WO1999039140A1 - Machine frigorifique du type a absorption - Google Patents

Machine frigorifique du type a absorption Download PDF

Info

Publication number
WO1999039140A1
WO1999039140A1 PCT/JP1999/000350 JP9900350W WO9939140A1 WO 1999039140 A1 WO1999039140 A1 WO 1999039140A1 JP 9900350 W JP9900350 W JP 9900350W WO 9939140 A1 WO9939140 A1 WO 9939140A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature regenerator
refrigerant
low
control valve
Prior art date
Application number
PCT/JP1999/000350
Other languages
English (en)
French (fr)
Inventor
Naoki Hiro
Yasuharu Kurogi
Tadato Fujihara
Yoshio Ozawa
Toshihiro Yamada
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10016523A external-priority patent/JPH11211265A/ja
Priority claimed from JP10036039A external-priority patent/JPH11230631A/ja
Priority claimed from JP10036038A external-priority patent/JPH11230632A/ja
Priority claimed from JP10036040A external-priority patent/JPH11230633A/ja
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US09/381,909 priority Critical patent/US6192694B1/en
Priority to EP99901892A priority patent/EP0978694A4/en
Publication of WO1999039140A1 publication Critical patent/WO1999039140A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/001Crystallization prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to a double-effect absorption refrigerator in which refrigerant vapor generated in a high-temperature regenerator is supplied to a low-temperature regenerator to be condensed, and refrigerant liquefied by the condensation is supplied to the condenser.
  • the double-effect absorption refrigerator consists of an upper body (1) consisting of a condenser (11) and a low-temperature regenerator (12), an evaporator (21) and an absorber (22).
  • the absorbent is circulated between the high-temperature regenerator (3), the low-temperature regenerator (12) and the absorber (22) to realize a refrigeration cycle.
  • the orifice (70) as shown in Fig.
  • the refrigerant vapor generated in the high-temperature regenerator (3) is condensed in the heat transfer tubes in the low-temperature regenerator (12), liquefied while giving heat of condensation to the absorbing liquid, and becomes the refrigerant liquid to form the above-described orifice. After being supplied to the condenser (11) via the condenser (70), it returns to the evaporator (21) together with the refrigerant liquid liquefied in the condenser (11).
  • a gas valve (32) is attached to the piping for supplying fuel gas to the parner (31) in the high-temperature regenerator (3), and the cold water flowing out of the evaporator (21) Temperature (cold To maintain the water outlet temperature Tc-out) at the target value, the opening of the gas valve (32) is controlled, and the supply amount of fuel gas is adjusted.
  • the heat input to the high-temperature regenerator (3) generates steam in the high-temperature regenerator (3) in accordance with the heat input.
  • the regenerator (12) generates steam with the same amount of heat, in which case the maximum efficiency is obtained.
  • the optimal value of the pressure reduction amount changes according to the magnitude of the refrigeration load.
  • the flow rate of the refrigerant liquid flowing out of the low-temperature regenerator (12) at startup is larger than the flow rate in a stable load state.
  • those having a pore size larger than the optimum one were adopted. Therefore, in the conventional double-effect absorption refrigerator, after the start-up, the decompression in an operation state in which the refrigeration load is stable becomes insufficient and the efficiency is reduced. Furthermore, when the refrigeration load is reduced, there is a problem that the efficiency is remarkably reduced due to steam loss.
  • the pressure difference between the high-temperature regenerator (3) and the low-temperature regenerator (12) causes the absorption liquid (intermediate liquid) in the high-temperature regenerator (3) to change.
  • the concentration of the absorbing solution (concentrated liquid) accumulated in the low-temperature regenerator (12) is determined. That is, no active control of the concentration of the concentrated solution is performed.
  • the concentration of the concentrated solution the higher the circulating flow rate of the absorbing solution, and the more the energy consumed to raise the sensible heat of the absorbing solution increases, resulting in a problem of reduced efficiency.
  • An object of the present invention is to provide a double-effect absorption refrigerator capable of obtaining higher efficiency than before regardless of operating conditions such as a refrigeration load.
  • an object of the present invention is to allow the refrigerant generated at the time of start-up or a sudden increase in load to flow to the condenser without any delay, and in a steady state of operation, to appropriately reduce the pressure of the refrigerant.
  • the purpose of this invention is to provide an absorption refrigerator capable of providing the above characteristics, thereby improving the operation efficiency as compared with the conventional case.
  • Still another object of the present invention is to improve the operation efficiency as compared with the conventional one by actively controlling the concentration of the concentrated liquid. Disclosure of the invention
  • the first absorption type refrigerator provides a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11), while reducing the pressure of the refrigerant flowing through the pipe. It is characterized in that a pressure adjusting means capable of adjusting the amount of decompression is provided, and the amount of decompression is adjusted according to the magnitude of the refrigeration load.
  • the optimum pressure reduction amount is set regardless of the refrigeration load.
  • a sufficient amount of steam is generated in accordance with the amount of heat input to the high-temperature regenerator (3), so that higher efficiency than before can be obtained. .
  • the pressure adjusting means includes an orifice (71) attached to the pipe (7), a bypass pipe (8) that bypasses the orifice (71), and an intervening partway in the bypass pipe (8). And a control circuit (9) for controlling the opening of the control valve (81).
  • the amount of heat input to the high-temperature regenerator (3) is controlled so that the chilled water outlet temperature approaches the target value, and the control circuit (9) operates from the time of startup until the load stabilizes. After the control valve (81) is fully opened and the load is stabilized, as long as the amount of heat input to the high-temperature regenerator (3) decreases, control to gradually reduce the opening of the control valve (81) is executed.
  • the specific configuration by fully opening the control valve (81) at the time of startup, the refrigerant liquid can be prevented from being retained regardless of an increase in the flow rate of the refrigerant liquid flowing out of the low-temperature regenerator (12). It can be sent to the condenser (11).
  • the refrigerant liquefied by the low-temperature regenerator (12) is supplied from the low-temperature regenerator (12) to a flow path for supplying the refrigerant to the condenser (11).
  • Detecting means for detecting a change in the flow rate of the refrigerant flowing out, and adjusting means for adjusting the flow rate of the refrigerant sent to the condenser (11) and appropriately reducing the pressure of the refrigerant are provided, and an increase in the flow rate is detected by the detecting means. Then, the flow rate of the refrigerant is increased by the adjusting means.
  • the flow rate of the refrigerant when the flow rate of the refrigerant rapidly increases at the time of start-up or a sudden increase in the load, this is detected by the detecting means, and the refrigerant is supplied to the condenser (11) by the adjusting means.
  • the flow rate of the supplied refrigerant is increased.
  • the refrigerant flowing out of the low-temperature regenerator (12) flows to the condenser without interruption.
  • the flow rate of the refrigerant flowing out of the low-temperature regenerator (12) becomes constant, and the refrigerant is appropriately depressurized by the adjusting means.
  • the detecting means includes a refrigerant tank (109) interposed in a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11), A change in the flow rate of the refrigerant can be detected based on the liquid level of the refrigerant in the tank (109).
  • the adjusting means installs the inlet of the float valve (181) that opens and closes according to the liquid level in the refrigerant tank (109) in the refrigerant tank (109) and connects the outlet to the condenser (11).
  • An orifice (71) is attached to a pipe (7) connecting the refrigerant tank (109) and the condenser (11).
  • the low-temperature regenerator (12) In the second absorption refrigerator according to the present invention, the low-temperature regenerator (12)
  • the ratio between the concentration difference between the concentrated liquid and the intermediate liquid and the concentration difference between the diluted liquid and the intermediate liquid can be effectively adjusted. Focusing on the point, a control was adopted to make the ratio of the concentration differences close to 1: 1. That is, a pressure control means is provided in the pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11), so that the concentration of the intermediate liquid is equal to the concentration of the concentrated liquid and the concentration of the diluted liquid. Control the pressure so that the average concentration is reached.
  • the pressure control means includes a control valve (118) attached to the pipe (7), and a control circuit (119) for controlling the opening of the control valve (118).
  • the temperature of the absorbent (concentrated liquid) in the low-temperature regenerator (12) (concentrated liquid high temperature) T sslg and the low-temperature regenerator
  • the temperature of the absorbing liquid (dilute liquid) in the absorber (22) (low temperature of the diluted liquid) T swa and the measured data of the physical quantity equivalent to the saturation temperature of the vapor in the absorber (22)
  • the temperature T of the absorbing solution is determined by the empirical formula using the concentration X (%) of the absorbing solution and the saturation temperature Trs of water equivalent to the pressure equilibrium with the concentration and temperature of the absorbing solution, for example, McNeely It can be represented by an equation.
  • the concentration Xsm of the absorbing solution (intermediate solution) in the high-temperature regenerator (3) the temperature and vapor pressure of the absorbing solution in the high-temperature regenerator (3) are measured, and based on the measured data,
  • the saturation temperature of steam in the high-temperature regenerator (3) is calculated from the relational expression between the saturation pressure and the saturation temperature of water, for example, Sugawara's equation in Equation 2, and the empirical equation in Equation 1 is used from these data.
  • the concentration can be calculated.
  • the concentration of the absorbent in the low-temperature regenerator (12) and the concentration of the absorbent in the absorber (22) can be estimated.
  • a flow control means is provided in a pipe (272) for supplying an absorbing solution (medium-water solution) from the high-temperature regenerator (3) to the low-temperature regenerator (12). Then, the flow rate of the absorbing solution (intermediate solution) is controlled so that the absorbing solution (concentrated solution) to be supplied to the absorber (22) has the maximum concentration as far as possible without crystallization.
  • the flow rate adjusting means can be constituted by a control valve, a pump or the like.
  • the flow rate of the absorbing liquid (intermediate liquid) to be supplied from the high-temperature regenerator (3) to the low-temperature regenerator (12) is reduced by the operation of the flow rate adjusting means.
  • the concentration of the absorbing solution (concentrated solution) accumulated in the regenerator (12) can be increased.
  • the flow rate of the absorbing liquid (intermediate liquid) is controlled so as to have the maximum concentration as far as possible without causing the absorbing liquid to crystallize.
  • the circulating flow rate of the absorbent decreases, the energy consumed to increase the sensible heat of the absorbent decreases, and operating efficiency improves. I do.
  • control means includes a control means for issuing a flow command to the flow control means, and the control means stores, for each temperature of the absorbing liquid, a target concentration at which the absorbing liquid does not crystallize.
  • Flow command is calculated based on the measured value of the temperature of the absorbing solution (concentrated solution) to be supplied to the chiller and the measured value or estimated value of the concentration of the absorbing solution (concentrated solution) accumulated in the low-temperature regenerator (12). I do.
  • the concentration at which the absorbing solution crystallizes depends on the temperature of the absorbing solution, in the above specific configuration, the maximum concentration that does not crystallize at each temperature is stored in advance as a target value, and during operation, Then, the target concentrated liquid concentration is determined based on the measured concentrated liquid temperature, and feedback control of the intermediate liquid flow rate is executed so that the measured or estimated concentrated liquid concentration approaches the target concentration. As a result, the maximum concentration within the range is maintained, regardless of the load, without the absorption liquid crystallizing.
  • a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11) is provided with a decompressed refrigerant flowing through the pipe and an adjustment of the decompression amount.
  • a possible pressure adjusting means and adjust the pressure reduction amount according to the magnitude of the refrigeration load.
  • the optimal pressure reduction amount is set regardless of the refrigeration load.
  • each of the high-temperature regenerator (3) and the low-temperature regenerator (12) responds to the heat input to the high-temperature regenerator (3).
  • a sufficient amount of steam can be obtained, and higher efficiency than before can be obtained.
  • the pressure adjusting means includes an orifice (71) attached to the pipe (7), a bypass pipe (8) that bypasses the orifice (71), and an intermediate part in the bypass pipe (8).
  • the control valve (81) is fully opened during the period from startup to when the load is stabilized. After the load is stabilized, the heat input to the high-temperature regenerator (3) The opening of the control valve (81) is reduced so as to minimize the pressure.
  • the pressure reduction amount of the refrigerant passing through the orifice (71) and the control valve (81) is adjusted by adjusting the opening of the control valve (81).
  • the control valve (81) is fully opened to allow the refrigerant liquid flowing out of the low temperature regenerator (12) to flow. Regardless of the increase in the amount, the refrigerant liquid can be sent to the condenser (11) without staying.
  • the pressure reduction amount gradually increases, and the condensed amount increases accordingly.
  • the heat input to the high-temperature regenerator (3) is controlled so that the chilled water outlet temperature approaches the target value, the heat input decreases.
  • the opening of the control valve (81) falls below a certain value, the flow rate of the refrigerant decreases, and conversely, the heat input increases. Therefore, the opening of the control valve (81) that minimizes the heat input power is set. As a result, the optimal opening in the stable load state is set, and higher efficiency than before can be obtained.
  • the concentration of the concentrated solution is categorically maintained at the maximum value within a range in which the absorption solution does not crystallize, so that the operation efficiency is improved as compared with the related art.
  • FIG. 1 is a system diagram showing a configuration of a main part of a first absorption refrigerator according to the present invention.
  • C FIG. 2 is a block diagram showing a control system of the absorption refrigerator.
  • FIG. 3 is a flowchart showing a control procedure in the absorption refrigerator.
  • Figure 4 is a graph showing the relationship between the refrigeration load and the coefficient of performance.
  • c 6 is a system diagram showing a configuration of a principal part of a second absorption refrigerating machine according to the present invention, strains representing the main part of the configuration of a third absorption chiller according to the present invention
  • c 7 is a diagram is a proc diagram showing the control system of the absorption refrigerator.
  • c 9 is a system diagram showing a configuration of a main portion of a fourth absorption chiller of the present invention is a Proc diagram showing the control system of the absorption refrigerator.
  • FIG. 10 is a flowchart showing a control procedure for a reduced pressure amount in the absorption refrigerator.
  • FIG. 11 is a flowchart showing a control procedure for the concentration of the concentrated liquid in the absorption refrigerator.
  • FIG. 12 is a system diagram showing the entire configuration of a double-effect absorption refrigerator.
  • FIG. 13 is a system diagram showing a configuration of a main part of a conventional absorption refrigerator.
  • the double-effect absorption refrigerator of the present embodiment has an upper body (1) comprising a condenser (11) and a low-temperature regenerator (12), like the conventional absorption refrigerator shown in FIG.
  • Lower body (2) consisting of evaporator (21) and absorber (22), high temperature regenerator (3) with built-in burner (31), high temperature heat exchanger (4), low temperature heat exchanger (5) Are connected to each other, and the absorption liquid is circulated between the high-temperature regenerator (3), the low-temperature regenerator (12) and the absorber (22) by the absorption liquid pump (6) to realize a refrigeration cycle. It is.
  • a gas valve (32) is attached to a pipe for supplying fuel gas to the parner (31) in the high-temperature regenerator (3), and the temperature of the cold water flowing out of the evaporator (21) (the temperature of the cold water outlet Tc— The opening of the gas valve (32) is controlled and the fuel gas supply amount is adjusted in order to maintain the target value (out).
  • FIG. 1 shows a characteristic configuration of the absorption refrigerator of the present embodiment, in which a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11) is provided.
  • An orifice (71) with a smaller hole diameter than the conventional orifice is installed.
  • a bypass pipe (8) bypassing the orifice (71) is connected to the pipe (7), and a control valve (81) is interposed in the middle of the bypass pipe (8).
  • a control circuit (9) is connected to the control valve (81).
  • the control circuit (9) creates an opening degree command A that changes according to the flow rate Q of the fuel gas to be supplied to the high temperature regenerator, and supplies it to the control valve (81). Thereby, the opening of the control valve (81) is optimally controlled as described later.
