl polyglycosides using polar solvents such as acetone using the process disclosed in EP 092 355.
  • the degree of glycosidation of alkyl polyglycosides is usually determined by 1 H nuclear magnetic resonance measurements.
  • Detergent tablets according to the invention contain alkyl polyglycosides, where APG contents of the shaped bodies are above 0.2% by weight, based on the entire shaped body, are preferred. Contain particularly preferred detergent tablets APG in amounts of 0.2 to 10% by weight, preferably 0.2 to 5% by weight and in particular from 0.5 to 3% by weight.
  • the detergent tablets according to the invention contain molded articles further surface-active substances from the group of anionic, nonionic, zwitterionic or cationic surfactants, whereby anionic surfactants economic reasons and because of their range of services are clearly preferred.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C 9-13- alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates such as are obtained, for example, from C 12-18 monoolefins with an end or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products.
  • alkanesulfonates obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • the esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • fatty acid glycerol esters the mono-, di- and triesters and their mixtures are to be understood as they are in the Manufactured by esterification of a monoglycerin with 1 to 3 moles of fatty acid or the transesterification of triglycerides with 0.3 to 2 mol of glycerol can be obtained.
  • preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids with 6 up to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, Lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned, which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior similar to that of the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates as well as C 14 -C 15 alkyl sulfates are preferred from the point of view of washing technology.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat. Nos. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN®, are also suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7-21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9-11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12-18 - Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants, including the soaps can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • detergent tablets are preferred the 5 to 60% by weight, preferably 10 to 50% by weight and in particular 20 to 40% by weight anionic surfactant (s), based in each case on the weight of the molding.
  • detergent tablets When selecting the anionic surfactants in the detergent tablets according to the invention are used, the freedom of formulation is not subject to compliance Framework conditions in the way.
  • Preferred detergent tablets however, have a soap content of 0.2% by weight, based on the total weight of the molded body.
  • Anionic surfactants to be used with preference the alkylbenzenesulfonates fatty alcohol sulfates, preferred detergent tablets 2 to 20% by weight, preferably 5 to 15% by weight and in particular 7.5 to 12.5 % By weight of fatty alcohol sulfate (s), based in each case on the weight of the shaped body
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C 12-18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants either as the sole nonionic surfactant or used in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl esters, as described, for example, in Japanese patent application JP 58/217598 or which are preferably described in the international patent application Methods described in WO-A-90/13533.
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I), in which RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms, R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in which R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, C 1-4 -alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated Derivatives of this rest.
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example Glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example Glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy or N-aryloxy-substituted compounds can then, for example, according to the Teaching of the international application WO-A-95/07331 by reaction with fatty acid methyl esters in the presence of an alkoxide as a catalyst in the desired polyhydroxy fatty acid amides be transferred.
  • builders are the most important ingredients of Detergents and cleaning agents.
  • the detergent tablets according to the invention can all builders commonly used in detergents and cleaning agents be included, in particular thus zeolites, silicates, carbonates, organic cobuilders and - where there are no ecological prejudices against their use - also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 ⁇ H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, preferred values for x 2, 3 or 4.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number from 0 to 20, preferred values for x 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514 .
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 ⁇ yH 2 O are preferred, with ⁇ -sodium disilicate being obtainable for example by the method / described in the international patent application WO-A-91 08,171th
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024 .
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (approx ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula Na 2 O.
  • zeolite (1-n) K 2 O ⁇ Al 2 O 3 ⁇ (2 to 2.5) SiO 2 ⁇ (3.5 to 5.5) H 2 O can be described.
  • the zeolite can be used both as a builder in a granular compound and can also be used for a kind of "powdering" of the entire mixture to be compressed, usually using both ways of incorporating the zeolite into the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, such as citric acid, adipic acid, succinic acid, glutaric acid, Tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such Use for ecological reasons is not objectionable, as well as mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, Succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or accelerators of decay are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in absorbable form.
  • Swelling these substances, which are also called “explosives” due to their effectiveness, enlarge their volume when water enters, whereby on the one hand the volume increases (Swelling), on the other hand a pressure can also be generated via the release of gases, which breaks the tablet into smaller particles.
  • Well-known disintegration aids are for example carbonate / citric acid systems, with other organic acids also being used can be. Swelling disintegration aids are, for example, synthetic Polymers such as polyvinyl pyrrolidone (PVP) or natural polymers or modified natural products such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinyl pyrrolidone
  • natural polymers or modified natural products such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • Preferred detergent tablets contain 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight of one or more disintegration aids, each based on the weight of the molded body.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred detergent tablets have such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 contain up to 6 wt .-%.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, formally speaking, is a ⁇ -1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
  • the cellulose used as disintegration aid is preferably not used in finely divided form, but is converted into a coarser form, for example granulated or compacted, before being added to the premixes to be compressed.
  • Detergent tablets which contain disintegrants in granular or, if appropriate, cogranulated form are described in German patent applications DE 197 09 991 (Stefan Herzog) and DE 197 10 254 (Henkel) and in international patent application PCT / EP 98/1203 (Henkel) , These documents can also be found in more detail on the production of granulated, compacted or cogranulated cellulose disintegrants.
  • the particle sizes of such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular at least 90% by weight between 400 and 1200 ⁇ m.
  • the above-mentioned coarser disintegration aids based on cellulose which are described in more detail in the cited documents are preferably to be used as disintegration aids in the context of the present invention and are commercially available, for example, under the name Arbocel® TF-30-HG from the company Rettenmaier.
  • microcrystalline cellulose As another disintegrant based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose will obtained by partial hydrolysis of celluloses under such conditions that only the attack the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses completely dissolve, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent one Disaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and, for example can be compacted into granules with an average particle size of 200 ⁇ m.
  • Detergent tablets which are additionally a disintegration aid, preferably a disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably 3 up to 7% by weight and in particular from 4 to 6% by weight, in each case based on the weight of the shaped body, contained are particularly preferred in the context of the present invention.