  • FIG. 2 shows the configuration of a control system for the absorption refrigerator main body (10).
  • Outlet temperature Tc_out of chilled water obtained from absorption chiller body (10) and its target value (example For example, 7 ° C) is supplied to the PID controller (90), and PID control is performed to make the chilled water outlet temperature Tc-out close to the target value.
  • the command for the flow rate Q of the fuel gas to be supplied to the high-temperature regenerator is output from the PID controller (90).
  • the gas flow rate Q commanded by the PID controller (90) is supplied to the gas valve of the absorption chiller body (10) to control the valve opening.
  • the gas flow rate Q commanded by the PID controller (90) is supplied to the control circuit (9), and the valve opening A for the control valve (81) is created as described above, and the absorption chiller body ( Supplied to 10).
  • FIG. 3 shows a control procedure when the above-described control system is configured by a microcomputer.
  • step S1 the valve opening A is set to the maximum opening Amax, and in step S2, the PID control of the gas flow rate Q is executed by the aforementioned PID controller (90).
  • step S3 the cooling water outlet temperature Tco—out is within a predetermined temperature range (TX to Ty) including the target value, and whether or not the cooling water outlet temperature follows the target value is determined.
  • TX to Ty a predetermined temperature range
  • step S3 If the answer is yes in step S3, the process proceeds to step S4, and the load is stabilized based on whether the difference between the chilled water outlet temperature Tc—out and the chilled water inlet temperature Tc—in has become constant. Determine whether or not. If the determination is no, the process returns to step S2 to continue the PID control.
  • step S4 the process proceeds to step S5, in which the valve opening A is reduced by a predetermined amount ⁇ .
  • step S6 it is determined whether the gas flow rate Q has decreased. to decide. Immediately after the load stabilizes, the valve opening is excessive, so reducing the opening increases the amount of condensation and reduces the gas flow rate.However, when the valve opening falls below the optimal value in the stable load state, the refrigerant As the flow rate decreases, the amount of condensation decreases, and the gas flow rate increases.
  • step S6 the process returns to step S5, Further, reduce the valve opening A. Thereafter, when the determination in step S6 is NO, the process proceeds to step S7, and the adjustment of the valve opening is stopped.
  • step S8 it is detected whether the load has increased, for example, based on the difference between the inlet and outlet temperatures of the chilled water. If the load is constant or decreases, the process returns to step S7 to maintain the valve opening at that time. . On the other hand, when the load increases, the procedure returns to step S1, and the above procedure is repeated with the valve opening being maximized.
  • the control valve (81) is fully opened during the period from startup to when the load is stabilized, and the refrigerant liquid flowing out of the low-temperature regenerator (12) is discharged from the control valve ( 81) and through the orifice (71) and into the condenser (11) without stagnation.
  • the control valve (81) is throttled until the gas flow rate changes from decreasing to increasing, and the optimal pressure reduction amount is set. As a result, regardless of the load, higher efficiency than before can be obtained.
  • Fig. 4 shows the relationship between the refrigeration load at a cooling water temperature of 30 ° C and the coefficient of performance COP in the absorption chiller according to the present invention (with control) and the conventional absorption chiller (without control). It was examined by experiments and graphed. As is clear from this graph, in the absorption refrigerator according to the present invention, a large coefficient of performance COP is obtained regardless of the magnitude of the load.
  • control valve (81) is not limited to the procedure shown in FIG. 3, and various controls for optimally adjusting the pressure reduction amount according to the magnitude of the refrigeration load can be employed. It is also possible to attach both the orifice (71) and the control valve (81) to the pipe (7) and omit the bypass pipe (8). Furthermore, if a control valve (81) having a pressure reducing function is adopted, the control valve (81) can be attached to the pipe (7), and the bypass pipe (8) and the orifice (71) can be omitted. It is possible.
  • FIG. 5 shows a characteristic configuration of the absorption refrigerator of the present embodiment.
  • the tank (109) is interposed, and an orifice (71) having a hole diameter that is appropriately large in a steady operation state is attached to the outlet side of the refrigerant tank (109).
  • a float valve (181) is installed in the refrigerant tank (109), and the outlet thereof is the second pipe ( 108) connected to the upper torso (1).
  • the refrigerant flowing from the low-temperature regenerator (12) into the refrigerant tank (109) passes through the open float valve (181) and passes through the second pipe (108). And supplied to the condenser (11) via the first pipe (7). Due to the formation of these two flow paths, the refrigerant flowing out of the low-temperature regenerator (12) flows toward the condenser (11) without stagnation.
  • the refrigerant flowing out of the low-temperature regenerator (12) cannot pass through the second pipe (108), and the first pipe (7) Only through this is supplied to the condenser (11).
  • the first pipe (7) is provided with an orifice (71) having an appropriate hole diameter, so that the refrigerant is subjected to an appropriate amount of reduced pressure.
  • the liquid level of the refrigerant tank (109) is monitored by a sensor, and a control valve is attached to the first pipe (7), and the opening of the control valve is adjusted according to the liquid level of the refrigerant tank (109).
  • An adjustment configuration can be employed.
  • the second pipe (108) and the float valve (181) can be omitted. If a control valve having a pressure reducing function and a flow rate adjusting function is adopted, the orifice (71) can be omitted.
  • FIG. 6 shows a characteristic configuration of the absorption refrigerator of the present embodiment, in which a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11) is provided.
  • Control valve (118) is installed.
  • a control circuit (119) is connected to the control valve (118).
  • the control circuit (119) detects the intermediate liquid high temperature T smhg, the low temperature regenerator refrigerant outlet temperature Trllg, the concentrated liquid high temperature Tsslg, and the condenser refrigerant outlet temperature from a temperature sensor provided at an appropriate position in the absorption refrigerator main body. Trlc, low temperature of dilute solution Tswa, and evaporator refrigerant circulation temperature Trie are taken in, and an opening command V for the control valve (118) is created based on these measurement data.
  • the control circuit (119) includes a first estimator (191), a second estimator (192), a third estimator (193), a first calculator (194), and a second calculator. (195) and a PID controller (190).
  • the first estimator (191) estimates the intermediate liquid concentration Xsm from the intermediate liquid high temperature Tsmhg and the low temperature regenerator refrigerant outlet temperature Trllg using the McNeely equation described above.
  • the second estimating unit (192) estimates the concentrated liquid concentration Xss from the concentrated liquid high temperature T sslg and the condenser refrigerant outlet temperature T rie using the above-mentioned McNeely equation.
  • the third estimating unit (193) estimates the dilute liquid concentration Xsw from the dilute liquid low temperature T swa and the evaporator refrigerant circulation temperature Trie using the above-mentioned McNeely equation.
  • the concentrated liquid concentration Xss and the diluted liquid concentration Xsw estimated by the second estimating unit (192) and the third estimating unit (193) are supplied to the first computing unit (194), and the average value of both concentrations ( Xss + Xsw) / 2 is calculated and set as the target value. Then, the target value and the intermediate liquid concentration Xsm estimated by the first estimator (191) are supplied to the second calculator (195), and the control deviation ex sra is calculated, and the PID controller (190) Is input to
  • the PID controller (190) executes PID control represented by, for example, Equation 3 below. Then, the opening degree command V for the control valve (118) is created.
  • the PID parameters Kp, K i, and Kd are appropriate to open the control valve (118) when the control deviation e xsm is positive and to close the control valve (118) when the control deviation e xsm is negative. Is set to an appropriate value.
  • control valve (118) when the control deviation exsm is positive, the concentration of the intermediate liquid is low, so that the control valve (118) is opened to reduce the regenerator pressure, thereby promoting the evaporation of the refrigerant in the high-temperature regenerator, and Increase the concentration.
  • the control valve (118) when the control deviation exsm is negative, the control valve (118) is closed to reduce the intermediate liquid concentration.
  • the ratio of the concentration difference between the concentrated liquid and the intermediate liquid and the concentration difference between the diluted liquid and the intermediate liquid can be made close to 1: 1 regardless of the load.
  • the high-temperature regenerator (3) In addition, before the low-temperature regenerator (12), a sufficient amount of steam is generated in accordance with the amount of heat input to the high-temperature regenerator (3), so that higher operation efficiency than before can be realized.
  • the control valve (118) is attached to a bypass pipe that bypasses the pipe (7), and an orifice is attached to the pipe (7) in the same manner as before to reduce the pressure through the orifice.
  • a configuration for performing pressure control by (118) can also be adopted. Also, it is possible to install a pump of the chamber control type in place of the control valve (118).
  • FIG. 8 shows a characteristic configuration of the absorption refrigerator of the present embodiment, in which a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11) is provided. An orifice (71) having a smaller hole diameter than the conventional orifice is attached. Also, a bypass pipe (8) that bypasses the orifice (71) is connected to the pipe (7), and in the middle of the bypass pipe (8). The first control valve (81) is interposed.
  • the first control circuit (290) is connected to the first control valve (81).
  • the control circuit (290) creates an opening command A1 that changes according to the flow rate Q of the fuel gas to be supplied to the high temperature regenerator, and supplies the opening command A1 to the first control valve (81). .
  • the opening of the first control valve (81) is optimally controlled as described later.
  • a second control valve (282) is attached to the pipe (272) for supplying the absorbing liquid (intermediate liquid) from the high temperature regenerator (3) to the low temperature regenerator (12). The flow rate can be adjusted.
  • the second control circuit (291) is connected to the second control valve (282).
  • the control circuit (291) stores, for each temperature of the absorbing solution, a target concentration at which the absorbing solution does not crystallize, and measures the temperature of the absorbing solution (concentrated solution) sprayed in the absorber (22). Based on the measured or estimated concentration of the absorbent (concentrated solution) accumulated in the low-temperature regenerator (12), the opening for obtaining the maximum concentration of the concentrated solution without causing the absorbent to crystallize. It creates the command A2 and supplies it to the second control valve (282).
  • FIG. 9 shows the configuration of a control system for the absorption refrigerator main body (10).
  • the chilled water outlet temperature Tc—out obtained from the absorption chiller body (10) and its target value (for example, 7 ° C) are supplied to the PID controller (292), and the chilled water outlet temperature Tc—out is set to the target value.
  • PID control for approaching is performed. Accordingly, the PID controller (292) outputs a command for the flow rate Q of the fuel gas to be supplied to the high-temperature regenerator.
  • the gas flow rate Q commanded by the PID controller (292) is supplied to the gas valve of the absorption chiller body (10) to control the valve opening. Further, the gas flow rate Q specified by the PID controller (292) is supplied to the first control circuit (290), and the valve opening A1 for the first control valve (81) is created and absorbed as described above. Supplied to the main refrigerator (10). Further, the concentrated liquid low temperature measured at the outlet of the low temperature heat exchanger (5) of the absorption chiller body (10) and the concentrated liquid concentration measured or estimated as described later are compared with the second control circuit ( 291), an opening command A2 for obtaining the maximum concentration of the concentrated liquid without causing the absorption liquid to crystallize is prepared, and supplied to the absorption refrigerator main body (10).
  • FIGS. 10 and 11 show control procedures when the control system by the first control circuit (290) and the second control circuit (291) is realized by a microcomputer, respectively. Note that these two control procedures are executed simultaneously at a fixed control cycle.
  • step S21 the valve opening A1 for the first control valve (81) is set to the maximum opening Amax, and in step S22, PID control of the gas flow rate Q is performed by the PID controller (292).
  • step S23 the cooling water outlet temperature follows the target value depending on whether the cooling water outlet temperature Tco—out is within a predetermined temperature range (Tx to Ty) including the target value. Determine if you are. If the determination is no, the PID control in step S22 is continued.
  • step S23 If the determination is yes in step S23, the process proceeds to step S24, and the load is determined based on whether the difference between the chilled water outlet temperature Tc—out and the chilled water inlet temperature Tc—in has become constant. Determine if it is stable. If the determination is no, the process returns to step S22 to continue the PID control.
  • step S24 the process proceeds to step S25, in which the valve opening A1 is reduced by a predetermined amount A, and then in step S26, the gas flow rate Q is reduced. Determine if it has decreased. Immediately after the load stabilizes, the valve opening is excessively large.Thus, reducing the opening increases the amount of condensation and reduces the gas flow rate.However, when the valve opening falls below the optimal value in the stable load state, the refrigerant flow rate increases. As a result, the amount of condensed matter decreases and the gas flow rate increases. Therefore, when it is determined to be yes in step S26, the process returns to step S25, and the valve opening A1 is further reduced.
  • step S26 the process proceeds to step S27, and the adjustment of the valve opening is stopped.
  • step S28 whether the load has increased is detected, for example, based on the difference between the inlet and outlet temperatures of the chilled water, and when the load is constant or decreased, the process returns to step S27 and the valve opening at that time is determined. maintain. On the other hand, when the load increases, the flow returns to step S21, where the valve opening is maximized and Repeat procedure.
  • the first control valve (81) is fully opened, and the refrigerant liquid flowing out of the low-temperature regenerator (12) It passes through the first control valve (81) and the orifice (71) and is sent to the condenser (11) without stagnation.
  • the first control valve (81) is throttled until the gas flow rate changes from decreasing to increasing, and the optimal pressure reduction amount is set. As a result, regardless of the load, higher efficiency than before can be obtained.
  • step S11 the concentrated solution low temperature is measured, and the ⁇ solution concentration as a target value is determined.
  • the target concentrated liquid concentration the maximum concentrated liquid concentration within a range that does not crystallize is determined in advance for each temperature of the absorbing liquid, and is stored in a memory as a table or a mathematical expression. Then, during operation, the target concentrated liquid concentration is derived based on the measured data of the concentrated liquid low temperature. It should be noted that the target concentrated liquid concentration can be determined as a value smaller by a predetermined value (for example, 0.5%) than the concentration at which the absorbing liquid crystallizes.
  • step S12 the concentration of the concentrated liquid is measured or estimated.
  • the concentration of the concentrated solution can be measured by attaching a well-known concentration sensor to the low-temperature regenerator (12).
  • the concentration of the concentrated liquid can be estimated by using, for example, the above equation (1).
  • the temperature of the absorbing solution (concentrated solution temperature) T can be measured by attaching a temperature sensor to the low-temperature regenerator (12).
  • a temperature sensor is attached to the condenser (11) to measure the refrigerant pool temperature.
  • the saturation temperature Trs can also be derived from the relationship between pressure and temperature in the saturated steam table by measuring the pressure by attaching a pressure sensor to the upper body (1).
  • step S13 of FIG. 11 the opening degree of the second control valve (282), that is, the absorption liquid, is set so that the deviation between the measured or estimated value of the concentrated liquid concentration and the target concentrated liquid concentration approaches zero. PID control of (intermediate liquid) flow rate.
  • step S14 the measured or estimated It is determined whether or not the concentrated liquid concentration follows the target value by determining whether the concentrated liquid concentration D is within a predetermined range including the target value (Dx to Dy). Then, returning to step S11, the PID control of the intermediate liquid flow rate is repeated. If the determination in step S14 is YES, the process proceeds to step S15, in which the valve opening of the first control valve (81) at that time is held, and the process returns to step S14 again.
  • the flow rate of the absorbing liquid is controlled so that the concentration of the absorbing liquid (concentrated liquid) becomes as large as possible within the range where it does not crystallize. Efficiency is obtained.
  • the steam in the high-temperature regenerator (3) and the condenser (11) is controlled.
  • the target concentrated liquid concentration is set, and the concentration control following the target value is performed, which is more than the case where the control of the concentrated liquid concentration is not executed. Operational efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