  • a disintegration aid preferably a disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably 3 up to 7% by weight and in particular from 4 to 6% by weight, in each case based on the weight of the shaped body, contained are particularly preferred in the context of the present invention.
  • Detergent tablets are made from powdered components ("Primary particles"), which by means of suitable processes to secondary particles with higher Particle diameter can be agglomerated or granulated. These granules or mixtures different granules are then made with individual powdered additives mixed and fed to the tableting.
  • Primary particles powdered components
  • Preferred detergent tablets in the context of the present invention are obtained by compressing a particulate premix consisting of at least one surfactant Granules and at least one subsequently mixed powdered component receive. It is an advantage for the later detergent tablets, if the premix to be pressed has a bulk density that the usual compact detergent comes close. In particular, it is preferred that the premix to be pressed a bulk density of at least 500 g / l, preferably at least 600 g / l and in particular above 700 g / l.
  • the premix Before pressing the particulate premix into detergent tablets the premix can be "powdered” with finely divided surface treatment agents become. This can affect both the nature and physical properties of the Premix (storage, pressing) as well as the finished detergent tablets be an advantage.
  • Fine-particle powdering agents are well known in the prior art, mostly zeolites, silicates or other inorganic salts are used.
  • the premix is preferably "powdered” with finely divided zeolite, zeolites faujasite type are preferred.
  • the term "faujasite type zeolite” means all three zeolites that make up the faujasite subset of the Form zeolite structure group 4 (compare Donald W.
  • zeolites Mixtures or cocrystallizates of faujasite-type zeolites with other zeolites, which do not necessarily have to belong to the zeolite structure group 4 are used as powdering agents can be used, it being advantageous if at least 50% by weight of the powdering agent consist of a zeolite of the faujasite type.
  • detergent tablets consist of a particulate premix that granular components and subsequently contains powdered substances, the or one of which subsequently admixed powdered components a zeolite of the faujasite type with particle sizes is below 100 ⁇ m, preferably below 10 ⁇ m and in particular below 5 ⁇ m and at least 0.2% by weight, preferably at least 0.5% by weight and in particular more than 1 Makes up% by weight of the premix to be pressed.
  • surfactant, builder and disintegration aid can the detergent tablets according to the invention further in detergents usual ingredients from the group of bleaching agents, bleach activators.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaches are, for example, sodium percarbonate.
  • bleach activators compounds that are under Perhydrolysis conditions aliphatic peroxocarboxylic acids with preferably 1 to 10 carbon atoms, in particular 2 to 4 carbon atoms, and / or optionally substituted perbenzoic acid result, are used.
  • Substances containing O- and / or N-acyl groups are suitable carry the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines are preferred (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenol sulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, in particular Triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • TAED acylated triazine derivatives
  • Bleaching catalysts can be incorporated into the moldings. Acting on these substances it is bleach-enhancing transition metal salts or transition metal complexes such as for example Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes. Also Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru amine complexes can be used as bleaching catalysts.
  • Enzymes come from the class of proteases, lipases, amylases, cellulases or their mixtures in question. From bacterial strains or fungi, such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus Agents. Proteases of the subtilisin type and in particular are preferred Proteases obtained from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or protease and Cellulase or from cellulase and lipase or from protease, amylase and lipase or protease, Lipase and cellulase, but especially cellulase-containing mixtures of particular Interest.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules in the moldings according to the invention can, for example about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the detergent tablets can also contain components which have a positive influence on the oil and fat washability from textiles (so-called soil repellents). This effect becomes particularly clear when a textile is soiled already several times beforehand with a detergent according to the invention which is oil and fat dissolving Contains component that has been washed.
  • nonionic cellulose ethers such as methyl cellulose and Methylhydroxy-propylcellulose with a proportion of methoxyl groups of 15 to 30% by weight and on hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic Cellulose ether, as well as the polymers of phthalic acid known from the prior art and / or terephthalic acid or its derivatives, in particular polymers Ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionically modified derivatives of these. Of these, the are particularly preferred sulfonated derivatives of phthalic acid and terephthalic acid polymers.
  • the moldings can be derivatives of diaminostilbenedisulfonic acid as optical brighteners or their alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similarly constructed Compounds which, instead of the morpholino group, have a diethanolamino group, a methylamino group, carry an anilino group or a 2-methoxyethylamino group.
  • Farther brighteners of the substituted diphenylstyryl type may be present, e.g.
  • alkali salts 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) -diphenyls.
  • Mixtures of the aforementioned brighteners can be used.
  • Dyes and fragrances are added to the agents according to the invention in order to improve the aesthetics Improve impression of the products and the consumer in addition to the softness performance to provide visually and sensory "typical and distinctive" product.
  • perfume oils or fragrances individual fragrance compounds, e.g. the synthetic Products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type be used. Fragrance compounds of the ester type are e.g.
  • benzyl acetate Phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, Phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, Allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • ethers include, for example, benzyl ethyl ether, the aldehydes e.g.
  • the linear alkanals with 8-18 Carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, Lilial and Bourgeonal
  • the ketones e.g. the Jonone, ⁇ -Isomethylionon and Methyl cedryl ketone
  • the hydrocarbons mainly include Terpenes like limes and pinene.
  • mixtures of different are preferred Fragrances are used, which together produce an appealing fragrance.
  • perfume oils can also contain natural fragrance mixtures, such as those from plant sources are accessible, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • natural fragrance mixtures such as those from plant sources are accessible, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the dye content of the plasticizers according to the invention is usually lower 0.01% by weight, while fragrances make up up to 2% by weight of the total formulation can.
  • the fragrances can be incorporated directly into the agents according to the invention, it can but it may also be advantageous to apply the fragrances to carriers, which increase the adhesion of the perfume reinforce on the laundry and by a slower fragrance release for long-lasting
  • suitable dyes are colored.
  • Preferred dyes their selection to the expert no difficulty, have a high storage stability and insensitivity compared to the other ingredients of the agents and against light and no pronounced Substantivity towards textile fibers so as not to stain them.
  • the moldings according to the invention are first produced by dry means Mixing the components, which can be partially or completely pre-granulated, and then Inform, in particular pressing into tablets, whereby conventional Procedure can be used.
  • the premix becomes one in a so-called die between two stamps solid compressed compacted. This process, hereinafter referred to as tableting is divided into four sections: metering, compression (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, the filling quantity and thus the weight and shape of the resulting molded body through the position of the lower one Stamp and the shape of the press tool can be determined.
  • the constant dosage even with high molding throughputs, volumetric metering is preferred of the premix reached.
  • the upper stamp touches the pre-mix and lowers further towards the lower punch. With this compression the particles of the premix are pressed closer together, the void volume within the filling between the stamps decreases continuously. From one certain position of the upper stamp (and thus from a certain pressure on the Premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the shaped body.