明 細 書 吸収式冷凍機 技術分野
本発明は、 高温再生器で発生した冷媒蒸気を低温再生器に供給して凝縮させ、 凝縮によって液化した冷媒は凝縮器へ供給する二重効用型の吸収式冷凍機に関す るものである。 背景技術
二重効用型の吸収式冷凍機は、 図 1 2に示す如く、 凝縮器 (11)及び低温再生器 (12)からなる上胴(1 )、 蒸発器 (21)及び吸収器 (22)からなる下胴(2 )、 パーナ (3 1)を内蔵した高温再生器(3 )、 高温熱交換器(4 )、 低温熱交換器(5 )などを相互 に配管接続し、 吸収液ポンプ(6 )によって、 吸収液を高温再生器(3 )、 低温再生 器 (12)及び吸収器 (22)の間で循環させ、 冷凍サイクルを実現するものである。 二重効用型の吸収式冷凍機においては、 低温再生器 (12)にて液化した冷媒を凝 縮器(11)へ供給するための配管(7 )に、 図 1 3に示す如くオリフィス(70)が取り 付けられ、 低温再生器(12)にて液化した冷媒を減圧して、 凝縮器 (11)へ供給する ようになつている。 これによつて低温再生器(12)内が低い圧力に保たれ、 低温再 生器 (12)で発生した冷媒蒸気が、 凝縮器(11)内で凝縮、 液化されるのである。 一方、 高温再生器(3 )で発生した冷媒蒸気は、 低温再生器 (12)内の伝熱管中で 凝縮して、 凝縮熱を吸収液に与えながら液化し、 冷媒液となって上述のオリフィ ス(70)を経て凝縮器 (11)へ供給された後、 凝縮器 (11)内で液化した冷媒液と一緒 に蒸発器 (21)に戻る。
図 1 2に示す様に、 高温再生器(3 )内のパーナ (31)に燃料ガスを供給するため の配管には、 ガス弁 (32)が取り付けられ、 蒸発器 (21)から流出する冷水の温度 (冷 水出口温度 Tc— out)を目標値に保つべく、 ガス弁 (32)の開度が制御され、 燃料ガ スの供給量が調整される。
ところで、 二重効用型の吸収式冷凍機においては、 高温再生器(3 )に対する入 熱によって、 高温再生器(3 )では入熱量に応じた蒸気が発生し、 その蒸気によつ て、 低温再生器(12)では同一熱量の蒸気が発生する状態が理想であって、 このと き最大の効率が得られる。 この理想状態に出来るだけ近づけるためには、 上述の オリフィス(70)の孔径を最適化して、 適切な大きさの減圧を行なうことが必要で ある。 ここで、 減圧量の最適値は、 冷凍負荷の大きさに応じて変化する。
又、 吸収液から発生する蒸気量と、 低温再生器 (12)及び高温再生器( 3 )の再生 器入口と出口における吸収液の濃度差との間には、 略比例した関係があるから、 低温再生器(12)内の吸収液 (濃液)と高温再生器(3 )内の吸収液(中間液)の濃度差 が、 吸収器 (22)内の吸収液 (稀液)と高温再生器(3 )内の吸収液 (中間液)の濃度差 と等しくなるとき、 最大に近い効率が得られることとなる。
しかしながら、 従来の二重効用型の吸収式冷凍機においては、 オリフィス(70) として孔径が一定の固定ォリフィスが採用されていたから、 冷凍負荷の変動に伴 つて、 減圧量の大きさが最適値からずれることとなっていた。
又、 吸収式冷凍機においては、 立上げ時に、 低温再生器 (12)から流出する冷媒 液の流量が、 負荷安定状態での流量よりも大きくなるため、 該流量の増大を考慮 して、 オリフィス(70)としては、 最適な孔径よりも大きな孔径を有するものが採 用されていた。 従って、 従来の二重効用型の吸収式冷凍機においては、 立上げ後、 冷凍負荷が安定した運転状態における減圧が不十分となり、 これによる効率の低 下が問題となっていた。 更に、 冷凍負荷が減少すると、 蒸気抜けによる効率の低 下が顕著になるという問題があつた。
又、 吸収液は同一濃度では圧力の低い方が沸点が下がるため、 蒸発しやすくな る。 従って、 圧力を制御することによって蒸発量を調整することが可能である。 しかしながら、 従来の二重効用型の吸収式冷凍機においては、 低温再生器(12)に て液化した冷媒を凝縮器 (11)へ供給するための配管( 7 )に、 一定孔径のォリフィ ス(70)が取り付けられているに過ぎなかったため、 圧力に関する能動的な制御は 行なわれていない。 この結果、 仮に定格で 1 : 1で蒸発量となるよう設計されて いても、 冷凍負荷の変動に伴って、 高温再生器(3 )及び低温再生器 (12)での蒸発 量が 1 : 1のバランスを失い、 効率低下の原因となっていた。
更に又、 従来の二重効用型の吸収式冷凍機においては、 高温再生器(3 )と低温 再生器 (12)の間の圧力差によって、 高温再生器(3 )内の吸収液 (中間液)が低温再 生器 (12)へ供給され、 この結果、 低温再生器 (12)内に溜まった吸収液 (濃液)の濃 度が決まることになる。 即ち、 濃液濃度の積極的な制御は行なわれていない。 し かしながら、 濃液濃度が低い程、 吸収液の循環流量が増大して、 吸収液の顕熱上 昇に消費されるエネルギーが増大し、 効率が低下する問題がある。
本発明の目的は、 冷凍負荷等の運転条件に拘わらず、 従来よりも高い効率が得 られる二重効用型の吸収式冷凍機を提供することである。
又、 本発明の目的は、 立上げ時や負荷の急激な増大時には、 そのときに発生す る冷媒を滞りなく凝縮器へ流すことが出来、 然も、 定常運転状態では、 冷媒に適 切な減圧を与えることが出来る吸収式冷凍機を提供し、 これによつて運転効率を 従来よりも向上させることである。
更に又、 本発明の目的は、 濃液濃度を積極的に制御して、 従来よりも運転効率 を改善することである。 発明の開示
本発明に係る第 1の吸収式冷凍機は、 低温再生器 (12)にて液化した冷媒を凝縮 器 (11)へ供給するための配管(7 )に、 該配管を流れる冷媒を減圧すると共に減圧 量の調整が可能な圧力調整手段を設け、 冷凍負荷の大きさに応じて減圧量を調整 することを特徴とする。
これによつて、 冷凍負荷に拘わらず最適な減圧量が設定され、 この結果、 高温 再生器( 3 )及び低温再生器 (12)の夫々において、 高温再生器( 3 )に対する入熱量 に応じた十分な蒸気発生量が得られることとなつて、 従来よりも高い効率が得ら れる。
具体的には、 圧力調整手段は、 前記配管(7 )に取り付けられたオリフィス (71) と、 該オリフィス(71)を迂回するバイパス管(8 )と、 該バイパス管(8 )の途中に 介在する制御弁 (81)と、 制御弁 (81)の開度を制御する制御回路(9 )とから構成さ れる。
該具体的構成においては、 制御弁 (81)の開度を調整することによって、 オリフ ィス(71 )及び制御弁 (81 )を通過する冷媒の減圧量が調整される。
更に具体的構成において、 高温再生器(3 )に対する入熱量は、 冷水出口温度を 目標値に近づけるべく制御され、 制御回路(9 )は、 立ち上げ時から負荷が安定す るまでの期間は、 制御弁 (81)を全開とし、 負荷が安定した後は、 高温再生器(3 ) に対する入熱量が減少する限り、 制御弁 (81)の開度を徐々に絞る制御を実行する。 該具体的構成においては、 立ち上げ時に制御弁 (81)を全開とすることによって、 低温再生器(12)から流出する冷媒液の流量の増大に拘わらず、 該冷媒液を滞留さ せることなく、 凝縮器(11)へ送り込むことが可能となる。
そして、 その後、 負荷が安定した状態で制御弁 (81)の開度を徐々に絞ることに よって、 減圧量が徐々に増大し、 低温再生器 (12)内の管内冷媒飽和温度と、 管外 溶液飽和温度の差が拡がるため、 これに伴って低温再生器(12)からの蒸気発生量 は増加する。 ここで、 冷水出口温度を目標値に近づけるべく高温再生器(3 )に対 する入熱量を制御した場合、 入熱量は減少することになる。 し力、し、 制御弁 (81) の開度がある値を下回ると、 冷媒の流量が減少して、 逆に入熱量が増大する。 そ こで、 入熱量が減少から増大に転じる時点で、 制御弁 (81)の開度調整を停止する c この結果、 負荷安定状態における最適な開度が設定され、 従来よりも高い効率が 得られることになる。
上記本発明に係る第 1の吸収式冷凍機によれば、 冷凍負荷に拘わらず、 従来よ りも高い効率を得ることが出来る。
又、 本発明に係る第 2の吸収式冷凍機においては、 低温再生器(12)にて液化し た冷媒を凝縮器 (11)へ供給するための流路に、 低温再生器 (12)から流出する冷媒 の流量変化を検知する検知手段と、 凝縮器 (11)へ送り込まれる冷媒の流量を調整 すると共に冷媒に適切な減圧を与える調整手段とを設け、 検知手段により流量増 大が検知されたとき、 調整手段によつて冷媒の流量を増大させる。
上記本発明の吸収式冷凍機においては、 立上げ時や負荷の急激な増大時に、 冷 媒の流量が急激に増大したとき、 これが検知手段によって検知され、 調整手段に よって凝縮器(11)へ送り込まれる冷媒の流量が増大される。 これによつて、 低温 再生器 (12)から流出する冷媒は、 滞りなく凝縮器へ流れることになる。 その後、 負荷が安定して定常運転状態になると、 低温再生器 (12)から流出する冷媒の流量 が一定となって、 冷媒には調整手段によつて適切な減圧が与えられる。
具体的構成において、 検知手段は、 低温再生器 (12)にて液化した冷媒を凝縮器 (11)へ供給するための配管(7 )の途中に介在する冷媒タンク(109)を具え、 該冷媒 タンク(109)内の冷媒の液面位によって冷媒流量の変化が検知可能である。 又、 調 整手段は、 冷媒タンク(109)内の液面位に応じて開閉するフロート弁 (181)の入口 を冷媒タンク(109)内に設置すると共に出口を凝縮器 (11)へ接続し、 冷媒タンク (109)と凝縮器 (11)を接続する配管(7 )にオリフィス(71)を取り付けて構成される。 上記具体的構成においては、 立上げ時や負荷の急激な増大時に、 冷媒の流量が 急激に増大したとき、 冷媒タンク(109)内の冷媒の液面位が上昇し、 これに伴って フロート弁(181)が開くことになる。 この結果、 低温再生器 (12)から流出する冷媒 は、 一旦、 冷媒タンク(109)に溜まった後、 フロート弁 (181)を通過して凝縮器 (1 1)へ供給されると同時に、 冷媒タンク(109)の出口からオリフィス(71)を経て凝縮 器 (11)へ供給される。 これによつて、 低温再生器 (12)から凝縮器 (11)へ至る十分 な流路が形成され、 低温再生器 (12)から流出する冷媒は滞ることなく、 凝縮器 (1 1)へ流れ込むことになる。 その後、 負荷が安定して定常運転状態になると、 冷媒タンク(109)内の冷媒の液 面位が低下し、 フロート弁 (181)が閉じることになる。 従って、 冷媒タンク(109) に溜まった冷媒は、 フロート弁 (181)を通過することなく、 冷媒タンク(109)の出 口から配管(7 )のみを経て凝縮器 (11)へ供給される。 この際、 冷媒は配管(7 )中 のオリフィス(71)による適切な減圧を受けることになる。