  • the premixed particles are also crushed and even higher ones occur Press to sinter the premix. With increasing press speed, so high throughputs, the phase of elastic deformation is shortened more and more, so that the resulting shaped bodies can have more or less large cavities.
  • the finished molded body is removed from the lower die the die pressed out and transported away by subsequent transport devices. To At this time, only the weight of the molded body is finally determined, since the Compacts due to physical processes (stretching, crystallographic effects, cooling etc.) can still change their shape and size.
  • Tableting takes place in commercially available tablet presses, which are basically or double stamps can be equipped. In the latter case, it is not only the upper stamp used to build up pressure. the lower punch also moves during the pressing process towards the upper stamp while the upper stamp presses down.
  • Production quantities are preferably eccentric tablet presses, in which the or the stamps are attached to an eccentric disc, which in turn is on an axis a certain rotational speed is mounted. The movement of this ram is comparable to the way a conventional four-stroke engine works.
  • the pressing can be done with One upper and one lower stamp are made, but several stamps can be made on one Eccentric disk can be attached, the number of die holes correspondingly expanded is.
  • the throughputs of eccentric presses vary depending on the type from a few hundred to maximum 3000 tablets per hour.
  • rotary tablet presses are selected, on which a so-called Matrix table a larger number of matrices is arranged in a circle.
  • the number of Matrices vary between 6 and 55 depending on the model, although larger matrices are also commercially available are available.
  • Each die on the die table is assigned an upper and lower stamp, where again the pressure is active only through the upper or lower stamp, but also can be built by both stamps.
  • the die table and the stamps move around a common vertical axis, the stamp using rail-like Curve tracks during the circulation in the positions for filling, compression, plastic deformation and ejection are brought.
  • Rotary presses can also be equipped with two filling shoes to increase throughput be, whereby only a semicircle is run through to produce a tablet got to.
  • Several filling shoes are used to produce two-layer and multi-layer molded articles arranged one behind the other without the slightly pressed first layer before further filling is expelled.
  • Appropriate process control also means that and point tablets can be produced, which have an onion-shell-like structure, whereby in the case the tablet is not covering the top of the core or core layers and thus remains visible.
  • Rotary tablet presses are also available with single or multiple tools can be equipped so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used for pressing at the same time. The throughputs of modern rotary tablet presses amount to over a million molded articles per hour.
  • Tableting machines suitable for the purposes of the present invention are, for example available from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH presses GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) and Courtoy N.V., Halle (BE / LU).
  • the hydraulic double pressure press HPF for example, is particularly suitable 630 from LAEIS, D.
  • the moldings can be made in a predetermined spatial shape and a predetermined size become. Practically all sensibly manageable designs come in as the spatial form Consider, for example, the formation as a board, the rod or bar shape, cubes, Cuboid and corresponding spatial elements with flat side surfaces and in particular cylindrical ones Designs with circular or oval cross-section. This last one Design covers the presentation form from the tablet to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each be separate individual elements be formed, the predetermined dosage of detergents and / or cleaning agents equivalent. However, it is also possible to form compacts that have a plurality of such mass units connect in a compact, in particular by predetermined breaking points the easy separability of portioned smaller units is provided.
  • For the Use of textile detergents in machines of the type common in Europe with horizontal arranged mechanics can form the portioned compacts as tablets, in cylindrical or cuboid shape may be appropriate, with a diameter / height ratio in the area from about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, eccentric presses or rotary presses are suitable devices, especially for manufacturing such compacts.
  • the spatial shape of another embodiment of the shaped body is in its dimensions Detergent dispenser of commercial household washing machines adapted so that the molded body can be dosed directly into the induction bowl without a dosing aid, wherever they are dissolves during the induction process. It goes without saying that the Detergent tablets easily possible via a dosing aid and within the scope of the present Invention preferred.
  • Another preferred shaped body that can be produced has a plate-like or sheet-like shape Structure with alternating thick long and thin short segments, so that individual Segments of this "latch" at the predetermined breaking points, which are the short thin segments display, canceled and can be entered into the machine.
  • This principle of the "bar-shaped" shaped body detergent can also be used in other geometric shapes, For example, vertical triangles that are only along one side of their sides are interconnected, can be realized.
  • the various components do not become one Tablet are pressed, but that shaped bodies are obtained which have several layers, thus have at least two layers. It is also possible that these different Layers have different dissolving speeds. This can be advantageous application properties of the moldings result. If, for example Components are contained in the moldings that have a mutually negative effect, so it is possible to integrate the one component in the more quickly soluble layer and incorporate the other component into a slower soluble layer so that the first Component has already reacted when the second goes into solution.
  • the layer structure of the Shaped bodies can be made in a stack-like manner, with a dissolution process of the inner Layer (s) on the edges of the molded body already takes place when the outer layers are not yet fully resolved, but it can also completely wrap the inner Layer (s) can be reached through the layer (s) further out, which leads to prevents premature release of components of the inner layer (s).
  • a shaped body consists of at least three layers, i.e. two outer and at least one inner layer, at least a peroxy bleach is contained in one of the inner layers, while in stack-shaped molded body, the two cover layers and the shell-shaped molded body however, the outermost layers are free of peroxy bleach. It is also possible to Peroxy bleach and any existing bleach activators and / or enzymes spatially separated from each other in a molded body.
  • Such multilayered molded articles have the advantage that they not only have a dispensing chamber or a metering device, which is added to the wash liquor can be used; rather it is in such cases it is also possible to place the molded body in direct contact with the textiles Machine without fear of bleaching from bleach and the like would.
  • the bodies to be coated can be coated, for example, with aqueous Solutions or emulsions are sprayed, or via the process of melt coating get a coating.
  • stands for diametral fracture stress (DFS) in Pa
  • P is the force in N, which leads to the pressure exerted on the molded body
  • D is the shaped body diameter in meters
  • t is the height of the Moldings.
  • the molded bodies E1 and E2 or V1 and V2 differ only in their hardness, not in their composition. Tables 1 and 2 show the composition of the surfactant granules and the composition of the premixes to be pressed (and thus the moldings).
  • composition of the surfactant granules [% by weight] Granules for E1 / 2 Granules for V1 / 2 C 9-13 alkyl benzene sulfonate 19.4 18.6 C 12-18 fatty alcohol with 7 EO 4.8 5.7 C 12-18 fatty alcohol sulfate 5.2 5.4 C 12-16 alkyl 1,4-glycoside 1.0 - Soap 1.6 1.6 optical brightener 0.3 0.3 sodium 17.0 16.6 sodium silicate 5.6 5.4 Acrylic acid-maleic acid copolymer 5.6 5.4 Zeolite A (anhydrous active substance) 28.5 29.9 Na-hydroxyethane-1,1-diphosphonate 0.8 0.8 Water, salts rest rest Composition of the premix [% by weight]: Surfactant granules 61.3 61.3 zeolite 2.0 2.0 Sodium perborate monohydrate 23.7 23.7 TAED 2.4 2.4 foam inhibitor 4.7 4.7 polyacrylate 1.4 1.4 Perfume 0.5 0.5 Dis
  • the hardness of the tablets was measured by deforming the tablet to break, whereby the force on the side surfaces of the tablet and the maximum force that the Tablet withstood, was determined.
  • the tablet was placed in a beaker with water (600ml water, temperature 30 ° C) and the time taken for the tablet to completely disintegrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Description