上記本発明に係る第 2の吸収式冷凍機においては、 低温再生器 (12)から凝縮器
(11)へ供給される冷媒に適切な減圧が与えられる結果、 高温再生器(3 )及び低温 再生器 (12)の夫々において、 高温再生器( 3 )に対する入熱量に応じた十分な蒸気 発生量が得られることとなって、 従来よりも高い効率が実現される。
本発明に係る第 3の吸収式冷凍機においては、 圧力を能動的に制御することに より、 濃液一中間液の濃度差と稀液一中間液の濃度差の比を効果的に調整出来る 点に着目し、 該濃度差の比を 1 : 1に近づける制御を採用した。 即ち、 低温再生 器 (12)にて液化した冷媒を凝縮器 (11)へ供給するための配管(7 )に、 圧力制御手 段を設け、 中間液の濃度が濃液の濃度と稀液の濃度の平均値となる様、 圧力を制 御する。
これによつて、 高温再生器(3 )及び低温再生器(12)の夫々において、 高温再生 器( 3 )に対する入熱量に応じた十分な蒸気発生量が得られることとなり、 冷凍負 荷に拘わらず、 従来よりも高い効率が実現される。
具体的構成において、 圧力制御手段は、 前記配管(7 )に取り付けられた制御弁 (118)と、 該制御弁(118)の開度を制御する制御回路 (119)とから構成される。 制御回路(119)は、
高温再生器(3 )内の吸収液(中間液)の温度(中間液高温温度) Tsmhgと、 高温再 生器( 3 )内の蒸気の飽和温度相当の物理量の測定データから、 高温再生器( 3 )内 の吸収液(中間液)の濃度 Xsmを推定する第 1推定部 (191)と、
低温再生器 (12)内の吸収液 (濃液)の温度 (濃液高温温度) T sslgと、 低温再生器
(12)内の蒸気の飽和温度相当の物理量の測定データから、 低温再生器(12)内の吸 収液 (濃液)の濃度 Xssを推定する第 2推定部(192)と、
吸収器(22)内の吸収液 (稀液)の温度 (稀液低温温度) T swaと、 吸収器 (22)内の 蒸気の飽和温度相当の物理量の測定データから、 吸収器 (22)内の吸収液 (稀液)の 濃度 Xswを推定する第 3推定部(193)と、
推定された 3つの濃度から制御偏差を算出する演算部(194)(195)と、
算出された制御偏差に基づいて制御弁(118)の開度を制御するコントローラ(19
0)とを具えている。
一般に、 吸収液の温度 Tは、 吸収液の濃度 X (%)と、 吸収液の濃度及び温度に 平衡する圧力相当の水の飽和温度 Trsを変数とする実験式、 例えば数式 1の McN eelyの式で表わすことが出来る。
(数式 1 )
Γ
Figure imgf000009_0001
10
例えば、 高温再生器(3 )内の吸収液(中間液)の濃度 Xsmの推定においては、 高 温再生器(3 )内の吸収液の温度と蒸気圧力を測定し、 該測定データに基づいて、 水の飽和圧力 -飽和温度の関係式、 例えば数式 2の菅原の式から、 高温再生器(3 ) 内の蒸気の飽和温度を算出すると共に、 これらのデータから数式 1の実験式を用 いて濃度を算出することが出来る。 同様に、 低温再生器(12)内の吸収液の濃度や、 吸収器 (22)内の吸収液の濃度についても推定が可能である。
そして、 推定された 3つの濃度から制御偏差を算出し、 該制御偏差に基づいて 制御弁(118)の開度を制御することによって、 濃液一中間液の濃度差と稀液一中間 液の濃度差の比を 1 : 1に近づけることが出来る。 (数式 2 )
In 225.65
10— 5 -(4.787 X Ι 0—9 )Γ。' }(Γ 一 483.16) 2
P
Figure imgf000010_0001
, Trs:蒸気飽和温度 [K] 尚、 第 1推定部(191)は、 高温再生器(3 )内の蒸気の飽和温度に替えて、 低温再 生器 (12)から流出する冷媒の温度 (低温再生器冷媒出口温度) T rUgを採用し、 第 2推定部(192)は、 低温再生器(12)内の蒸気の飽和温度に替えて、 凝縮器(11)から 流出する冷媒の温度 (凝縮器冷媒出口温度) Trieを採用し、 第 3推定部 (193)は、 吸収器 (22)内の蒸気の飽和温度に替えて、 蒸発器 (21)を循環する冷媒の温度 (蒸発 器冷媒循環温度) T rieを採用することが可能である。 これによつて、 温度測定が 簡易となり、 コスト低減が図られる。
上記本発明に係る第 3の吸収式冷凍機によれば、 冷凍負荷に拘わらず、 従来よ りも高い効率を得ることが出来る。
本発明に係る第 4の吸収式冷凍 においては、 高温再生器(3 )から低温再生器 (12)へ吸収液(中閬液)を供給するための配管 (272)に、 流量調整手段を設けて、 吸 収器 (22)へ供給されるべき吸収液 (濃液)が結晶化しない範囲で可及的に最大の濃 度となる様、 吸収液(中間液)の流量を制御する。 尚、 流量調整手段は、 制御弁や ポンプ等によって構成することが出来る。
上記吸収式冷凍機においては、 流量調整手段の動作によって、 高温再生器(3 ) から低温再生器(12)へ供給すべき吸収液(中間液)の流量を減少させることによつ て、 低温再生器(12)に溜まる吸収液 (濃液)の濃度を上げることが出来る。 但し、 濃液濃度が過度に高くなると、 吸収液が結晶化して、 運転継続に支障が生じる。 そこで、 本発明においては、 吸収液が結晶化しない範囲で可及的に最大の濃度と なる様、 吸収液(中間液)の流量を制御する。 これによつて、 吸収液の循環流量が 減少して、 吸収液の顕熱上昇に消費されるエネルギーが減少し、 運転効率が向上 する。
具体的には、 流量調整手段に対して流量指令を発する制御手段を具え、 該制御 手段は、 吸収液が結晶化しない目標濃度を吸収液の温度毎に記憶しており、 吸収 器 (22)へ供給されるべき吸収液 (濃液)の温度の測定値と、 低温再生器(12)に溜ま つた吸収液 (濃液)の濃度の測定値若しくは推定値とに基づいて、 流量指令を算出 する。
吸収液の結晶化する濃度は、 吸収液の温度によって異なるため、 上記具体的構 成においては、 予め温度毎に結晶化することのない最大濃度を、 目標値として記 憶しておき、 運転時には、 濃液温度の測定値に基づいて目標濃液濃度を決定して、 濃液濃度の測定値若しくは推定値を目標濃度に近づけるべく、 中間液流量のフィ ードバック制御を実行する。 これによつて、 負荷に拘わらず、 吸収液が結晶化し な 、範囲で可及的に最大の濃度が保たれることになる。
更に具体的構成において、 低温再生器(12)にて液化した冷媒を凝縮器(11)へ供 給するための配管( 7 )には、 該配管を流れる冷媒を減圧すると共に減圧量の調整 が可能な圧力調整手段を設け、 冷凍負荷の大きさに応じて減圧量を調整する。 こ れによって、 冷凍負荷に拘わらず最適な減圧量が設定され、 この結果、 高温再生 器( 3 )及び低温再生器(12)の夫々において、 高温再生器( 3 )に対する入熱量に応 じた十分な蒸気発生量が得られることとなって、 従来よりも高 、効率が得られる。 具体的には、 圧力調整手段は、 前記配管(7 )に取り付けられたオリフィス(71) と、 該オリフィス(71)を迂回するバイパス管(8 )と、 該バイパス管(8 )の途中に 介在する制御弁 (81)とから構成され、 立ち上げ時から負荷が安定するまでの期間 は、 制御弁 (81)を全開とし、 負荷が安定した後は、 高温再生器(3 )に対する入熱 量が最少となる様に制御弁 (81 )の開度を絞る。
該具体的構成においては、 制御弁 (81)の開度を調整することによって、 オリフ ィス(71)及び制御弁 (81)を通過する冷媒の減圧量が調整される。 立ち上げ時には、 制御弁 (81)を全開とすることによって、 低温再生器 (12)から流出する冷媒液の流 量の増大に拘わらず、 該冷媒液を滞留させることなく、 凝縮器 (11)へ送り込むこ とが可能となる。
そして、 その後、 負荷が安定した状態で制御弁 (81)の開度を徐々に絞ることに よって、 減圧量が徐々に増大し、 これに伴って凝縮量は増加する。 ここで、 冷水 出口温度を目標値に近づけるベく高温再生器( 3 )に対する入熱量を制御した場合、 入熱量は減少することになる。 し力、し、 制御弁 (81)の開度がある値を下回ると、 冷媒の流量が減少して、 逆に入熱量が増大する。 そこで、 入熱量力最小となる制 御弁 (81)の開度を設定する。 この結果、 負荷安定状態における最適な開度が設定 され、 従来よりも高い効率が得られることになる。
上記本発明に係る第 4の吸収式冷凍機によれば、 吸収液が結晶化しない範囲で 濃液濃度が可級的に最大値に保たれるため、 従来よりも運転効率が向上する。 図面の簡単な説明
図 1は、 本発明に係る第 1の吸収式冷凍機の要部の構成を表わす系統図である c 図 2は、 該吸収式冷凍機の制御系を表わすプロック図である。
図 3は、 該吸収式冷凍機における制御手続きを表わすフローチャートである。 図 4は、 冷凍負荷と成績係数の関係を表わすグラフである。
図 5は、 本発明に係る第 2の吸収式冷凍機の要部の構成を表わす系統図である c 図 6は、 本発明に係る第 3の吸収式冷凍機の要部の構成を表わす系統図である c 図 7は、 該吸収式冷凍機の制御系を表わすプロック図である。
図 8は、 本発明に係る第 4の吸収式冷凍機の要部の構成を表わす系統図である c 図 9は、 該吸収式冷凍機の制御系を表わすプロック図である。
図 1 0は、 該吸収式冷凍機における減圧量についての制御手続きを表わすフロ 一チヤ一トである。
図 1 1は、 該吸収式冷凍機における濃液濃度についての制御手続きを表わすフ ローチャートである。
図 1 2は、 二重効用型吸収式冷凍機の全体構成を表わす系統図である。 図 1 3は、 従来の吸収式冷凍機の要部の構成を表わす系統図である。 発明を実施するための最良の形態
以下、 本発明の実施例につき、 図面に沿って具体的に説明する。
第 1実施例