Die vorliegende Erfindung liegt auf dem Gebiet der kompakten Formkörper, die wasch- und reinigungsaktive Eigenschaften aufweisen. Insbesondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper, die zum Waschen von Textilien in einer Haushaltswaschmaschine eingesetzt und kurz als Waschmitteltabletten bezeichnet werden.
Wasch- und Reinigungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Wasch- und Reinigungsmittel haben gegenüber pulverförmigen eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Auch in der Patentliteratur sind Wasch- und Reinigungsmittelformkörper folglich umfassend beschrieben. Ein Problem, das bei der Anwendung von wasch- und reinigungsaktiven Formkörpern immer wieder auftritt, ist die zu geringe Zerfalls- und Lösegeschwindigkeit der Formkörper unter Anwendungsbedingungen. Da hinreichend stabile, d.h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrucke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Formkörper hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus Einspülkammer in die Waschtrommel eingespült zu werden.
Zur Überwindung der Dichotomie zwischen Härte, d.h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formkörper sind im Stand der Technik viele Lösungsansätze entwickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformkörper ausgedehnter Ansatz ist die Inkorporation bestimmter Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungsvorschläge aus der Patentliteratur beschreiben die Verpressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formkörpers mit Bindemitteln.
So offenbart die EP-A-0 522 766 (Unilever) Formkörper aus einer kompaktierten, teilchenförmigen Waschmittelzusammensetzung, enthaltend Tenside, Builder und Desintegrationshilfsmittel (beispielsweise auf Cellulosebasis), wobei zumindest ein Teil der Partikel mit dem Desintegrationsmittel beschichtet ist, das sowohl Binder- als auch Desintegrationswirkung beim Auflösen der Formkörper in Wasser zeigt. Diese Schrift weist auch auf die generelle Schwierigkeit hin, Formkörper mit adäquater Stabilität bei gleichzeitig guter Löslichkeit herzustellen. Die Teilchengröße im zu verpressenden Gemisch soll dabei oberhalb von 200 µm liegen, wobei Ober- und Untergrenze der einzelnen Teilchengrößen um nicht mehr als 700 µm voneinander abweichen sollen.
Weitere Schriften, die sich mit der Herstellung vom Waschmittelformkörpern befassen, sind die EP-A-0 716 144 (Unilever), die Formkörper mit einer externen Hülle aus wasserlöslichem Material beschreibt, sowie die EP-A-0 711 827 (Unilever), die als Inhaltsstoff ein Citrat mit einer definierten Löslichkeit enthalten.
Der Einsatz von Bindemitteln, die gegebenenfalls Sprengwirkung entfalten (insbesondere Polyethylenglycol), wird in der EP-A-0 711 828 (Unilever) offenbart, die Waschmittelformkörper beschreibt, welche durch Verpressen einer teilchenförmigen Waschmittelzusammensetzung bei Temperaturen zwischen 28°C und dem Schmelzpunkt des Bindematerials hergestellt werden, wobei stets unterhalb der Schmelztemperatur verpreßt wird. Aus den Beispielen dieser Schrift ist zu entnehmen, daß die gemäß ihrer Lehre hergestellten Formkörper höhere Bruchfestigkeiten aufweisen, wenn bei erhöhter Temperatur verpreßt wird.
Waschmitteltabletten, in denen einzelne Inhaltsstoffe getrennt von anderen vorliegen, werden auch in der EP-A-0 481 793 (Unilever) beschrieben. Die in dieser Schrift offenbarten Waschmitteltabletten enthaltend Natriumpercarbonat, das von allen anderen Komponenten, die seine Stabilität beeinflussen könnten, räumlich getrennt vorliegt.
In keinem der genannten Dokumente des Standes der Technik, die sich mit Wasch- und Reinigungsmittelformkörpern beschäftigen, enthalten die Formkörper Alkylpolyglycoside. Keines der genannten Dokumente beschäftigt sich mit der Verbesserung der Löslichkeit von Wasch- und Reinigungsmitteltabletten durch gezielten Einsatz dieser Verbindungsklasse, die die Härte oder die Zerfallseigenschaften der Formkörper negativ beeinflußt.
Der vorliegenden Erfindung liegt demnach die Aufgabe zugrunde, Wasch- und Reinigungsmitteltabletten bereitzustellen, die die gewünschten Eigenschaften hoher Härte und mechanischer Stabilität und dennoch günstiger Zerfallsgeschwindigkeiten miteinander vereinen.
Es wurde nun gefunden, daß Waschmitteltabletten mit hoher Härte und dennoch äußerst hoher Zerfallsgeschwindigkeit hergestellt werden können, wenn man bei der Herstellung der Wasch- und Reinigungsmittelrezeptur Alkylpolyglycoside einsetzt.
Gegenstand der Erfindung sind demnach Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend Tensid(e), Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, wobei die Formkörper 0.2 bis 10 Gew.-% Tensid(e) aus der Gruppe der Alkylpolyglycoside enthalten und der Gehalt des Formkörper an Kaliumcarbonat unter 5 Gew.-% liegt.
Erfindungsgemäß einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.
Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist. Diese lassen sich durch folgende Formel beschreiben
Figure 00040001