本実施例の二重効用型の吸収式冷凍機は、 図 1 2に示す従来の吸収式冷凍機と 同様に、 凝縮器 (11)及び低温再生器 (12)からなる上胴(1 )、 蒸発器 (21)及び吸収 器 (22)からなる下胴(2 )、 バ一ナ (31)を内蔵した高温再生器(3 )、 高温熱交換器 ( 4 )、 低温熱交換器(5 )などを相互に配管接続し、 吸収液ポンプ(6 )によって、 吸収液を高温再生器(3 )、 低温再生器(12)及び吸収器 (22)の間で循環させ、 冷凍 サイクルを実現するものである。
高温再生器(3 )内のパーナ (31)に燃料ガスを供給するための配管には、 ガス弁 (32)が取り付けられ、 蒸発器 (21)から流出する冷水の温度 (冷水出口温度 Tc—ou t)を目標値に保つべく、 ガス弁 (32)の開度が制御され、 燃料ガスの供給量が調整 される。
図 1は、 本実施例の吸収式冷凍機の特徴的構成を表わしており、 低温再生器 (1 2)にて液化した冷媒を凝縮器 (11)へ供給するための配管(7 )に、 従来のオリフィ スよりも孔径の小さなオリフィス(71)が取り付けられている。 又、 配管(7 )には、 オリフィス(71)を迂回するバイパス管( 8 )が接続され、 該バイパス管( 8 )の途中 に制御弁 (81)が介在している。
制御弁 (81)には制御回路(9 )が接続される。 該制御回路(9 )は、 高温再生器に 供給されるべき燃料ガスの流量 Qに応じて変化する開度指令 Aを作成し、 制御弁 (81)へ供給するものである。 これによつて、 制御弁 (81)の開度が後述の如く最適 制御される。
図 2は、 吸収式冷凍機本体 ( 10)に対する制御系の構成を表わしている。
吸収式冷凍機本体(10)から得られる冷水の出口温度 Tc_ outと、 その目標値 (例 えば 7 °C)が P I Dコントローラ(90)へ供給され、 冷水の出口温度 Tc— outを目標 値に近づけるための P I D制御が実行される。 これによつて、 P I Dコントロー ラ(90)からは、 高温再生器へ供給すべき燃料ガスの流量 Qについての指令が出力 される。
P I Dコントローラ(90)から指令されるガス流量 Qは、 吸収式冷凍機本体 (10) のガス弁へ供給されて、 弁開度が制御される。 又、 P I Dコントローラ(90)から 指令されるガス流量 Qは、 制御回路(9 )へ供給されて、 前述の如く制御弁 (81)に 対するバルブ開度 Aが作成され、 吸収式冷凍機本体 (10)へ供給される。
図 3は、 上述の制御系をマイクロコンピュータで構成した場合の制御手続きを 表わしている。 先ずステップ S 1では、 バルブ開度 Aを最大開度 Amaxに設定し、 ステップ S 2にて、 前述の P I Dコントローラ(90)によってガス流量 Qの P I D 制御を実行する。 その後、 ステップ S 3では、 冷却水出口温度 Tco— outが、 目標 値を含む所定の温度範囲( T X〜 T y )内であるかどうかにより、 冷却水出口温度 が目標値に追従しているかどうかを判断する。 ここで、 ノーと判断された場合は、 ステップ S 2の P I D制御を続行する。
ステップ S 3でイエスと判断されたときは、 ステップ S 4に移行して、 冷水出 口温度 T c— outと冷水入口温度 T c— inの差が一定となったかどうかにより、 負荷 が安定したかどうかを判断する。 ここで、 ノーと判断されたときは、 ステップ S 2に戻って、 P I D制御を続行する。
ステップ S 4でイエスと判断されたときは、 ステップ S 5に移行して、 バルブ 開度 Aを所定量 Δ Αだけ減少させた後、 ステップ S 6にて、 ガス流量 Qが減少し たかどうかを判断する。 負荷が安定した直後のバルブ開度は過大であるため、 開 度を絞ることによって凝縮量が増大し、 ガス流量は減少するが、 バルブ開度が負 荷安定状態における最適値を下回ると、 冷媒流量が減少するために凝縮量が減少 し、 ガス流量は増大することになる。
そこで、 ステップ S 6にてイエスと判断されたときは、 ステップ S 5に戻って、 更にバルブ開度 Aを絞る。 その後、 ステップ S 6にてノーと判断されたときは、 ステップ S 7へ移行して、 バルブ開度の調整を停止する。
最後に、 ステップ S 8では、 負荷が増大したかどうかを例えば冷水出入口温度 差によって検知し、 負荷が一定又は減少したときは、 ステップ S 7に戻って、 そ のときのバルブ開度を維持する。 一方、 負荷が増大したときは、 ステップ S 1に 戻って、 バルブ開度を最大として、 上述の手続きを繰り返す。
図 3に示す制御手続きによれば、 立ち上げ時から負荷が安定するまでの期間は、 制御弁 (81)が全開となって、 低温再生器(12)から流出する冷媒液は、 制御弁 (81) 及びオリフィス(71)を通過して、 滞留することなく、 凝縮器 (11)へ送り込まれる。 そして、 その後、 負荷が安定した状態では、 ガス流量が減少から増大に転じるま で、 制御弁 (81)が絞られ、 最適な減圧量が設定される。 この結果、 負荷に拘わら ず、 従来よりも高い効率が得られることになる。
図 4は、 本発明に係る吸収式冷凍機 (制御あり)と、 従来の吸収式冷凍機 (制御な し)において、 冷却水温度 3 0 °Cでの冷凍負荷と成績係数 C O Pとの関係を、 実験 によって調べ、 グラフ化したものである。 このグラフから明らかな様に、 本発明 に係る吸収式冷凍機では、 負荷の大小に拘わらず、 大きな成績係数 C O Pが得ら れている。
尚、 制御弁 (81)の開度調整は、 図 3に示す手続きに限らず、 冷凍負荷の大きさ に応じて減圧量を最適調整する種々の制御が採用出来る。 又、 配管(7 )にオリフ ィス(71)と制御弁 (81)の両方を取り付けて、 バイパス管( 8 )を省略することも可 能である。 更に又、 制御弁 (81)として減圧機能を有するものを採用すれば、 配管 ( 7 )に制御弁 (81)を取り付けて、 ノくィパス管( 8 )及びォリフィス(71)を省略する ことも可能である。
第 2実施例
図 5は、 本実施例の吸収式冷凍機の特徴的構成を表わしており、 低温再生器 (1 2)にて液化した冷媒を凝縮器 (11)へ供給するための第 1配管( 7 )の途中に、 冷媒 タンク(109)が介在すると共に、 冷媒タンク(109)の出口側には、 定常運転状態に おいて適当な大きさとなる孔径のオリフィス(71)が取り付けられている。
冷媒タンク(109)内には、 フロート弁(181)が設置され、 該フロート弁(181)の入 口は、 冷媒タンク(109)内の冷媒中で開口すると共に、 その出口は第 2配管 (108) によって上胴(1 )に接続されている。
フロート弁 (181)は、 立上げ時や負荷の急激な増大時に、 低温再生器 (12)から流 出する冷媒の流量が急増して、 冷媒タンク(109)内の冷媒の液面位が所定の液面位 よりも上昇したとき、 フロート(182)の上昇に伴って開状態となり、 その後、 負荷 が安定して定常運転状態となり、 低温再生器 (12)ら流出する冷媒の流量が一定と なって、 冷媒タンク(109)内の冷媒の液面位が前記所定の液面位よりも低下したと き、 フロート(182)の下降に伴って閉状態となるものである。
従って、 立上げ時や負荷の急激な増大時に、 低温再生器 (12)から冷媒タンク(1 09)へ流入した冷媒は、 開状態のフロート弁 (181)を通過し、 第 2配管(108)を経て 凝縮器 (11)へ供給されると共に、 第 1配管( 7 )を経て凝縮器 (11)へ供給される。 この 2つの流路の形成によって、 低温再生器(12)から流出する冷媒は滞ることな く、 凝縮器(11)へ向けて流れることになる。
又、 定常運転状態では、 フロート弁(181)が閉状態であるため、 低温再生器(12) から流出する冷媒は第 2配管(108)を通過することが出来ず、 第 1配管( 7 )のみを 経て、 凝縮器 (11)へ供給される。 ここで、 第 1配管(7 )には、 適当な孔径のオリ フィス(71)が設置されているから、 冷媒は適切な大きさの減圧を受けることにな る。 その結果、 高温再生器(3 )及び低温再生器 (12)の夫々において、 高温再生器 ( 3 )に対する入熱量に応じた十分な蒸気発生量が得られることとなって、 従来よ りも高い運転効率が実現されるのである。
尚、 冷媒タンク(109)の液面位をセンサ一で監視すると共に、 第 1配管(7 )に制 御バルブを取り付け、 冷媒タンク(109)の液面位に応じて制御バルブの開度を調整 する構成を採用することが出来る。 これによつて、 第 2配管(108)及びフロート弁 (181)の省略が可能となる。 減圧機能と流量調整機能を有する制御バルブを採用す れば、 オリフィス(71)を省略することも可能となる。
第 3実施例
図 6は、 本実施例の吸収式冷凍機の特徴的構成を表わしており、 低温再生器 (1 2)にて液化した冷媒を凝縮器 (11)へ供給するための配管(7 )に、 制御弁(118)が取 り付けられている。 制御弁 (118)には制御回路 (119)が接続される。 該制御回路 (1 19)は、 吸収式冷凍機本体の適所に設けられた温度センサーから、 中間液高温温度 T smhg、 低温再生器冷媒出口温度 Trllg、 濃液高温温度 Tsslg、 凝縮器冷媒出口 温度 Trlc、 稀液低温温度 Tswa、 及び蒸発器冷媒循環温度 T rieを取り込んで、 こ れらの 測定データに基づいて、 制御弁(118)に対する開度指令 Vを作成するもの である。
制御回路(119)は、 図 7に示す様に、 第 1推定部(191)、 第 2推定部(192)、 第 3 推定部 (193)、 第 1演算部 (194)、 第 2演算部 (195)及び P I Dコントローラ(190) から構成される。
第 1推定部 (191)は、 中間液高温温度 Tsmhgと低温再生器冷媒出口温度 Trllgか ら、 上述の McNeelyの式を用いて、 中間液濃度 Xsmを推定するものである。 第 2推定部(192)は、 濃液高温温度 T sslgと凝縮器冷媒出口温度 T rieから、 上述の McNeelyの式を用いて、 濃液濃度 Xssを推定するものである。 又、 第 3推定部 (193)は、 稀液低温温度 T swaと蒸発器冷媒循環温度 Trieから、 上述の McNeely の式を用いて、 稀液濃度 Xswを推定するものである。
第 2推定部(192)及び第 3推定部 (193)によつて推定された濃液濃度 Xss及び稀 液濃度 Xswは、 第 1演算部(194)へ供給されて、 両濃度の平均値(Xss+ Xsw)/ 2 が算出され、 目標値として設定される。 そして、 該目標値と、 第 1推定部 (191)に よつて推定された中間液濃度 Xsmが第 2演算部 (195)へ供給されて、 制御偏差 e x sraが算出され、 P I Dコントローラ(190)へ入力される。
P I Dコントローラ(190)は、 例えば下記数式 3で表わされる P I D制御を実行 して、 制御弁(118)に対する開度指令 Vを作成するものである。
(数式 3 )
Figure imgf000018_0001
ここで、 P I Dパラメータ Kp、 K i、 Kdは、 制御偏差 e xsmが正のとき、 制御 弁 (118)を開き、 制御偏差 e xsmが負のとき、 制御弁(118)を閉じることとなる適切 な値に設定される。
即ち、 制御偏差 e xsmが正のときは、 中間液濃度が低いので、 制御弁(118)を開 、て再生器圧力を減少させることにより、 高温再生器における冷媒の蒸発を促進 し、 中間液濃度の上昇を図る。 一方、 制御偏差 e xsmが負のときは、 逆に制御弁 (118)を閉じて、 中間液濃度の低下を図るのである。
上述の制御によれば、 負荷に拘わらず、 濃液一中間液の濃度差と稀液一中間液 の濃度差の比を 1 : 1に近づけることが出来、 その結果、 高温再生器(3 )及び低 温再生器(12)の未々において、 高温再生器(3 )に対する入熱量に応じた十分な蒸 気発生量が得られることとなり、 従来よりも高い運転効率が実現される。
尚、 制御弁(118)は、 配管(7 )を迂回するバイパス管に取り付けると共に、 配管 ( 7 )には従来と同様にォリフィスを取り付けて、 オリフィスによつて減圧を行な うと同時に、 制御弁(118)によって圧力制御を行なう構成も採用可能である。 又、 制御弁(118)に替えて、 ィンバ一夕制御方式のポンプを設置することも可能である c 第 mm
図 8は、 本実施例の吸収式冷凍機の特徴的構成を表わしており、 低温再生器(1 2)にて液化した冷媒を凝縮器 (11)へ供給するための配管( 7 )に、 従来のォリフィ スよりも孔径の小さなオリフィス(71 )が取り付けられている。 又、 配管(7 )には、 オリフィス(71)を迂回するバイパス管(8 )が接続され、 該バイパス管(8 )の途中 に第 1制御弁 (81)が介在している。
第 1制御弁 (81)には第 1制御回路 (290)が接続される。 該制御回路 (290)は、 高 温再生器に供給されるべき燃料ガスの流量 Qに応じて変化する開度指令 A 1を作 成し、 第 1制御弁 (81)へ供給するものである。 これによつて、 第 1制御弁 (81)の 開度が後述の如く最適制御される。 又、 高温再生器(3 )から低温再生器 (12)へ吸 収液(中間液)を供給するための配管 (272)には、 第 2制御弁 (282)が取り付けられ ており、 中間液流量の調整が可能となっている。
第 2制御弁 (282)には第 2制御回路 (291)が接続される。 該制御回路 (291)は、 吸 収液が結晶化しない目標濃度を吸収液の温度毎に記憶しており、 吸収器 (22)内で 散布される吸収液 (濃液)の温度の測定値と、 低温再生器(12)に溜まった吸収液 (濃 液)の濃度の測定値若しくは推定値とに基づいて、 吸収液が結晶することのない最 大の濃液濃度を得るための開度指令 A 2を作成し、 第 2制御弁 (282)へ供給するも のである。
図 9は、 吸収式冷凍機本体(10)に対する制御系の構成を表わしている。 吸収式 冷凍機本体(10)から得られる冷水の出口温度 Tc— outと、 その目標値 (例えば 7 °C) が P I Dコントローラ(292)へ供給され、 冷水の出口温度 Tc— outを目標値に近づ けるための P I D制御が実行される。 これによつて、 P I Dコントローラ(292)力、 らは、 高温再生器へ供給すべき燃料ガスの流量 Qについての指令が出力される。
P I Dコントローラ(292)から指令されるガス流量 Qは、 吸収式冷凍機本体(10) のガス弁へ供給されて、 弁開度が制御される。 又、 P I Dコントローラ(292)から 指合されるガス流量 Qは、 第 1制御回路 (290)へ供給されて、 前述の如く第 1制御 弁 (81)に対するバルブ開度 A 1が作成され、 吸収式冷凍機本体 (10)へ供給される。 更に、 吸収式冷凍機本体(10)の低温熱交換器( 5 )の出口で測定された濃液低温温 度と、 後述の如く測定若しくは推定された濃液濃度とが、 第 2制御回路 (291)へ供 給され、 吸収液が結晶することのない最大の濃液濃度を得るための開度指令 A 2 が作成され、 吸収式冷凍機本体 (10)へ供給される。 図 1 0及び図 1 1は、 夫々第 1制御回路 (290)及び第 2制御回路 (291)による制 御系をマイクロコンピュータによって実現した場合の制御手続きを表わしている。 尚、 これら 2つの制御手続きは、 一定の制御周期で同時に実行される。
図 1 0に示す制御手続きにおいては、 先ずステップ S 2 1では、 第 1制御弁 (8 1)についてのバルブ開度 A 1を最大開度 Amaxに設定し、 ステップ S 2 2にて、 前 述の P I Dコントローラ(292)によってガス流量 Qの P I D制御を実行する。
その後、 ステップ S 2 3では、 冷却水出口温度 T co— outが、 目標値を含む所定 の温度範囲(T x〜T y )内であるかどうかにより、 冷却水出口温度が目標値に追 従しているかどうかを判断する。 ここで、 ノーと判断された場合は、 ステップ S 2 2の P I D制御を続行する。
ステップ S 2 3でイエスと判断されたときは、 ステップ S 2 4に移行して、 冷 水出口温度 T c— outと冷水入口温度 T c— inの差が一定となったかどうかにより、 負荷が安定したかどうかを判断する。 ここで、 ノーと判断されたときは、 ステツ プ S 2 2に戻って、 P I D制御を続行する。
ステップ S 2 4でイエスと判断されたときは、 ステップ S 2 5に移行して、 バ ルブ開度 A 1を所定量厶 Aだけ減少させた後、 ステップ S 2 6にて、 ガス流量 Q が減少したかどうかを判断する。 負荷が安定した直後のバルブ開度は過大である ため、 開度を絞ることによって凝縮量が増大し、 ガス流量は減少するが、 バルブ 開度が負荷安定状態における最適値を下回ると、 冷媒流量が減少するために凝縮 量が減少し、 ガス流量は増大することになる。 そこで、 ステップ S 2 6にてイエ スと判断されたときは、 ステップ S 2 5に戻って、 更にバルブ開度 A 1を絞る。 その後、 ステップ S 2 6にてノーと判断されたときは、 ステップ S 2 7へ移行 して、 バルブ開度の調整を停止する。 最後に、 ステップ S 2 8では、 負荷が増大 したどうかを例えば冷水出入口温度差によつて検知し、 負荷が一定又は減少した ときは、 ステップ S 2 7に戻って、 そのときのバルブ開度を維持する。 一方、 負 荷が増大したときは、 ステップ S 2 1に戻って、 バルブ開度を最大として、 上述 の手続きを繰り返す。
図 1 0に示す制御手続きによれば、 立ち上げ時から負荷が安定するまでの期間 は、 第 1制御弁 (81)が全開となって、 低温再生器 (12)から流出する冷媒液は、 第 1制御弁 (81)及びオリフィス(71)を通過して、 滞留することなく、 凝縮器 (11)へ 送り込まれる。 そして、 その後、 負荷が安定した状態では、 ガス流量が減少から 増大に転じるまで、 第 1制御弁 (81)が絞られ、 最適な減圧量が設定される。 この 結果、 負荷に拘わらず、 従来よりも高い効率が得られることになる。
一方、 図 1 1に示す制御手続きにおいては、 先ずステップ S 1 1にて 濃液低 温温度を測定すると共に、 目標値とする ^液濃度を決定する。 ここで、 目標濃液 濃度は、 予め、 吸収液の温度毎に結晶化しない範囲で最大の濃液濃度を決定して、 テーブル化し或いは数式化してメモリに格納しておく。 そして、 運転時には、 濃 液低温温度の測定データに基づいて、 目標濃液濃度を導出する。 尚、 目標濃液濃 度は、 吸収液が結晶化することとなる濃度よりも、 所定値 (例えば 0. 5 %)だけ小 さい値として決定することが出来る。
次にステップ S 1 2では、 濃液濃度を測定し、 若しくは推定する。 濃液濃度の 測定は、 周知の濃度センサーを低温再生器 (12)に取り付けて行なうことが出来る。 濃液濃度の推定は、 例えば上記数式 1を用いて行なうことが出来る。 尚、 吸収液 温度 (濃液温度) Tは、 低温再生器 (12)に温度センサ一を取り付けることによって 測定できる。 飽和温度 Trsは、 凝縮器(11)に温度センサーを取り付けて冷媒溜ま り温度を測定する。 又、 飽和温度 Trsは、 上胴(1 )に圧力センサーを取り付けて 圧力を測定し、 飽和蒸気表における圧力と温度の関係から導出することも可能で ある。 この様にして求めた濃液温度と飽和温度を上記数式 1に代入し、 数式 1を 解くことによって、 濃液濃度 D (数式 1では X)の推定値を得ることが出来る。 次に図 1 1のステップ S 1 3では、 濃液濃度の測定値若しくは推定値と、 目標 濃液濃度との偏差が零に近づく様、 第 2制御弁 (282)の開度、 即ち吸収液(中間液) の流量を P I D制御する。 そして、 ステップ S 1 4では、 測定若しくは推定され た濃液濃度 Dが目標値を含む所定の範囲( D x〜 D y)内であるかどうかにより、 濃 液濃度が目標値に追従しているかどうかを判断し、 ノーと判断されたときは、 ス テツプ S 1 1に戻って、 中間液流量の P I D制御を繰り返す。 ステップ S 1 4で イエスと判断されたときは、 ステップ S 1 5に移行して、 そのときの第 1制御弁 (81)のバルブ開度を保持し、 再びステップ S 1 4の判断に戻る。
上述の制御手続きによれば、 吸収液 (濃液)が結晶化しない範囲で可及的に大き な濃度となる様、 吸収液(中間液)の流量が制御されるので、 従来よりも高い運転 効率が得られる。
又、 図 1 0に示す冷媒の減圧量についての制御を実行すると同時に、 図 1 1に 示す濃液濃度についての制御を実行するので、 高温再生器(3 )及び凝縮器 (11)で の蒸気の発生量に関して最も効率的な運転状態において、 目標濃液濃度が設定さ れ、 該目標値に追従する濃度制御が行なわれることとなって、 濃液濃度について の制御を実行しない場合よりも更に運転効率が改善される。
尚、 図 8に示す第 2制御弁 (282)に替えて、 インバータ制御方式のポンプを採用 することも可能である。