wobei x der um 1 verringerte oben beschriebene Glycosidierungsgrad z ist, bevorzugte Werte von x also zwischen 0 und 3, vorzugsweise zwischen 0 und 1 und insbesondere zwischen 0,1 und 0,4 liegen. Die Zahl n der Methylengruppen liegt vorzugsweise zwischen 7 und 21, bevorzugt zwischen 11 und 17, C-Atomen.
Die erfindungsgemäß eingesetzten Alkylpolyglycoside (nachfolgend kurz als APG bezeichnet) können nach bekannten Verfahren auf Basis bekannter Rohstoffe hergestellt werden. Beispielsweise wird Dextrose in Gegenwart eines sauren Katalysators mit n-Butanol zu Butylpolyglycosidgemischen umgesetzt, welche mit langkettigen Alkoholen ebenfalls in Gegenwart eines sauren katalysators zu den gewünschten Alkylpolyglycosidgemischen umglycosidiert werden. Es ist auch möglich, Dextrose direkt mit dem gewünschten langkettigen Alkohol zu den gewünschten Alkylpolyglycosidgemischen zu glycosidieren.
Die Struktur der Produkte ist in gewissen Grenzen variierbar. Der Alkylrest wird dabei durch die Auswahl des langkettigen Alkohols festgelegt. Aus wirtschaftlichen Gründen sind dabei die großtechnisch zugänglichen Alkohole mit 8 bis 22 Kohlenstoffatomen, insbesondere native Alkohole aus der Hydrierung von Carbonsäuren bzw. Carbonsäurederivaten, bevorzugt. Auch die aus technischen Alkoholsynthesen zugänglichen Alkohole wie Oxoalkohole und Ziegleralkohole sind verwendbar.
Die Polyglycosylreste Gy werden einerseits durch die Auswahl des Kohlenhydrats und andererseits durch die Einstellung des mittleren Polymerisationsgrads (Glycosidierungsgrad y) festgelegt, wie es beispielsweise in der DE 19 43 689 beschrieben ist. Im Prinzip können bekanntlich Polysaccharide, z.B. Stärken, maltodextrine, Dextrose, Galactose, Mannose, Xylose usw. eingesetzt werden. Bevorzugt sind die großtechnisch verfügbaren Kohlenhydrate Stärke, Maltodextrine und insbesondere Dextrose. Da die wirtschaftlich interessanten APG-Synthesen nicht regio- und stereoselektiv verlaufen, sind die Alkylpolyglycoside stets Gemische von Oligomeren, die ihrerseits Gemische verschiedener isomerer Formen darstellen. Sie liegen nebeneinander mit α- und β-glycosidischen Bindungen in Pyranose- und Furanoseform vor. Auch die Verknüpfungsstellen zwischen zwie Saccharidresten sind unterschiedlich. Erfindungsgemäß einsetzbare Alkylpolyglycoside lassen sich auch durch Abmischen von Alkylpolyglycosiden mit Alkylmonoglycosiden herstellen. Alkylmonoglycoside lassen sich beispielsweise nach dem in der EP 092 355 offenbarten Verfahren mittels polarer Lösungsmittel wie Aceton aus Alkylpolyglycosiden gewinnen bzw. anreichern. Der Glycosidierungsgrad von Alkylpolyglycosiden wird dabei üblicherweise durch 1H-Kernresonanzmessungen bestimmt.
Erfindungsgemäße Wasch- und Reinigungsmittelformkörper enthalten Alkylpolyglycoside, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Zur Entfaltung der Waschleistung enthalten die erfindungegmäßen Wasch- und Reinigungsmittelformkörper weitere grenzflächenaktive Substanzen aus der Gruppe der anionischen, nichtionischen, zwitterionischen oder kationischen Tenside, wobei anionische Tenside aus ökonomischen Gründen und aufgrund ihres Leistungsspektrums deutlich bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium - oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natriumoder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% uns insbesondere 20 bis 40 Gew.-% anionische Tensid(e), jeweils bezogen auf das Formkörpergewicht, enthalten.
Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Wasch- und Reinigungsmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate Fettalkoholsulfate, wobei bevorzugte Wasch- und Reinigungsmittelformkörper 2 bis 20 Gew.-%, vorzugsweise 5 bis 15 Gew.-% und insbesondere 7,5 bis 12,5 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Formkörpergewicht, enthalten
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
Figure 00090001
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
Figure 00100001
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Neben den waschaktiven Substanzen sind Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmittel. In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 ·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 · yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkungs als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung PCT/EP 98/1203 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Wasch- und Reinigungsmittelformkörper, die zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten, sind im Rahmen der vorliegenden Erfindung besonders bevorzugt.
Die Herstellung wasch- und reinigungsaktiver Formkörper geschieht durch Anwendung von Druck auf ein zu verpressendes Gemisch, das sich im Hohlraum einer Presse befindet. Im einfachsten Fall der Formkörperherstellung, die nachfolgend vereinfacht Tablettierung genannt wird, wird die zu tablettierende Mischung direkt, d.h. ohne vorhergehende Granulation verpreßt. Die Vorteile dieser sogenannten Direkttablettierung sind ihre einfache und kostengünstige Anwendung, da keine weiteren Verfahrensschritte und demzufolge auch keine weiteren Anlagen benötigt werden. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So muß eine Pulvermischung, die direkt tablettiert werden soll, eine ausreichende plastische Verformbarkeit besitzen und gute Fließeigenschaften aufweisen, weiterhin darf sie während der Lagerung, des Transports und der Befüllung der Matrize keinerlei Entmischungstendenzen zeigen. Diese drei Voraussetzungen sind bei vielen Substanzgemischen nur außerordentlich schwierig zu beherrschen, so daß die Direkttablettierung insbesondere bei der Herstellung von Wasch- und Reinigungsmittel-tabletten nicht oft angewendet wird. Der übliche Weg zur Herstellung von Wasch- und Reinigungsmitteltabletten geht daher von pulverförmigen Komponenten ("Primärteilchen") aus, die durch geeignete Verfahren zu Sekundärpartikeln mit höherem Teilchendurchmesser agglomeriert bzw. granuliert werden. Diese Granulate oder Gemische unterschiedlicher Granulate werden dann mit einzelnen pulverförmigen Zuschlagstoffen vermischt und der Tablettierung zugeführt.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper werden durch Verpressen eines teilchenförmigen Vorgemischs aus mindestens einem tensid-haltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente erhalten. Es ist dabei für die späteren Wasch- und Reinigungsmittelformkörper von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht aufweist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere oberhalb von 700 g/l, aufweist.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittelformkörpern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reinigungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpuderungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpuderungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die aus einem teilchenförmigen Vorgemisch bestehen, daß granulare Komponenten und nachträglich zugemischte pulverförmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100µm, vorzugsweise unterhalb 10µm und insbesondere unterhalb 5µm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Neben den genannten Bestandteilen Tensid, Builder und Desintegrationshilfsmittel, können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren. Enzyme, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat. Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren als alleiniger Bestandteil oder als Inhaltsstoff der Komponente b) eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Formkörpern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Die Formkörper können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Farb- und Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfüfung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Weichmacher an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Die Herstellung der erfindungsgemäßen Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet. auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei-und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchrnesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehrschichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu verpressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formkörpers erreichen. Hierzu können die zu beschichtenden Körper beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach σ = 2P πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Beispiele:
Durch Abmischung von tensidhaltigen Granulaten mit pulverförmigen Aufbereitungskomponenten wurden Vorgemische hergestellt, die in einer Korsch-Tablettenpresse zu Waschmitteltabletten verpreßt wurden. Dabei wurde der Preßdruck so eingestellt, daß jeweils zwei Serien von Formkörpern erhalten wurden, die sich in ihrer Härte unterscheiden.
Das Tensidgranulat, das zu den erfindungsgemäßen Formkörpern E1 und E2 führt, enthielt dabei 1 Gew.-% APG (= 0,6 Gew.-% bezogen auf das gesamte Vorgemisch), während ein Vergleichsgranulat, das bei Verpressung die Formkörper V1 und V2 liefert, kein APG enthielt. Die Formkörper E1 und E2 bzw. V1 und V2 unterscheiden sich nur in ihrer Härte, nicht in ihrer Zusammensetzung. Die Zusammensetzung der Tensidgranulate sowie die Zusammensetzung der zu verpressenden Vorgemische (und damit der Formkörper) zeigen die Tabellen 1 und 2.
Zusammensetzung der Tensidgranulate [Gew.-%]
Granulat für E1/2 Granulat für V1/2
C9-13-Alkylbenzolsulfonat 19,4 18,6
C12-18-Fettalkohol mit 7 EO 4,8 5,7
C12-18-Fettalkoholsulfat 5,2 5,4
C12-16-Alkyl-1,4-glycosid 1,0 -
Seife 1,6 1,6
optischer Aufheller 0,3 0,3
Natriumcarbonat 17,0 16,6
Natriumsilikat 5,6 5,4
Acrylsäure-Maleinsäure-Copolymer 5,6 5,4
Zeolith A (wasserfreie Aktivsubstanz) 28,5 29,9
Na-Hydroxyethan-1,1-diphosphonat 0,8 0,8
Wasser, Salze Rest Rest
Zusammensetzung des Vorgemischs [Gew.-%]:
Tensidgranulat 61,3 61,3
Zeolith 2,0 2,0
Natriumperborat-Monohydrat 23,7 23,7
TAED 2,4 2,4
Schauminhibitor 4,7 4,7
Polyacrylat 1,4 1,4
Parfüm 0,5 0,5
Desintegrationshilfsmittel (Cellulose) 4,0 4,0
Die Härte der Tabletten wurde durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen.
Die experimentellen Daten zeigt Tabelle 3:
Waschmitteltabletten [physikalische Daten]
Tablette E1 V1 E2 V2
Tablettenhärte 43 N 45 N 60 N 53 N
Tablettenzerfall 10 sec 15 sec 35 sec > 120 sec