Claims

請 求 の 範 囲 . 高温再生器( 3 )で発生した冷媒蒸気を低温再生器 (12)に供給して凝縮させ、 凝縮によって液化した冷媒は凝縮器(11)へ供給する二重効用型の吸収式冷凍機 において、 低温再生器 (12)にて液化した冷媒を凝縮器(11)へ供給するための配 管( 7 )には、 該配管を流れる冷媒を減圧すると共に減圧量の調整が可能な圧力 調整手段が設けられ、 該圧力調整手段は、 前記配管(7 )に取り付けられたオリ フィス(71)と、 該オリフィス(71)を迂回するバイパス管(8 )と、 該バイパス管 ( 8 )の途中に介在する制御弁 (81)とを具え、 該制御弁 (81)には制御回路(9 )が 接続されて、 冷凍負荷の大きさに応じて制御弁 (81)の開度を制御することを特 徵とする吸収式冷凍機。
. 高温再生器(3 )に対する入熱量は、 冷水出口温度を目標値に近づけるべく制 御され、 制御回路(9 )は、 立ち上げ時から負荷が安定するまでの期間は、 制御 弁 (81)を全開とし、 負荷が安定した後は、 高温再生器(3 )に対する入熱量が減 少する限り、 制御弁 (81)の開度を徐々に絞る制御を実行する請求の範囲第 1項 に記載の吸収式冷凍機。
. 高温再生器( 3 )で発生した冷媒蒸気を低温再生器 (12)に供給して凝縮させ、 凝縮によって液化した冷媒は凝縮器(11)へ供給する二重効用型の吸収式冷凍機 において、 低温再生器 (12)にて液化した冷媒を凝縮器 (11)へ供給するための流 路に、 低温再生器 (12)から流出する冷媒の流量変化を検知する検知手段と、 凝 縮器 (11)へ送り込まれる冷媒の流量を調整すると共に冷媒に適切な減圧を与え る調整手段とを設け、 検知手段により流量増大が検知されたとき、 調整手段に よつて冷媒の流量を増大させることを特徴とする吸収式冷凍機。
. 検知手段は、 低温再生器 (12)にて液化した冷媒を凝縮器 (11)へ供給するため の配管(7 )の途中に介在する冷媒タンク(109)を具え、 該冷媒タンク(109)内の 冷媒の液面位によって冷媒流量の変化を検知する請求の範囲第 3項に記載の吸 収式冷凍機。
. 調整手段は、 冷媒タンク(109)内の液面位に応じて開閉するフロート弁 (181) の入口を冷媒タンク(109)内に設置すると共に出口を凝縮器(11)へ接続し、 冷媒 タンク(109)と凝縮器 (11)を接続する配管(7 )にオリフィス(71)を取り付けて構 成される請求の範囲第 4項に記載の吸収式冷凍機。
. 高温再生器( 3 )で発生した冷媒蒸気を低温再生器 (12)に供給して凝縮させ、 凝縮によって液化した冷媒は凝縮器(11)へ供給すると共に、 高温再生器(3 )、 低温再生器 (12)及び吸収器 (22)の間で吸収液を循環させる二重効用型の吸収式 冷凍機において、 低温再生器 (12)にて液化した冷媒を凝縮器 (11)へ供給するた めの配管(7 )に、 圧力制御手段を設けて、 高温再生器(3 )内の吸収液の濃度が 低温再生器 (12)内の吸収液の濃度と吸収器 (22)内の吸収液の濃度の平均値とな る様、 圧力を制御することを特徴とする吸収式冷凍機。
. 圧力制御手段は、 前記配管(7 )に取り付けられた制御弁 (118)と、 該制御弁 (118)の開度を制御する制御回路(119)とから構成され、 制御回路 (119)は、 高温再生器( 3 )内の吸収液の温度 Tsmhgと、 高温再生器( 3 )内の蒸気の飽和 温度相当の物理量の測定デ一夕から、 高温再生器( 3 )内の吸収液の濃度 X smを 推定する第 1推定部(191)と、
低温再生器 (12)内の吸収液の温度 T sslgと、 低温再生器 (12)内の蒸気の飽和 温度相当の物理量の測定データから、 低温再生器 (12)内の吸収液の濃度 Xssを 推定する第 2推定部(192)と、
吸収器 (22)内の吸収液の温度 Tswaと、 吸収器 (22)内の蒸気の飽和温度相当の 物理量の測定データから、 吸収器 (22)内の吸収液の濃度 Xswを推定する第 3推 定部(193)と、
推定された 3つの濃度から制御偏差を算出する演算部 (194)(195)と、 算出された制御偏差に基づいて制御弁(118)の開度を制御するコントローラ (190) とを具えている請求の範囲第 6項に記載の吸収式冷凍機。
. 第 1推定部 (191)は、 高温再生器(3 )内の蒸気の飽和温度に替えて、 低温再生 器 (12)から流出する冷媒の温度 Trllgを採用し、 第 2推定部 (192)は、 低温再生 器 (12)内の蒸気の飽和温度に替えて、 凝縮器 (11)から流出する冷媒の温度 Trl cを採用し、 第 3推定部 (193)は、 吸収器 (22)内の蒸気の飽和温度に替えて、 蒸 発器 (21)を循環する冷媒の温度 Trieを採用する請求の範囲第 7項に記載の吸収 式冷凍機。
. 第 1推定部 (191)、 第 2推定部(192)及び第 3推定部(193)は夫々、 高温再生器 ( 3 )内の蒸気の飽和温度、 低温再生器(12)内の蒸気の飽和温度、 及び吸収器 (2 2)内の蒸気の飽和温度の推定において、 夫々の蒸気圧力を測定すると共に、 該 測定データに基づいて、 水の飽和圧力一飽和温度の関係式から、 各飽和温度を 算出する請求の範囲第 7項に記載の吸収式冷凍機。
0 . 高温再生器(3 )にて吸収液から発生した冷媒蒸気を低温再生器 (12)に供給 して凝縮させ、 凝縮によって液化した冷媒は凝縮器 (11)へ供給すると共に、 高 温再生器( 3 )内の吸収液は低温再生器(12)へ供給して、 冷媒蒸気の凝縮熱によ つて吸収液を加熱する二重効用型の吸収式冷凍機において、 高温再生器(3 )か ら低温再生器 (12)へ吸収液を供給するための配管 (272)には、 流量調整手段を設 けて、 吸収器 (22)へ供給されるべき吸収液が結晶化しない範囲で可及的に最大 の濃度となる様、 吸収液の流量を制御することを特徴とする吸収式冷凍機。 1 . 流量調整手段に対して流量指令を発する制御手段を具え、 該制御手段は、 吸収液が結晶化しない目標濃度を吸収液の温度毎に記憶しており、 吸収器 (22) へ供給されるべき吸収液の温度の測定値と、 低温再生器 (12)に溜まった吸収液 の濃度の測定値若しくは推定値とに基づいて、 流量指令を算出する請求の範囲 第 1 0項に記載の吸収式冷凍機。
2 . 流量調整手段は、 配管 (272)に介在する制御弁 (282)又はポンプによって構 成される請求の範囲第 1 0項又は第 1 1項に記載の吸収式冷凍機。
1 3 . 低温再生器 (12)にて液化した冷媒を凝縮器 (11)へ供給するための配管(7 ) には、 該配管を流れる冷媒を減圧すると共に減圧量の調整が可能な圧力調整手 段を設け、 冷凍負荷の大きさに応じて減圧量を調整する請求の範囲第 1 0項乃 至第 1 2項の何れかに記載の吸収式冷凍機。
1 4 . 圧力調整手段は、 前記配管(7 )に取り付けられたオリフィス(71)と、 該ォ リフィス(71)を迂回するバイパス管( 8 )と、 該バイパス管( 8 )の途中に介在す る制御弁 (81)とから構成され、 立ち上げ時から負荷が安定するまでの期間は、 制御弁 (81)を全開とし、 負荷が安定した後は、 高温再生器(3 )に対する入熱量 が最少となる様に制御弁 (81)の開度を絞る請求の範囲第 1 3項に記載の吸収式 冷凍機。
PCT/JP1999/000350 1998-01-29 1999-01-27 Machine frigorifique du type a absorption WO1999039140A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/381,909 US6192694B1 (en) 1998-01-29 1999-01-27 Absorption type refrigerating machine
EP99901892A EP0978694A4 (en) 1998-01-29 1999-01-27 ABSORPTION REFRIGERATOR