Claims (9)

  1. Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend Tensid(e), Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, dadurch gekennzeichnet, daß die Formkörper 0,2 bis 10 Gew.-% Tensid(e) aus der Gruppe der Alkylpolyglycoside enthalten und der Gehalt der Formkörper an Kaliumcarbonat unter 5 Gew.-% liegt.
  2. Wasch- und Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß sie 0,2 bis 5 Gew.-%, vorzugsweise 0,5 bis 3 Gew.-% APG, jeweils bezogen auf das Formkörpergewicht, enthalten.
  3. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das in ihnen enthaltene APG einen Glycosidierungsgrad von 1,0 bis 4,0, vorzugsweise von 1,0 bis 2,0 und insbesondere von 1,1 bis 1,4 aufweist.
  4. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als APG ein Alkylpolyglucosid eingesetzt wird.
  5. Wasch- und Reinigungsmittelformkörper nach Anspruch 4, dadurch gekennzeichnet, daß zusätzlich ein Desintegrationshilfsmittel auf Cellulosebasis in Mengen von 0.5-10 Gew.-% in den Formkörpern enthalten ist.
  6. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie durch Verpressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente erhalten wurden.
  7. Wasch- und Reinigungsmittelformkörper nach Anspruch 6, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere oberhalb von 700 g/l, aufweist.
  8. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100µm, vorzugsweise unterhalb 10µm und insbesondere unterhalb 5µm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
  9. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 8, enthaltend weiterhin einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren.
EP98952701A 1997-12-08 1998-10-08 Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften Expired - Lifetime EP1037960B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19754289 1997-12-08
DE19754289A DE19754289A1 (de) 1997-12-08 1997-12-08 Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
PCT/EP1998/006405 WO1999029826A1 (de) 1997-12-08 1998-10-08 Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften