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10016523A JPH11211265A (ja) 1998-01-29 1998-01-29 吸収式冷凍機
JP10/16523 1998-01-29
JP10/36038 1998-02-18
JP10/36040 1998-02-18
JP10036039A JPH11230631A (ja) 1998-02-18 1998-02-18 吸収式冷凍機
JP10036038A JPH11230632A (ja) 1998-02-18 1998-02-18 吸収式冷凍機
JP10036040A JPH11230633A (ja) 1998-02-18 1998-02-18 吸収式冷凍機
JP10/36039 1998-02-18

Publications (1)

Publication Number Publication Date
WO1999039140A1 true WO1999039140A1 (fr) 1999-08-05

Family

ID=27456592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000350 WO1999039140A1 (fr) 1998-01-29 1999-01-27 Machine frigorifique du type a absorption

Country Status (4)

Country Link
US (1) US6192694B1 (ja)
EP (1) EP0978694A4 (ja)
CN (1) CN1135343C (ja)
WO (1) WO1999039140A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6581405B2 (en) * 2000-02-15 2003-06-24 Jong Hae Kim Airconditioning system utilizing absorption chiller cell
US6318117B1 (en) * 2000-08-22 2001-11-20 American Standard International Inc. Absorption chiller with counter flow generator
US6701726B1 (en) * 2002-10-29 2004-03-09 Carrier Corporation Method and apparatus for capacity valve calibration for snapp absorption chiller
US6962051B2 (en) * 2003-06-17 2005-11-08 Utc Power, Llc Control of flow through a vapor generator
CN1312449C (zh) * 2003-07-23 2007-04-25 张跃 一种吸收式空调系统
US7621141B2 (en) * 2004-09-22 2009-11-24 York International Corporation Two-zone fuzzy logic liquid level control
FR2921468B1 (fr) * 2007-09-25 2009-12-18 Peugeot Citroen Automobiles Sa Procede de calcul et de regulation de la concentration de fluide absorbant dans un dispositif de climatisation par absorption, et dispositif de climatisation par absorption pour la mise en oeuvre d'un tel procede
CN101699195B (zh) * 2009-01-08 2012-08-15 双良节能系统股份有限公司 带升压泵的烟气热水型溴化锂吸收式冷热水机组
US8590328B2 (en) * 2010-02-03 2013-11-26 Hill Phoenix, Inc. Refrigeration system with multi-function heat exchanger
US20110229604A1 (en) * 2010-03-19 2011-09-22 Real Joselito G Momordica Wine
JP5575519B2 (ja) * 2010-03-26 2014-08-20 三洋電機株式会社 吸収式冷凍機
CN102155811A (zh) * 2011-04-30 2011-08-17 浙江理工大学 双温双效溴化锂吸收式制冷机组
US10161834B1 (en) * 2016-02-05 2018-12-25 William R Henry Method to determine performance of a chiller and chiller plant
CN107764122B (zh) * 2017-11-20 2023-09-22 济南热力集团有限公司 一种基于余热利用的大温差冷水复合式梯级利用系统
CN108662653A (zh) * 2018-06-12 2018-10-16 北京恩吉节能科技有限公司 一种热水余热再利用系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916948A (ja) * 1972-06-08 1974-02-14
JPS5453340A (en) * 1977-10-05 1979-04-26 Sanyo Electric Co Ltd Controlling system for absorption water-cooling and boiling machine
JPS58184464A (ja) * 1982-04-22 1983-10-27 三洋電機株式会社 吸収冷温水機の制御装置
JPS5921957A (ja) * 1982-07-27 1984-02-04 三洋電機株式会社 吸収冷温水機
JPH07280384A (ja) * 1994-04-11 1995-10-27 Yazaki Corp 二重効用吸収式冷温水機
JPH0961000A (ja) * 1995-08-22 1997-03-04 Tokyo Gas Co Ltd 二重効用吸収冷温水機
JPH109707A (ja) * 1996-06-21 1998-01-16 Rinnai Corp 吸収式冷凍装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530684A (en) * 1968-11-12 1970-09-29 Trane Co High pressure generator solution level control
US3604216A (en) * 1969-09-09 1971-09-14 Trane Co Crystallization prevention control for absorption refrigeration machine
GB1294802A (en) * 1970-08-10 1972-11-01 Carrier Corp Control system for multiple stage absorption refrigeration system
JPS5281743A (en) * 1975-12-29 1977-07-08 Ebara Corp Double use absorption refrigerating apparatus
US4388812A (en) * 1979-03-08 1983-06-21 Clark Silas W Variable valve for refrigeration system
NL8501039A (nl) * 1985-04-09 1986-11-03 Tno Werkwijze voor het bedrijven van een absorptiewarmtepomp of koelinrichting, alsmede absorptiewarmtepomp of -koelinrichting.
JPS6454179A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Absorption water chiller and heater
JPH0674933B2 (ja) * 1987-11-19 1994-09-21 矢崎総業株式会社 空冷吸収冷温水機
KR960012321B1 (ko) * 1990-09-28 1996-09-18 산요덴기 가부시끼가이샤 흡수냉동기의 제어장치
US5586447A (en) * 1994-07-20 1996-12-24 Gas Research Institute Concentration control in an absorption chiller
JPH0849941A (ja) * 1994-08-09 1996-02-20 Ebara Corp 二重効用吸収冷凍機
JP3287131B2 (ja) * 1994-09-20 2002-05-27 株式会社日立製作所 吸収式冷温水機
US5813241A (en) * 1997-03-24 1998-09-29 Gas Research Institute Crytallization detection and recovery for two-stage absorption refrigeration machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916948A (ja) * 1972-06-08 1974-02-14
JPS5453340A (en) * 1977-10-05 1979-04-26 Sanyo Electric Co Ltd Controlling system for absorption water-cooling and boiling machine
JPS58184464A (ja) * 1982-04-22 1983-10-27 三洋電機株式会社 吸収冷温水機の制御装置
JPS5921957A (ja) * 1982-07-27 1984-02-04 三洋電機株式会社 吸収冷温水機
JPH07280384A (ja) * 1994-04-11 1995-10-27 Yazaki Corp 二重効用吸収式冷温水機
JPH0961000A (ja) * 1995-08-22 1997-03-04 Tokyo Gas Co Ltd 二重効用吸収冷温水機
JPH109707A (ja) * 1996-06-21 1998-01-16 Rinnai Corp 吸収式冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0978694A4 *

Also Published As

Publication number Publication date
US6192694B1 (en) 2001-02-27
EP0978694A4 (en) 2000-11-08
CN1135343C (zh) 2004-01-21
CN1255966A (zh) 2000-06-07
EP0978694A1 (en) 2000-02-09

Similar Documents

Publication Publication Date Title
WO1999039140A1 (fr) Machine frigorifique du type a absorption
KR100716706B1 (ko) 1중 2중 효용 흡수 냉동기의 운전 방법
EP2156108A1 (en) A method and system for controlling a temperature in an absorption chiller
US4322951A (en) Control device and method for conserving fuel in an absorption refrigeration system
JP2000274864A (ja) 吸収式冷凍機の制御方法
CN111397242A (zh) 带冷能快速存储释放系统的溴化锂吸收式冷水机组
JP2708809B2 (ja) 吸収冷凍機の制御方法
KR20100019422A (ko) 흡수 냉각기의 부하조정비를 확장하기 위한 방법 및 시스템
JP3831427B2 (ja) 吸収冷凍機の入熱制御方法
JPH11230631A (ja) 吸収式冷凍機
JP5091590B2 (ja) 吸収式冷温水機
JPH07190537A (ja) 吸収式冷凍機
JP2883372B2 (ja) 吸収冷温水機
US5722246A (en) Absorption refrigerating apparatus control method
JPH0989407A (ja) 吸収式冷凍機
JP2816790B2 (ja) 吸収冷温水機
JPH0356861Y2 (ja)
JP2664436B2 (ja) 吸収冷凍機の制御方法
JPS6021721Y2 (ja) 吸収冷凍機の制御装置
JPS6113888Y2 (ja)
JPH11211265A (ja) 吸収式冷凍機
JPH0868572A (ja) 二重効用吸収冷凍機
JPH11230633A (ja) 吸収式冷凍機
JP2916866B2 (ja) 吸収冷温水機
JP3326240B2 (ja) 吸収式冷凍機の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800081.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09381909

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999901892

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999901892

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999901892

Country of ref document: EP