Publications (2)

Publication Number Publication Date
EP1037960A1 EP1037960A1 (de) 2000-09-27
EP1037960B1 true EP1037960B1 (de) 2002-08-28

Family

ID=7851048

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952701A Expired - Lifetime EP1037960B1 (de) 1997-12-08 1998-10-08 Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften

Country Status (6)

Country Link
EP (1) EP1037960B1 (de)
JP (1) JP2001526306A (de)
AT (1) ATE222948T1 (de)
DE (2) DE19754289A1 (de)
ES (1) ES2181286T3 (de)
WO (1) WO1999029826A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369021B1 (en) * 1999-05-07 2002-04-09 Ecolab Inc. Detergent composition and method for removing soil
WO2002033036A1 (en) * 2000-10-18 2002-04-25 Unilever N.V. Cleaning compositions
DE10118270A1 (de) * 2001-04-12 2002-10-17 Cognis Deutschland Gmbh Wasch- und Reinigungsmittelformittelkörper mit verbesserten Zerfallseigenschaften
DE10202390A1 (de) * 2002-01-23 2003-09-25 Henkel Kgaa Kombination von Cellulasen und spezieller Cellulose in Waschmitteln
DE102011119332A1 (de) 2011-11-25 2013-05-29 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Verwendung von über radikalische Emulsionspolymerisation erhältlichen Polymeren als Verdicker für Reinigungsmittel
CN104418920B (zh) * 2013-08-23 2016-11-16 河北科技大学 采用一步法连续生产烷基糖苷的方法和系统
CN107460060A (zh) * 2017-08-17 2017-12-12 成都新柯力化工科技有限公司 一种胶束渗透型浓缩快速洗衣液及制备方法
CN110305742A (zh) * 2019-07-12 2019-10-08 广州立白企业集团有限公司 一种自动洗碗机洗涤剂组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756033B2 (ja) * 1990-10-29 1998-05-25 花王株式会社 錠剤型洗剤
JPH06108099A (ja) * 1992-09-30 1994-04-19 Lion Corp タブレット洗剤組成物
GB9224015D0 (en) * 1992-11-16 1993-01-06 Unilever Plc Detergent compositions
DE19509752A1 (de) * 1995-03-17 1996-09-19 Henkel Kgaa Verfahren zur Herstellung eines pulverförmigen Waschmittels
DK173111B1 (da) * 1996-04-03 2000-01-31 Cleantabs As Tøjvasketabletter

Also Published As

Publication number Publication date
DE19754289A1 (de) 1999-06-10
DE59805352D1 (de) 2002-10-02
ATE222948T1 (de) 2002-09-15
ES2181286T3 (es) 2003-02-16
JP2001526306A (ja) 2001-12-18
EP1037960A1 (de) 2000-09-27
WO1999029826A1 (de) 1999-06-17

Similar Documents

Publication Publication Date Title
DE19739384A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
DE19739383A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
EP1056833B1 (de) Wasch- und reinigungsmittelformkörper mit bleichmittel
EP1037960B1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
EP1051474B1 (de) Mehrphasige waschmitteltabletten
EP1056832B1 (de) Mehrphasen-formkörper mit optimiertem phasensplit
EP1056831A1 (de) Wasch- und reinigungsmittelformkörper mit verbessertem eigenschaftsprofil
DE19903288A1 (de) Mehrphasige Waschmitteltabletten
EP1051475B1 (de) Mehrphasige waschmitteltabletten
WO1999055812A1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
WO2000050559A1 (de) Abriebstabile wasch- und reinigungsmittelformkörper mit festen additiven
DE19754292A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
DE19847281A1 (de) Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren
DE19852136A1 (de) Parfümfreie Wasch- und Reinigungsmittelformkörper
WO2000027985A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen lösungsvermittlern
WO2000027986A1 (de) Wasch- und reinigungsmittelformkörper mit additiven
DE19841362A1 (de) ABS-haltige Wasch- und Reinigungsmittelformkörper
WO2000027984A1 (de) Formoptimierte waschmittelformkörper
WO2000050548A2 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
DE19843938A1 (de) Wasch- und Reinigungsmittelformkörper mit grobteiligen Aufbereitungskomponenten
DE19849630A1 (de) FAS-haltige Wasch- und Reinigungsmittelformkörper
DE19847277A1 (de) Bleichaktivator-haltige Wasch- und Reinigungsmittelformkörper
DE19824743A1 (de) Bruchstabile und schnellösliche Wasch- und Reinigungsmittelformkörper
WO2000027959A1 (de) Wasch- und reinigungsmittelformkörper mit entschäumergranulat
DE19843773A1 (de) Wasch- und Reinigungsmittelformkörper mit feinteiligen Aufbereitungskomponenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020129

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 222948

Country of ref document: AT

Date of ref document: 20020915

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59805352

Country of ref document: DE

Date of ref document: 20021002

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021209

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181286

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091013

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091004

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091019

Year of fee payment: 12

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20101031

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110501

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140911

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141008

Year of fee payment: 17

Ref country code: DE

Payment date: 20140930

Year of fee payment: 17

Ref country code: FR

Payment date: 20141008

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141021

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59805352

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151008

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151008

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151009